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Abstract Estimation of surrogate models for computer experiments leads to nonpara-
metric regression estimation problems without noise in the dependent variable. In this
paper, we propose an empirical maximal deviation minimization principle to construct
estimates in this context and analyze the rate of convergence of corresponding quantile
estimates. As an application, we consider estimation of computer experiments with
moderately high dimension by neural networks and show that here we can circumvent
the so-called curse of dimensionality by imposing rather general assumptions on the
structure of the regression function. The estimates are illustrated by applying them to
simulated data and to a simulation model in mechanical engineering.
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1 Introduction

Physical phenomena are nowadays often described by mathematical models, which
enables the use of so-called computer experiments instead of real experiments in order
to analyze them.

In the simplest case, the mathematical model is described by a function m : Rd →
R, which models the relation between d-dimensional input and a real-valued output.
Due to uncertainty in nature, it is often impossible to characterize the input exactly.
Instead, we can describe it by the input random variable X with a given distribution.
So the mathematical model describes the outcome Y of a physical phenomenon by

Y = m(X), (1)

where X is an Rd -valued random variable and m : Rd → R is a real-valued function.
Here this function can be, for example, the solution of a partial differential equation
system,where the value of X determines the values of parameters and initial conditions
of this system.The aimof studying the physical phenomenon is to derive characteristics
of the outcome Y . In the mathematical model, Y is a real-valued random variable, and
we are interested in the distribution of this random variable.

It is often possible to write a complex computer programwhich generates the values
of function m. Using this computer model and independent copies X1, X2, . . . of X ,
we can then carry out computer experiments: We evaluate the computer model for
these random inputs and get an (independent) sample

Y1 = m(X1), . . . , Yn = m(Xn) (2)

of the distribution of the outcome Y in our mathematical model. Using standard meth-
ods of (nonparametric) statistics, this distribution canbe characterized, by, for example,
estimating its density or quantiles.

The mathematical models for problems that arise in practice and consequently the
corresponding computer program are usually rather complex. Thus, computing of
values of m(X) is time-consuming, so it is not possible to generate the data in (2) for a
large sample size n. One idea to circumvent this problem is to use so-called surrogate
models for m. Here we begin by generating data

(x1, m(x1)), . . . , (xn, m(xn)) (3)

by evaluating the computer model for suitably chosen input values x1, …, xn ∈ R
d ,

and using these data to construct an estimate

mn(·) = mn(·, (x1, m(x1)), . . . , (xn, m(xn))) : Rd → R (4)
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of m. The input values x1, …, xn ∈ R
d could be chosen as realizations of the random

variables X1, …, Xn , but in order to estimate (4) with small error we can choose them
differently. Given the estimate (4), one can replace (1) by its surrogate model

Y = mn(X) (5)

and study the distribution of Y . In this estimated model, a sample

Yn+1 = mn(Xn+1), . . . , Yn+Nn = mn(Xn+Nn ) (6)

of Y can be usually computed for a sample size Nn , which is much larger than n,
and this sample can be used together with nonparametric statistics in order to estimate
some aspects of the distribution of Y . In this paper, we will focus on quantile estimates
based on surrogate models of Y and analyze their convergence.

The concept of surrogate models explained above has been introduced and inves-
tigated with the aid of simulated and real data by several authors using different
estimation techniques.AfterBucher andBourgund (1990),KimandNa (1997) andDas
andZheng (2000) had relied on quadratic response surfaces,Hurtado (2004),Deheeger
and Lemaire (2010) and Bourinet et al. (2011) used support vector machines, whereas
Papadrakakis andLagaros (2002) concentrated on neural networks andKaymaz (2005)
and Bichon et al. (2008) made use of kriging. Theoretical results concerning the rate
of convergence of corresponding quantile estimates have been derived in Enss et al.
(2016).

For the purpose of constructing a surrogate mn also any kind of nonparametric
regression estimate could be used. For instance, we could use kernel regression esti-
mates (cf., e.g., Nadaraya 1964, 1970;Watson 1964;Devroye andWagner 1980; Stone
1977, 1982 or Devroye and Krzyżak 1989), partitioning regression estimates (cf., e.g.,
Györfi 1981 or Beirlant and Györfi 1998), nearest neighbor regression estimates (cf.,
e.g., Devroye 1982 or Devroye et al. 1994), orthogonal series regression estimates
(cf., e.g., Rafajłowicz 1987 or Greblicki and Pawlak 1985), least squares estimates
(cf., e.g., Lugosi and Zeger 1995 or Kohler 2000) or smoothing spline estimates (cf.,
e.g., Wahba 1990 or Kohler and Krzyżak 2001).

In this paper, we will use neural network estimates with several hidden layers as
surrogate models for our quantile estimates and derive novel results concerning the
rates of convergence for them. For the idea of applying neural networks to nonlinear
function estimation, classification and learning, we refer the reader to the monographs
(Hertz et al. 1991; Devroye et al. 1996; Ripley 2008; Anthony and Bartlett 1999;
Györfi et al. 2002; Haykin 2008; Hastie et al. 2011). Consistency of nonparametric
regression estimates using neural networks has been studied byMielniczuk and Tyrcha
(1993) and Lugosi and Zeger (1995). The rate of convergence of neural network
regression estimates with one hidden layer has been analyzed by Barron (1991, 1993)
andMcCaffrey andGallant (1994), and in connectionwith feedforward neural network
with several hidden layers in Kohler and Krzyżak (2005, 2017).

It is well known that one has to impose smoothness conditions on m in order to
derive non-trivial rates of convergence. A usual assumption is the so-called (p, C)-
smoothness, where (roughly speaking) m is p times continuously differentiable.
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110 B. Bauer et al.

Considering the L2-error, Stone (1982) showed that the optimal rate of convergence
of an estimate of m is

n− 2p
2p+d .

Here the rate of convergence is not good for large dimensions d. In the above-
mentioned applications of surrogate models in engineering literature, d usually ranges
from 4 to 20, which is large enough to cause bad rates of convergence in the above
expression formoderate p. It was shown in Stone (1985, 1994) that this so-called curse
of dimensionality can be avoided by imposing special assumptions on the structure
of m. In particular, Stone (1994) showed that in case of a so-called interaction model,
where m is a sum of (p, C)-smooth functions, such that each of them uses at most d∗
input components of m, the optimal rate of convergence is

n
− 2p

2p+d∗ .

A similar rate of convergence was obtained in Kohler and Krzyżak (2017) for a more
general set of functions using neural network estimates with several hidden layers.

All these rates assume that the observed values of m contain some noise. But
due to the motivation by computer experiments, we can assume observations without
additional errors in this paper. So it seems reasonable to examine whether better rates
of convergence are possible in this case. Regarding the expected L1-error, Kohler and
Krzyżak (2013) showed for some combinations of p and d that the rate of convergence

n− p
d (7)

is achievable. Kohler (2014) showed that in this context this rate cannot be improved,
even in case of adaptively chosen values for the covariates.

In order to circumvent the curse of dimensionality, we will use the following
assumption on the structure ofm, whichwas introduced inKohler andKrzyżak (2017).
It should hold in particular if the outcome of a complex model is computed in sev-
eral steps, where in each step only a few of the results of the previous step (maybe
combined with some of the input parameters) are used.

Definition 1 Let d ∈ N, d∗ ∈ {1, . . . , d} and m : Rd → R.

(a) We say that m satisfies a generalized hierarchical interaction model of order
d∗ and level 0, if there exist a1, . . . , ad∗ ∈ R

d and f : Rd∗ → R such that

m(x) = f (aT
1 x, . . . , aT

d∗ x) for all x ∈ R
d .

