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Supplementary material for the referees

Proof of Lemma 3.

In the proof we will use Proposition 3.8 in Mhaskar (1993), which we reformulate here
(in a slightly different form) as Lemma 6.

Lemma 6. Let K C R be a polytope bounded by hyperplanes vjetw; >0(j=1,...,L),
where vy, ...,vr, € R and wy,...,wy € R. For § >0 set

K9 := {xERd vt w; >0 forallje{l,...,L}}

and
K§ = {xERd cvjrr+w; <=0 forsomejG{l,...,L}}.

Let o : R — [0,1] be a squashing function. Let e,0 € (0,1] be arbitrary. Then there exists
a neural network of the form

L d
f(x) =0 Z bj e (Z ajk - l'(k) + aj70> + bg
j=1 k=1

satisfying

|f(x)| <1 forx e R,
|f(z) = 1| < e forz € K,
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|f(z)] < e forx € K§. (33)

In case that the squashing function satisfies
1 1
o) =< i y>0 md o) < i y<0.
the weights above can be chosen such that

4L
\bj|§? forallj=0,...,L

4L .
‘aj7k| < T ' maX{Hvlnooa |w1‘7 ceey ||ULHO<>5 "U)L‘} for all J = 17 s 7L7 k= 07 ce 7d'
Proof. Follows from the proof of Proposition 3.8 in Mhaskar (1993). O

Proof of Lemma 3. We partition [—a — Q—A;,a]d into (M + l)d equivolume cubes of
side length 2a/M. Approximating m by a piecewise constant approximant with respect
to this partition yields (since m is (p, C')—smooth with p < 1) a function S satisfying

2 P
15 =l age < VA C- (37) (34)

If we we choose S suitably, it can be expressed in the form

d
S(x) =m(za,. 1)) + > di-I] (xm - xEj))
j=1

ie{l,..M+1}4\{(1,...,1)}

0
)
+

where z; are the corners of the cubes forming the above partition (indexed in ascending
order per component), 0° := 0, 2, := max{x, 0}, and d; for i = (i1, ...,iq) as above are
constants satisfying

i = > (=) m (@iy), (35)

JC{,d\{k i=1}

where ¢ — J symbolizes the index ¢ with ¢; replaced by i; — 1 for all j € J. Since for a
fixed set with n > 0 elements the number of subsets with even and uneven cardinality
is 271 respectively, and the corners used in the above expression have a distance of at
most vd - QM‘Z, we can conclude from the (p, C)—smoothness of m

i 2a\" 2a\?
\d;| < gd=|{k:ix=1}-1 45 . (M) <eciq- <M> . (36)

Let K; be the polytope defined by z) — :I,'gj) >0(j=1,...,d). Set e = (M + 1)7d,
d=a-n/(2-d-M) and apply Lemma 6 for each Kj (i.e., with L = d, v; = e; and

w; = —33(-]), where e; denotes the j-th unit vector) to obtain f;(x) satisfying (33) with
J i J g

K; instead of K. Let
P(z) =m(zq,.. 1) + Z di - fi(x).

ie{l,... M+1}\{(1,....1)}

32



Then we can conclude from (33) and (36)

|P(z) — S(z)] < 3 il - | fi(z) — f[ (:c(” - x?))i '

i€{l,....M+1}\{(1,...,1)} Jj=1

= > dif - (M + 1)~

ie{l,..M+1}4\{(1,...,1)}

<eu- (L) (37)

for all z € [—a,a]d which are not contained in

U U {xeRd : |x<f>—x§f>|<a-n/(2.d-M)}. (38)
j=1,...die{l,...M+1}d

By shifting the positions of the x; in the jth component slightly to the right (in the sense
of increasing values) we can construct

2a/M % 2-d-M 2.d
= |2 = 12 sy
26 M 2-a-n n
different versions of P, that still satisfy (34) and (37) for all z € [—a,a]?, and corre-
sponding disjoint versions of

U {xERd : \m(j)—xgj)\<a-77/(2-d-M)},
i€{1,, M+1}4

and since the sum of the r—measures of these sets is less than or equal to one, at least
one of them must have measure less than or equal to n/d. Consequently we can shift the
x; such that (38) has v measure less than or equal to 7. This together with (34) and
(37) implies the first assertion of the lemma, because P(x) complies with the structure
of the postulated neural network #(x).

