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Abstract This paper develops a frequentist model averaging approach for threshold
model specifications. The resulting estimator is proved to be asymptotically optimal
in the sense of achieving the lowest possible squared errors. In particular, when com-
bining estimators from threshold autoregressive models, this approach is also proved
to be asymptotically optimal. Simulation results show that for the situation where the
existing model averaging approach is not applicable, our proposed model averaging
approach has a good performance; for the other situations, our proposed model aver-
aging approach performsmarginally better than other commonly usedmodel selection
and model averaging methods. An empirical application of our approach on the US
unemployment data is given.

Keywords Asymptotic optimality · Generalized cross-validation · Model averaging,
Threshold model

1 Introduction

Threshold models have developed rapidly over the past three decades since the pio-
neering studies of Tong and Lim (1980) and Tong (1983, 1990). Chan (1993) studied
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the consistency and limiting distribution of the estimated parameters of threshold
autoregressive (TAR) models. Hansen (2000) developed the asymptotic distribution
for the threshold estimator with a shrinking threshold effect. Delgado and Hidalgo
(2000) proposed estimators for the location and size of structural breaks in a non-
parametric regression model. An important question in the study of threshold models
is the selection of a candidate model. Kapetanios (2001) compared the small sample
performance of different information criteria in threshold models. Model averaging
(MA), as an alternative to the model selection (MS), considers model uncertainty by
weighting estimators across different models, instead of relying entirely upon a single
model. The MA estimator is generally more stable than the MS estimator, as a small
change in data can lead to a significant change in the selection of the optimal model
(Yang 2001; Shen and Huang 2006).

There are two strands of literature on model averaging: Bayesian model averaging
(BMA) and frequentist model averaging (FMA). Cuaresma and Doppelhofer (2007)
applied the BMA to take an average over possible threshold effects and associated
threshold observations. From the frequentist perspective, there are two research fields
on model averaging. One is on the limiting distribution theory of FMA estimator; see,
for example, Hjort and Claeskens (2003) and Xu et al. (2013). The other is on how to
choose weights in model averaging. Hansen (2009) applied Mallows model averaging
(MMA) in weight choice of averaging threshold models. He performed averaging on
models with and without a threshold effect, but did not consider models with different
threshold parameters and explanatory variables.

In the current paper, we explore how the FMA approach can be used to obtain an
average of threshold models. Two cases are considered. In Case I, we first estimate
the threshold parameters of different candidate models and then perform averaging on
these threshold models with different explanatory variables. In particular, we consider
the averaging of TAR models. In Case II, models with a break at different observed
threshold points are considered as different candidate models. We do not estimate the
threshold values in this case. In MMA, the variance of random error σ 2 is estimated
by the model with the largest number of variables (referred to as the largest model),
which leads to the following two problems:

(i) For Case II, the largest model is not unique.
(ii) Even if there exists a unique largest model, using it to estimate σ 2 places toomuch

confidence on a single model.

To address these two problems, this paper develops a new MA approach based on
the approximate generalized cross-validation (GCV) method of Craven and Wahba
(1979), for which the existence of a unique largest model is unnecessary and the
estimation of σ 2 depends on the weights of MA. The resulting averaging estimator
is proved to be asymptotically optimal in achieving the lowest possible squared error.
In Case I, since the estimator of the threshold parameter is random, the associated
coefficient estimator is not a linear combination of the dependent variable. As a result,
the proof of asymptotic optimality is more challenging than the existing proofs for
other MA methods, such as MMA and optimal frequentist model averaging (Liang
et al. 2011).
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We investigate the performance of the proposed averaging estimators numerically.
The simulation results show that in most cases the new MA estimators have lower
MSEs than the MS estimators and other MA estimators. We also apply our method
to analyse the unemployment data for the USA and show that our model averaging
estimator has better forecasting performance than its competitors.

The remainder of this paper is organized as follows. Section 2 introduces the thresh-
old model and the estimation method. Section 3 provides the criterion for selecting
weights and develops the asymptotic optimality theory of the averaging estimator.
Section 4 compares our MA estimators with some commonly used MS and MA esti-
mators. Section 5 presents an empirical application of ourmethod. Section 6 concludes
the paper. The technical proofs are are given in “Appendix”.

2 The model

We consider a threshold regression model with a possible threshold effect,

yi = μi + ei = x ′
iβ1I(zi ≤ γ ) + x ′

iβ2I(zi > γ ) + ei , i = 1, . . . , n, (1)

where yi is the dependent variable, xi = (xi1, xi2, . . .) are the explanatory variables
which can be countably infinite, β1 and β2 are two vectors of coefficients, I(·) is
an indicator function, zi is the threshold variable and can be part of xi , γ is the
threshold parameter, and ei ’s are errors with E(ei |xi ) = 0 and E(e2i |xi ) = σ 2. Let
Y = (y1, . . . , yn)′, e = (e1, . . . , en)′ and μ = (μ1, . . . , μn)

′. In application, μ is
generally approximated by

μ ≈ X (γ )β,

where X (γ ) is ann×2ηmatrixwith the i th row ((xi1, . . . , xiη)I(zi ≤ γ ), (xi1, . . . , xiη)
I(zi > γ )) and β is the corresponding coefficient vector. Since the threshold models
can be regarded as piecewise linear models, the estimation and averaging methods for
linear models can be employed. In a similar way to Hansen (2000), we estimate the
parameters by conditional least squares. Let

S(β, γ ) = (Y − X (γ )β)′(Y − X (γ )β), (2)

which is the sum of squared errors (SSE). By minimizing (2), we obtain all the estima-
tors. We assume that γ belongs to a bounded set � = [γ , γ̄ ]. First, given γ , β̂(γ ) can

be obtained by minimizing S(β, γ ). We then replace β by β̂(γ ), and the SSE becomes
S(β̂(γ ), γ ), which is written as S(γ ). The estimate of γ is defined as:

γ̂ = argmin
γ∈�n

S(γ ),

where �n = {z1, . . . , zn} ∩ �. Let z(i) be the i th smallest element in {z1, . . . , zn}.
To ensure that the model is estimable, � is assumed to satisfy γ ≥ z(η+1) and γ̄ ≤
z(n−η−1). We also assume that �n is non-empty.
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3 Model averaging and weight choice

In this section, we propose a new criterion for selecting the optimal weights. Two
cases are considered. For Case I, we consider the uncertainty caused only by different
explanatory variables, and in Case II, we perform averaging on both different threshold
parameters and different explanatory variables. All limiting processes discussed in this
section are with respect to n → ∞.

3.1 Averaging for models with estimated γ

In this subsection, we aim to average threshold models with different explanatory
variables. We consider model averaging for threshold models that do not contain
lagged dependent variables andmodel averaging for TARmodels. Moreover, we show
the asymptotic optimality of the proposed MA estimators in both cases under certain
regularity conditions.