(b) We say that m satisfies a generalized hierarchical interaction model of order
d∗ and level l + 1, if there exist K ∈ N, gk : R

d∗ → R(k = 1, . . . , K )

and f1,k, . . . , fd∗,k : R
d → R (k = 1, . . . , K ) such that f1,k, . . . , fd∗,k(k =

1, . . . , K ) satisfy a generalized hierarchical interaction model of order d∗ and
level l and
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On estimation of surrogate models 111

m(x) =
K∑

k=1

gk
(

f1,k(x), . . . , fd∗,k(x)
)

for all x ∈ R
d .

This definition includes other types of structures ofm assumed in the literature, such
as the additivemodel (cf., e.g., Stone 1985), the interactionmodel (cf., e.g., Stone 1994)
or the projection pursuit (cf., e.g., Friedman and Stuetzle 1981). Functions complying
with one of the mentioned structures belong to the class of generalized hierarchical
interaction models of order d∗ and level l = 1, where d∗ = 1 in case of additive
functions or projection pursuit.

Our smoothness assumptions imposed on the functions occurring in a hierarchical
interaction model are formalized in the next definition.

Definition 2 (a) Let p = k + s for some k ∈ N0 and 0 < s ≤ 1. A function
m : Rd → R is called (p,C)-smooth, if for every α = (α1, . . . , αd) ∈ N

d
0 with

∑d
j=1 α j = k the partial derivative ∂k m

∂x
α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣
∂km

∂xα1
1 . . . ∂xαd

d

(x) − ∂km

∂xα1
1 . . . ∂xαd

d

(z)

∣∣∣∣ ≤ C · ‖x − z‖s

for all x, z ∈ R
d .

(b) We say that the generalized hierarchical interaction model in Definition 1 is
(p,C)-smooth, if all functions occurring in its definition are (p, C)-smooth accord-
ing to part a) of this definition.

In this paper, we will derive some general results regarding the approximation
quality of function estimates minimizing the empirical maximal deviation and we
will analyze the rate of convergence of the corresponding surrogate model quantile
estimates. We will use these results to analyze neural network estimate with several
hidden layers. Given a function m, which satisfies a (p, C)—smooth generalized
hierarchical interaction model of order d∗ and level l with p ∈ (0, 1] and some
additional assumptions regarding the partial functions of the model, this estimate mn

has the property, that outside of an event, whose probability tends to zero for n tending
to infinity, the following inequality holds:

PX

({
x ∈

[
− log(n)2, log(n)2

]d : |mn(x) − m(x)| > c1 · log(n)
2p+ p

p+d∗ · n
− p

p+d∗
})

≤ c2 · log(n)
p

p+d∗ · n
− p

p+d∗ .

The main improvement of this rate of convergence result over the rate in (7) is that
here the rate of convergence depends on d∗ rather than d in case that the function to
be estimated satisfies a generalized hierarchical interaction model.

Using this estimate as a surrogate model for the construction of a quantile estimate,
we obtain the rate of convergence of this quantile estimate of order

log(n)
2p+ p

p+d∗ · n
− p

p+d∗ + PX

(
R

d\[− log(n)2, log(n)2]d
)

+ 1√
Nn

,
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112 B. Bauer et al.

where Nn is the size of the Monte Carlo sample. Here the rate of convergence is again
independent of the dimension of X . By using simulated data, we demonstrate in several
high-dimensional settings that our newly proposed quantile estimate outperforms other
quantile estimates for finite sample size.

Throughout the paper, the following notation is used: The sets of natural numbers,
nonnegative integers, integers, nonnegative real numbers and real numbers are denoted
by N, N0, Z, R+ and R, resp. Let D ⊆ R

d and let f : Rd → R be a real-valued
function defined on R

d . We write x = argmaxz∈D f (z) if maxz∈D f (z) exists and if
x satisfies

x ∈ D and f (x) = max
z∈D

f (z).

The Euclidean and the supremum norms of x ∈ R
d are denoted by ‖x‖ and ‖x‖∞,

resp. For f : Rd → R

‖ f ‖∞ = sup
x∈Rd

| f (x)|

is its supremum norm, and the supremum norm of f on a set A ⊆ R
d is denoted by

‖ f ‖∞,A = sup
x∈A

| f (x)|.

For nonnegative random variables Zn and Yn , we write

Zn = OP(Yn)

if they satisfy limc→∞ lim supn→∞ P{Zn > c · Yn} = 0. If not otherwise stated, any
ci with i ∈ N here and in the following symbolizes a real nonnegative constant, which
is independent of the sample size n.

The outline of this paper is as follows: In Sect. 2, a general class of estimates is
introduced, their rate of convergence is analyzed and it is shown how the results can
be applied in order to estimate quantiles based on surrogate models. In Sect. 3, we
describe the application of our general result to neural networks. Section 4 illustrates
the finite sample size behavior of the estimates by applying them to simulated and real
data. The proofs are contained in Sect. 5.

2 Empirical maximal deviation minimization

2.1 Definition of the estimates

In order to define our estimates, we choose a set Fn of functions f : Rd → R and
select from this set a function, which fits our data within a given set Bn ⊆ R

d well.
Often this is done using the principle of the least squares, where the function is chosen
such that the average squared error on the observed data is minimal. We will not apply
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this for fitting a surrogate model to a computer experiment, since there we observe
the function to be estimated without additional random errors. Instead, we propose to
minimize the empirical maximal deviation of the estimate on Bn , i.e., we propose to
minimize the maximal absolute error on the observed data contained in Bn . Formally,
the resulting least empirical deviation estimate is defined by

mn(·) = arg min
f ∈Fn

max
i=1,...,n,

Xi ∈Bn

| f (Xi ) − m(Xi )| . (8)

Here we assume, for simplicity, that the above minimum exists; however, we do not
require it to be unique. In case that it does not exist, one can define the estimate by

mn(·)∈Fn and max
i=1,...,n,

Xi ∈Bn

|mn(Xi ) − m(Xi )|≤ inf
f ∈Fn

max
i=1,...,n,

Xi ∈Bn

| f (Xi ) − m(Xi )|+ 1

n
,

in which case the theoretical results below also hold. Computation of the estimate
(8) can be done using nonlinear programming, e.g., gradient descent or quasi-Newton
methods.

2.2 General error bounds

Theorem 1 Let X, X1, X2, …be independent and identically distributed R
d-valued

random variables and let m : Rd → R be a (measurable) function. For n ∈ N let
εn ≥ 0, let Fn be a set of (measurable) functions and let Bn ⊆ R

d be measurable.
Assume that the size of the smallest εn − ‖ · ‖∞,Bn -cover of Fn (abbreviated by
N (

εn,Fn, ‖ · ‖∞,Bn

)
) can be bounded by

N (
εn,Fn, ‖ · ‖∞,Bn

) ≤ N∞,Bn (εn) (9)

for all n ∈ N, where N∞,Bn (εn) → ∞ for n → ∞.
Then outside of an event, whose probability tends to zero for n → ∞, the estimate

mn of m defined by (8) satisfies

PX

({
x ∈ Bn : |mn(x) − m(x)| > 3 · εn + 2 · inf

f ∈Fn

‖ f − m‖∞,Bn

})

≤ 2 · log
(N∞,Bn (εn)

)

n
.

2.3 Quantile estimation based on surrogate models

In the sequel, we use Theorem 1 to define estimates of quantiles of Y = m(X). Let

Gm(X)(y) = P{m(X) ≤ y} (10)
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114 B. Bauer et al.

be the cumulative distribution function of m(X), and for α ∈ (0, 1) let

qm(X),α = inf{y ∈ R : Gm(X)(y) ≥ α} (11)

be the α-quantile of m(X). In order to estimate qm(X),α , we use the surrogate mn of
Theorem 1 together with Nn additional values Xn+1, …, Xn+Nn of X and define an
estimate

Ĝmn(X),Nn (y) = 1

Nn

Nn∑

i=1

I(−∞,y](mn(Xn+i )) (12)

of G. Then we estimate qm(X),α by the corresponding plug-in quantile estimate

q̂mn(X),Nn ,α = inf{y ∈ R : Ĝmn(X),Nn (y) ≥ α}. (13)

In the next theorem, we present the rate of convergence result for (13).

