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Abstract This article is concerned with proving the consistency of Efron’s boot-
strap for the Kaplan–Meier estimator on the whole support of a survival function.
While previous works address the asymptotic Gaussianity of the Kaplan–Meier
estimator without restricting time, we enable the construction of bootstrap-based
time-simultaneous confidence bands for the whole survival function. Other practical
applications include bootstrap-based confidence bands for the mean residual lifetime
function or the Lorenz curve as well as confidence intervals for the Gini index. The-
oretical results are complemented with a simulation study and a real data example
which result in statistical recommendations.

Keywords Counting process · Right censoring · Resampling · Efron’s bootstrap ·
Mean residual lifetime · Lorenz curve · Gini index

1 Introduction

This article reconsiders Efron’s classical bootstrap of Kaplan–Meier estimators; cf.
Efron (1981). It is well known that drawingwith replacement directly from the original
observations consisting of (event time, censoring indicator) reproduces the correct
covariance structure; see, for example, Akritas (1986), Lo and Singh (1986), Horvath
and Yandell (1987) or van der Vaart andWellner (1996) for an application in empirical
processes. LetT : Ω → (0, τ )be a continuously distributed randomsurvival timewith
survival function given by S(t) = 1− F(t) = P(T > t). For conceptual convenience
we mainly refer to T as a random survival time, although other interpretations are
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214 D. Dobler

also reasonable; see the examples below. In the previously mentioned articles the
typical assumption S(τ ) > 0 is met for mathematical convenience in proving weak
convergence of estimators of S on the Skorohod space D[0, τ ] and because most
studies involve a rather strict censoring mechanism: after a pre-specified end of study
time each individual without an observed event is considered as right-censored. Thus,
it is often not possible to draw inference on functionals of the whole survival function.

Some functionals, however, indeed require the possibility to observe arbitrarily
large survival times. For instance, consider the mean residual lifetime function

t �−→ g(t) = E[T − t | T > t] = 1

S(t)

∫ τ

t
S(u)du; (1)

see, for example, Meilijson (1972), Remark 3.3 in Gill (1983), and Stute and Wang
(1993). This function describes the expected remaining lifetime given the survival
until a point of time t > 0. Another, econometric example of a functional of whole
survival curves is the Lorenz curve

p �−→ L(p) = μ−1
∫ p

0
F−1(t)dt = μ−1

∫ F−1(p)

0
sdF(s), (2)

where F−1(t) = inf{u � 0 : F(u) � t} is the left-continuous generalized inverse
of F and μ = ∫ τ

0 tdF(t) is its mean. With the interpretation of T being the income
of a random individual in a population, this function L obviously represents the total
income of the lowest pth fraction of all incomes; cf. Gastwirth (1971). A closely
related quantity is the Gini index

G =
∫ 1
0 (u − L(u))du∫ 1

0 udu
∈ [0, 1] (3)

as a measure of uniformity of all incomes within a population; see, for example, Tse
(2006). The value G = 0 represents perfect equality of all incomes, whereas G = 1
describes the other extreme: only one person gains everything and the rest nothing.

All quantities (1), (2) and (3) are statistical functionals of thewhole survival function
S. First analyzing S only on a subset of its support results inevitably in an alternation
of the above functionals in a second step. And this affects the interpretation of the
above quantities. In order to circumvent such problems, estimating the whole survival
function is the obvious solution: Henceforth, denote by τ = inf{t � 0 : S(t) = 0} ∈
(0,∞) the support’s right end point. Wang (1987) and Stute andWang (1993) showed
the uniform consistency of the Kaplan–Meier or product-limit estimator (Ŝ(t))t∈[0,τ ]
for (S(t))t∈[0,τ ], and Gill (1983) and Ying (1989) proved its weak convergence on the
Skorohod space D[0, τ ]. For robust statistical inference procedures concerning the
above functionals of S it is thus necessary to extend well-known bootstrap results for
the Kaplan–Meier estimator to the whole Skorohod space D[0, τ ]. After presenting
this primary result we deduce inference procedures for the quantities (1)–(3).

This article is organized as follows. Section 2 introduces all required estimators,
recapitulates previous weak convergence results for the Kaplan–Meier estimator on
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Bootstrapping the Kaplan–Meier estimator on the whole line 215

D[0, τ ], and provides handy results for checking all main assumptions. The main the-
orems on weak convergence of the bootstrap Kaplan–Meier estimator are presented in
Sect. 3, including a consistency theorem for a bootstrap variance function estimator.
Section 4 deduces inference procedures for (1)–(3). The coverage probabilities of vari-
ous confidence bands for thewhole survival function in case of small- tomedium-sized
samples are assessed in an extensive simulation study in Sect. 5. These are comple-
mented with simulations on the coverage of linear and log-transformed confidence
bands for the mean residual lifetime function. In Sect. 6, these results are illustrated
and revalued in the light of a real data-set ofmale lung cancer patients. The final Sect. 7
gives a discussion on future research possibilities. All proofs are given in “Appendix.”
Most of this article’s results originate from the Ulm University PhD thesis of Dobler
(2016); cf. Chapters 6 and 7 therein.

2 Preliminary results

Let T1, . . . , Tn : Ω → (0,∞), n ∈ N, be independent survival times with con-
tinuous survival functions S(t) = 1 − F(t) = P(T1 > t) and cumulative hazard
function A(t) = ∫ t

0 α(u)du = − ∫ t
0 (dS)/S− = − log S(t). Independent thereof, let

C1, . . . , Cn : Ω → (0,∞) be i.i.d. (censoring) random variables with (possibly dis-
continuous) survival function G(t) = P(C1 > t) such that the observable data consist
of all 1 � i � n pairs (Xi , δi ) := (Ti ∧ Ci , 1{Xi = Ti }). Here, 1{·} is the indicator
function and a∧b denotes theminimumof a and b. Thus, the survival function of X1 is
H = S · G. The Kaplan–Meier estimator is defined by Ŝn(t) = ∏

i :Xi :n�t (1− δ[i :n]
n−i+1 ),

where (X1:n, . . . , Xn:n) is the order statistic of (X1, . . . , Xn) and (δ[1:n], . . . , δ[n:n])
are their concomitant censoring indicators. Throughout, we assume that

−
∫ τ

0

dS

G−
< ∞ (4)

which restricts the magnitude of censoring to a reasonable level. Here and throughout,
theminus subscript indicates the left-continuous version of right-continuous functions.
For instance Gill (1983), Ying (1989) and Akritas and Brunner (1997) require Con-
dition (4) for an analysis of the large sample properties of Kaplan–Meier estimators
on the whole support [0, τ ]. Thereof, it is utilized in Gill (1983) for a vanishing upper
bound in Lenglart’s inequality. Obviously, the above condition implies that [0, τ ] is
contained in the support of G; see also Allignol et al. (2014) for a similar condition
in a non-Markov illness–death model, reduced to a competing risks problem.

Denote by T̂n := Xn:n the largest observed event or censoring time and let, for
a function t �→ f (t), the function f T̂n be its stopped version, i.e., f T̂n (t) = f (t ∧
T̂n). The monotone function t �→ σ 2(t) = ∫ t

0 (dA)/H− is the asymptotic variance
function of the related Nelson-Aalen estimator for A and reappears in the asymptotic
covariance function of Ŝn . Throughout, all convergences (in distribution, probability,
or almost surely) are understood to hold as n → ∞ and convergence in distribution

and convergence in probability are denoted by
d→ and

p→, respectively. The present
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theory relies on the following weak convergence results for the Kaplan–Meier process
Ŝn of S. More precisely, both assertions are corollaries from the cited theorems.

Lemma 1 Let B denote a Brownian motion on [0,∞) and suppose (4) holds.

(a) Theorem 1.2(i) of (Gill 1983): On D[0, τ ] we have
√

n(Ŝn − S)T̂n
d−→ W :=

S · (B ◦ σ 2),

(b) Part of Theorem 2 in (Ying 1989): On D[0, τ ] we have
√

n(Ŝn − S)
d−→ W =

S · (B ◦ σ 2).

Denote by Ân(t) = ∑
i :Xi :n�t

δ[i :n]
n−i+1 the Nelson-Aalen estimator for the cumulative

hazard function A(t) and by Ĝn the Kaplan–Meier estimator for the censoring survival
function G. Note that Ĥn = Ĝn Ŝn holds for the empirical survival function of H since,
almost surely (a.s.), no survival time equals a censoring time: Ti 	= C j a.s. for all i, j .
The asymptotic covariance function Γ of W in Lemma 1 and a natural estimator Γ̂n

are given by

Γ (u, v) = S(u)

(∫ u∧v

0

dA

H−

)
S(v) and Γ̂n(u, v) = Ŝn(u)

(∫ u∧v

0

d Ân

Ĥn−

)
Ŝn(v).

The following lemma is helpful for an assessment of Condition (4) and for studenti-
zations.

Lemma 2 (a) For all t ∈ [0, τ ] it holds that

−
∫ τ

t

dŜn

Ĝn−
p−→ −

∫ τ

t

dS

G−
� ∞.

In case the right-hand side is infinite, the convergence is even almost surely.
(b) In case of (4) we have

sup
(u,v)∈[0,τ ]2

|Γ̂n(u, v) − Γ (u, v)| p−→ 0.

Lemma 1(a) may be applied in the following way for assessing Condition (4): If
the integral on the left-hand side does not seem to tend to infinity with increasing n
for a particular realization of the data, then this is an indication for the validity of
Condition (4).

3 Main results

The limit distribution of the Kaplan–Meier process in Lemma 1 shall be assessed via
bootstrapping. To this end, we independently draw n times with replacement from
(X1, δ1), . . . , (Xn, δn) and denote the thus obtained bootstrap sample by

(X∗
1, δ

∗
1), . . . , (X∗

n, δ∗
n).
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Bootstrapping the Kaplan–Meier estimator on the whole line 217

Throughout, denote by Γ ∗
n , S∗

n , etc., the obvious estimators but based on the bootstrap
sample. Note that this requires a discontinuous extension of the above quantities. The
following theorem is the basis of all later inference methods.

Theorem 1 Let B denote a Brownian motion on [0, τ ] and suppose that (4) holds.
Then, we have, conditionally on X1, δ1, X2, δ2, . . . and as n → ∞,

√
n(S∗

n − Ŝn)
d−→ W = S · (B ◦ σ 2)

on D[0, τ ] in probability.