3.1.1 Averaging for threshold models without lagged dependent variables

Assume that the errors (e1, . . . , en) are i.i.d.We consider a sequence of approximating
models among which the mth model includes km explanatory variables that form the
vector x(m)i . Specifically, the mth model is:

Y = X(m)(γ )β(m) + e(m), (3)

where X(m)(γ ) is a matrix stacking the vectors (x ′
(m)i I(zi ≤ γ ), x ′

(m)i I(zi > γ )) and

of full column rank, β(m) is the coefficient vector of X(m)(γ ), e(m) = μC
(m)(γ )+e, and

the term μC
(m)(γ ) = μ − X(m)(γ )β(m) of which is the approximation error of model

(3).
Following the estimation method in Sect. 2, we can obtain the estimated threshold

parameter γ̂(m) and coefficient

β̂(m) = (X ′
(m)(γ̂(m))X(m)(γ̂(m)))

−1X ′
(m)(γ̂(m))Y (4)

under the mth model. Let X̂(m) = X(m)(γ̂(m)) and P̂(m) = X̂(m)(X̂ ′
(m) X̂(m))

−1 X̂ ′
(m),

so that the estimator of μ under the mth candidate model is given by μ̂(m) = P̂(m)Y .
Denote w = (w1, . . . , wM )′, a weight vector in the unit simplex in RM

Hn =
{

w ∈ [0, 1]M :
M∑

m=1

wm = 1

}
,

where M is the number of candidate models. Note that Hn is a continuous set and is
different from the weight set in Hansen (2007), which is discrete. In addition, Cheng
et al. (2015) used a continues weight set, which is more general than the discrete set
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of Hansen (2007) but is still a subset ofHn . The MA estimator of μ can be expressed
as

μ̂(w) =
M∑

m=1

wmμ̂(m) =
M∑

m=1

wm P̂(m)Y ≡ P̂(w)Y,

where P̂(w) = ∑M
m=1 wm P̂(m) is symmetric but not necessarily idempotent. The

squared error is Ln(w) = ‖μ̂(w) − μ‖2, and the corresponding risk is Rn(w) =
E(Ln(w)|X, Z), where X = (x1, . . . , xn)′ and Z = (z1, . . . , zn)′.

When σ 2 is known, one may obtain weights by minimizing the followingMallows’
criterion proposed by Hansen (2007):

Cn(w) = ‖Y − μ̂(w)‖2 + 2σ 2tr P̂(w).

Since σ 2 is usually unknown in practice, Hansen (2007) suggested estimating it by
the largest candidate model, i.e.

σ̂ 2 = (n − kM∗)−1
∥∥Y − μ̂M∗

∥∥2 ,

where M∗ = argmaxm∈{1,...,M} km . It is shown that as n → ∞, if kM∗ → ∞ and
kM∗/n → 0, then σ̂ 2 is consistent and the asymptotic optimality result still holds for
unknown σ 2.

In time series case, Hansen (2008) applied this criterion to averaging autoregressive
models. However, the largest model may not be unique in practice. In fact, even if the
largest model is unique, using the single model to estimate σ 2 may deviate, in some
sense, from the objective ofmodel averaging.Motivated by these concerns, we develop
a new least squares MA estimator for threshold models. The criterion for selecting
weights is as follows:

Ln(w) = ‖Y − μ̂(w)‖2
(
1 + 2

tr P̂(w)

n

)
. (5)

If we set one component of the weight vector w to be 1 and the others to be 0, then
(5) reduces to a criterion for model selection. Therefore, one may approximate the
GCV criterion by the MS version of (5) and use it to relate GCV to Mallows’ Cp

(Li 1987). For any fixed w in (5),
∥∥Y − μ̂(w)

∥∥2 /n is the mean of residual squared
sums of the MA estimator μ̂(w). If we take it as an estimator of σ 2, then Ln(w) can
be regarded as another estimator of Cn(w). As mentioned previously, Hansen (2007,
2008) estimated σ 2 based on the largest model. We use a averaging estimator of σ 2

instead. Thus, our criterion can be viewed as an adjustedMallows criterion, which can
be used in more general cases because MMA would be infeasible when the largest
model is not unique, as is the case in Sect. 4.2. If the covariance matrix of the error
term e is not diagonal, to estimate the inverse of the covariance matrix, we may use
the estimators proposed by Cheng et al. (2014, 2015).

We rewrite Ln(w) as Ln(w) = w′ê′êw(1 + 2w′K/n) for simplicity, where K =
(k1, ..., kM )′, ê = (ê(1), . . . , ê(M)) and ê(m) = Y − μ̂(m). When constraining w to

123



280 Y. Gao et al.

Hn , we can obtain weights through minimizing Ln(w), i.e. ŵ = argminw∈Hn Ln(w).
The estimator μ̂(ŵ) is referred to as the adjusted Mallows model averaging (AMMA)
estimator of μ hereafter. Note that although Ln(w) is a cubic function of w, the
numerical algorithms for minimizing such a criterion are actually readily available.
For example, one can use ‘solnp’ in the R package ‘Rsolnp’. Therefore, our AMMA
approach can be easily performed in practice.

Note that for each candidate model, the estimator of μ depends on a random item
γ̂m , thus causing problems for conducting the asymptotic optimality. So the theory in
this subsection is not just an extension of that of Hansen (2007). To solve this problem,
we try to find a properly defined limit for γ̂(m) under each candidate model.We assume

that there exists a constant γ ∗
(m) such that γ̂(m)

p−→ γ ∗
(m), where γ ∗

(m) is not necessarily
equal to the true value γ0. If zi = i/n and km is bounded, the convergency was proved
by Koo and Seo (2015). However, if km is related to n, further work is required.

Let X∗
(m) = X(m)(γ

∗
(m)), P

∗
(m) = X∗

(m)

(
X∗′

(m)X
∗
(m)

)−1
X∗′

(m), P
∗(w) = ∑M

m=1 wm

P∗
(m), A

∗(w) = In − P∗(w) and L∗
n(w) = ‖P∗(w)Y − μ‖2. Then we have R∗

n(w) ≡
E(L∗

n(w)|X, Z) = ‖A∗(w)μ‖2 + σ 2tr P∗2(w). Define ξ∗
n = infw∈Hn R

∗
n(w) and

λmax(A) as the maximum singular value of matrix A. The following theorem states
the asymptotic optimality of the AMMA estimator.

Theorem 1 For some finite integer G ≥ 1, if

E(e4Gi |xi ) < ∞, (6)

Mξ∗−2G
n

M∑
m=1

(
R∗
n(w

0
m)
)G p−→ 0, (7)

nξ∗−1
n max

1≤m≤M
λmax(P

∗
(m) − P̂(m))

p−→ 0, (8)

k2M∗/n ≤ a1 < ∞, (9)

and

‖μ‖2 = Op(n), (10)

then

Ln(ŵ)

infw∈Hn Ln(w)

p−→ 1, (11)

where a1 is a constant, and w0
m is an M × 1 vector in which the mth element is one

and the others are zeros.