Theorem 2 Let X, X1, X2, …be independent and identically distributed R
d-valued

random variables, let m : Rd → R be a (measurable) function, let Bn ⊆ R
d such that

limn→∞ PX
(
R

d\Bn
) = 0 and let α ∈ (0, 1). Assume that m(X) has a density with

respect to the Lebesgue measure, which is continuous on R and positive at qm(X),α .
Let the surrogate mn satisfy

PX ({x ∈ Bn : |mn(x) − m(x)| > δn}) ≤ ζn (14)

for some δn, ζn ≥ 0, where ζn → 0 for n → ∞. Assume Nn → ∞ (n → ∞). Then
the quantile estimate q̂mn(X),Nn ,α defined above satisfies

|q̂mn(X),Nn ,α − qm(X),α| = OP

(
1√
Nn

+ ζn + PX

(
R

d\Bn

)
+ δn

)
.

Corollary 1 Let the assumptions of Theorem 1 hold for εn = 1
n and let the surro-

gate mn be defined as therein. If the assumptions of Theorem 2 also hold, then the
corresponding quantile estimate q̂mn(X),Nn ,α defined as in (13) satisfies

|q̂mn(X),Nn ,α − qm(X),α|

= OP

(
1√
Nn

+ 1

n
+ log

(N∞,Bn

( 1
n

))

n
+ PX

(
R

d\Bn

)
+ inf

f ∈Fn

‖ f − m‖∞,Bn

)
.

Proof Since the requirements of Theorem 1 aremet, its assertion holds. Consequently,

(14) holds for δn = 3 · εn + 2 · inf f ∈Fn ‖ f − m‖∞,Bn and ζn = 2 · log(N∞,Bn (εn))
n .

Application of Theorem 2 implies the assertion. ��
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3 Neural network surrogate models

Neural network estimates often use a type of activation function σ : R → [0, 1] called
squashing activation function σ : R → [0, 1] that is non-decreasing and satisfying

lim
x→−∞ σ(x) = 0 and lim

x→∞ σ(x) = 1.

Examples of squashing functions include the sigmoidal squasher

σ(x) = 1

1 + exp(−x)

and the piecewise linear squashing function

σ(x) =

⎧
⎪⎨

⎪⎩

1 for x ≥ 1
2

x + 1
2 for x ∈ (− 1

2 ,
1
2

)

0 for x ≤ − 1
2 .

Multilayer feedforward neural networkswith sigmoidal functions can be defined recur-
sively as follows: A multilayer feedforward neural network with l hidden layers, K1,
…, Kl ∈ N neurons in the first, second, …, l-th layer, respectively, and sigmoidal
function σ is a real-valued function defined on R

d of the form

f (x) =
Kl∑

i=1

c(l)
i · f (l)

i (x) + c(l)
0 , (15)

for some c(l)
0 , …, c(l)

Kl
∈ R and for f (l)

i ‘s recursively defined by

f (r)
i (x) = σ

⎛

⎝
Kr−1∑

j=1

c(r−1)
i, j · f (r−1)

j (x) + c(r−1)
i,0

⎞

⎠ (16)

for some c(r−1)
i,0 , …, c(r−1)

i,Kr−1
∈ R and r = 2, . . . , l and

f (1)
i (x) = σ

⎛

⎝
d∑

j=1

c(0)
i, j · x (i) + c(0)

i,0

⎞

⎠ (17)

for some c(0)
i,0 , . . . , c(0)

i,d ∈ R. This means the layers of the network are numbered from
inside to outside, i.e., the innermost sum corresponds to the first layer and so on.

We define so-called spaces of hierarchical neural networks with parameters K , M ,
d∗, d and level l as follows (see Kohler and Krzyżak 2017). For M ∈ N, d ∈ N,
d∗ ∈ {1, . . . , d} and α, β, γ > 0, we denote the sets of all functions f : Rd → R

which satisfy
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x

∑

∑

∑

∑

x(1)

hidden layer
hidden layer

output

input

∑

∑

∑

∑

∑

∑

x(2)

x(3)

x(4)

f(x)

Fig. 1 A not completely connected neural network of the type f (x) = ∑3
i=1 di ·

σ
(∑2

j=1 bi, j · σ
(∑4

m=1 ai, j,m · x(m) + ai, j,0

)
+ bi,0

)
+d0, where all weights with an index containing

0 are neglected in the diagram

f (x) =
(M+1)d∗
∑

i=1

di · σ

⎛

⎝
d∗∑

j=1

bi, j · σ

(
d∑

m=1

ai, j,m · x (m) + ai, j,0

)
+ bi,0

⎞

⎠

+d0 (x ∈ R
d) (18)

for some ai, j,m, bi, j , di ∈ R, where

|ai, j,m | ≤ α, |bi, j | ≤ β and |di | ≤ γ

for all i ∈ {0, 1, . . . , (M + 1)d∗}, j ∈ {0, 1, . . . , d∗} and m ∈ {0, 1, . . . , d}, by
F (neural networks)

M,d∗,d,α,β,γ . Here in the first and in the second hidden layer we are using d∗ ·
(M +1)d∗

and (M +1)d∗
neurons, respectively. However, the neural network has only

W
(
F (neural networks)

M,d∗,d,α,β,γ

)

:= (M + 1)d∗ + 1 + (M + 1)d∗ · (d∗ + 1) + (M + 1)d∗ · d∗ · (d + 1)

= (M + 1)d∗ · (d∗ · (d + 2) + 2) + 1 (19)

weights. This is due to the fact that the two hidden layers of the neural network are not
fully connected. Instead, each neuron in the second hidden layer is connected with d∗
neurons in the first hidden layer, and this is done in such a way that each neuron in the
first hidden layer is connected with exactly one neuron in the second hidden layer. The
exemplary network in Fig. 1 gives a good idea of how the sparse connection works.
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On estimation of surrogate models 117

In case l = 0, we define our space of hierarchical neural networks by

H(0) = F (neural networks)
M,d∗,d,α,β,γ .

And for l > 0 we define

H(l) =
{

h : Rd → R : h(x) =
K∑

k=1

gk
(

f1,k(x), . . . , fd∗,k(x)
)

(x ∈ R
d)

for some gk ∈ F (neural networks)
M,d∗,d∗,α,β,γ and f j,k ∈ H(l−1)

}
. (20)

The class H(0) is a set of neural networks with two hidden layers and a number of
weights given by (19). From this one can conclude recursively that for l > 0 the class
H(l) is a set of neural networks with 2 · l + 2 hidden layers. Let N

(H(l)
)
denote the

number of linked two-layered neural networks from F (neural networks)
M,d∗,d,α,β,γ that define the

functions fromH(l). Then the recursion

N
(
H(0)

)
= 1

N
(
H(l)

)
= K + K · d∗ · N

(
H(l−1)

)
(l ∈ N)

holds, yielding the solution

N
(
H(l)

)
=

l∑

t=1

d∗t−1 · K t + (
d∗ · K

)l
. (21)

Furthermore, the weights of a function from H(l) can be parameterized by at most

N
(
H(l)

)
· W

(
F (neural networks)

M,d∗,d,α,β,γ

)
(22)

parameters.
Next we choose in our least maximal deviation estimate (8) the set Fn as the set

H(l), with parameters specified in the following theorem.