Many statistical applications involve a consistent variance estimator, e.g., Hall–
Wellner or equal precision confidence bands for S; cf. Andersen et al. (1993), p.
266. In order to asymptotically reproduce the same limit on the bootstrap side, the
uniform consistency of a bootstrapped variance estimator (defined on the whole sup-
port [0, τ ]2 of the covariance function) needs to be verified. To this end, introduce the
bootstrap version of Γ̂n , that is,

Γ ∗
n (u, v) = S∗

n (u)

(∫ u∧v

0

dA∗
n

H∗
n−

)
S∗

n (v).

For all ε > 0, its uniform consistency (here and below always meaning conditional
convergence in probability given X1, δ1, X2, δ2, . . . in probability) over all points
(u, v) ∈ [0, τ ]2\[τ−ε, τ ]2 is an immediate consequence of Theorem1 in combination
with the continuous mapping theorem: Write the absolute value of the integral part
minus its estimated counterpart as

∣∣∣∣∣
∫ u∧v

0

(Ĥn− − H∗
n−)dA∗

n − H∗
n−d( Ân − A∗

n)

H∗
n− Ĥn−

∣∣∣∣∣
�

sup(0,u∧v) |Ĥn − H∗
n |

H∗
n ((u ∧ v)−)Ĥn((u ∧ v)−)

A∗
n(u ∧ v) +

∣∣∣∣
∫ u∧v

0

d( Ân − A∗
n)

Ĥn−

∣∣∣∣ .

The first term is asymptotically negligible due to Pòlya’s theorem and the second
term becomes small due to the continuous mapping theorem applied to the integral
functional and the logarithm functional. Here the restriction to [0, τ ]2 \ [τ − ε, τ ]2
simplified the calculations since all denominators are asymptotically bounded away
from zero.

For uniform consistency on thewhole rectangle [0, τ ]2, however, similar arguments
as for the bootstrapped Kaplan–Meier process on [0, τ ] are required. Compared to (4),
we postulate a slightly more restrictive censoring condition.

Lemma 3 Suppose that

−
∫ τ

0

dS

G−
−

∫ τ

0

SdS

G2−
< ∞. (5)
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218 D. Dobler

Then, we have the following conditional uniform consistency given X1, δ1, X2, δ2, . . .

in probability:

sup
(u,v)∈[0,τ ]2

|Γ ∗
n (u, v) − Γ̂n(u, v)| p−→ 0 in probability as n → ∞. (6)

4 Applications

Apart from time-simultaneous confidence bands for the whole survival curve S with
asymptotically exact coverage probability, applications of Theorem 1 concern confi-
dence intervals for the mean residual lifetime g(t) = E[T − t | T > t] on compact
subintervals [t1, t2] ⊂ [0, τ ) as well as confidence regions for the Lorenz curve L and
the Gini index G. To this end, we apply the functional delta method (e.g., Andersen
et al. (1993), Theorem II.8.1) which in turn requires the Hadamard differentiability of
all involved statistical functionals.

Confidence bands for the mean residual lifetime function

Let 0 � t1 � t2 and introduce the space C[t1, τ ] of continuous functions on [t1, τ ]
equipped with the supremum norm as well as the subset

C̃[t1, t2] =
{

f ∈ C[t1, τ ] : inf
s∈[t1,t2]

| f (s)| > 0

}
⊂ C[t1, τ ]

containing all continuous functions having a positive distance to the constant zero
function on the interval [t1, t2]. Similarly, let

D̃[t1, t2] =
{

f ∈ D[t1, τ ] : inf
s∈[t1,t2]

| f (s)| > 0, sup
s∈[t1,τ ]

| f (s)| < ∞
}

⊂ D[t1, τ ]

be the extension of C̃[t1, t2] to possibly discontinuous, bounded càdlàg functions.
For the notion of Hadamard differentiability tangentially to subsets of D[t1, τ ], see
Definition II.8.2, Theorem II.8.2 and Lemma II.8.3 in Andersen et al. (1993), p. 111f.
The following lemma allows the applicability of the functional delta method for the
mean residual lifetime function.

Lemma 4 Let τ < ∞ and [t1, t2] ⊂ [0, τ ) be a compact interval. Then,

ψ : D̃[t1, t2] → D[t1, t2], θ(·) �→ 1

θ(·)
∫ τ

·
θ(s)ds

is Hadamard-differentiable at each θ ∈ C̃[t1, t2] tangentially to C2[t1, τ ] with con-
tinuous linear derivative dψ(θ) · h ∈ D[t1, t2] given by

(dψ(θ) · h)(s) := 1

θ(s)

∫ τ

s
h(u)du − h(s)

∫ τ

s

θ(u)

θ2(s)
du.
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Bootstrapping the Kaplan–Meier estimator on the whole line 219

As pointed out in Gill (1989) or Andersen et al. (1993), p. 110, the functional delta
method is established on the functional space D[t1, τ ] (or subsets thereof) equipped
with the supremum norm. However, in case of limiting processes with continuous
sample paths, “weak convergence in the sense of the [Skorohod] metric and in the
sense of the supremum norm are exactly equivalent” (Andersen et al. 1993). See also
Problem 7 in Pollard (1984), p. 137. The convergence result of Theorem 1 combined
with the functional ψ of Lemma 4 constitutes the following weak convergence.

Lemma 5 Suppose that (4) holds. On the Skorohod space D[t1, t2] we then have

√
n

(∫ τ

·
Ŝn(u)

Ŝn(·) du −
∫ τ

·
S(u)

S(·) du

)
d−→ U

and, given X1, δ1, X2, δ2, . . . ,

√
n

(∫ τ

·
S∗

n (u)

S∗
n (·) du −

∫ τ

·
Ŝn(u)

Ŝn(·) du

)
d−→ U

in outer probability. The Gaussian process U has a.s. continuous sample paths, mean
zero and covariance function

(r, s) �→
∫ τ

r∨s

∫ τ

r∨s

Γ (u, v)

S(r)S(s)
dudv − σ 2(r ∨ s)g(r)g(s),

where g(t) = E[T1 − t | T1 > t] = ∫ τ

t
S(u)
S(t) du is again the mean residual lifetime

function and a ∨ b denotes the maximum of a and b.

The previous lemma in combination with the continuous mapping theorem almost
immediately gives rise to the construction of asymptotically valid confidence regions
for the mean residual lifetime function. According to the functional delta method
we may first apply, e.g., a log-transformation to ensure that only positive values are
included in the confidence regions; cf. Sect. IV.1.3 in Andersen et al. (1993), p. 208ff.
For ease of presentation, only the linear regions are stated below.

Theorem 2 Let 0 � t1 � t2 < τ . Choose any α ∈ (0, 1) and suppose that (4)
holds. An asymptotic two-sided (1−α)-confidence band for the mean residual lifetime
function (E[T1 − t | T1 > t])t∈[t1,t2] is given by

[∫ τ

t

Ŝn(u)

Ŝn(t)
du − q M RLT

n1,n2√
n

,

∫ τ

t

Ŝn(u)

Ŝn(t)
du + q M RLT

n1,n2√
n

]

t∈[t1,t2]

where q M RLT
n1,n2 is the (1 − α)-quantile of the conditional law given all observations

(X1, δ1), . . . , (Xn, δn) of

√
n sup

t∈[t1,t2]

∣∣∣∣
∫ τ

t

S∗
n (u)

S∗
n (t)

du −
∫ τ

t

Ŝn(u)

Ŝn(t)
du

∣∣∣∣ .
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220 D. Dobler

Remark 1 (a) Instead of using a transformation as indicated above Theorem 2, one
could also employ a studentization using Γ̂n and Γ ∗

n . Plugging these and consistent
estimators for the other unknownquantities into the asymptotic variance representation
yields consistent variance estimators for the statistic of interest. This yields a Gaussian
process with asymptotic variance 1 at all points of time for the mean residual lifetime
estimates.
(b) In practice, the construction of confidence bands for the mean residual lifetime
function requires to choose t2 depending on the data: else, too large choices of t2 might
result in Ŝn(t2) = 0, in which case the above estimator would not be well defined.
Following the suggestion of a referee, an asymptotically exact ad hoc solution would
be replacing the estimated mean residual lifetime with 0 in this case.

Confidence regions for the Lorenz curve and the Gini index

As estimators for theLorenz curve and theGini indexwe consider the plug-in estimates

L̂n(p) = 1

μ̂n

∫ p

0
(1 − Ŝn(t))−1dt and Ĝn =

∫ 1
0 (u − L̂n(u))du∫ 1

0 udu
,

where μ̂n = ∫ τ

0 sdŜn(s). The restricted and unscaled Lorenz curve estimator under
independent right censoring has already been bootstrapped by Horvath and Yandell
(1987). Furthermore, Tse (2006) discussed the large sample properties of the above
Lorenz curve estimator (even under left-truncation) and also of the normalized esti-
mated Gini index

√
n(Ĝn − G) = √

n

(∫ 1
0 (u − L̂n(u))du∫ 1

0 udu
−

∫ 1
0 (u − L(u))du∫ 1

0 udu

)

= 2
√

n
∫ 1

0
(L(u) − L̂n(u))du.

Again equip all subsequent function spaces with the supremum norm. Let D↑[0, τ ] ⊂
D[0, τ ] be the set of all distribution functions on [0, τ ] with no atom in 0, and let
D−[0, τ ] be the set of all càglàd functions on [0, τ ]. First, we consider the normalized
estimated Lorenz curve, i.e., the process Wn : Ω → [0, 1] given by

Wn(p) =√
n

(
1

μ̂n

∫ p

0
(1 − Ŝn)−1(s)ds − 1

μ

∫ p

0
(1 − S)−1(s)ds

)

=√
n(μ̂−1

n · (Φ ◦ Ψ ◦ (1 − Ŝn))(p) − μ−1 · (Φ ◦ Ψ ◦ (1 − S))(p)).