Proof See “Appendix.” �
Condition (6) is a moment condition and requires the regression error distribution
to have sufficiently thin tails. For example, it excludes the Cauchy distribution and
holds for Gaussian distribution. Condition (7) is a commonly used condition in the
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model averaging literature such as Wan et al. (2010) and Liu and Okui (2013). To
explain this condition, we consider a situation with ξ∗

n = na , supw∈Hn
R∗
n(w) = nb

and 0 < a ≤ b < 1; then, Condition (7) is implied by M2nG(b−2a) → 0, which holds
when b < 2a and M doest not increase with n too fast. Cheng et al. (2015) pointed out
that Condition (7) will preclude some goodmodels with smaller Ln(w) in linear cases.
Similarly, it still may happen in the threshold models. However, they select weights on
a narrower set compared with our continuous setHn . Thus, we need to add Condition
(7) to ensure the asymptotic optimality of AMMA, which means M cannot increase
with n as fast as it in Cheng et al. (2015). Condition (8) puts some restrictions on the
order of ξ∗

n and the convergence rate of the elements of matrix P̂(m) − P∗
(m). Note that

because γ̂(m)
p−→ γ ∗

(m), the elements of matrix P̂(m) − P̂∗
(m) converge to zeros. The

proof of (58) in “Appendix” shows that Condition (8) can be satisfied when kM∗ is
bounded. Condition (9) requires that the numbers of covariates in candidate models
do not increase faster than n1/2. Condition (10) is on the sum of μ2

1, . . . , μ
2
n and need

only that μ2
1, . . . , μ

2
n do not expand with n.

3.1.2 Averaging for TAR models

The TAR model is a special case among threshold models and is widely used in
empirical analysis. However, when averaging TAR models, the asymptotic theory
developed above is no longer valid due to serial dependence and the existence of
lagged dependent variables. This subsection develops the asymptotic optimality for
averaging TAR models.1 In the same way as in Sect. 3.1.1, we have

yi = μi + ei

=
⎛
⎝β10 +

p1∑
j=1

β1 j yi− j

⎞
⎠ I(zi ≤ γ ) +

⎛
⎝β20 +

p2∑
j=1

β2 j yi− j

⎞
⎠ I(zi > γ )

+ ei , i = 1, . . . , n,

where pk is the lag order for regime k (k = 1, 2), ei ’s are white noise with mean zero
and variance σ 2 and βk j ’s are autoregressive coefficients with

∑pk
j=1 |βk j | < 1 (k =

1, 2). For simplicity, we set p1 = p2 = p, where p can be infinite. In this case,
xi = (1, yi−1, . . . , yi−p)

′ and each regime is an AR( km) process in the mth model.
We assume that for each m, km is fixed, so M is bounded.

We focus on μ and apply the AMMA method to select the weights. Let Q∗
n(w) =

‖A∗(w)μ‖2 + σ 2tr(P∗2(w)) and ζ ∗
n = infw∈Hn Q

∗
n(w). To study the asymptotic

optimality of the MA estimator, we make the following assumptions:

(a.1) {xi , zi , ei } is strictly stationary and ergodic, and E(ei |σ(xi , xi−1, . . .)) = 0,
where σ(xi , xi−1, . . .) is the σ -algebra generated by xi , xi−1, . . .. (a.2) E |yi |4 <

∞ and E |yi ei |4 < ∞.

1 Although Hansen (2008, 2009) studied averaging estimators in time series models, they did not develop
the asymptotic optimality.
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(a.3) Let f2(z|γ̂(m)) be the conditional density of zi given γ̂(m). Uniformly for z ∈ �

and γ̂(m) ∈ �, the conditional density f2(z|γ̂(m)) is bounded by a finite constant
f̄2, and the conditional expectation E(|xi j xik ||zi = γ, γ̂(m)) with zi and γ̂(m)

given is bounded.
(a.4) E |γ̂(m) − γ ∗

(m)| = O(n−ρ) for some constant 0 < ρ ≤ 1, m = 1, . . . , M .

Assumptions (a.1) and (a.2) are common assumptions for stationary processes. In
real data analysis, if the series is non-stationary, we can use some data conversion
methods, such as the differential operator and seasonal adjustment to get a stationary
series. Assumption (a.3) requires the conditional density and expectation are bounded.
Assumption (a.4) is based on the result of Koo and Seo (2015), who showed that the
convergence rate of γ̂ can be as fast as T−1/3 for the structural break model. Under
these assumptions, we have the following theorem.

Theorem 2 If Assumptions (a.1)–(a.4) and Condition (10) are satisfied and

n1−ρ/2ζ ∗−1
n

p−→ 0, (12)

then (11) is valid.

Proof See “Appendix.” �

3.2 Averaging for models without estimating γ

In this subsection, we averagemodelswith different threshold parameters and different
explanatory variables simultaneously using the models set up in Sect. 3.1.1. Let |�n|
be the size of �n . Since there are |�n| possible threshold points, there will be |�n|
models with the same explanatory variables. Let γ(s) be the sth item of �n . Assume
that the ms th candidate model contains km explanatory variables, with γ(s) being the
threshold parameter. Then the threshold parameter in every candidate model can be
regarded as a fixed constant. Therefore, the coefficient estimated by the ms th model
is:

β̃(ms ) = (X ′
(m)(γ(s))X(m)(γ(s)))

−1X ′
(m)(γ(s))Y,

and the estimator of μ is given by

μ̃(ms ) = X(m)(γ(s))(X
′
(m)(γ(s))X(m)(γ(s)))

−1X ′
(m)(γ(s))Y ≡ P(m)(γ(s))Y.

Let w = (w11, . . . , wM|�n |)
′ and H̃n =

{
w ∈ [0, 1]M|�n | : ∑M

m=1
∑|�n |

s=1 wms = 1
}
,

which is also a continuous weight set, so that the averaging estimator of μ is:

μ̃(w) =
M∑

m=1

|�n |∑
s=1

wms μ̃(ms ) =
M∑

m=1

|�n |∑
s=1

wms P(m)(γ(s))Y ≡ P(w)Y.
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The squared error is L̃n(w) = ‖μ̃(w) − μ‖2, and the corresponding risk is R̃n(w) =
E(L̃n(w)|X, Z). Let ξ̃n = infw∈H̃n

R̃n(w). In this subsection, the largest model is not
unique, so the Mallows’ criterion does not apply. In light of this concern, we make
use of the AMMA idea; that is, we select weights by the following criterion:

L̃n(w) = ‖Y − μ̃(w)‖2
(
1 + 2

tr P(w)

n

)
.

Let w̃ = argminw∈H̃n
L̃n(w) and the corresponding AMMA estimator be μ̃(w̃). The

following theorem guarantees the asymptotic optimality of the AMMA estimator.

Theorem 3 For some finite integer G ≥ 1, if Conditions (6), (9) and

M |�n |̃ξ−2G
n

M∑
m=1

|�n |∑
s=1

(
R̃n(w

0
ms

)
)G p−→ 0, (13)

hold, then

L̃n(w̃)

infw∈H̃n
L̃n(w)

p−→ 1. (14)

In the current case, since the threshold parameter is known in every candidate
model, the proof of Theorem 3 is more straightforward than that of Theorem 1. We
only provide a simple explanation in “Appendix”. The detailed proof is available on
request from the authors. Note that Condition (13) is similar to Condition (7).

4 Simulations

In this section, we conduct three simulation studies to compare the performance of the
MA estimator and theMS estimator. The first simulation performs averaging for mod-
elswith different explanatory variables and i.i.d. errors, the second simulation performs
averaging for models with different explanatory variables and threshold parameters,
and the third simulation performs averaging for TAR models with different orders.