Theorem 3 Let X, X1, X2, . . . , Xn be independent and identically distributed R
d-

valued random variables, which comply withE {exp (c̄ · ‖X‖∞)} < ∞ for some c̄ > 0,
and let m : Rd → R be a (measurable) function, which satisfies a (p, C)-smooth
generalized hierarchical interaction model of order d∗ and finite level l with p ∈ (0, 1].
Respecting Definition 1 b), let all functions gk, f j,k be bounded and let all functions
gk be Lipschitz continuous. For n ∈ N let Fn be H(l) defined as in (20) with K , d, d∗

as in the definition of m, M = Mn =
⌊(

n
log(n)

)1/(p+d∗)⌋
, α = log(n) · n2 · Mn, β =

log(n)·Md∗
n ,γ = log(n), and a Lipschitz continuous squashing functionσ that satisfies
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|σ(x) − 1| ≤ 1

x
if x > 0 and |σ(x)| ≤ 1

|x | if x < 0. (23)

Define the estimate mn of m by (8). Then outside of an event, whose probability tends
to zero for n tending to infinity,

PX

({
x ∈

[
− log(n)2, log(n)2

]d : |mn(x) − m(x)| > c1 · log(n)
2p+ p

p+d∗ · n
− p

p+d∗
})

≤ c2 · log(n)
p

p+d∗ · n
− p

p+d∗

holds for c1, c2 > 0 independent of n.

Remark 1 The requirement E {exp (c̄ · ‖X‖∞)} < ∞ for X is satisfied by many com-
monly used distributions, e.g., all normal distributions and uniform distributions on
bounded sets.

Remark 2 It is easy to see that assumption (23) is satisfied in case of the sigmoidal
squasher or the piecewise linear activation function defined above.

Keeping the result of Theorem 3 in mind, we can deduce the following corollary
from Theorem 2:

Corollary 2 Let the assumptions of Theorems 2 and 3 hold and let the surrogate mn

be defined as therein. Then the corresponding quantile estimate q̂mn(X),Nn ,α defined
as in (13) satisfies

|q̂mn(X),Nn ,α − qm(X),α|
= OP

(
1√
Nn

+ PX

(
R

d\
[
− log(n)2, log(n)2

]d
)

+ log(n)
2p+ p

p+d∗ · n
− p

p+d∗
)

.

Proof Since the requirements of Theorem 3 are met, its assertion holds. Using this in
assumption (14) of Theorem 2 implies the assertion of the corollary. ��
Remark 3 If we choose Nn sufficiently large and assume that the support of X is
bounded, the first summand of the rate of convergence in Corollary 2 is dominated by
the third one and the second summand vanishes. Then the remaining rate of conver-
gence does not depend on the dimension d of X and hence circumvents the curse of

dimensionality. Neglecting the logarithmic factor, this rate would be n− p
p+d for general

(p, C)-smooth functions but becomes n
− p

p+d∗ thanks to the additional assumptions of
the generalized hierarchical interaction model. In case of p = 1, d = 9 and d∗ = 3,
for example, the exponent is − 1

4 instead of − 1
10 , which is an enormous improvement.

It should be noted that a simple order statistics estimate, which does not use the
values of X at all, also achieves a rate of convergence independent of d. Here the
rate of convergence is 1/

√
n, which converges in general even faster to zero than our

complicated estimate in Corollary 2 (since p/(p + d∗) ≤ 1/2 for p ≤ 1). However,
we conjecture that in case of (p, C)-smooth functions with p > 1 our newly proposed
estimate achieves a rate of convergence faster than the one in Corollary 2. In the above
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toy example, a smoothness of p = 9 leads to the rate n− 3
4 , which is significantly better

than the rate of the order statistics estimate. This effect will be illustrated in the next
section using simulated data.

4 Application to simulated and real data

In order to illustrate how the quantile estimate developed in the previous sections
behaves in case of finite sample sizes, we apply it to simulated and real data and
compare the results with the conventional estimates using the software MATLAB.

The first alternative approach is a simple order statistic estimate q̂m(X),n,α (abbr.
order), where we estimate qm(X),α by the 
α ·n�-smallest value of n given data points.

The second competitive approach we consider works with an estimate based on
a surrogate model. It approximates m by interpolating it with radial basis functions
(abbr. RBF). Regarding the variety of modifications of this approach known in the
literature, we focus on the version in Lazzaro and Montefusco (2002), where the
authors use Wendland’s compactly supported radial basis function φ(r) = (1− r)6+ ·
(35r2 + 18r + 3). The radius that scales the basis functions is chosen adaptively in
our implementation, because this improved the RBF approach in the simulations.

The parameters l, K , d∗, and Mn of our neural network estimate (abbr. neural)
defined in Theorem 3 and the corresponding quantile estimate in Corollary 2 are also
chosen adaptively by splitting of the sample, using ntrain = � 4

5 · n� realizations as the
training set and ntest = n−ntrain realizations as the test set. The tested choices of these
parameters were {0, 1, 2} for l, {1, . . . , 5} for K , {1, . . . , d} for d∗, and {0, . . . , 12}
for Mn , although the set of possible choices was reduced for some settings if several
test runs showed that the whole range of choices is not needed. Since the (generally)
nonlinear and non-convex optimization problem in (8) which defines our estimate
mn cannot be easily solved exactly, we use the quasi-Newton method of the function
fminunc in MATLAB to approximate its solution. At first, it runs with the least squares
objective function in order to reduce the deviations at all realizations simultaneously
during these initializing steps, then the objective function is replaced by the maximal
deviation criterion from (8) for the remaining approximative steps.

The illustrative simulated settings we use to compare the different approaches are
listed in Table 1. These settings cover different distributions of the input random
variable X and different dimensions of the regression function m. For the latter, we try

Table 1 Test settings

No. Function m d n Distribution of X per component

I m1 7 180 U [0, 1]
II m1 7 180 0.5 · Z + 0.1, Z ∼ exp(2)

III m2 9 250 U [0, 1]
IV m2 9 250 min {0.7 · |Z |, 1} , Z ∼ N (0, 1)

V m3 9 250 U [0, 1]
VI m3 9 250 N

(
0.5, 0.22

)

Bold values indicate the smallest median error in the corresponding setting
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m1(x) = cot

(
π

1 + exp
(
x21 + 2 · x2 + sin

(
6 · x34

) − 3
)
)

+ exp
(
3 · x3 + 2 · x4 − 5 · x5 + √

x6 + 0.9 · x7 + 0.1
)

m2(x) = 5 · x1 · x22 − 3

2 · x3 + x4 − 5 · x5 + 7
+ sin

(
x2 − x6 + √

x7 + 1
)

− exp
(

x5 + 3 · x8 · x39

)

m3(x) = log(0.014 ·
∣∣∣2 · x1 − x2 + 0.5 · x3 − x24

∣∣∣ + 0.95) − 91

5 · x4 − x5 − 2 · x6 − 8

+ x7
131 · √|x2| + 1

− x8 · min

{
|x9|, 1

76

}
.

In all of these settings, we approximate different quantiles qm(X),α with levels
α ∈ {0.9, 0.95, 0.99}, where we use Nn = 105 artificially generated samples by the
surrogate model mn in case of RBF and neural approaches. We assess these quantile
estimates by comparing them with q̂m(X),Ñ ,α

using sample size Ñ = 108, because the
exact qm(X),α are not easily identifiable. The considered error measure is

εα (mn) =
∣∣∣q̂mn(X),Nn ,α − q̂m(X),Ñ ,α

∣∣∣
q̂m(X),Ñ ,α

− q̂m(X),Ñ ,0.01
,

where the scaling in the denominator conveys a better idea of the relative extent of the
error.

In view of the fact that simulation results depend on the randomly chosen data
points, we compute the estimates repeatedly (50 times in the case of the surrogate
model approaches and 104 times in case of the order statistic, which can be computed
much faster) for repeatedly generated realizations of X and examine the median (plus
interquartile range IQR) of εα (mn).

Examination of the results in Table 2 shows that the less extreme quantiles (e.g.,α =
0.9) are mostly approximated significantly better than the extreme examples (e.g., α =
0.99). This is not surprising thanks to the comparatively small number n of given obser-
vations of m, which cannot adequately represent every extreme behavior of m. Fur-
thermore, in the considered test settings our newly proposed neural network estimate
clearly outperforms the order statistic estimate and the competitive RBF approach.