Here the functionals Φ and Ψ are

Φ : D−[0, 1] �→ C[0, 1], h �→
(

p �→
∫ p

0
h(s)ds

)
, and

Ψ : D↑[0, τ ] �→ D−[0, 1], k �→ k−1 (the left-continuous generalized inverse).
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Bootstrapping the Kaplan–Meier estimator on the whole line 221

Suppose that S is continuously differentiable on its supportwith strictly positive deriva-
tive f , bounded away from zero. The Hadamard differentiability of Ψ at (1 − S)

tangentially to C[0, τ ] then holds according to Lemma 3.9.23 in van der Vaart and
Wellner (1996), p. 386. Its derivative map is given by α �→ − α

f ◦ (1− S)−1. The other

functional Φ is obviously Hadamard-differentiable at S−1 ∈ C[0, 1] tangentially to
C[0, 1] since Φ itself is linear and the domain of integration is bounded. Next,

√
n

(
1

μ̂
− 1

μ

)
= √

n(Υ (ĝn(0)) − Υ (g(0)))

where Υ : (0,∞) → (0,∞), r �→ 1
r , g(0) = E[T − a | T > 0] = E[T ] is the

mean residual lifetime function at 0 and ĝn(0) its estimated counterpart. Clearly, Υ is
(Hadamard-)differentiable and the required Hadamard differentiability of (1− S) �→
g(0) follows immediately from Lemma 4. Finally, the multiplication functional is also
Hadamard-differentiable. All in all, we conclude that Wn = √

n(Ξ(Ŝn)−Ξ(S)) for a
functional Ξ : D[0, τ ] → C[0, 1]which is Hadamard-differentiable at S tangentially
to C[0, τ ]. Theorem 1 in combination with the functional δ-method (for the bootstrap)
immediately implies that Wn and W ∗

n both converge in (conditional) distribution to
the same continuous Gaussian process (in outer probability given X1, δ1, X2, δ2, . . . ).
Time-simultaneous inference procedures for the Lorenz curve such as tests for equality
and confidence bands are constructed straightforwardly.

Finally, the normalized estimated Gini index allows the representation

√
n(Ĝn − G) = 2

√
n({Φ ◦ Ξ}(1) ◦ Ŝn − {Φ ◦ Ξ}(1) ◦ S)

of which {Φ ◦ Ξ}(1) is again Hadamard-differentiable at S tangentially to C[0, τ ].
Hence, confidence intervals for G with bootstrap-based quantiles are constructed in
the same way as before.

5 Small sample performances

In this section, we evaluate the behavior of survival and mean residual lifetime curve
confidence bands in terms of their coverage probabilities for small- to medium-sized
samples. All subsequent simulation results have been obtained using R version 3.2.3
(R Development Core Team 2016).

5.1 Comparison of various confidence bands for S

We assess the performance of the present bootstrapmethod by comparing the coverage
probabilities of several possible confidence bands for the whole survival function S
with nominal coverage 1 − α ∈ (0, 1). Even though transformations such as x �→
log(− log x) are known to improve the bands’ coverage probabilities for small samples
in case of restricted time spans (cf. p. 266 in Andersen et al. 1993), we decided to
only consider untransformed bands since such transformations are not suitable for the
boundary values S(0) = 1 and S(τ ) = 0.
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222 D. Dobler

For the construction of the bands, we note that Theorem 1 also implies the validity
of convergences similar to those in Theorem 1.2 of Gill (1983): Define the slightly
modified Nelson-Aalen variance estimators

Ĉn(t) =
∫ t

0

d Ân(u)

Ĥn(u)
and C∗

n (t) =
∫ t

0

dA∗
n(u)

H∗
n (u)

and denote K (t) = 1− (1+Γ (t, t))−1, K̂n(t) = 1− (1+ Ĉn(t))−1, and K ∗
n (t) = 1−

(1+C∗
n (t))−1. Then, Condition (4) implies that, conditionally on X1, δ1, X2, δ2, . . . ,

√
n(S∗

n − Ŝn)
1 − K ∗

n

S∗
n

d−→ B0 ◦ K and
√

n(S∗
n − Ŝn)

1 − K̂n

Ŝn

d−→ B0 ◦ K

on D[0, τ ] in probability, where B0 is a standard Brownian bridge.
Following the convention of Gill (1983), we let (1 − K̂n)/Ŝn and (1 − K ∗

n )/S∗
n by

the latest defined value in case of 0/0. The convergences in the previous display hold
due to (1 − K )/S, (1 − K̂n)/Ŝn and (1 − K ∗

n )/S∗
n being contained in [0, 1] and non-

increasing (cf. equation 1.2 in Gill 1983), and the latter two are pointwise consistent
for the first function. But pointwise consistency, in combination with monotonicity
and boundedness, implies uniform consistency. Therefore, Slutzky’s theorem yields
the above convergences.

It follows that the following confidence bands for the whole function S have asymp-
totic coverage probability 1 − α:

Ŝn ± q0

√
n

Ŝn

1 − K̂n
, Ŝn ± q̂0

n√
n

Ŝn

1 − K̂n
, Ŝn ± q0∗

n√
n

Ŝn

1 − K̂n
, and Ŝn ± q∗

n√
n
,

where q0 denotes the (1 − α)-quantile of the distribution of supu∈[0,1] |B0(u)|, q̂0
n

denotes the (1 − α)-quantile of the conditional distribution of sup[0,τ ] |
√

n(S∗
n −

Ŝn) 1−K̂n
Ŝn

| given X1, δ1, X2, δ2, . . . , and similarly, q0∗
n and q∗

n are obtained from

sup[0,τ ] |
√

n(S∗
n − Ŝn)

1−K ∗
n

S∗
n

| and sup[0,τ ] |
√

n(S∗
n − Ŝn)|, respectively. Due to 1− K̂n =

1/(1+ Ĉn), the first three of the above confidence bands are of Hall–Wellner type; cf.
p. 266 in Andersen et al. (1993). Therefore, we denote the four bands by H W , Ĥ W ,
H W ∗ and B M∗, respectively, “BM” standing for Brownian motion.

Furthermore, we compare the above confidence bands with the asymptotic and
bootstrapped equal precision bands, cf. p. 266 in Andersen et al. (1993),

Ŝn ± q̃0

√
n

√
Γ̂n, Ŝn ± q̂ E P

n√
n

√
Γ̂n, Ŝn ± q E P∗

n√
n

√
Γ̂n,

respectively,whichwe denote by E P, Ê P, E P∗. Here, q̃0 denotes the (1−α)-quantile
of the distribution of supu∈[0,1] |B0(u)(u(1−u))−1/2| and q̂ E P

n and q E P∗
n are obtained

from sup[0,τ ] |
√

n(S∗
n − Ŝn)/Γ̂

1/2
n | and sup[0,τ ] |

√
n(S∗

n − Ŝn)/Γ
∗1/2

n |, resulting in
pointwise studentizations of the (bootstrapped) Kaplan–Meier estimators. Similarly
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as above,weuse the convention thatΓ ∗
n (t) is thefirst nonzero value in case of S∗

n (t) = 1
and the latest nonzero value in case of S∗

n (t) = 0.
Note that, for various nominal levels α, the quantiles q0 and q̃0 are tabulated; see,

for example, Appendix C in Klein andMoeschberger (2003) and the R package km.ci.
Scaling by the empirical counterparts of (1−K )/S and1/

√
Γ yielded the above pivotal

limit distributions, i.e., they do not depend on unknown quantities. The pivotality holds
due to the surjectivity of K onto [0, 1] implying that sup[0,τ ] |B0 ◦ K | = sup[0,1] |B0|.
This feature typically leads to a good small sample performance.

Throughout the following simulations, we chose α = 5%, i.e., we create 95%
confidence bands for S. We consider these simulation setups:

1. Exponential distributions S(t) = exp(−λt) and G(t) = exp(−μt) for which
the stronger Condition (5) is satisfied if 0 < μ < λ < ∞. In particular, we
chose (μ, λ) = (1, 2), (1, 1.5), (1, 1.2). The resulting censoring probabilities
P(C < T ) = μ/(λ+μ) are 33.33%, 40%, and 45.45%. We refer to these setups
as (i), (ii) and (iii), respectively.

2. Gompertz distribution S(t) = exp(−η(exp(bt)− 1)) and exponential distribution
G(t) = exp(−μt) for which Condition (5) is satisfied for all possible parameters
η, b, μ > 0. In particular, we chose (μ, η, b) = (1/3, 1, 1), (1/3, 0.3, 1), (1/3,
0.02, 2), yielding censoring rates of approximately 17.19%, 31.68% and 42.43%,
respectively. These were found via simulation of 1,000,000 independent individ-
uals. We also refer to these setups as (i), (ii) and (iii), respectively.

For each setup, we created 10,000 confidence intervals and each bootstrap-based
quantile has been obtained from 1,999 bootstrap replicates. Compared to E P and
H W , respectively, the confidence bands Ê P and Ĥ W yielded overall comparable but
often worse coverage probabilities. Following the reasoning of the referee, this bad
behavior of Ê P and Ĥ W could be due to not taking the randomness of estimating
the standard deviation into account: Given X1, δ1, X2, δ2, . . . , the studentizations of√

n(S∗
n − Ŝn) via (1 − K̂n)/Ŝn and Γ̂n are no random quantities, in contrast to the

same studentizations for
√

n(Ŝn − S). Therefore, the simulation results for Ê P and
Ĥ W are not shown here.