4.1 Simulation I: averaging for models with estimated γ

The data generating process is:

yi = μi + ei =
∞∑
j=1

xi jβ1 j I(xi3 ≤ γ ) +
∞∑
j=1

xi jβ2 j I(xi3 > γ ) + ei , i = 1, . . . , n,

where γ = 0, xi1 = 1, all other xi j ’s and ei ’s come from N (0, 1) and are independent
of one another, and the coefficients β11 = c, the remaining β1 j = cj−ζ with ζ =
0.25, 0.5, 0.75 controlling the decay rate of the coefficients, and β2 = aβ1 with a =
1.5 and c > 0. The difference between coefficients is denoted by a. The parameter c
is set to make the population R2 = var(yi − ei )/var(yi ) vary on a grid from 0.1 to
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0.9. To let the threshold variable xi3 appear in each candidate model, we set the mth
candidate model to include the firstm+2 explanatory variables (m = 1, . . . , M), and
M = 3n1/3.When estimating γ , we restrict it to the set containing the 20, 25, . . . , 80%
quantiles of {xi3} for decreasing computation time, as suggested by Hansen (2000).
The sample size is set at 60, 100, 250 and 400. To evaluate the performance of the
estimators, we simulate 500 replications and compute mean squared risk by

1

500

500∑
r=1

n∑
i=1

(μ̂
(r)
i − μi )

2, (15)

where μ̂
(r)
i is the estimates of μ in the r th replication. For each parameterization, we

normalize the risks by dividing the risk by the infeasible optimal risk (the risk of the
best single model).

We compare our averaging estimator with the AIC and BIC model selection esti-
mators. The AIC score for the mth model is given by AICm = n log σ̂ 2

m + 2km ,
where σ̂ 2

m = ‖Y − μ̂(m)‖2/n, and the BIC score for the mth model is BICm =
n log σ̂ 2

m + km log n. We also compare our averaging estimator with the existing
model averaging methods: MMA, smoothed AIC (S-AIC), and smoothed BIC (S-
BIC), proposed in Buckland et al. (1997) and ARM (adaptive regression by mixing),
an adaptive method developed by Yang (2001). The S-AIC method assigns weight
wAIC,m = exp(−AICm/2)/

∑M
m=1 exp(−AICm/2) to the mth model and the S-BIC

method assigns weight wBIC,m = exp(−BICm/2)/
∑M

s=1 exp(−BICm/2) to the mth
model. The ARM method divides samples into a training part and a testing part. The
parameters are estimated by the training samples, while the weights are obtained by
the testing samples. For more details, one can refer to Yang (2001).

The simulation results are displayed in Figs. 1, 2, 3. In each panel, the relative risk
is displayed on the y axis and the population R2 is displayed on the x axis. Since the
MA methods are always better than the MS methods, we only show the MA results
to distinguish different lines clearly. In addition, we cut off part of the figures to
make it easier to compare AMMA and MMA in some cases. Although some risks
do not appear in the figures, they are all bounded actually. The factors that affect the
relative performances of the competitors include n (sample size), ζ ( the decay rate
of the coefficient) and R2 (population). First, in the majority of cases of {n, ζ, R2},
the AMMA outperforms S-AIC and S-BIC. Second, the AMMA performs better than
the MMA and ARM when R2 is large; while when R2 is small, the AMMA performs
worse than the MMA and ARM. Third, when n or ζ decreases, the region of R2

where the AMMA outperforms the MMA and ARM becomes wider. Fourth, when n
increases, the AMMA and MMA perform more closely. In addition, we also conduct
simulations for a = 0.2 and a = 3. The corresponding results are qualitatively similar
to those obtained for a = 1.5.

4.2 Simulation II: averaging for models without estimating γ

The setup of this simulation is the same as that in Sect. 4.1 However, in this sub-
section, we do not estimate the threshold parameter. We average or select among
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Fig. 1 Results of Simulation I. Risks of averaging models with estimated γ (ζ = 0.25)

models with different explanatory variables at all possible threshold points, and do
not compare the AMMAmethod with the MMAmethod as MMA is infeasible in this
example.
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Fig. 2 Results of Simulation I. Risks of averaging models with estimated γ (ζ = 0.5)

The simulation results are displayed in Figs. 4, 5, 6. Again, we can find the AMMA
outperforms S-AIC, S-BIC and ARM. The detailed comparison findings are very
similar to those in Simulation I.
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Fig. 3 Results of Simulation I. Risks of averaging models with estimated γ (ζ = 0.75)

4.3 Simulation III: averaging for TAR models

We now investigate the performance of the averaging estimator for TAR models. The
data generating process is as follows:
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yi = (β10 +
p∑

j=1

β1 j yi− j )I(yi−d ≤ γ )

+
⎛
⎝β20 +

p∑
j=1

β2 j yi− j

⎞
⎠ I(yi−d > γ ) + ei , i = 1, . . . , n,

where yi−d is the threshold variable and d is the lag order. We set ei to be i.i.d.
N (0, σ 2), d = 3, γ = 0, p = 6, β10 = 0.5 and β20 = −0.5. The coefficients

are generated by the rule βk j = 5(1 + j)αk (−φ) j

6
∑p

i=1(1 + i)αkφi
, where φ and αk are constants

and k = 1, 2 , j = 1, . . . , p, which is similar to the setting in Hansen (2008). As∑p
j=1 |βk j | < 1, {yn} is stationary. Note that βki/βk j = ( 1+i

1+ j

)αk (−φ)i− j (i > j), so

the item (−φ)i− j determines the convergence rate of the coefficients.We let α1 = 0.1,
α2 = 0.3, n ∈ {60, 100, 250, 400}, σ 2 = 0.5, 1, 2 and φ vary on a grid from 0.6 to
0.9.

Candidate models differ in their lag orders. Identical orders are used in the two
regimes and the threshold parameter is estimated, so we have M = p = 6 candidate
models. Unlike the previous simulations, we also need to estimate d here. Denote by
d̂m the estimator of d under the mth candidate model. According to the mth candidate
model, the one-step-ahead out-of-sample forecast of yn+1 given yn, yn−1, . . . is:

ŷn+1(m) =
⎛
⎝β̂(m)10 +

m∑
j=1

β̂(m)1 j yn+1− j

⎞
⎠ I(yn+1−d̂m

≤ γ̂(m))

+
⎛
⎝β̂(m)20 +

m∑
j=1

β̂(m)2 j yn+1− j

⎞
⎠ I(yn+1−d̂m

> γ̂(m)),

where β̂(m)r j is the estimator of β(m)r j for r = 1, 2 and j = 0, . . . , p. The combined

forecast is given by ŷn+1(w) = ∑M
m=1 wm ŷn+1(m). To compare the performance of

model selection and averaging methods, we use 500 replications. For each replication,
we generate a series of size n + 1 and use the first n samples to get the averaged
coefficients. Then we calculate the one-step-ahead out-of-sample prediction and get
the mean squared forecast error (MSFE) given by

1

500

500∑
r=1

(y(r)
n+1 − ŷ(r)

n+1)
2, (16)

where r denotes the r th replication.
Figures 7, 8, 9 show the simulation results. As the ARMmethod cannot be used for

time series prediction, we choose another adaptive method, named AFTER (Aggre-
gated Forecast Through Exponential Reweighting, Yang 2004) instead. We can see
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Fig. 4 Results of Simulation II. Risks of averaging models without estimating γ (ζ = 0.25)

that the MMA and AMMA always perform better than the other methods. The factors
that affect the relative performances of the competitors include n (sample size), σ 2