Next,we illustrate howour newlyproposedmethod canbeused to estimate quantiles
using the data produced by computer experiments, which simulate the behavior of
suspension struts such as aircraft landing gears. The experimental setup is the digital
twin of a real demonstrator model designed at the Collaborative Research Centre 805
at TU Darmstadt that may help to control uncertainty in load-carrying structures, by
testing different approaches and methods developed in CRC 805. Figure 2 shows the
detailed structure of this virtual demonstrator. In this case, a modular active spring
damper system is guided on a frame and falls down on the base of the frame. Virtual
sensors allow the measurement of different parameters such as acceleration, absolute
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Table 2 Median (IQR) of the scaled error εα(mn)

No. α 0.9 0.95 0.99

I Order 0.1182 (0.1417) 0.1392 (0.1638) 0.1993 (0.245)

RBF 0.1791 (0.1031) 0.0895 (0.1076) 0.1839 (0.1371)

Neural 0.01 (0.014) 0.0124 (0.0179) 0.0171 (0.0282)

II Order 0.102 (0.1241) 0.1554 (0.1777) 0.3565 (0.4468)

RBF 0.1406 (0.119) 0.1419 (0.231) 0.2104 (0.2911)

Neural 0.0187 (0.0186) 0.0246 (0.025) 0.0624 (0.0984)

III Order 0.0082 (0.0101) 0.0095 (0.0118) 0.0127 (0.0157)

RBF 0.0171 (0.0141) 0.0157 (0.0177) 0.0231 (0.0294)

Neural 0.0024 (0.0035) 0.0059 (0.0081) 0.0089 (0.0185)

IV Order 0.0052 (0.0063) 0.0063 (0.0079) 0.006 (0.0072)

RBF 0.0268 (0.0132) 0.0303 (0.0187) 0.0418 (0.0315)

Neural 0.0019 (0.0018) 0.0031 (0.0048) 0.0035 (0.0087)

V Order 0.0363 (0.045) 0.0395 (0.0474) 0.0489 (0.0599)

RBF 0.0092 (0.0062) 0.0054 (0.005) 0.0381 (0.0125)

Neural 0.002 (0.0028) 0.0023 (0.0027) 0.0039 (0.0041)

VI Order 0.0345 (0.0419) 0.0411 (0.0503) 0.0704 (0.0858)

RBF 0.0084 (0.0057) 0.0046 (0.0077) 0.021 (0.018)

Neural 0.0021 (0.0028) 0.0022 (0.0029) 0.0054 (0.0069)

Bold values indicate the smallest median error in the corresponding setting.

modular ac�ve spring 
damper system

point of impact

frame

4 meters

Fig. 2 Suspension strut demonstrator

position of the modular active spring damper system or the forces at the point of
impact. In the considered setup, the effect of nine normally distributed input variables
(parameters of the system, see Table 3) on the computed output variable (themaximum
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Table 3 Parameters of the N (μ, σ 2)-distributions of the input variables

System property μ σ

Spring stiffness (N/m) 27,000 1200

Damping constant (N/sm) 140 7

Mass of spring support (kg) 20.35 0.25

Mass of sphere in lower truss structure (kg) 0.76 0.03

Mass of sphere in upper truss structure (kg) 0.76 0.03

Mass of cross-link in upper truss structure (kg) 13.74 0.5

Mass of threaded rod in truss structure (kg) 0.363 0.015

Mass of joint middle part (kg) 0.9236 0.05

Mass of joint arm (kg) 1.46 0.075

Table 4 Estimated quantiles for the maximum force at the point of impact

α 0.5 0.9 0.95 0.99

Quantile estimate (N) 38,148.75 38,507.09 38,600.71 38,765.67

force at the point of impact) was examined, which can be interpreted as a function
m : R

9 → R in the sense of Sect. 1. In particular, the quantiles of this force are
of interest to the prediction of the stress and its deviation in the later product usage
phase in order to define the correct load capacity of the product in the earlier product
development phase.

The computation of a single output value, during which a differential algebraic
equation systems must be solved by the procedure RecurDyn of the software Siemens
NX, takes about three minutes in this setup. Based on n = 250 generated realizations
of the nine-dimensional input distribution and the corresponding observed outputs, we
applied our neural network quantile estimate as described above, where we increased
Nn to 106. Table 4 summarizes the results.

5 Proofs

5.1 Proof of Theorem 1

Lemma 1 Assume that the assumptions of Theorem 1 hold. Then we have outside of
an event, whose probability tends to zero for n → ∞,

PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |mn(x) − m(x)| > 3 · εn + 2 · max
i=1,...,n,

Xi ∈Bn

|mn(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠

≤ 2 · log
(N∞,Bn (εn)

)

n
.
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Proof Let Gn be an εn–‖ · ‖∞,Bn -cover of Fn of minimal size N (
εn,Fn, ‖ · ‖∞,Bn

)
.

Choose m̄n ∈ Gn such that

‖mn − m̄n‖∞,Bn ≤ εn .

Then

PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |mn(x) − m(x)| > 3 · εn + 2 · max
i=1,...,n,

Xi ∈Bn

|mn(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠

≤ PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |m̄n(x) − m(x)| > 2 · max
i=1,...,n,

Xi ∈Bn

|m̄n(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠

≤ max
g∈Gn

PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |g(x) − m(x)| > 2 · max
i=1,...,n,

Xi ∈Bn

|g(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠ .

(24)

Let G∗
n ⊆ Gn consist of all g ∈ Gn , which satisfy

PX ({x ∈ Bn : |g(x) − m(x)| > 0}) > 2 · log
(N∞,Bn (εn)

)

n
. (25)

Respecting this definition in combination with (24), it suffices to show

max
g∈G∗

n

PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |g(x) − m(x)| > 2 · max
i=1,...,n,

Xi ∈Bn

|g(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠

≤ 2 · log
(N∞,Bn (εn)

)

n
(26)

in order to prove the assertion of the lemma.
Next, we choose a λg > 0 for every g ∈ G∗

n , which fulfills

PX
({

x ∈ Bn : |g(x) − m(x)| > 2 · λg
}) ≤ 2 · log

(N∞,Bn (εn)
)

n
≤ PX

({
x ∈ Bn : |g(x) − m(x)| > λg

})
. (27)

A value λg > 0 of this type exists, because the function

p : R+ → [0, 1] , p(λ) = PX ({x ∈ Bn : |g(x) − m(x)| > λ})

is monotonically decreasing and has the properties limλ→0 p(λ) > 2 · log(N∞,Bn (εn))
n

(due to (25)) and limλ→∞ p(λ) = 0 for all g ∈ G∗
n . Thus, if we consider the recursion
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λg,i+1 = 2 · λg,i for i ∈ N0 starting at a value λg,0 > 0 that satisfies p(λg,0) >

2 · log(N∞,Bn (εn))
n , we will find two consecutive values complying with (27). Set

Dg = {
x ∈ Bn : |g(x) − m(x)| > λg

}
(g ∈ G∗

n ).

Then X j ∈ Dg for some g ∈ G∗
n and j ∈ {1, . . . , n} implies

max
i=1,...,n,

Xi ∈Bn

|g(Xi ) − m(Xi )| ≥ ∣∣g(X j ) − m(X j )
∣∣ > λg.

So we can conclude thanks to (27)

PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |g(x) − m(x)| > 2 · max
i=1,...,n,

Xi ∈Bn

|g(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠

≤ PX
({

x ∈ Bn : |g(x) − m(x)| > 2 · λg
})

≤ 2 · log
(N∞,Bn (εn)

)

n
.