The remaining results are shown in Tables 1, 2 and 3. The coverage probabilities
of the equal precision bands E P are much too low in all considered setups. Appar-

Table 1 Simulated coverage probabilities (in %) of asymptotic 95% confidence bands for the exponential
(left) and the Gompertz (right) survival function S in each setup (i), i.e., under light censoring

n H W H W∗ B M∗ E P E P∗ n H W H W∗ B M∗ E P E P∗

30 93.3 90.4 93.3 79.6 93.8 30 93.4 88.8 92.1 77.4 93.6

50 94.0 91.7 93.5 78.7 94.0 50 94.6 91.4 93.1 76.2 93.6

100 94.9 93.0 93.8 76.5 93.9 100 94.9 92.9 93.4 73.4 94.1

150 94.7 93.3 93.5 76.1 93.7 150 95.0 93.4 93.4 73.0 93.6

200 95.1 93.8 94.1 77.1 94.1 200 95.5 94.2 94.4 73.4 93.9

500 95.1 94.0 94.3 75.2 94.2 500 95.1 94.2 94.2 72.7 94.0

1000 95.0 94.3 94.5 74.7 93.8 1000 95.1 94.5 94.4 71.0 93.5
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Table 2 Simulated coverage probabilities (in %) of asymptotic 95% confidence bands for the exponential
(left) and the Gompertz (right) survival function S in each setup (ii), i.e., under medium censoring

n H W H W∗ B M∗ E P E P∗ n H W H W∗ B M∗ E P E P∗

30 91.3 90.0 91.8 78.5 93.4 30 93.3 89.4 92.8 78.4 93.5

50 93.3 91.8 92.9 78.5 93.7 50 94.5 91.2 93.1 76.0 93.7

100 94.5 93.0 93.6 79.1 94.2 100 95.1 92.8 93.3 74.7 94.1

150 94.4 92.9 93.4 77.2 93.4 150 95.4 93.4 93.8 74.5 94.1

200 94.7 93.2 94.2 76.2 93.7 200 95.2 93.8 94.0 73.0 93.9

500 95.2 94.2 94.2 76.0 94.1 500 94.9 94.1 94.2 72.3 94.0

1000 94.9 94.2 94.6 75.4 93.9 1000 95.4 94.6 94.3 70.9 93.1

Table 3 Simulated coverage probabilities (in %) of asymptotic 95% confidence bands for the exponential
(left) and the Gompertz (right) survival function S in each setup (iii), i.e., under strong censoring

n H W H W∗ B M∗ E P E P∗ n H W H W∗ B M∗ E P E P∗

30 89.2 89.7 90.0 78.4 93.8 30 92.6 89.0 92.7 77.6 93.2

50 91.9 91.6 91.5 77.8 93.4 50 94.0 91.1 93.2 74.8 93.3

100 94.2 93.1 92.3 76.7 93.2 100 94.8 92.3 93.3 75.1 93.7

150 94.5 93.1 92.0 76.5 93.6 150 95.0 93.3 93.8 73.3 93.5

200 94.8 93.6 93.1 77.1 93.3 200 95.3 93.7 93.9 72.3 93.7

500 95.4 94.4 93.4 75.4 93.8 500 95.1 94.2 94.3 72.0 93.8

1000 95.0 94.2 93.9 74.6 93.6 1000 95.4 94.7 94.6 70.8 93.8

ently, the quantiles q̃0 do not adequately correspond to the large sample behavior of
sup[0,τ ]

√
n|Ŝn − S|/Γ̂ 1/2

n . Indeed, it is not obvious how the weak convergence thereof
may be verified. Therefore, it surprises to see that the quantile based on the boot-
strapped Kaplan–Meier estimator and the bootstrapped estimated variance function
Γ ∗

n apparently succeeds in mimicking the correct asymptotic distribution: all simu-
lated coverage probabilities of the E P∗ band are between 93.2 and 94.4%, even for the
smallest sample size n = 30 and under strong censoring. Even though these coverage
probabilities are a bit too low but else satisfying, this outcome has to be treated with
caution as no theoretic justification is available yet. For example, it is not even apparent
from the simulations that the coverage probabilities will finally converge to 95%.

In contrast, the asymptotically exact confidence bands H W ∗ yield slightly too small
coverage probabilities which seem to converge quite slowly from below to their limit
of 95%. Typically, this gap is reduced by applications of suitable transformations such
as log− log which, unfortunately, are not available as explained above. Similar results
are obtained in other distribution setups (results not shown).

Finally, themost accurate simulated coverage probabilities among those confidence
bands, for which asymptotic correctness has been verified, are achieved by H W and
B M∗ with a slight preference for the Hall–Wellner band based on the asymptotic
quantile. This is a bit surprisingwhen comparing these resultswith the simulation study
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byAkritas (1986): He found the (time-restricted version of) H W to be too conservative
and the corresponding H W ∗ to be quite accurate for quite small sample sizes n =
25, 50. We found the same relation between those bands, even though all these bands
lost a fewpercentage points of coverage probability in comparisonwith the simulations
by Akritas (1986) when creating confidence bands for all time points. Therefore, the
former conservative band H W appears to be the most accurate in our simulations.
The band H W approaches the nominal coverage level satisfactorily for n � 100, even
under strong censoring. For small sample sizes, the simulated coverage probabilities
of H W and B M∗ are comparable, but the convergence seems to be slower for B M∗
as n grows. Therefore, based on these simulation outcomes, one should choose the
H W band for a confidence region for the whole survival function S. However, we will
learn in Sect. 6 below why the B M∗ band might, in fact, be the preferable one.

5.2 Confidence bands for the mean residual lifetime function

Complementing the previous section’s results, we here demonstrate the performance
of bootstrap-based 95% confidence bands for the mean residual lifetime function
which involve non-pivotal limit distributions. That is, applications of the bootstrap are
essentially necessary and cannot be circumvented by means of tabulated quantiles.
For practical reasons, the estimated mean residual lifetime is only integrated up to
the largest observed event time. Otherwise, an integration of the eventually constant
Kaplan–Meier estimate beyond the largest observation and up to an unknown end
point τ , which would require an arbitrary choice by the statistician, could result in a
bias and hence in a bad performance of the confidence band.We used the same number
of iterations as in the previous subsection and chose the following setup underlying
the simulations:

1. The samedistributions as in setup 1 (Exponential distributions) of the previous sec-
tion with confidence bands along the time points [t1, t2] = [0, 1], [0, 1.2], [0, 1.4],
where the length of the time interval increases with the censoring intensity. All
other time span-censoring combinations have been considered in “Appendix D.”
The survival probabilities at the right boundaries of these time intervals are approx-
imately 13.53%, 16.53% and 18.64% respectively. Due to memorylessness of the
exponential distribution, the true mean residual lifetime functions are constant,
ψ(S) ≡ const.

2. The same distributions as in setup 2 (Gompertz distributions) of the previous sec-
tion with confidence bands along the time points [t1, t2] = [0, 1.2], [0, 2], [0, 2.3],
respectively. The survival probabilities at the right boundaries of these time inter-
vals are approximately 9.83, 14.71 and 13.95%, respectively. The resulting mean
residual lifetime functions are strictly decreasing and convex.

The respective scenarios in each setup are numbered as (i), (ii), (iii).
We simulated both the untransformed, i.e., linear, and the log-transformed confi-

dence bands forψ(S). Considering the simulated coverage probabilities of confidence
bands for the mean residual lifetime functions for the exponential distribution setup
in Table 4 (left), we see, first, that the application of the log-transformation has a bad
effect on the confidence bands: For small sample sizes, the coverage probabilities of
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the log-transformed bands are far too low, whereas it may even exceed 95% for larger
sample sizes as seen in the second column. This effect is even more pronounced in
the Gompertz distribution setup with simulation results presented in Table 4 (right)
where the coverage probabilities increase up to 98%.

In contrast, the linear confidence bands showmuchmore acceptable coverage prob-
abilities, even for small samples. Indeed, all of these are contained in the interval
[92.6%, 97.3%] in all considered setups. For the exponential setups (i) and (ii), Table 4
(left) suggests convergence to 95% from below, whereas the linear bands appear to be
slightly too wide in case of the underlying Gompertz distribution; see Table 4 (right).
This may be due to the smaller survival probability at the right boundaries t2 of the
considered time intervals.

All in all, we advise using the linear confidence band for the mean residual life-
time function in combination with the bootstrap. As suggested from the conducted
simulations, the sample sizes need not be very large in order to ensure a sufficient
accurateness of the developed confidence bands, for example, the case n � 150
yields confidence bands with coverage probabilities close to the nominal level even
under stronger censoring. The impact of the choice of the time span [t1, t2] on the
coverage probabilities is assessed in “Appendix D.” There it is seen that the coverage
probabilities can deteriorate if the survival probabilities at the intervals’ right boundary
are extremely small.

6 Application to the lung cancer data-set

In order to illustrate the advantages and drawbacks of the confidence bands empirically
assessed in the previous section, we consider the lung cancer data-set lung which is
freely available in the R package survival (Therneau and Lumley 2017). The data
consist of, among others, possibly right-censored survival times (in days) of patients
with advanced lung cancer from the North Central Cancer Treatment Group. In the
original study, several additional scores concerning performance of daily activities and
other covariates have been measured for fitting Cox models; cf. Loprinzi et al. (1994).
In this section, however, we focus on a nonparametric, patient-averaged confidence
bands-based analysis of the survival curve and the mean residual lifetime function
using the methods developed above.

Out of this data-set, we analyze the subsample of male patients which consists of
n = 138 individuals. Thereof, 26/138 ≈ 18.84% are right-censored and the death
time has been recorded for the rest. Therefore, judging from the simulation results of
the previous section for the case of light censoring and n = 150, we expect to find con-
fidence bands for the true survival function with coverage probabilities between 93.5
and 95%. Similarly, the linear confidence band for the mean residual lifetime function
will presumably have coverage probability between 95 and 97%. The corresponding
log-transformed bands will possibly be too conservative with coverage probabilities
between 96% and 98%. For matching the data-set to the present theory, we broke
ties in the survival times by randomly adding small perturbations, but still respect-
ing the convention that censorings occur after events. The more restrictive censoring
condition 5 seems to be satisfied as
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−
∫ τ

0

dŜn

Ĝn−
−

∫ τ

0

ŜndŜn

Ĝ2
n−

≈ 1.81

is still a very small number.
Figure 1 shows the plots of all survival confidence bands with nominal level 95%

under consideration. On day 700 there were only 8/138 ≈ 5.60% of all patients still
at risk. At first, we pay attention to the survival probability bands. Thereof, all three
Hall–Wellner bands look similar, but the band based on the asymptotic quantile, H W ,
is slightly wider, which might reflect the reason for the better accurateness in the
simulation study of Sect. 5. Apart from that, the Hall–Wellner bands exhibit a quite
unfavorable behavior: At early time points, the bands are unnecessarily broad, while,
at late time points, they are far too narrow. The latter is a real problem as, due to the
last two occurring times being censorings, the estimated final survival probability is
3.57%, i.e., slightly greater than zero. However, the Hall–Wellner bands suggest a
definitive certainty concerning the Kaplan–Meier estimations, but the estimators and
bands are constant from this point on. Hence, the Hall–Wellner bands cannot contain
the real survival function which eventually drops down to zero.