(noise level) and φ (the convergence rate of the coefficients). First, in the major-
ity of cases of {n, σ 2, φ}, the AMMA and MMA outperform S-AIC, S-BIC and
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Fig. 5 Results of Simulation II. Risks of averaging models without estimating γ (ζ = 0.5)

AFTER. Second, when n = 60, 100, the MMA performs better than AMMA in
most of values of φ, while when n = 250, 400, the AMMA performs better than the
MMA in most of values of φ. Third, for different σ 2, the comparison results are very
similar.
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Fig. 6 Results of Simulation II. Risks of averaging models without estimating γ (ζ = 0.75)

5 Empirical application

In this section, we apply the averaging approach to a monthly data set for US unem-
ployment from January 1970 to Dec 2012. The sample size is 516 in total. The unit
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Fig. 7 Results of Simulation III. MSFEs for averaging TAR models with σ 2 = 0.5

root test for threshold model (Caner and Hansen 2001) suggests that the process is
a stationary nonlinear threshold autoregression. The model selection and averaging
methods are the same as those in Simulation III, with the largest order set to be 12. The
candidate set for d is {1, 2, . . . , 12}. We use {y1, . . . , yn} to fit the model and predict
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Fig. 8 Results of Simulation III. MSFEs for averaging TAR models with σ 2 = 1

yn+1. Then, we use {y2, . . . , yn+1} to fit the model and predict yn+2. By pushing on
this procedure step by step, we can get 516− n predictions at last. n is set at 60, 150,
250 and 400. We compare the AMMA method with the AIC, BIC, S-AIC, S-BIC,
AFTER and MMA methods using the MSFE. We also report the standard deviation
(SD) of the squared forecast error. The results are shown in Table 1.
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Fig. 9 Results of Simulation III. MSFEs for averaging TAR models with σ 2 = 2

The performance of the AMMA estimation is always better than that of the AIC,
BIC, S-AIC and S-BIC methods, since its means are the lowest. When n = 250 and
n = 400, the AMMA estimator has lower means than the MMA estimator, while the
MMA performs better when n = 60 and n = 150.
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Table 1 Squared forecast errors of different methods (× 10−2)

Method n = 60 n = 150 n = 250 n = 400

MSFE SD MSFE SD MSFE SD MSFE SD

AIC 9.6844 32.27 2.8071 4.999 2.1979 3.276 2.6816 3.610

BIC 5.4289 15.92 2.9072 5.284 2.5954 4.913 2.8980 3.894

S-AIC 7.8667 26.22 2.7287 4.872 2.1697 3.316 2.6597 3.540

S-BIC 5.5677 15.34 2.8495 5.209 2.5803 4.857 2.7529 3.850

AFTER 5.9782 17.15 2.7696 4.900 2.3260 3.708 2.7379 3.796

MMA 4.7168 8.714 2.5690 4.612 2.1750 3.401 2.5248 3.406

AMMA 5.3363 8.683 2.6127 4.647 2.1662 3.354 2.5193 3.396

6 Conclusion remarks

Threshold models have wide empirical applications. In this paper, two cases of aver-
aging are considered: Case I studies models with different explanatory variables and
a given estimated threshold parameter and Case II studies models with different
explanatory variables at all possible threshold parameters. A new least squares MA
estimator—the AMMA estimator—based on an approximation of GCV is developed.
Compared with the MMA, our AMMA method has wider application because it does
not require a unique largest model. When the threshold is estimated, the coefficient
estimator in each candidate model is not a linear combination of the dependent vari-
able Y , and the proof of asymptotic optimality is challenging. Both the simulations
and the empirical analysis show the superiority of the AMMA estimator over some
commonly used MS and MA estimators.

For future research along this line, one could extend ourmethod to allow formultiple
thresholds. For the case of TARmodel averaging, one could allow the largest lag order
of the TARmodel to be unbounded asymptotically. As this papermainly focuses on the
asymptotic optimality of the AMMA estimator, the derivation of the consistency and
asymptotic distribution of the AMMA estimator would also be an interesting future
research topic. Hansen and Racine (2012) developed a jackknife model averaging
(JMA) estimator under heteroscedastic error settings, and Zhang et al. (2013) studied
the JMA in models with dependent data. Therefore, the development of a model
averagingmethod for thresholdmodelswith heteroscedastic errors alsowarrants future
research. Lastly, although we have developed theoretical properties for our model
averagingmethod, they only hold in large sample sense. Understanding the asymptotic
results when the sample size is limited and developing finite sample properties are also
very necessary in the future research.
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Appendix

Lemma 1 Let W be a weight vector set which can be related to the sample size n.
Define

w∗ = argmin
w∈W

(Ln(w) + an(w)) . (17)

If

sup
w∈W

|an(w)|
Rn(w)

p−→ 0, (18)

sup
w∈W

∣∣∣∣ Ln(w)

Rn(w)
− 1

∣∣∣∣ p−→ 0, (19)

and there exists a constant κ3 such that

inf
w∈W

Rn(w) ≥ κ3 > 0, (20)

then

Ln(w
∗)

infw∈W Ln(w)

p−→ 1. (21)

Proof From the definition of the infimum, there exist a non-negative series ϑn and a
vector w(n) ∈ W such that ϑn → 0 and

inf
w∈W

Ln(w) = Ln(w(n)) − ϑn . (22)

In addition, it follows from (19) that

inf
w∈W

Ln(w)

Rn(w)
= inf

w∈W

(
Ln(w)

Rn(w)
− 1

)
+ 1

≥ − sup
w∈W

∣∣∣∣ Ln(w)

Rn(w)
− 1

∣∣∣∣+ 1
p−→ 1. (23)

From (20), (23) and ϑn → 0, we have

inf
w∈W

|Ln(w) − ϑn|
Rn(w)

≥ inf
w∈W

Ln(w) − ϑn

Rn(w)
≥ inf

w∈W
Ln(w)

Rn(w)
− ϑn

infw∈W Rn(w)

≥ − sup
w∈W

∣∣∣∣ Ln(w)

Rn(w)
− 1

∣∣∣∣+ 1 − ϑn

infw∈W Rn(w)

p−→ 1. (24)
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Now, by the definition of w∗, (18), (20), (22)–(24), and ϑn → 0, we have, for any
δ > 0,

Pr

{∣∣∣∣ infw∈W Ln(w)

Ln(w∗)
− 1

∣∣∣∣ > δ

}
= Pr

{
Ln(w

∗) − infw∈W Ln(w)

Ln(w∗)
> δ

}

= Pr

{
infw∈W (Ln(w) + an(w)) − an(w∗) − infw∈W Ln(w)

Ln(w∗)
> δ

}

≤ Pr

{
Ln(w(n)) + an(w(n)) − an(w∗) − Ln(w(n)) + ϑn

Ln(w∗)
> δ

}

≤ Pr

{ |an(w(n))|
Ln(w∗)

+ |an(w∗)|
Ln(w∗)