Therefore, on the event

An =
⋂

g∈G∗
n

{∃i ∈ {1, . . . , n} : Xi ∈ Dg
}

condition (26) is valid, and it remains to show

P
(

Ac
n

) → 0 (n → 0).

For this purpose, we use the union bound to deduce

P
(

Ac
n

) = P

⎛

⎝
⋃

g∈G∗
n

{∀i ∈ {1, . . . , n} : Xi /∈ Dg
}
⎞

⎠

≤
∑

g∈G∗
n

P
{∀i ∈ {1, . . . , n} : Xi /∈ Dg

}

≤ |Gn| · max
g∈G∗

n

P
{∀i ∈ {1, . . . , n} : Xi /∈ Dg

}

= |Gn| · max
g∈G∗

n

(
1 − PX (Dg)

)n

≤ |Gn| ·
(
1 − 2 · log

(N∞,Bn (εn)
)

n

)n

,

where the second last line works, because the random variables Xi are independent
and identically distributed, and (27) is used to justify the last inequality. Finally, the
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well-known relation 1 + x ≤ exp(x) (x ∈ R) allows to bound the last expression
by

|Gn| ·
(
exp

(
−2 · log

(N∞,Bn (εn)
)

n

))n

= |Gn|
N∞,Bn (εn)2

≤ 1

N∞,Bn (εn)
,

which tends to zero for n tending to infinity due to the properties of N∞,Bn (εn). ��
Proof of Theorem 1 Since

max
i=1,...,n,

Xi ∈Bn

|mn(Xi ) − m(Xi )| = min
f ∈Fn

max
i=1,...,n,

Xi ∈Bn

| f (Xi ) − m(Xi )| ≤ inf
f ∈Fn

‖ f − m‖∞,Bn ,

we have

PX

({
x ∈ Bn : |mn(x) − m(x)| > 3 · εn + 2 · inf

f ∈Fn

‖ f − m‖∞,Bn

})

≤ PX

⎛

⎝

⎧
⎨

⎩x ∈ Bn : |mn(x) − m(x)| > 3 · εn + 2 · max
i=1,...,n,

Xi ∈Bn

|mn(Xi ) − m(Xi )|
⎫
⎬

⎭

⎞

⎠ .

The application of Lemma 1 to this expression yields the assertion of the theorem. ��

5.2 Proof of Theorem 2

Lemma 2 Let X, X1, . . . , Xn, X̄ , X̄1, . . . , X̄n be real-valued random variables.
Define

q̂X,n,α̃ = inf

{
y ∈ R : 1

n

n∑

i=1

I(−∞,y] (Xi ) ≥ α̃

}

for α̃ ∈ R and define q̂X̄ ,n,α̃ analogously. Let a > 0 be a (possibly random) finite
constant and set

γn = 1

n

n∑

i=1

I{|Xi −X̄i,n |>a
}.

Then it holds for α ∈ R and the plug-in estimates defined as in (13) that

q̂X,n,α−γn − a ≤ q̂X̄ ,n,α ≤ q̂X,n,α+γn + a.

Proof The result corresponds to Lemma 1 in Hansmann and Kohler (2017). A proof
can be found therein. ��
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Proof of Theorem 2 Set

γn = 1

Nn

Nn∑

i=1

I{|m(Xn+i )−mn(Xn+i )|>δn}.

Using this auxiliary expression, we will divide the proof into five steps. Step 1: At
first, we show that it suffices to prove

lim
c→∞ lim sup

n→∞
P
{
|q̂m(X),Nn ,α+γn − qm(X),α|>c ·

(
PX

{
BC

n

}
+ζn + 1√

Nn

)}
= 0.

(28)

Keeping in mind that Lemma 2 implies

q̂mn(X),Nn ,α ∈ [
q̂m(X),Nn ,α−γn − δn, q̂m(X),Nn ,α+γn + δn

]
, (29)

we can conclude

lim
c→∞ lim sup

n→∞
P
{
|q̂mn(X),Nn ,α − qm(X),α| > c ·

(
PX

{
BC

n

}
+ ζn + 1√

Nn
+ δn

)}

≤ lim
c→∞ lim sup

n→∞
P
{
max

{|q̂m(X),Nn ,α+γn + δn − qm(X),α|, |q̂m(X),Nn ,α−γn

− δn − qm(X),α|} > c ·
(
PX

{
BC

n

}
+ ζn + 1√

Nn
+ δn

)}

≤ lim
c→∞ lim sup

n→∞
P
{
max

{|q̂m(X),Nn ,α+γn − qm(X),α|, |q̂m(X),Nn ,α−γn − qm(X),α|}

> c ·
(
PX

{
BC

n

}
+ ζn + 1√

Nn

)}
,

≤ lim
c→∞ lim sup

n→∞
P
{
|q̂m(X),Nn ,α+γn − qm(X),α| > c ·

(
PX

{
BC

n

}
+ ζn + 1√

Nn

)}

+ lim
c→∞ lim sup

n→∞
P
{
|q̂m(X),Nn ,α−γn − qm(X),α| > c ·

(
PX

{
BC

n

}
+ζn + 1√

Nn

)}
.

Since all the following steps work completely analogously for the second summand
in this expression, it suffices to show (28).

Step 2: Now we use the triangle inequality

|q̂m(X),Nn ,α+γn − qm(X),α|≤|q̂m(X),Nn ,α+γn − qm(X),α+γn |+|qm(X),α+γn − qm(X),α|,
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and bound (28) from above by

lim
c→∞ lim sup

n→∞
P
{
|q̂m(X),Nn ,α+γn − qm(X),α| > c ·

(
PX

{
BC

n

}
+ ζn + 1√

Nn

)}

≤ lim
c→∞ lim sup

n→∞
P
{
|qm(X),α+γn − qm(X),α| > c ·

(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)}

+ lim
c→∞ lim sup

n→∞
P
{
|q̂m(X),Nn ,α+γn − qm(X),α+γn | > c · 1

2
· 1√

Nn

}
, (30)

so that we can show separately that both of these summands are equal to zero, which
will be done in the fourth and fifth steps. Step 3: Next, we will show that

lim
c→∞ lim sup

n→∞
P
{

c3 · γn > c ·
(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)}
= 0 (31)

holds for arbitrary c3 > 0. For this purpose,we define An ={x ∈ Bn : |m(x) − mn(x)|
> δn}. From

{
x ∈ R

d : |m(x) − mn(x)| > δn

}
=

{
x ∈ R

d : |m(x) − mn(x)| ≤ δn

}C

⊆ {x ∈ Bn : |m(x) − mn(x)| ≤ δn}C = (Bn\An)C

and (14) we can conclude

lim
c→∞ lim sup

n→∞
P
{

c3 · γn > c ·
(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)}

≤ lim
c→∞ lim sup

n→∞
P
{
γn >

c

c3
·
(
PX

{
BC

n

}
+ PX {An} + 1

2
· 1√

Nn

)}

≤ lim
c→∞ lim sup

n→∞
P
{
γn > PX

{
BC

n

}
+ PX {An} + c · 1

2
· 1√

Nn

}

≤ lim
c→∞ lim sup

n→∞
P

{
1

Nn

Nn∑

i=1

I(Bn\An)C (Xi )>PX

{
BC

n

}
+PX {An}+c · 1

2
· 1√

Nn

}
.

Using Hoeffding’s inequality, we can bound the probability in the last expression by

≤ P

{
1

Nn

Nn∑

i=1

I(Bn\An)C (Xi ) − PX

{
(Bn\An)C

}
> c · 1

2
· 1√

Nn

}

≤ exp

(
−Nn · c2

2 · Nn

)
= exp

(
−c2/2

)
.