On the other hand, the linear confidence band avoids this obstacle by maintaining
the same width for the whole time. Therefore, it also provides a width for early time
points which is much more reasonable than the early widths of the Hall–Wellner
bands that completely cover [0, 1]. Even though the rates of convergence of B M∗’s
coverage probabilities toward the nominal level were slower than those of H W , the
B M∗ band is, in this example, the confidence region of choice due to its reasonable
shape and its asymptotic exactness. Furthermore, due to the quite light censoring in
the data-set, the above simulation study suggests that B M∗ has coverage probabilities
of approximately 93.5%.

Finally, we consider the equal precision bands which provide the perhaps most
attractive shapes: narrower, but not too narrow at early and late time points and wider
in between where the estimation uncertainty is higher. The discrepancy between E P∗,
E P and Ê P nicely illustrate the undercoverage of the latter two, which had also been
observed in the simulation study of Sect. 5. The same simulations indicate that E P∗
should have coverage probabilities close to the nominal level. However, due to the
ignorance of its asymptotic correctness, one should still choose the B M∗ band instead.

Let us turn our attention to the 95% confidence bands for the mean residual lifetime
function. Figure 2 shows the linear and log-transformed confidence bands on the time
interval [0, 700] days. Apart from the ragged shape of the function estimator, the
mean residual lifetime function seems to be decreasing almost linearly from 325 days
at the beginning to 194 days at day 700. Especially for early time points, we see
that the log-transformed band is much wider which is presumably the reason for the
unnecessary high coverage probability in comparison with the linear bands; see again
the simulation study in Sect. 5. At later time points, the lower bounds of both types of
bands even cross such that the log-transformed band is overall slightly elevated. All
in all, we suggest using linear simultaneous confidence bands for the mean residual
lifetime function which have a reasonably narrow shape and coverage probabilities
close to the nominal level.
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Hall−Wellner Confidence Bands for the Survival Function
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Linear Confidence Bands for the Survival Function
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Equal Precision Confidence Bands for the Survival Function
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Fig. 1 Confidence bands of Hall–Wellner, linear and equal precision bands for the survival function,
respectively. The straight bands (—) correspond to H W, B M∗ and E P , the dashed bands (- -) to Ĥ W and
Ê P and the dotted bands (· · · ) to H W∗ and E P∗. In the upper panel, Ĥ W and H W∗ are virtually the
same band. In the lower panel, the E P and Ê P bands are almost the same. The thick straight lines (—)
show the Kaplan–Meier estimator
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Confidence Bands for the MRLT
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Fig. 2 Linear (—) and log-transformed (- -) confidence bands for the mean residual lifetime function. The
thick straight line (—) shows the estimator for the mean residual lifetime curve

7 Discussion

In this article we established consistency of the bootstrap for Kaplan–Meier esti-
mators on the whole support of the estimated survival function. By means of
the functional delta method, this conditional weak convergence is transferred to
Hadamard-differentiable functionals such as the mean residual lifetime, the Lorenz
curve, or the Gini index. Further applications include the expected length of stay in
the transient state (e.g., Grand and Putter 2016) or the probability of concordance in
a two-sample problem (e.g., Pocock et al. 2012; Dobler and Pauly 2017).

Based on the empirical results of Sect. 5 for the mean residual lifetime function,
we saw that apart from already good coverage probabilities in smaller samples of the
linear confidence bands, the log-transformation in general yields undesirable dete-
riorations in terms of coverage probabilities. Furthermore, such a transformation is
not available for the construction of confidence bands for the whole survival functions
which partially resulted in slightly too narrow confidence bands. Here, on the one hand,
the particular choice of the Hall–Wellner band appeared to yield reliable confidence
bands in terms of coverage, even for small sample sizes and under strong censoring.
On the other hand, the lung cancer data example discussed in Sect. 6 suggests a quite
unattractive shape of the Hall–Wellner bands: Far too wide in the beginning and far
too narrow in the end. Especially if the latest few observations consist entirely of
censorings, the Kaplan–Meier estimate will remain strictly greater than zero, but the
widths of the Hall–Wellner bands vanish. Even though the considered bootstrap-based
equal precision bands revealed good empirical coverage rates, this type of confidence
band should not be used as long as its asymptotic accurateness has not been verified
theoretically. Therefore, we suggest using the linear, bootstrap-based confidence band
for the whole survival function which provides a reasonable shape and also acceptable,
though perhaps a bit too low coverage rates for smaller sample sizes.

The presently analyzed bootstrap consistency on the whole support may also be
extended to more general inhomogeneous Markovian multistate models. Based on
the martingale representation of Aalen-Johansen estimators for transition probability
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matrices (e.g., Andersen et al. 1993, p. 289), one could try to generalize the results of
Gill (1983) to this setting. Here the notion of the ‘largest event times’ requires special
attention as these may differ for different types of transitions. A reasonable first step
toward such a generalization would be an analysis of competing risks setups where the
support of each cumulative incidence function provides a natural domain to investigate
weak convergences on. Onceweak convergence of the estimators on the whole support
is verified, martingale arguments similar to those of Akritas (1986) and Gill (1983)
may be employed in order to obtain such (now conditional) weak convergences for
the resampled Aalen-Johansen estimator using a variant of Efron’s bootstrap. In more
general Markovian multistate models we could independently draw with replacement
from the sample that contains all individual trajectories rather than single observed
transitions in order to not corrupt the dependencies within each individual; see for
example Tattar and Vaman (2012) for a similar suggestion. Applications of this theory
could include inference on more refined variants of the probability of concordance
or the expected length of stay. Considering a progressive disease in a two-sample
situation, for instance, one could compare the probability that an individual of group
one remains longer in a less severe disease state than an individual of group two.
Accurate inference procedures for the mean residual lifetime in a state of disability
given any state at present time offer another kind of application.
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Appendix

Denote by X the σ -algebra generated by all observations X1, δ1, X2, δ2, . . . . Some
of the following proofs (in “Appendix A”) rely on the ideas of Gill (1983). In order
to also apply (variants of) his lemmata in our bootstrap context, “Appendix B” below
contains all required results. ‘Tightness’ in the support’s right boundary τ for the
bootstrapped Kaplan–Meier estimator is essentially shown via a bootstrap version of
the approximation theorem for truncated estimators as in Theorem 3.2 in Billingsley
(1999); cf. “Appendix C.” Define by Y (u) = nĤn−(u) the process counting the
number of individuals at risk of dying, and by Y ∗(u) its bootstrap version.

A Proofs

Proof of Lemma 2 Proof of (a): This part of the lemma is proven by showing the
convergence of the integral from 0 to τ in probability. Since, by the continuous map-
ping theorem and the boundedness away from zero of 1

G on [0, t], the convergence

− ∫ t
0

dŜn
Ĝn−

p−→ − ∫ t
0

dS
G− holds as n → ∞, the assertion then follows from an applica-

tion of the continuous mapping theorem to the difference functional.
Let t < τ and suppose (4) holds. Letting t ↑ τ , the integral − ∫ t

0
dS
G− converges

toward − ∫ τ

0
dS
G− < ∞. It remains to apply Theorem 3.2 of Billingsley (1999) to the
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distance ρ(− ∫ t
0

dŜn
Ĝn−

,− ∫ τ

0
dŜn
Ĝn−

) = | − ∫ τ

0
dŜn
Ĝn−

+ ∫ t
0

dŜn
Ĝn−

| for a verification of the

assertion for t = 0. Thus, we show that for all ε > 0,

lim
t↑τ

lim sup
n→∞

P

(
−

∫ τ

t

dŜn

Ĝn−
> ε

)
= 0.

Let T̂n = Xn:n again be the largest observation among X1, . . . , Xn and define, for any
β > 0,

Bβ :=
{

Ŝn(s) � β−1S(s) and Ĥn(s−) � βH(s−) for all s ∈ [0, T̂n]
}

.

By Lemmata 6 and 7, the probability pβ := 1 − P(Bβ) � β + e
β
exp(−1/β) is

arbitrary small for sufficiently small β > 0. Hence, by Theorem 1.1 of Stute and
Wang (1993) (applied for the concluding convergence),

P

(
−

∫ τ

t

dŜn

Ĝn−
> ε

)
= P

(
−

∫ τ

t

Ŝn−dŜn

Ĥn−
> ε

)

� P

(
−β−2

∫ τ

t

S−dŜn

H−
> ε

)
+ pβ

= P

(
−β−2

∫ τ

t

dŜn

G−
> ε

)
+ pβ → P

(
−β−2

∫ τ

t

dS

G−
> ε

)
+ pβ.

For large t < τ and by the continuity of S, the far right-hand side of the previous
display equals pβ .

Suppose now that (4) is violated. By the Glivenko–Cantelli theorems in Stute and
Wang (1993) for Kaplan–Meier estimators of continuous survival functions and by
letting G be continuous w.l.o.g. (distributing the atoms of G uniformly on small
intervals with no mass of S, without affecting the integral), the integral over (0, t]
converges almost surely to − ∫ t

0 (dS)/G− for each t < τ by the continuous mapping
theorem. But this integral is arbitrarily large for sufficiently large t ↑ τ . Hence, the
stated a.s. convergence follows.

Proof of (b): First note that the uniform convergences in probability in Theo-
rems IV.3.1 and IV.3.2 of Andersen et al. (1993), p. 261ff., yield, for any ε > 0,

sup
(u,v)∈[0,τ−ε]2

|Γ̂n(u, v) − Γ (u, v)| p−→ 0 as n → ∞.

Further, the dominated convergence theorem and S−dA = −dS show that

Γ (u, v) = −
∫ τ

0
1{w � u ∧ v} S(u)S(v)

S(w−)S(w−)

dS(w)

G(w−)
→ −

∫ τ

0
0
dS

G−
= 0

as u, v → τ . Hence, it remains to verify the remaining Condition (3.8) of Theorem 3.2
in Billingsley (1999) in order to conclude this proof. That is, for each positive δ we
show
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lim
u,v→τ

lim sup
n→∞

P

(
sup

(u,v)∈[0,τ ]2
|Γ̂n(u, v) − Γ̂n(τ, τ )| � δ

)
= 0.

To this end, rewrite Γ̂n(u, v) − Γ̂n(τ, τ ) as

∫ τ

u∧v

Ŝn(τ )Ŝn(τ )

Ŝn(w−)Ŝn(w−)

dŜn(w)

Ĝn(w−)
+

∫ u∧v

0

dŜn

Ŝ2
n−Ĝn−

(Ŝ2
n (τ ) − Ŝn(u)Ŝn(v)).

