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Abstract Conditionally specified models offers a higher level of flexibility than the
joint approach. Regression switching in multiple imputation is a typical example.
However, reasonable-seeming conditional models are generally not coherent with one
another. Gibbs sampler based on incompatible conditionals is called pseudo-Gibbs
sampler, whose properties are mostly unknown. This article investigates the richness
and commonalities among their stationary distributions. We show that Gibbs sampler
replaces the conditional distributions iteratively, but keep the marginal distributions
invariant. In the process, it minimizes the Kullback–Leibler divergence. Next, we
prove that systematic pseudo-Gibbs projections converge for every scan order, and
the stationary distributions share marginal distributions in a circularly fashion. There-
fore, regardless of compatibility, univariate consistency is guaranteed when the orders
of imputation are circularly related. Moreover, a conditional model and its pseudo-
Gibbs distributions have equal number of parameters. Study of pseudo-Gibbs sampler
provides a fresh perspective for understanding the original Gibbs sampler.
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1 Introduction

For high-dimensional data, a reduced model may be formulated in two ways: a joint
model in which all variables are considered simultaneously, or a system of univariate
conditional models. The conditional approach allows more flexibility in modeling and
expands the range of models. See Kuo and Wang (2011, p. 2457) for a brief survey
of the statistical applications of conditionally specified models. In machine learning,
Heckerman et al. (2000) propose dependence network which fits a classification or
regression model for every variable using the remaining variables as the predictors:
F = { fi (xi |x j , j �= i)}. A dependence network then makes inference about the
joint distribution from F . However, the freedom to model each variable separately
comes with a price: “in general, reasonable-seeming conditional models will not be
compatible with any single joint distribution.” (see Gelman and Raghunathan 2001,
p. 268). That is, there does not exist a joint distribution that is coherent with every
conditional.

Similarly in multiple imputation, the two mutually exclusive approaches are joint
modeling (JM) and fully conditional specifications (FCS). According to van Buuren
et al. (2006), advantages of FCS are (1) FCS is more flexible; (2) conditional models
that are outside the limited parametric distributions are easier to specify; (3) it is easier
tomodel certain bounds, patterns, and constraints conditionally; and (4) generalization
to nonignorable missing data might be easier in FCS. But a major impairment of FCS
is how to formulate a joint distribution such that all of the imputations are mutually
consistent observations fromone joint distribution. Both dependence network and FCS
use the same computational method. Heckerman et al. (2000) use “the machinery of
Gibbs sampling to define a joint distribution”, while Rubin coined the acronym PIGS
for potentially incompatible Gibbs sampler (Drechsler and Rässler 2008). Heckerman
et al. (2000) call PIGS pseudo-Gibbs sampler (PGS). Hughes et al. (2014) noted that
the order effects of PIGS are ubiquitous, but suggested that the real effects may be
negligible. However, Chen et al. (2011, 2013) indicated that different scan orders can
produce very different joint distributions. van Buuren et al. (1999) stated that “The
subject of incompatible conditionals is, however, still an open research problem.”,
which remains true today. Other application of FCS for biomedical data can be found
in Hughes et al. (2014).

This paper provides theoretical findings which can guide the practice of PGS. Using
matrix representations, we show that Gibbs sampler is an algorithm that iteratively
replaces the conditional distributions by the model conditionals until the marginal
distributions are matched (Lemma 2). And every conditional replacement is an I ∗-
projection that minimizes the Kullback–Leibler divergence (Theorem 2). Next, we
prove that systematic pseudo-Gibbs projections converge for every scan order (The-
orem 3). Moreover, the stationary distributions share marginal distributions in a
circularly fashion (Theorem 5). In short, PGS produces a large number of station-
ary distributions; some share conditionals and some share marginal distributions. We
organize these distributions according to their commonalities, and show the degrees of
freedom are balanced between a PGS and its stationary distributions (Theorem 6). Our
characterizations help the practitioners of multiple imputation to answer some of their
concerns (Drechsler and Rässler 2008): (1) does there exist a unique underlying joint
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Pseudo-Gibbs sampler for discrete conditional distributions 95

pdf? (PGSdoes converge but different scan order produces different joint distribution.),
(2) what would happen to imputed values if such a joint pdf does not exist? (different
degree of marginal consistency exists when the scan orders are circularly related; that
is, different joint PGS distributions share the same marginal distributions.), and (3)
can such conflicts be avoided and how? (yes, the conflicts, though intrinsic, can be
alleviated by knowing the effect of imputation order on imputed values.). Moreover,
study of PGS provides a fresh perspective for the compatible or nearly compatible
FCS.