+ ϑn

Ln(w∗)
> δ

}

≤ Pr

{ |an(w(n))|
infw∈W Ln(w)

+ |an(w∗)|
Ln(w∗)

+ ϑn

Ln(w∗)
> δ

}

= Pr

{ |an(w(n))|
Ln(w(n)) − ϑn

+ |an(w∗)|
Ln(w∗)

+ ϑn

Ln(w∗)
> δ

}

≤ Pr

{
sup

w∈W
|an(w)|

Ln(w) − ϑn
+ sup

w∈W
|an(w)|
Ln(w)

+ sup
w∈W

ϑn

Ln(w)
> δ

}

≤ Pr

{
sup

w∈W
|an(w)|
Rn(w)

sup
w∈W

Rn(w)

|Ln(w) − ϑn| + sup
w∈W

|an(w)|
Rn(w)

sup
w∈W

Rn(w)

Ln(w)

+ sup
w∈W

ϑn

Rn(w)
sup

w∈W
Rn(w)

Ln(w)
> δ

}

= Pr

{
sup

w∈W
|an(w)|
Rn(w)

[
inf

w∈W
|Ln(w) − ϑn|

Rn(w)

]−1

+ sup
w∈W

|an(w)|
Rn(w)

[
inf

w∈W
Ln(w)

Rn(w)

]−1

+ ϑn

infw∈W Rn(w)

[
inf

w∈W
Ln(w)

Rn(w)

]−1

> δ

}

→ 0. (25)

Therefore, infw∈W Ln(w)/Ln(w
∗) p−→ 1, which implies (21). �

Proof of Theorem 1. First, from the fact that X(m)(γ ) is of full column rank, we have
tr P̂(w) = tr P∗(w) ≤ 2

∑M
m=1 wmkm . Let Â(w) = In − P̂(w), so that

Ln(w) =‖Y − μ̂(w)‖2
(
1 + 2

tr P̂(w)

n

)
= Ln(w) + ‖e‖2 + 2μ′( Â(w) − A∗(w))e + 2μ′A∗(w)e

+ 2
(
σ 2tr P∗(w) − e′P∗(w)e

)+ 2e′(P∗(w) − P̂(w)
)
e

+ 2tr P∗(w)
(‖A∗(w)Y‖2/n − σ 2)

+ 2tr P∗(w)
(‖ Â(w)Y‖2 − ‖A∗(w)Y‖2)/n.
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Since ‖e‖2 is unrelated tow and Condition (20) withW = Hn is implied by Condition
(7), according to Lemma 1, Theorem 1 is valid if

sup
w∈Hn

|μ′A∗(w)e|/R∗
n(w)

p−→ 0, (26)

sup
w∈Hn

|e′P∗(w)e − σ 2tr P∗(w)|/R∗
n(w)

p−→ 0, (27)

sup
w∈Hn

|L∗
n(w)/R∗

n(w) − 1| p−→ 0, (28)

sup
w∈Hn

|tr P∗(w)(‖A∗(w)Y‖2/n − σ 2)|/R∗
n(w)

p−→ 0, (29)

sup
w∈Hn

∣∣μ′(P∗(w) − P̂(w)
)
e
∣∣/R∗

n(w)
p−→ 0, (30)

sup
w∈Hn

∣∣e′(P∗(w) − P̂(w)
)
e
∣∣/R∗

n(w)
p−→ 0, (31)

sup
w∈Hn

|Ln(w) − L∗
n(w)|/R∗

n(w)
p−→ 0, (32)

and
sup

w∈Hn

∣∣tr P∗(w)
(‖A∗(w)Y‖2 − ‖ Â(w)Y‖2)∣∣/nR∗

n(w)
p−→ 0. (33)

(26)–(28) can been shown by following the proof of Theorem 1′ of Wan et al. (2010).
Therefore, we only need to verify (29)–(33). First, we prove (29). Note that

sup
w∈Hn

|tr P∗(w)
(‖A∗(w)Y‖2/n − σ 2)|/R∗

n(w)

= sup
w∈Hn

{
tr P∗(w)

nR∗
n(w)

∣∣‖μ − P∗(w)Y‖2 + ‖e‖2 + 2μ′A∗(w)e − 2e′P∗(w)e − nσ 2
∣∣}

≤ sup
w∈Hn

L∗
n(w)

R∗
n(w)

sup
w∈Hn

tr P∗(w)

n
+ sup

w∈Hn

2|μ′A∗(w)e|
R∗
n(w)

sup
w∈Hn

tr P∗(w)

n

+ |‖e‖2 − nσ 2|√
n

sup
w∈Hn

1

R∗
n(w)

sup
w∈Hn

tr P∗(w)√
n

+ sup
w∈Hn

2|e′P∗(w)e − σ 2tr P∗(w)|
R∗
n(w)

sup
w∈Hn

tr P∗(w)

n

+ 2σ 2 sup
w∈Hn

1

R∗
n(w)

sup
w∈Hn

tr2P∗(w)

n
.

By the central limit theorem, we have |‖e‖2 − nσ 2|/√n = Op(1). In addition, it
follows from (7) and ( 9) that

sup
w∈Hn

1

R∗
n(w)

= op(1), sup
w∈Hn

tr2P∗(w)/n = O(1) and sup
w∈Hn

tr P∗(w)/n = o(1).
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Together with (26)–(28), (29) is obtained.
To prove (30), we observe that

sup
w∈Hn

∣∣μ′(P∗(w) − P̂(w)
)
e
∣∣/R∗

n(w)

≤ 1

ξ∗
n

sup
w∈Hn

[‖μ‖2e′(P∗(w) − P̂(w)
)2
e
]1/2

≤ 1

ξ∗
n

‖μ‖√
n

‖e‖√
n
n max
1≤m≤M

λmax(P
∗
(m) − P̂(m)).

By Conditions (8) and (10), (30) is verified.
Note that

Ln(w) = ‖e‖2 + ‖ Â(w)μ‖2 + ‖ Â(w)e‖2 − 2e′ Â(w)μ − 2e′ Â(w)e + 2μ′ Â2(w)e,

so

sup
w∈Hn

|Ln(w) − L∗
n(w)|/R∗

n(w)
p−→ 0 ⇔

sup
w∈Hn

∣∣2μ′(P∗(w) − P̂(w)
)
μ + 2μ′(P∗(w) − P̂(w)

)
e

− μ′(P∗(w) + P̂(w)
)(
P∗(w) − P̂(w)

)
μ

− e′(P∗(w) + P̂(w)
)(
P∗(w) − P̂(w)

)
e

− 2μ′P∗(w)
(
P∗(w) − P̂(w)

)
e

− 2μ′(P∗(w) − P̂(w)
)
P̂(w)e

∣∣/R∗
n(w)

p−→ 0.