In case that o satisfies the conditions specified in the second part of the lemma, Lemma 6
allows to bound the coefficients of the neural network t(x) := P(z) respecting the values
of the parameters we used during the application of this lemma above. This leads to

lai ikl < W ~max{1,a+]2\j} <8-d*. 1\774 ~max{i,3}
forallie {1,....,(M+1)%}, je{l,...,d}, k€ {0,...,d} and

|bij| <4-d- (M +1)
for all i € {1,...,(M +1)?}, j € {0,...,d}. Furthermore, the definition of P and (35)

imply
il <27 [[mllso

for all i € {0,...,(M + 1)d}, which leads to the second assertion of the lemma. O

In order to prove Lemma 5, we introduce the following technical result.
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Lemma 7. Let |l € Ny and let o : R — R for r = 1,...,1 + 1 be Lipschitz continuous
functions with Lipschitz constant L > 1, which satisfy

lop(z)] < L-max{|z|,1} (x€R). (39)

Let Ky = d, K, € N forr € {1,...,1} and Kjy1 = 1. Forr € {1,...,1+ 1} and
ie{l,...,K,} define recursively

K’r‘—l
0@ =00 | S0 p 0 (@) 4 el
j=1

and
K,

fi(r)(x) — 0, Z éz(jn‘_l) . f»](r—l)( ) Egro 1) ’
j=1

where czg 1)75% b, ng:)l, *ETKrl)l €R, and f N(z) = f;o)(x) = 2. FPurthermore,

set C(T_)‘ (T) 1}
]

ZJ

C= max max{
r=0,....Li=1,. K. 1,

Then
|f(l+1 *1(l+1)(x)|

l
<@+1)-LH T +1) - max{|efse, 1} - max

r=0 j=0,...,Kr

for any x € RY.

Proof. At first, we notice that (39) implies

@ zr e+ - _max {7V @)

J=1,..,Kr—1

1}

forr=1,...,landi=1,..., K,, from which we can conclude

FO@| 2 T] 141 T s (e 13- (40)

r=1

Using the Lipschitz continuity of o, and the triangle inequality in combination with (40)
we get

7 <x> =77 @)|

Ky
Z (r—1) (r 1)( )+Ci,0_1) _ Z _(r 1) f(r 1)( ) Egi)_l)
—1 =1
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r—1 F(r—1
<L M @) - [ @)
j=1
7“ 1) ‘fr 1) 762(,7’0—1)
— (r—1) 7(r—1)
<. .C- : — f
<L K, -C j:lr,].[.l.?l%r,l f] (x) = f; (JC)‘
r—1 Y
L (Koo +1) - L [ (Ko +1) - C7 - max {2, 1}
=1
(r=1) _ (1)
P i |

:L-KT,1~€-_ max

J=1 . Kra

1@ = 1 @)

J— 71 — —|
LT 1_[1 (Ki—1+1)-C" " - max {||2]|c0, 1} .jzorf.l.?f}é,l |C§,Tj 1 _ (r 1)|
r—=

forall r =1,...,l+ 1. Now we start with the above inequality for r = [ 4+ 1 and plug it
in repeatedly for decreasing r in the expression ’f;ril)(a:) - f;ril)(x)‘ on the right-hand

side of the inequality. Finally, the summand containing ‘f;o)(aj) - f}o)(x)‘ vanishes in
the case of r = 1, which implies the assertion. O