The left-hand integral is bounded in absolute value by − ∫ τ

u∧v
dŜn
Ĝn−

which goes to

− ∫ τ

u∧v
dS
G− in probability as n → ∞ by (a). For large u, v this is arbitrarily small.

The remaining integral is bounded in absolute value by

−
∫ u∧v

0

Ŝn(u)Ŝn(v)

Ŝ2
n−

dŜn

Ĝn−
= −n2

∫ u∧v

0

Ŝn(u)Ŝn(v)

Y 2 Ĝn−dŜn .

By Lemmata 6 and 7 this integral is bounded from above by a constant times

−
∫ u∧v

0

S(T̂n ∧ u)S(T̂n ∧ v)

H2−
G−dŜn = −

∫ u∧v

0

S(T̂n ∧ u)S(T̂n ∧ v)

S2−G−
dŜn

on a setwith arbitrarily high probability. For sufficiently largen wealso have T̂n > u∧v

with arbitrarily high probability. Next, Theorem 1.1 in Stute and Wang (1993) yields

−
∫ u∧v

0

S(u)S(v)

S2−G−
dŜn

p−→ −
∫ u∧v

0

S(u)S(v)

S2−G−
dS as n → ∞.

As above the dominated convergence theorem shows the negligibility of this integral
as u, v → τ . ��
Proof of Theorem 1 For the proof of weak convergence of the bootstrapped Kaplan–
Meier estimator on each Skorohod space D[0, t], t < τ , see, for example, Akritas
(1986), Lo and Singh (1986) or Horvath and Yandell (1987). By defining these pro-
cesses as constant functions after t , the convergences equivalently hold on D[0, τ ].
This takes care of Condition (a) in Lemma 9, while (c) is obviously fulfilled by the
continuity of the limit Gaussian process.

To close the indicated gap for the bootstrapped Kaplan–Meier process on the whole
support [0, τ ], it remains to analyzeCondition (b). This is first verified for the truncated
process by following the strategy ofGill (1983)while applying themartingale theory of
Akritas (1986) for the bootstrapped counting processes. Thus, the truncation technique
of Lemma 9 shows the convergence in distribution of the truncated process. Finally,
the negligibility of the remainder term is shown similarly as in Ying (1989).

We will make use of the fact that our martingales, stopped at arbitrary stopping
times, retain the martingale property; cf. Andersen et al. (1993), p. 70, for sufficient
conditions on this matter. Similarly to the largest event or censoring time T̂n , introduce
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the largest bootstrap time T ∗
n = maxi=1,...,n X∗

i , being an integrable stopping time
with respect to the filtration of Akritas (1986) who used Theorem 3.1.1 of Gill (1980):
Hence, we choose the filtration given by

Ft := {Xi , δi , δ
∗
i 1{X∗

i � t}, X∗
i 1{X∗

i � t} : i = 1, . . . , n}, 0 � t � τ ;
see also Gill (1980), p. 26, for a similar minimal filtration. Note that we did not include
the indicators 1{X∗

i � t} into the filtration since their values are already determined by
all the X∗

i 1{X∗
i � t}: According to our assumptions, X∗

i > 0 a.s. for all i = 1, . . . , n.
We would first like to verify condition (b) in Lemma 9 for the stopped bootstrap

Kaplan–Meier process. That is, for each ε > 0 and an arbitrary subsequence (n′) ⊂ (n)

there is another subsequence (n′′) ⊂ (n′) such that

lim
t↑τ

lim sup
n′′→∞

P

(
sup

t�s<T ∗
n

√
n′′|(S∗

n − Ŝn)(s) − (S∗
n − Ŝn)(t)| > ε | X

)

� lim
t↑τ

lim sup
n′′→∞

P

(
sup

t�s<T̂n

√
n′′|(S∗

n − Ŝn)(s ∧ T ∗
n ) − (S∗

n − Ŝn)(t ∧ T ∗
n )| > ε | X

)

= 0 a.s. (7)

for all ε > 0. Here σ(X) = F0 summarizes the collected data. Due to the boundedness
away from zero, i.e., inf t�s<T̂n

Ŝn(s) > 0, we may rewrite the bootstrap process

√
n(S∗

n − Ŝn)(s) = √
n
( S∗

n (s)

Ŝn(s)
− 1

)
Ŝn(s)

for each s ∈ [t, T̂n) of which the bracket term is a square integrable martingale; see
Akritas (1986) again. Hence, the term

√
n(S∗

n − Ŝn)(s) in (7) equals

M∗
n (s)Ŝn(s ∧ T ∗

n ) := √
n

(
S∗

n (s ∧ T ∗
n )

Ŝn(s ∧ T ∗
n )

− 1

)
Ŝn(s ∧ T ∗

n ), (8)

whereof (M∗
n (s))s∈[0,T̂n) is again a square integrablemartingale. Indeed, its predictable

variation process evaluated at the stopping time s = T ∗
n is finite (having the sufficient

condition of Andersen et al. (1993), p. 70, for a stopped martingale to be a square
integrable martingale in mind): The predictable variation is given by

s �→ 〈M∗
n 〉(s) =

∫ s∧T ∗
n

0

(
S∗

n−
Ŝn

)2
(1 − Δ Ân)d Ân

H∗
n−

,

where H∗
n is the empirical survival function of X∗

1, . . . , X∗
n and Δ f denotes the incre-

ment process s �→ f (s+) − f (s−) of a monotone function f . The supremum in (7)
is bounded by

sup
t�s<T̂n

|M∗
n (s) − M∗

n (t)|Ŝn(s ∧ T ∗
n ) + sup

t�s<T̂n

|M∗
n (t)||Ŝn(s ∧ T ∗

n ) − Ŝn(t ∧ T ∗
n )|
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of which the right-hand term is not greater than |M∗
n (t)|Ŝn(t ∧T ∗

n ). By the convergence
in distribution of the bootstrapped Kaplan–Meier estimator on each D[0, τ̃ ], τ̃ < τ ,
we have convergence in conditional distribution of M∗

n (t)Ŝn(t ∧ T ∗
n ) given X toward

N (0, S2(t)Γ (t, t)) in probability. Hence,

lim
n′′→∞

P(|M∗
n (t)Ŝn(t ∧ T ∗

n )| > ε/2 | X) → 1 − N (0, Γ (t, t))(−ε/2, ε/2)

almost surely along subsequences (n′′) of arbitrary subsequences (n′) ⊂ (n). Since
the variance of the normal distribution in the previous display goes to zero as t ↑ τ ,
cf. (2.4) in Gill (1983), the above probability vanishes as t ↑ τ .

By Lemma 8, the remainder supt�s<T̂n
|M∗

n (s) − M∗
n (t)|Ŝn(s ∧ T ∗

n ) is not greater
than

2 sup
t�s<T̂n

∣∣∣
∫ s

t
Ŝn(u)dM∗

n (u)

∣∣∣. (9)

Since, given X, Ŝn is a bounded and predictable process, this integral is a square
integrable martingale on [t, T̂n). We proceed as in Gill (1983) by applying Lenglart’s
inequality, cf. Sect. II.5.2 in Andersen et al. (1993): For each η > 0 we have

P
(

sup
t�s<T ∗

n ∧τ

∣∣∣
∫ s

t
ŜndM∗

n

∣∣∣ > ε

∣∣∣ X
)

� η

ε2
+ P

(∣∣∣
∫ τ∧T ∗

n

t
S∗2

n−
(1 − Δ Ân)d Ân

H∗
n−

∣∣∣ > η

∣∣∣ X
)
.

(10)

We intersect the event on the right-hand side of (10) with B∗
H,n,β := {H∗

n (s−) �
β Ĥn(s−) for all s ∈ [t, T ∗

n ]} and also with B∗
S,n,β := {S∗

n (s) � β−1 Ŝn(s) for all
s ∈ [t, T ∗

n ]}. According to Lemmata 6 and 7, the conditional probabilities of these
events are at least 1 − exp(1 − 1/β)/β and 1 − β, respectively, for any β ∈ (0, 1).
Thus, (10) is less than or equal to

η

ε2
+ β + exp(1 − 1/β)

β
+ 1

{
β−3

∣∣∣
∫ τ∧T̂n

t
Ŝ2

n−
(1 − Δ Ân)d Ân

Ĥn−

∣∣∣ > η
}
. (11)

In order to show the almost sure negligibility of the indicator function as n → ∞
and then t ↑ τ , we analyze the corresponding convergence of the integral. Since
−dŜn = Ŝn−d Ân , the integral is less than or equal to

−
∫ τ

t

Ŝn−dŜn

Ĥn−
= −

∫ τ

t

dŜn

Ĝn−
.

Lemma 2 implies that for each subsequence (n′) ⊂ (n) there is another subsequence

(n′′) ⊂ (n′) such that − ∫ τ

t
dŜn
Ĝn−

→ − ∫ τ

t
dS
G− a.s. for all t ∈ [0, τ ] ∩ Q along (n′′).

Due to P(Z1 ∈ Q) = 0, the same convergence holds for all t � τ . Letting now t ↑ τ
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shows that the indicator function in (11) vanishes almost surely in limit superior along
(n′′). The remaining terms are arbitrarily small for sufficiently small η, β > 0. Hence,
all conditions of Lemma 9 are met and the assertion follows for the stopped process

(1{s < T ∗
n }√n(S∗

n (s) − Ŝn(s)) + 1{s � T ∗
n }√n(S∗

n (T ∗
n −) − Ŝn(T ∗

n −)))s∈[0,τ ].

Finally, we show the asymptotic negligibility of

sup
T ∗

n �s�τ

√
n|S∗

n (s) − Ŝn(s)| � sup
T ∗

n �s�τ

√
n(S∗

n (s) + Ŝn(s))

= √
nS∗

n (T ∗
n ) + √

nŜn(T ∗
n );

cf. Ying (1989) for similar considerations. Again by Lemma 6, we have for any ε >

0, β ∈ (0, 1) that

P(
√

nS∗
n (T ∗

n ) + √
nŜn(T ∗

n ) > ε | X)

� P(
√

nS∗
n (T ∗

n ) > ε/2 | X) + P(
√

nŜn(T ∗
n ) > ε/2 | X)

� P(
√

nŜn(T ∗
n ) > βε/2 | X) + P(

√
nŜn(T ∗

n ) > ε/2 | X) + β.