Thus, if

sup
w∈Hn

∣∣μ′(P∗(w) + P̂(w)
)(
P∗(w) − P̂(w)

)
μ
∣∣/R∗

n(w)
p−→ 0, (34)

sup
w∈Hn

∣∣e′(P∗(w) + P̂(w)
)(
P∗(w) − P̂(w)

)
e
∣∣/R∗

n(w)
p−→ 0, (35)

sup
w∈Hn

∣∣μ′P∗(w)
(
P∗(w) − P̂(w)

)
e
∣∣/R∗

n(w)
p−→ 0, (36)

sup
w∈Hn

∣∣μ′(P∗(w) − P̂(w)
)
P̂(w)e

∣∣/R∗
n(w)

p−→ 0, (37)

and
sup

w∈Hn

∣∣μ′(P∗(w) − P̂(w)
)
μ
∣∣/R∗

n(w)
p−→ 0, (38)
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then (32) is valid. From Condition (8) and the following result

sup
w∈Hn

∣∣e′(P∗(w) + P̂(w)
)(
P∗(w) − P̂(w)

)
e
∣∣/R∗

n(w)

≤ 1

2ξ∗
n

sup
w∈Hn

∣∣e′[(P∗(w) + P̂(w)
)(
P∗(w) − P̂(w)

)
+ (P∗(w) − P̂(w)

)(
P∗(w) + P̂(w)

)]
e
∣∣

≤ ‖e‖2
2ξ∗

n
sup

w∈Hn

λmax
[(
P∗(w) + P̂(w)

)(
P∗(w) − P̂(w)

)
+ (P∗(w) − P̂(w)

)(
P∗(w) + P̂(w)

)]
≤ ‖e‖2

ξ∗
n

sup
w∈Hn

[
λmax

(
P∗(w) + P̂(w)

)
λmax

(
P∗(w) − P̂(w)

)]

≤ ‖e‖2
ξ∗
n

sup
w∈Hn

[
λmax

(
P∗(w)

)+ λmax
(
P̂(w)

)] M∑
m=1

wmλmax(P
∗
(m) − P̂(m))

≤ 2

ξ∗
n

‖e‖2
n

n max
1≤m≤M

λmax(P
∗
(m) − P̂(m)),

we obtain (35). Similarly, (31), (34) and (38) can be verified. On the other hand,
analogous to the proof of (30), one can obtain (36) and (37).

Further, it can be shown that

sup
w∈Hn

∣∣tr P∗(w)
(‖A∗(w)Y‖2 − ‖ Â(w)Y‖2)∣∣/nR∗

n(w)

≤ sup
w∈Hn

tr P∗(w)

n
sup

w∈Hn

|‖A∗(w)Y‖2 − ‖ Â(w)Y‖2|
R∗
n(w)

≤ a1 sup
w∈Hn

|‖A∗(w)Y‖2 − ‖ Â(w)Y‖2|
R∗
n(w)

,

where the last step is from Condition (9). Observe that

|‖A∗(w)Y‖2 − ‖ Â(w)Y‖2|
= |2μ′(P̂(w) − P∗(w))μ + μ′(P∗(w) + P̂(w))(P∗(w) − P̂(w))μ

+ 2e′(P̂(w) − P∗(w))e + e′(P∗(w) + P̂(w))(P∗(w) − P̂(w))e

+ 4μ′(P̂(w) − P∗(w))e + 2μ′P∗(w)(P∗(w) − P̂(w))e

+ 2μ′(P∗(w) − P̂(w))P̂(w)e|,
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so from (30), (31) and (34)–(38 ), we have

sup
w∈Hn

|‖A∗(w)Y‖2 − ‖ Â(w)Y‖2|
R∗
n(w)

p−→ 0.

Thus, we obtain (33). This completes the proof of Theorem 1. �
The following lemma is used in the proof of Theorem 2.

Lemma 2 For any γ̂(m) and γ ∗
(m) ∈ � and any random variable Y , if Assumptions

(a.3) and (a.4) are satisfied, and

|E(Y |zi = γ, γ̂(m))| ≤ Ē, (39)

where Ē is a finite constant, then

E
(
Y |I(zi ≤ γ ∗

(m)) − I(zi ≤ γ̂(m))|
) = O(n−ρ). (40)

Proof The proof is similar to that of Lemma A.1 in Hansen (2000).

∂E(Y I(zi ≤ γ )|γ̂(m))

∂γ
=
∫ +∞

−∞
y
∂
∫ γ

−∞ f (y, z|γ̂(m)) dz

∂γ
dy

=
∫ +∞

−∞
y f (y, γ |γ̂(m))dy

=
∫ +∞

−∞
y f1(y|γ, γ̂(m)) f2(γ |γ̂(m))dy

= f2(γ |γ̂(m))E(Y
∣∣zi = γ, γ̂(m)),

where f , f1 and f2 are density functions. Let C = f̄2 Ē . By Lagrange’s mean value
theorem, there exists a γ̃(m) between γ ∗

(m) and γ̂(m) such that

E(Y I(zi ≤ γ̂(m))|γ̂(m)) − E(Y I(zi ≤ γ ∗
(m))|γ̂(m))

= f2(γ̃(m)|γ̂(m))E(Y
∣∣zi = γ̃(m), γ̂(m))(γ̂(m) − γ ∗

(m))

≤ C |γ̂(m) − γ ∗
(m)|. (41)

Define f3(γ ) as the density of γ̂(m). By (41) and Assumptions (a.3) and (a.4), we have

E
(
Y |I(zi ≤ γ ∗

(m)) − I(zi ≤ γ̂(m))|)

=
∫ γ̄

γ

E
(
Y |I(zi ≤ γ ∗

(m)) − I(zi ≤ γ̂(m))|
∣∣γ̂(m)

)
f3(γ̂(m))dγ̂(m)

=
∫ γ ∗

(m)

γ

E
(
Y
(
I(zi ≤ γ ∗

(m)) − I(zi ≤ γ̂(m))
)∣∣γ̂(m)

)
f3(γ̂(m))dγ̂(m)
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+
∫ γ̄

γ ∗
(m)

E
(
Y
(
I(zi ≤ γ̂(m)) − I(zi ≤ γ ∗

(m))
)∣∣γ̂(m)

)
f3(γ̂(m))dγ̂(m)

≤
∫ γ̄

γ

C |γ̂(m) − γ ∗
(m)| f3(γ̂(m))dγ̂(m) = O(n−ρ).

The proof of Lemma 2 is completed. �
Proof of Theorem 2. Note that μ′A∗(w)e = μ′e − μ′P∗(w)e. From the proof of
Theorem 1 and the fact that μ′e is unrelated to w, Theorem 2 is valid if

sup
w∈Hn

|e′P∗(w)e − σ 2tr P∗(w)|/Q∗
n(w)

p−→ 0, (42)

sup
w∈Hn

|μ′P∗(w)e|/Q∗
n(w)

p−→ 0, (43)

sup
w∈Hn

|L∗
n(w)/Q∗

n(w) − 1| p−→ 0, (44)

sup
w∈Hn

|tr P∗(w)(‖A∗(w)Y‖2/n − σ 2)|/Q∗
n(w)

p−→ 0, (45)

sup
w∈Hn

∣∣μ′(P∗(w) − P̂(w)
)
e
∣∣/Q∗

n(w)
p−→ 0, (46)

sup
w∈Hn

∣∣e′(P∗(w) − P̂(w)
)
e
∣∣/Q∗

n(w)
p−→ 0, (47)

sup
w∈Hn

|Ln(w) − L∗
n(w)|/Q∗

n(w)
p−→ 0, (48)

and

sup
w∈Hn

∣∣tr P∗(w)
(‖A∗(w)Y‖2 − ‖ Â(w)Y‖2)∣∣/nQ∗

n(w)
p−→ 0. (49)

Because xi contains the lag values of yi , the proofs of (42)–(44) are different from
those of (26)–(28).