This tends to zero for c tending to infinity, which proves (31). Step 4: In this step, we
show that the first summand of the right-hand side in (30) is zero. Respecting (31), we
observe
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lim
c→∞ lim sup

n→∞
P
{
|qm(X),α+γn − qm(X),α| > c ·

(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)}

≤ lim
c→∞ lim sup

n→∞
P
{
|qm(X),α+γn − qm(X),α| > c ·

(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)
,

γn ≤ c ·
(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)}
. (32)

Due to
{

y ∈ R : Gm(X)(y) ≥ α
} ⊇ {

y ∈ R : Gm(X)(y) ≥ α + γn
}
the definition of

quantiles in (11) implies qm(X),α ≤ qm(X),α+γn . Since m(X) has a density gm(X),
Gm(X) is continuous and Gm(X)

(
qm(X),α

) = α and Gm(X)

(
qm(X),α+γn

) = α + γn

hold. So we can conclude

γn = (α + γn) − α = Gm(X)

(
qm(X),α+γn

) − Gm(X)

(
qm(X),α

)

=
∫ qm(X),α+γn

qm(X),α

gm(X)(y)dy.

Since gm(X) is continuous on R and positive at qm(X),α this implies that in case of
γn → 0 (n → ∞) we also have qm(X),α+γn → qm(X),α (n → ∞). Hence, if γn is
sufficiently small, which is guaranteed by the second inequality in (32) for increasing
n, gm(X) ≥ 1

c3
holds on

[
qm(X),α, qm(X),α+γn

]
for a certain c3 > 0 thanks to the

continuity of the density. This leads to

∫ qm(X),α+γn

qm(X),α

gm(X)(y)dy ≥ 1

c3
· (qm(X),α+γn − qm(X),α

)
,

which implies |qm(X),α+γn − qm(X),α| ≤ c3 · γn , so that (32) can be bounded from
above by

lim
c→∞ lim sup

n→∞
P
{

c3 · γn > c ·
(
PX

{
BC

n

}
+ ζn + 1

2
· 1√

Nn

)}
,

which is zero due to (31). Step 5: In order to prove that also the second summand in
(30) is zero, we consider the complementary event of the event therein. This leads to

P
{
|q̂m(X),Nn ,α+γn − qm(X),α+γn | ≤ c

2
√

Nn

}

= P
{

qm(X),α+γn − c

2
√

Nn
≤ q̂m(X),Nn ,α+γn ≤ qm(X),α+γn + c

2
√

Nn

}

≥ P
{

Ĝm(X),Nn

(
qm(X),α+γn − c

2
√

Nn

)
< α + γn

< Ĝm(X),Nn

(
qm(X),α+γn + c

2
√

Nn

)}
.
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Arguing in the same way as in (32), we know that

inf
x∈

[
qm(X),α+γn − c

2
√

Nn
,qm(X),α+γn + c

2
√

Nn

] gm(X)(x) ≥ c4

holds for n sufficiently large, because γn becomes sufficiently small. Then

Gm(X)

(
qm(X),α+γn − c

2
√

Nn

)
≤ α + γn − c4 · c

2
√

Nn

≤ α + γn + c4 · c

2
√

Nn
≤ Gm(X)

(
qm(X),α+γn + c

2
√

Nn

)

is valid. Since the probability above contains Ĝm(X),Nn instead of Gm(X), we have to
show

lim
c→∞ lim sup

n→∞
P

{
sup
y∈R

∣∣∣Gm(X)(y) − Ĝm(X),Nn (y)

∣∣∣ ≤ c5 · c

2
√

Nn

}
= 1

for a c5 < c4, in order to prove that the second expression in (30) is zero as well.
This follows immediately from the Dvoretzky–Kiefer–Wolfowitz inequality (cf., e.g.,
Massart 1990). So the assertion of the theorem holds. ��

5.3 Proof of Theorem 3

In the proof, we will use the following auxiliary results.

Lemma 3 Let m : R
d → R be a (p, C)-smooth function, where 0 < p ≤ 1, let

M ∈ N, let a > 0, let η ∈ (0, 1] and let ν be a probability measure on R
d . Let

σ : R → [0, 1] be a squashing function. Then there exists a neural network

t (x) =
(M+1)d∑

i=1

di · σ

⎛

⎝
d∑

j=1

bi, j · σ

(
d∑

k=1

ai, j,k · x (k) + ai, j,0

)
+ bi,0

⎞

⎠ + d0

with two hidden layers such that outside of a set of ν-measure less than or equal to η

we have for all x ∈ [−a, a]d

|t (x) − m(x)| ≤ c6 · a p

M p

with a constant c6 > 0 independent of a and M. In case that σ satisfies

|σ(y) − 1| ≤ 1

y
if y > 0 and |σ(y)| ≤ 1

|y| if y < 0
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the weights in the neural network above can be chosen such that

|di | ≤ 2d · ‖m‖∞, |bi, j | ≤ 4 · d · (M + 1)d and

|ai, j,k | ≤ 8 · d2 · max

{
3,

1

a

}
· M

η

hold for all indices in t .

Proof The result can be proven similar to Lemma 6 in Kohler and Krzyżak (2017)
by modifying the proof of Theorem 3.4 in Mhaskar (1993). A complete proof of this
result is available from the authors on request. ��

From Lemma 3, we conclude

Lemma 4 Let X be a R
d-valued random variable and let m : R

d → R satisfy a
(p, C)-smooth generalized hierarchical interaction model of order d∗ and finite level
l with p ∈ (0, 1]. Respecting Definition 1 b), let all functions gk, f j,k be bounded
and let all functions gk be Lipschitz continuous with Lipschitz constant L > 0. Let
Mn ∈ N, let an > 0 be increasing, such that an ≤ Mn for large n, and let ηn ∈ (0, 1].
Let H(l) be defined as in (20) with K , d, d∗ as in the definition of m, M = Mn,
α = log(n) · 1

ηn
· Mn, β = log(n) · Md∗

n , γ = log(n). Then for arbitrary c > 0 and

all n greater than a certain n0(c) ∈ N, there exists a t (x) ∈ H(l) such that outside of
a set of PX -measure less than or equal to c · ηn we have

|t (x) − m(x)| ≤ c7 · a p
n

M p
n

for all x ∈ [−an, an]d and c7 > 0 independent of an and Mn (but depending on c).

Proof We will proof the result by induction and ignore the case c · ηn ≥ 1,
which is trivially true. For a function m(x) = f (aT

1 x, . . . , aT
d∗ x), which satis-

fies a generalized hierarchical interaction model of order d∗ and level l = 0, let
s : R

d → R
d∗

be characterized by s(x) = (aT
1 x, . . . , aT

d∗ x)T and let āmax denote
maxk=1,...,d∗ ‖ak‖∞. Applying Lemma 3 for the probability measure Ps(X), the func-
tion f : Rd∗ → R in m can be approximated by a two-layered neural network f̂ for
all x ∈ [−d · āmax · an, d · āmax · an]d

∗
with an error of

∣∣ f̂ (x) − f (x)
∣∣ ≤ c6 · (d · āmax · an)p

M p
n

= c7 · a p
n

M p
n
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except for a set D̃0 of Ps(X)-measure less than or equal to c · ηn > 0. If we plug s(x)

into that approximation and condense the inner coefficients per summand, this leads
(using the notation of Lemma 3) to the approximant t (x) = f̂ (s(x)) of the form

t (x)=
(Mn+1)d∗

∑

i=1

di · σ

⎛

⎝
d∗∑

j=1

bi, j · σ

⎛

⎝
d∗∑

k=1

ai, j,k · aTk x + ai, j,0

⎞

⎠+bi,0

⎞

⎠+d0

=
(Mn+1)d∗

∑

i=1

di · σ

⎛

⎝
d∗∑

j=1

bi, j · σ

⎛

⎝
d∗∑

k=1

ai, j,k ·
d∑

m=1

a(m)
k · x(m)+ai, j,0

⎞

⎠+bi,0

⎞

⎠+d0

=
(Mn+1)d∗

∑

i=1

di · σ

⎛

⎝
d∗∑

j=1

bi, j · σ

⎛

⎝
d∑

m=1

⎛

⎝
d∗∑

k=1

ai, j,k · a(m)
k

⎞

⎠ · x(m)+ai, j,0

⎞

⎠+bi,0

⎞

⎠+d0

=:
(Mn+1)d∗

∑

i=1

di · σ

⎛

⎝
d∗∑

j=1

bi, j · σ

⎛

⎝
d∑

m=1

ãi, j,m · x(m) + ãi, j,0

⎞

⎠ + bi,0

⎞

⎠ + d0,

where

|di | ≤ 2d∗ · ‖ f ‖∞ ≤ γ, |bi, j | ≤ 4 · d∗ · (Mn + 1)d∗ ≤ β,

and

|ãi, j,m | ≤ d∗ · āmax · max
k=1,...,d∗ |ai, j,k |

≤ 8 · (d∗)3 · āmax · max

{
3,

1

d · āmax · an

}
· Mn

c · ηn
≤ α

are satisfied for n sufficiently large, such that t ∈ H(0) is valid. Since Ps(X)