Define the generalized inverse Ŝ−1
n (u) := inf{s � τ : Ŝn(s) � u}. The independence

of the bootstrap drawings as well as arguments of quantile transformations yields

P(
√

nŜn(T ∗
n ) > ε | X) = P(X∗

1 < Ŝ−1
n (ε/

√
n) | X)n

=
[
1 − 1

n
|{i : Xi � Ŝ−1

n (ε/
√

n)}|
]n

.

The cardinality in the display goes to infinity in probability, and hence almost surely
along subsequences. Indeed, for any constant C > 0,

P(|{i : Xi � Ŝ−1
n (ε/

√
n)}| � C)

= P(|{i : Ŝn(Xi ) � ε/
√

n}| � C)

� P(|{i : Ĥn(Xi ) � ε/
√

n}| � C)

= P
(∣∣∣

{
i : i − 1

n
� ε√

n

}∣∣∣ � C
)

= 1
{∣∣∣

{
i : i − 1

n
� ε√

n

}∣∣∣ � C
}

= 1{|{�ε√n� + 1, . . . , n}| � C}.

Clearly, this indicator function goes to 1 as n → ∞. ��
Proof of Lemma 3 For themost part,we follow the lines of the aboveproof ofLemma2
by verifying Condition (3.8) of Theorem 3.2 in Billingsley (1999). To point out the
major difference to the previous proof, we consider

−
∫ τ

u∧v

dS∗
n

G∗
n−

=
∫ τ

u∧v

S∗
n−dA∗

n

G∗
n−

=
∫ τ

u∧v

S∗
n−

G∗
n−

J ∗d(A∗
n − Ân) +

∫ τ

u∧v

S∗
n−

G∗
n−

J ∗d Ân,
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where J ∗(u) = 1{Y ∗(u) > 0}. The arguments of Akritas (1986) show that

∫ ·

u∧v

S∗
n−

G∗
n−

J ∗d(A∗
n − Ân)

is a square integrable martingale with predictable variation process given by

t �−→
∫ t

u∧v

S∗2
n−

G∗2
n−

J ∗

Y ∗ (1 − Δ Ân)d Ân .

After writing S∗
n G∗

n = H∗
n , a twofold application of Lemmata 6 and 7 (at first to

the bootstrap quantities S∗
n and H∗

n , then to the Kaplan–Meier estimators Ŝn and Ĥn)
shows that the predictable variation in the previous display is bounded from above by

−β−9
∫ t

u∧v

S3−
H2−

dŜn = −β−9
∫ t

u∧v

SdŜn

G2−

on a set with arbitrarily large probability depending on β ∈ (0, 1). Here we also used
that Ŝn−d Ân = dŜn . Due to (5), Theorem 1.1 of Stute and Wang (1993) yields

−
∫ t

u∧v

SdŜn

G2−
p−→ −

∫ t

u∧v

SdS

G2−
< ∞

and hence the asymptotic negligibility of the predictable variation process in prob-
ability. By Rebolledo’s theorem (Theorem II.5.1 in Andersen et al. 1993, p. 83),∫ τ

u∧v

S∗
n−

G∗
n−

J ∗d(A∗
n − Ân) hence goes to zero in conditional probability. The remaining

integral
∫ τ

u∧v

S∗
n−

G∗
n−

J ∗d Ân is treated similarly with Lemmata 6 and 7 and Theorem 1.1

of Stute and Wang (1993) yielding a bound in terms of
∫ τ

u∧v
dS
G− . This is arbitrarily

small for sufficiently large u, v < τ . ��
Proof of Lemma 4 Let the function spaces D[t1, τ ] and D̃[t1, t2] be equipped with
the supremum norm. For some sequences tn ↓ 0 and hn → h in D[t1, τ ] such that
θ + tnhn ∈ D̃[t1, t2], consider the supremum distance

sup
s∈[t1,t2]

∣∣∣ 1
tn

[ψ(θ + tnhn)(s) − ψ(θ)(s)] − (dψ(θ) · h)(s)
∣∣∣. (12)

The proof is concluded if (12) goes to zero. For an easier access the expression in the
previous display is first analyzed for each fixed s ∈ [t1, t2]:

1

tn
[ψ(θ + tnhn)(s) − ψ(θ)(s)] − (dψ(θ) · h)(s)

= 1

tn

1

θ(s) + tnhn(s)

1

θ(s)
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×
[
θ(s)

∫ τ

s
(θ(u) + tnhn(u))du − (θ(s) + tnhn(s))

∫ τ

s
θ(u)du

]

− 1

θ(s)

∫ τ

s
h(u)du + h(s)

∫ τ

s

θ(u)

θ2(s)
du

= 1

θ(s) + tnhn(s)

∫ τ

s
hn(u)du − hn(s)

θ(s) + tnhn(s)

1

θ(s)

∫ τ

s
θ(u)du

− 1

θ(s)

∫ τ

s
hn(u)du + hn(s)

∫ τ

s

θ(u)

θ2(s)
du

− 1

θ(s)

∫ τ

s
(h(u) − hn(u))du − (h(s) − hn(s))

∫ τ

s

θ(u)

θ2(s)
du

= −
∫ τ

s
hn(u)du

tnhn(s)

[θ(s) + tnhn(s)]θ(s)
+ hn(s)

∫ τ

s

θ(u)

θ2(s)
du

tnhn(s)

θ(s) + tnhn(s)

− 1

θ(s)

∫ τ

s
(h(u) − hn(u))du − (h(s) − hn(s))

∫ τ

s

θ(u)

θ2(s)
du. (13)

For large n, each denominator is bounded away from zero: To see this, denote ε :=
infs∈[t1,t2] |θ(s)| and C := sups∈[t1,t2] |h(u)|. Thus,

sup
s∈[t1,t2]

|hn(s)| � sup
s∈[t1,t2]

|hn(s) − h(u)| + sup
s∈[t1,t2]

|h(s)| � ε + C

for each n large enough. It follows that, for each such n additionally satisfying
tn � ε(2ε + 2C)−1, the denominators are bounded away from zero, in particular,
infs∈[t1,t2] |θ(s) + tnhn(s)| � ε/2. Thus, taking the suprema over s ∈ [t1, t2], the
first two terms in (13) become arbitrarily small by letting tn be sufficiently small.
The remaining two terms converge to zero since sups∈[t1,t2] |hn(s) − h(s)| → 0 and
supu∈[t1,τ ] |θ(u)| < ∞. Note here that

∫ τ

t1
|h(u) − hn(u)|du � sup

u∈[t1,τ ]
|h(u) − hn(u)|(τ − t1) → 0.

��
Proof of Lemma 5 The convergences are immediate consequences of the functional
delta method, Theorem 1 and the bootstrap version of the delta method; cf. Sect. 3.9 in
van der Vaart and Wellner (1996). Simply note that all considered survival functions
are elements of D<∞ ∩ D̃[t1, t2] (on increasing sets with probability tending to one)
and that the survival function of the lifetimes is assumed continuous and bounded
away from zero on compact subsets of [0, τ ). Further, there is a version of the limit
Gaussian processes with almost surely continuous sample paths.

For the representation of the variance of the limit distribution in part (a) we refer to
van der Vaart andWellner (1996), p. 383 and 397. The asymptotic covariance structure
in part (b) is easily calculated using Fubini’s theorem—for its applicability note that
the variances Γ (r, r) of the limit process W of the Kaplan–Meier estimator exist at
all points of time r ∈ [0, τ ]. Thus, since W is a zero-mean process, we have for any
0 � r � s < τ ,
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cov

(∫ τ

r

W (u)

S(r)
du −

∫ τ

r

W (r)S(u)

S2(r)
du,

∫ τ

s

W (v)

S(s)
dv −

∫ τ

s

W (s)S(v)

S2(s)
dv

)

=
∫ τ

r

∫ τ

s

[
Γ (u, v) − S(u)

S(r)
Γ (r, v) − S(v)

S(s)
Γ (s, u) + S(u)S(v)

S(r)S(s)
Γ (r, s)

]
dudv

S(r)S(s)
.

Inserting the definition Γ (r, s) = S(r)S(s)σ 2(r ∧ s) and splitting the first integral
into

∫ τ

r = ∫ s
r + ∫ τ

s yields that the last display equals

∫ τ

r

∫ τ

s

S(u)S(v)

S(r)S(s)
[σ 2(u ∧ v) − σ 2(r ∧ v) − σ 2(s ∧ u) + σ 2(r ∧ s)]dudv

=
∫ τ

s

∫ τ

s

S(u)S(v)

S(r)S(s)
[σ 2(u ∧ v) − σ 2(r) − σ 2(s) + σ 2(r)]dudv

+
∫ s

r

∫ τ

s

S(u)S(v)

S(r)S(s)
[σ 2(u) − σ 2(r) − σ 2(u) + σ 2(r)]dudv

=
∫ τ

s

∫ τ

s

Γ (u, v)

S(r)S(s)
dudv − σ 2(r ∨ s)g(r)g(s).

��
Proof of Theorem 2 The theorem follows from Lemma 5 combined with the con-
tinuous mapping theorem applied to the supremum functional D[t1, t2] → R,
f �→ supt∈[t1,t2] | f (t)| which is continuous on C[t1, t2]. For the connection between
the consistency of a bootstrap distribution of a real statistic and the consistency of the
corresponding tests (and the equivalent formulation in terms of confidence regions),
see Lemma 1 in Janssen and Pauls (2003). ��

B Adaptations of Gill’s (1983) Lemmata

Abbreviate again the sigma algebra containing all the information of the original
sample as X := σ(Xi , δi : i = 1, . . . , n). The proofs in “Appendix A” rely on
bootstrap versions of Lemmata 2.6, 2.7 and 2.9 in Gill (1983). Since those are stated
under the assumption of a continuous distribution function S, but ties in the bootstrap
sample are inevitable, these lemmata need a slight extension. For completeness, parts
(a) of the following two Lemmata correspond to the original Lemmata 2.6 and 2.7 in
Gill (1983).

Lemma 6 (Extension of Lemma 2.6 in Gill 1983) For any β ∈ (0, 1),

(a) P(Ŝn(t) � β−1S(t) for all t � T̂n) � 1 − β,
(b) P(S∗

n (t) � β−1 Ŝn(t) for all t � T ∗
n | X) � 1 − β almost surely.