Proof of Lemma 5. At first, we notice the space F, = H® (with [ > 0) can be
expressed as

K
Ho = {h RYS R () = 0 (gk (0ia (fr(@) -, 0 (far k(7)) (x € RY)
k=1
for some g, € .F(neif;ailfzmgo;"ks) and fj € ’H(l_l)},

where 0,4 : R — R is the identity o;4(z) = = for all z € R. Furthermore, all g €

! network )
fj(\:[m;tkadfzigo; s) can be written as
mnsy 9 9 bl 9

(Mp+1)* d*
g(x) = Z di-o Zbﬂ a(Za”,m a(m )+a”0>+bzo +dp
i=1

j=1 m=1
(M +1)?
= > dio > by (Z“um' z‘,j,0> + 050 | + do,
i=1 j=1,...,d*,
i= A,.,(Mn+1)d
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where the new coefficients are defined by

b bi j ifi=1
R N otherwise

for all 4,7 € {1, ey (M, + 1)d*} and j € {0,...,d*} (which works analogously for h €
HO). Respecting the above representations, all the functions o;4(h) = h for h € H®

U in Lemma 7, if we use the following
specifications of the parameters in that lemma: The Lipschitz constant L is chosen as
the maximum of the Lipschitz constants of o;4 (which is obviously 1) and the squashing
function o from Theorem 3. Thus, the property (39) is satisfied due to ||o]| < 1,
L > 1, and |oj4(x)| = |x|. The parameter [ in Lemma 7 is 4l + 2 (regarding the [ in
HO above) and the parameters K, with r = 0,...,1 take repeatedly the values d,d* -

(M, + 1), (M, + 1) ,K one after another, Where d is equal to d* except for K,
(r)

comply with the structure of the functions fl(l

where it is d. Since all the coefficients G with r = 0,...,0, 7 =1,...,K,11, J =
1,..., K, (using K;;1 = 1 again) are 0, 1, or one of the @i j.m, bij,d; in the definition of
fﬁ:%ﬁafiftﬁwﬁrks), we can use C' = max {a, 3,~} for n sufficiently large.

Let A and h be functions in F,,. Since they comply with the structure of the functions
in Lemma 7 according to the above argumentation, we can conclude

lh = hl|

—an an]d

41+3
<+ 3) LA (@ (M + 1) 1) max{a, B}
L) o)

-max{ay, 1} - _max ¢ij—Gj
r=0,..,0, i=1,.. K11 i ’
7j=0,....,Kyp
< ay -nt - max ET) cgr.)
r=0 l~, 1=1,. r+1 J &
7j=0,..., r

for n sufficiently large and an adequately chosen ¢17 > 0. Thus, if we consider an arbitrary
h e HW, it suffices to choose the coefficients c( -) of a function h € H® such that

En

(41)

&) ] <

7] - QA * nci

holds for all possible indices, in order to satisfy ||h(z) — h(z)| angd < En- Forn

sufficiently large, which is assumed permanently in the follovvlng7 the coefficients c( )
have to take values in [— max {«, 8,7}, max {«, 8,~v}] and the relatlons max {a, 5,7} < <
log(n) - n? - M& < n* and a,, < M, <n hold. Then due to &, =

2 - max {aa 677} RN < pci2
2-en -

a number of

MP

=(r)

different c; 0.7

()

any ¢; ; with fixed indices. Furthermore, the coefficients ¢;

suffices to guarantee, that at least one of them satisfies the relation (41) for

(r)

ig which can actually differ
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regarding different h € H", are the ones originating from the coefficients a; jm,bij, d; in

the definition of fj(\:flfqﬁliafizegwyks). Using (22), their number can be bounded by ¢13- M2
So the logarithm of the covering number N (g, Fp, || - || can be bounded by

oo,[—an,an]d)

Asd* *
10g (N (ens Fos | o ) < 108 ((n2)755) < c1g - log(n) - M

which proves the assertion. O
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