{
D̃0

}
=

PX

{
s−1

(
D̃0

)}
and s

(
[−an, an]d

) ⊆ [−d · āmax · an, d · āmax · an]d
∗
,

|t (x) − m(x)| ≤ c7 · a p
n

M p
n

holds for all x ∈ [−an, an]d outside of a set D0 = s−1
(

D̃0

)
of PX -measure less than

or equal to c · ηn , which proves the assertion for l = 0.
In the case of l > 0, we consider the following bound of the difference

between m(x) = ∑K
k=1 gk

(
f1,k (x) , . . . , fd∗,k (x)

)
and an estimate m̂(x) =

∑K
k=1 ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
at a point x ∈ [−an, an]d :
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|m(x) − m̂(x)|

≤
∣∣∣∣

K∑

k=1

gk
(

f1,k (x) , . . . , fd∗,k (x)
) −

K∑

k=1

gk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

) ∣∣∣∣

+
∣∣∣∣

K∑

k=1

gk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
−

K∑

k=1

ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

) ∣∣∣∣

≤
K∑

k=1

L ·
d∗∑

j=1

| f j,k(x) − f̂ j,k(x)|

+
K∑

k=1

∣∣∣gk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
− ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

) ∣∣∣.

Since all the f j,k satisfy a (p, C)-smooth generalized hierarchical interaction model
of order d∗ and level l − 1 and respect the requirements of this lemma, we can choose
the approximations f̂ j,k ∈ H(l−1) according to the induction hypothesis with c

2·d∗·K ·
ηn . Then each of the terms | f j,k(x) − f̂ j,k(x)| can be bounded by c8 · a p

n
Mn

p for all

n sufficiently large and x ∈ [−an, an]d outside of a set D j,k of PX -measure less
than or equal to c

2·d∗·K · ηn . Furthermore, let f̂k : R
d → R

d∗
be characterized by

f̂k(x) =
(

f̂1,k(x), . . . , f̂d∗,k(x)
)T

and let f̄k,max denote max j=1,...,d∗ ‖ f j,k‖∞ for all

k = 1, . . . , K . Since an
Mn

≤ 1 thanks to the assumptions of this lemma, f̂k(x) falls
into

F̂k = [− f̄k,max − c8, f̄k,max + c8
]d∗

for all x ∈ [−an, an]d outside of the union of the sets D j,k ( j = 1, . . . , d∗, k =
1, . . . , K ) and n sufficiently large.ApplyingLemma3with c·ηn

2·K , it is possible to choose
a neural network ĝk for every gk in the second sum with a maximum approximation
error of c6 ·( f̄k,max + c8

)p
/M p

n ≤ c9 · 1
M p

n
on F̂k outside of a set D̃k with a probability

measureP f̂k (X)
less than or equal to ηn

2·K . For n sufficiently large, theweights according
to the notation of Lemma 3 satisfy

|di | ≤ 2d∗ · ‖gk‖∞ ≤ γ, |bi, j | ≤ 4 · d∗ · (Mn + 1)d∗ ≤ β

and

|ai, j,k | ≤ 8 · d∗2 · max

{
3,

1

f̄k,max + c8

}
· Mn

c·ηn
2K

≤ α,
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which implies ĝk ∈ F (neural networks)
Mn ,d∗,d∗,α,β,γ . Since P f̂k (X)

(
D̃k

)
= PX

(
f̂ −1
k

(
D̃k

))
,

ĝk

(
f̂k (x)

)
approximates gk

(
f̂k (x)

)
with the above maximum error for all

x ∈ [−an, an]
d \

⋃

j=1,...,d∗
D j,k

outside of a set Dk = f̂ −1
k

(
D̃k

)
of PX -measure less than or equal to c·ηn

2·K . Choosing

t (x) = m̂(x) = ∑K
k=1 ĝk

(
f̂1,k (x) , . . . , f̂d∗,k (x)

)
as described, we can conclude

from ĝk ∈ F (neural networks)
Mn ,d∗,d∗,α,β,γ and f̂ j,k ∈ H(l−1) for all j = 1, . . . , d∗ and k =

1, . . . , K that t ∈ H(l) is valid and that

|t (x) − m(x)| ≤ K · L · d∗ · c8 · a p
n

M p
n

+ K · c9 · 1

M p
n

≤ c7 · a p
n

M p
n

for all x ∈ [−an, an]d outside of the union of all the exceptional sets so far. The
PX -measure of this union satisfies

PX

⎛

⎜⎜⎝
⋃

j=1,...,d∗,
k=1,...,K

D j,k ∪
⋃

k=1,...,K

Dk

⎞

⎟⎟⎠ ≤
∑

j=1,...,d∗,
k=1,...,K

PX
(
D j,k

) +
∑

k=1,...,K

PX (Dk)

≤
∑

j=1,...,d∗,
k=1,...,K

c · ηn

2 · d∗ · K
+

∑

k=1,...,K

c · ηn

2 · K

= c · ηn,

which proves the assertion of the lemma. ��

Lemma 5 Assume that the assumptions of Theorem 3 hold and εn = a p
n

M p
n

for an

an > 0 which satisfies an ≤ Mn for large n. Then

log
(
N

(
εn,Fn, ‖ · ‖∞,[−an ,an ]d

))
≤ c10 · log(n) · Md∗

n

holds for sufficiently large n and a constant c10 > 0 independent of n.

Proof The lemma can be proven by a simple discretization argument. A complete
proof of this result is available from the authors on request. ��

Proof of Theorem 3 Choose the maximum PX -measure of the exceptional set in
Lemma 4 (called Dn in the following) as ηn = 1

n2
, set an = log(n)2, c1 = 2 · c7 + 3
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and εn = a p
n

M p
n
. Then Lemma 1, Lemma 5, the union bound and Markov’s inequality

imply

PX

({
x ∈ [−an, an]

d : |mn(x) − m(x)| > c1 · log(n)
2p+ p

p+d∗ · n
− p

p+d∗
})

≤ PX

({
x ∈ [−an, an]

d : |mn(x) − m(x)| > c1 · εn

})

≤ PX

⎛

⎜⎝

⎧
⎪⎨

⎪⎩
x ∈ [−an, an]

d : |mn(x) − m(x)| > 3 · εn +2 · max
i=1,...,n,

Xi ∈Bn

|mn(Xi )−m(Xi )|

⎫
⎪⎬

⎪⎭

⎞

⎟⎠

+P {∃i ∈ {1, . . . , n} : Xi ∈ Dn} + P
{
∃i ∈ {1, . . . , n} : Xi /∈ [−an, an]

d
}

≤ c2 · log(n)
p

p+d∗ · n
− p

p+d∗ + n · 1

n2
+ n · E {exp (c̄ · ‖X‖∞)}

nc̄·log(n)
.

The proof is complete. ��
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