Proof of (b). All equalities and inequalities concerning conditional expectations are
understood as to hold almost surely. As in the proof of Theorem 1, (S∗

n (t ∧T ∗
n )/Ŝn(t ∧

T ∗
n ))t∈[0,T̂n) defines a right-continuousmartingale for each fixed n and for almost every

given sampleX. Hence, Doob’s L1-inequality (e.g., Revuz and Yor 1999, Theorem 1.7
in Chapter II) yields for each β ∈ (0, 1)
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P

(
sup

t∈[0,T̂n)

S∗
n (t ∧ T ∗

n )/Ŝn(t ∧ T ∗
n ) � β−1 | X

)

� β sup
t∈[0,T̂n)

E(S∗
n (t ∧ T ∗

n )/Ŝn(t ∧ T ∗
n ) | X)

= βE(S∗
n (0)/Ŝn(0) | X) = β.

This implies P(S∗
n � β−1 Ŝn on [0, T ∗

n ) | X) � 1− β. It remains to extend this result
to the interval’s endpoint. If the observation corresponding to T ∗

n is uncensored, we
have 0 = S∗

n (T ∗
n ) � β−1 Ŝn(T ∗

n ). Else, the event of interest {S∗
n � β−1 Ŝn on [0, T ∗

n )}
(given X) implies that

S∗
n (T ∗

n ) = S∗
n (T ∗

n −) � β−1 Ŝn(T ∗
n −) = β−1 Ŝn(T ∗

n ).

Thus, for given X, {S∗
n (T ∗

n ) � β Ŝn(T ∗
n )} ⊂ {S∗

n � β Ŝn on [0, T ∗
n )}. ��

Lemma 7 (Extension of Lemma 2.7 in Gill 1983) For any β ∈ (0, 1),

(a) P(Ĥn(t−) � βH(t−) for all t � T̂n) � 1 − e
β
exp(−1/β),

(b) P(H∗
n (t−) � β Ĥn(t−) for all t � T ∗

n | X) � 1 − e
β
exp(−1/β) almost surely.

Proof of (a). As pointed out by Gill (1983), the assertion follows from the inequality
for the uniform distribution in Remark 1(ii) of Wellner (1978). By using quantile
transformations, his inequality can be shown to hold for random variables having an
arbitrary, even discontinuous distribution function.
Proof of (b). Fix Xi (ω), δi (ω), i = 1, . . . , n. Since H in part (a) is allowed to have
discontinuities, (b) follows from (a) for each ω. ��

Let a, b ∈ D[0, τ ] be two (stochastic) jumpprocesses, i.e., processes being constant
between two discontinuities. If b has bounded variation, we define the integral of a
with respect to b via ∫ s

0
adb =

∑
a(t)Δb(t), s ∈ (0, τ ],

where the sum is over all discontinuities of b inside the interval (0, s]. If a has bounded
variation, we define the above integral via integration by parts:

∫ s
0 adb = a(s)b(s) −

a(0)b(0) − ∫ s
0 b−da.

Lemma 8 (Adaptation of Lemma 2.9 in Gill 1983) Let h ∈ D[0, τ ] be a nonnegative
and non-increasing jump process such that h(0) = 1 and let Z ∈ D[0, τ ] be a jump
process which is zero at time zero. Then, for all t � τ ,

sup
s∈[0,t]

h(s)|Z(s)| � 2 sup
s∈[0,t]

∣∣∣
∫ s

0
h(u)dZ(u)

∣∣∣.

Proof The original proof of Lemma 2.9 in Gill (1983) still applies for the most part
with the assumptions of this lemma. For the sake of completeness, we present the
whole proof.
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Let U (t) = ∫ t
0 h(s)dZ(s) with a t � τ such that h(t) > 0. Then,

Z(t) =
∫ t

0

dU (s)

h(s)
= U (t)

h(t)
−

∫ t

0
U (s−)d

( 1

h(s)

)

=
∫ t

0
(U (t) − U (s−))d

( 1

h(s)

)
+ U (t)

h(0)
.

Thus, following the lines of the original proof,

|h(t)Z(t)| �
∣∣∣
∫ t

0
(U (t) − U (s−))d

( h(t)

h(s)

)∣∣∣ + |U (t)|h(t)

� 2 sup
0<s�t

|U (s)|
(
1 − h(t)

h(0)

)
+ sup

0<s�t
|U (s)|h(t) � 2 sup

0<s�t
|U (s)|.

��

C Bootstrap version of the truncation technique for weak convergence

The following lemma is a conditional variant of Theorem 3.2 in Billingsley (1999).
Let ρ be the modified Skorohod metric J1 on D[0, τ ] as in Billingsley (1999), i.e.,
ρ( f, g) = infλ∈Λ(‖λ‖o ∨ supt∈[0,τ ] | f (t) − g(λ(t))|), where Λ is the collection of
non-decreasing functions onto [0, τ ] and

‖λ‖o = sup
s 	=t

∣∣∣∣log λ(s) − λ(t)

s − t

∣∣∣∣ .

For an application in the proof of Theorem 1, note that ρ( f, g) � supt∈[0,τ ] | f (t) −
g(t)|.
Lemma 9 Let X : (Ω,A, P) → (D[0, τ ], ρ) be a stochastic process and let the
sequences of stochastic processes Xun and Xn satisfy the following convergences
given a σ -algebra C:

(a) Xun
d−→ Zu given C in probability as n → ∞ for every fixed u,

(b) Zu
d−→ X given C in probability as u → ∞,

(c) for all ε > 0 and for each subsequence (n′) ⊂ (n) there exists another subse-
quence (n′′) ⊂ (n′) such that

lim
u→∞ lim sup

n′′→∞
P(ρ(Xun′′ , Xn′′) > ε | C) = 0 almost surely.

Then, Xn
d−→ X given C in probability as n → ∞.

Proof Choose a sequence εm ↓ 0. Let (n′) ⊂ (n) be an arbitrary subsequence and
choose subsequences (n′′(εm)) ⊂ (n′) and (u′) ⊂ (u) such that (a) and (b) hold almost
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surely and also such that (c) holds along these subsequences. Replace (n′′(εm)) by
their diagonal sequence (n′′) ensuring (c) simultaneously for all εm . Let F ⊂ D[0, τ ]
be a closed subset and let Fεm = { f ∈ D[0, τ ] : ρ( f, F) � εm} be its closed εm-
enlargement.We proceed as in the proof of Theorem 3.2 in Billingsley (1999), whereas
all inequalities now hold almost surely.

P(Xn′′ ∈ F | C) � P(Xu′n′′ ∈ Fεm | C) + P(ρ(Xu′n′′, Xn′′) > εm | C).

The Portmanteau theorem in combination with (a) yields

lim sup
n′′→∞

P(Xn′′ ∈ F | C) � P(Zu′ ∈ Fεm | C) + lim sup
n′′→∞

P(ρ(Xu′n′′ , Xn′′) > εm | C).

Condition (b) and another application of the Portmanteau theorem imply that

lim sup
n′′→∞

P(Xn′′ ∈ F | C) � P(X ∈ Fεm | C).

Let m → ∞ to deduce lim supn′′→∞ P(Xn′′ ∈ F | C) � P(X ∈ F | C) almost surely.
Thus, a final application of Portmanteau theorem as well as the subsequence principle

leads to the conclusion that Xn
d−→ X given C in probability. ��

D Further simulation results for mean residual lifetime confidence bands

As suggested by a referee,we nowevaluate the influence of the choice of the underlying
time span [t1, t2] on the coverage probabilities of the confidence bands for the mean
residual lifetime function. To this end, we again carried out the simulations of Sect. 5.2
while allowing for any combinationof the above-chosen time intervals in all setups, i.e.,
with underlying exponential andGompertz distributionswith any of the three scenarios
(i)–(iii). From these results, we conclude that the choice of time span does not have
a great impact on the linear bands’ coverage probabilities. In the exponential setup
(Table 5), these empirical probabilities vary only slightly, whereas broader intervals
[t1, t2] appear to make the bands more conservative in the case of an underlying
Gompertz distribution (Table 6).

The behavior of the log-transformed confidence bands is quite surprising: The
empirical coverage probabilities deteriorate considerably for small sample sizes in
the case of increased interval lengths t2 − t1: They may drop by several dozens of
percentage points (see the Exponential setup (i) and n ∈ {30, 50}) or even from 94.9
to 0.3% (see the Gompertz setup (i) and n = 50) (Table 6).

We will find the reason for the sometimes good, sometimes dramatic behavior of
the confidence bands in the eventual survival probabilities; Table 7 shows the survival
probabilities at the right boundaries of the time intervals for each considered setup.
Even in the case of a final survival probability of about 6% and sample sizes n � 500,
the linear confidence bands have satisfactory empirical coverage probabilities within
95.2 and 96.2%. On the other hand, the reason for the bad performance of both types
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Table 7 Survival probabilities (in %) at the right boundary of the time interval

Distribution \ Setup (i) (ii) (iii)

End time 1.0 1.2 1.4 1.0 1.2 1.4 1.0 1.2 1.4

Exponential 13.53 9.07 6.08 22.31 16.53 12.25 30.12 23.69 18.64

End time 1.2 2.0 2.3 1.2 2.0 2.3 1.2 2.0 2.3

Gompertz 9.83 0.17 0.01 49.86 14.71 6.77 81.84 34.23 13.95

of confidence bands in setup (i) with an underlying Gompertz distribution is the very
small survival probability at the right boundary of the time interval: With survival
probabilities between 0.01 and 0.17%, one cannot clearly see the asymptotic exactness
of the confidence bands, even with sample sizes as big as n = 1000. The linear bands
tend to be quite conservative, whereas the log-transformed bands are very liberal.
Much larger samples are necessary to get reliable confidence bands in this extreme
setup. These results also indicate that the asymptotic behavior breaks down whenever
one seeks to derive confidence bands for the mean residual lifetime function on its
whole support.

These observations again lead us to the conclusion that the linear confidence bands
appear to be the best choice for the mean residual lifetime function. Depending on the
length of the underlying time interval, itmaybe slightly conservative.But this improves
with an increasing sample size if the survival probability at the right boundary is not
excessively small.
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