According to Theorem 3.35 of White (1984), Assumption (a.1) implies that
x(m)i x ′

(m)i I(zi ≤ γ ∗
(m)) is stationary and ergodic. Further, Assumption (a.2) ensures

E |x(m)i j x(m)ikI(zi ≤ γ ∗
(m))| < ∞. By Theorem 3.34 of White (1984), we have

X∗′
(m)X

∗
(m)

n

p−→
(
E(x(m)i x ′

(m)i I(zi ≤ γ ∗
(m))) 0

0 E(x(m)i x ′
(m)i I(zi > γ ∗

(m)))

)
≡ V(m),

(50)
where V(m) is an invertible matrix. From Assumptions (a.1) and (a.2), xi I(zi ≤ γ )ei
is a square integrable stationary martingale difference sequence. Therefore, by the

central limit theorem for martingale difference sequence, we obtain 1√
n
X∗′

(m)e
d−→

N (0, σ 2V(m)). Thus,
1√
n
X∗′

(m)e = Op(1). Together with the fact that kM∗ and M are
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bounded, it can be shown that

e′P∗
(m)e = 1√

n
e′X∗

(m)

(
X∗′

(m)X
∗
(m)

n

)−1
1√
n
X∗′

(m)e = Op(1) (51)

and

tr P∗(w) =
M∑

m=1

wmtr P
∗
(m) ≤ 2

M∑
m=1

wmkm ≤ 2kM∗ < ∞. (52)

From Condition (12), we have

sup
w∈Hn

|e′P∗(w)e − σ 2tr P∗(w)|/Q∗
n(w) ≤ ζ ∗−1

n max
1≤m≤M

|e′P∗
(m)e| + 2ζ ∗−1

n σ 2kM∗
p−→ 0.

(53)
Consequently, (42) is verified.

Under (51) and Condition (10), it can be shown that

|μ′P∗(w)e| = |e′P∗(w)μμ′P∗(w)e| 12 ≤ ‖μ‖|e′P∗2(w)e| 12
≤ ‖μ‖λ1/2max

(
P∗(w)

)|e′P∗(w)e|1/2 = Op(
√
n). (54)

Hence, (43) is valid by Condition (12).
For (44), similar to (54), it can be shown that

e′P∗2(w)e = Op(1) (55)

and
|μ′P∗2(w)e| = Op(

√
n). (56)

In addition,
tr P∗2(w) ≤ λmax

(
P∗(w)

)
tr P∗(w) ≤ 2kM∗ . (57)

Thus,

|L∗
n(w) − Q∗

n(w)| = ∣∣‖P∗(w)e‖2 − 2μ′A∗(w)P∗(w)e − σ 2tr P∗2(w)
∣∣

≤ ‖P∗(w)e‖2 + 2|μ′P∗(w)e| + 2|μ′P∗2(w)e| + 2σ 2kM∗

= Op(
√
n).

Hence, (44) holds by Condition (12).
The proof of (45) is similar to that of (29). From the proofs of (30)–(33), if

nζ ∗−1
n max

1≤m≤M
λmax(P

∗
(m) − P̂(m))

p−→ 0, (58)

then (46)–(49) will hold. In the following, we will verify (58).
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By Lemma 2, for the mth candidate model,

E |x(m)i j x(m)ik
(
I(zi ≤ γ ∗

(m)) − I(zi ≤ γ̂(m))
)| = O(n−ρ)

uniformly in i . Hence,

X∗′
(m)X

∗
(m)

n
− X̂ ′

(m) X̂(m)

n
= Op(n

−ρ), (59)

and
(X∗

(m) − X̂(m))
′(X∗

(m) − X̂(m))

n
= Op(n

−ρ). (60)

From (50) and (59), it follows that

X̂ ′
(m) X̂(m)

n

p−→ V(m). (61)

Thus, by (50), (59) and (61), we obtain

(
X∗′

(m)X
∗
(m)

n

)−1

−
(
X̂ ′

(m) X̂(m)

n

)−1

= Op(n
−ρ). (62)

Note that

P∗
(m) − P̂(m) = X∗

(m)[(X∗′
(m)X

∗
(m))

−1 − (X̂ ′
(m) X̂(m))

−1]X∗′
(m)

−(X̂(m) − X∗
(m))(X̂

′
(m) X̂(m))

−1(X̂(m) − X∗
(m))

′

−(X̂(m) − X∗
(m))(X̂

′
(m) X̂(m))

−1X∗′
(m)

−X∗
(m)(X̂

′
(m) X̂(m))

−1(X̂(m) − X∗
(m))

′

≡ �P(m)1 + �P(m)2 + �P(m)3 + �P(m)4. (63)

By using (60)–(62), we have

λmax(�P(m)1) ≤ λmax

⎡
⎣( X∗′

(m)X
∗
(m)

n

)−1

−
(
X̂ ′

(m) X̂(m)

n

)−1
⎤
⎦ λmax

(
X∗′

(m)X
∗
(m)

n

)

= Op(n
−ρ),

λmax(�P(m)2) ≤ λmax

⎡
⎣( X̂ ′

(m) X̂(m)

n

)−1
⎤
⎦ λmax

(
(X̂(m) − X∗

(m))
′(X̂(m) − X∗

(m))

n

)

= Op(n
−ρ),
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and

λmax(�P(m)3) = λmax(�P(m)4)

= λ1/2max

(
(X̂(m) − X∗

(m))(X̂
′
(m) X̂(m))

−1X∗′
(m)X

∗
(m)(X̂

′
(m) X̂(m))

−1(X̂(m) − X∗
(m))

′)
≤ λmax

⎡
⎣
(
X̂ ′

(m) X̂(m)

n

)−1
⎤
⎦ λ1/2max

(
X∗′

(m)X
∗
(m)

n

)

λ1/2max

(
(X̂(m) − X∗

(m))
′(X̂(m) − X∗

(m))

n

)

= Op(n
−ρ/2).

Therefore,

λmax(P
∗
(m) − P̂(m)) ≤ λmax(�P(m)1) + λmax(�P(m)2)

+λmax(�P(m)3) + λmax(�P(m)4)

= Op(n
−ρ/2).

Thus, (58) holds under Condition (12). The proof of Theorem 2 is completed. �
Proof of Theorem 3. Let A(w) = In − P(w). From Lemma 1, we need only to verify
that

sup
w∈H̃n

|μ′A(w)e|/R̃n(w)
p−→ 0, (64)

sup
w∈H̃n

|e′P(w)e − σ 2tr P(w)|/R̃n(w)
p−→ 0, (65)

sup
w∈H̃n

|L̃n(w)/R̃n(w) − 1| p−→ 0, (66)

and
sup

w∈H̃n

|tr P(w)(‖A(w)Y‖2/n − σ 2)|/R̃n(w)
p−→ 0. (67)

We obtain (64)–(66) by following the proof of Theorem 1′ of Wan et al. (2010), while
(67) is valid from the proof of (29). �
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