2 The two-dimensional pseudo-Gibbs Sampler

Let x = (x1, x2)where x1 and x2 are discrete random variables with n1 and n2 values,
respectively. Assume that the support Ω of x is {(i, j) : 1 ≤ i ≤ n1, 1 ≤ j ≤ n2}. Let
f1|2 and f2|1 be the twoconditional pdfs of aPGS.Weassume that both conditional pdfs
are strictly positive. Set u = (u1, u2) and v = (v1, v2), then the two (n1n2) × (n1n2)
transition matrices based on f1|2 and f2|1 are

T1 = [tuv]u,v∈Ω where tuv =
{
f1|2(v1|v2), if u2 = v2,

0, otherwise,

and

T2 = [tuv]u,v∈Ω where tuv =
{
f2|1(v2|v1), if u1 = v1,

0, otherwise,

respectively. Both T1 and T2 are idempotent.
For any pdf g = (g(1, 1), g(2, 1), . . . , g(n1, n2)) with g(i, j) > 0, and let g∗ =

gT1, then g∗(i, j) = f1|2(i | j)g2( j), where g2 is the x2-marginal of g. We observe
the following results: (1) g∗ is a pdf; (2) g∗

1|2 = f1|2; and (3) g∗
2 = g2. Because of

g(i, j) = g1|2(i | j)g2( j) and g∗(i, j) = f1|2(i | j)g2( j), T1 replaces g1|2 with f1|2 but
keeps the original marginal pdf g2. By the same token, T2 replaces g2|1 with f2|1 but
keeps the original marginal pdf g1.

Consider the systematic scan Gibbs sampler and let g[0] be an initial pdf, the
process of the Gibbs sampler sequentially produces pdfs: g[2k+1] = g[2k]T1 and
g[2k+2] = g[2k+1]T2. Therefore, every g[2k+1] has f1|2 and every g[2k+2] has f2|1
as its conditional. Define C1 (C2) as the set of all joint pdfs having f1|2 ( f2|1) as their
(x1|x2)-conditional ((x2|x1)-conditional), thus, g[2k+1] ∈ C1 and g[2k+2] ∈ C2.

Let I (g; τ) be theKullback–Leibler information divergence of τ at g.When τ ∈ C1,
we write τ(i, j) = f1|2(i | j)τ2( j) and

I (g; τ) =
n1∑
i=1

n2∑
j=1

g(i, j) log
g(i, j)

τ (i, j)

=
n1∑
i=1

n2∑
j=1

g(i, j) log
g(i, j)

f1|2(i | j)τ2( j)

123
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=
n1∑
i=1

n2∑
j=1

g(i, j) log
g(i, j)

f1|2(i | j)g2( j) +
n1∑
i=1

n2∑
j=1

g(i, j) log
f1|2(i | j)g2( j)
f1|2(i | j)τ2( j)

= I (g; gT1) +
n2∑
j=1

g2( j) log
g2( j)

τ2( j)

= I (g; gT1) + I (g2; τ2).

Because

I (g2; τ2) =
n1∑
i=1

n2∑
j=1

f1|2(i | j)g2( j) log g2( j)

τ2( j)

=
n1∑
i=1

n2∑
j=1

f1|2(i | j)g2( j) log f1|2(i | j)g2( j)
f1|2(i | j)τ2( j) ,

we have the following Pythagoras equality:

I (g; τ) = I (g; gT1) + I (gT1; τ).

Therefore,

min
τ∈C1

I (g; τ) = I (g; gT1).

We call gT1 the I ∗-projection of g into C1, while the I -projection of Csiszár (1975)
minimizes I (τ ; g) over τ . Similarly, the I ∗-projection of g into C2 is gT2, because

min
τ∈C2

I (g; τ) = I (g; gT2).

This projection is restated in the following proposition, and we use Fig. 1 to geomet-
rically describe the convergence of PGS.

Proposition 1 The g[2k+1] is the I ∗-projection of g[2k] into C1, and g[2k+2] is the
I ∗-projection of g[2k+1] into C2. In addition, g[2k]

2 = g[2k+1]
2 and g[2k+2]

1 = g[2k+1]
1 .

For a two-variable systematic scan, the transition matrices are T1T2 and T2T1.
Because f1|2(i | j) > 0 and f2|1( j |i) > 0, both T1T2 and T2T1 are transition matri-
ces without absorbing state. Let the invariant distributions be denoted by π(1,2) =
π(1,2)T1T2 and π(2,1) = π(2,1)T2T1, respectively. Hereafter, such invariant distri-
butions are called pseudo-Gibbs distributions with their scan orders indicated. The
following theorem shows that {g[2k+1]} and {g[2k+2]} converge to π(2,1) and π(1,2),
respectively, in terms of divergences.

Theorem 1 Both I (π(2,1); g[2k+1]) and I (π(1,2); g[2k]) decrease to 0 as k → ∞.
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Proof Let T2T1 = [tuv]u,v∈Ω , where tuv represents the transition probability from u
to v.

I (π(2,1); g[2k−1]) − I (π(2,1); g[2k+1])

=
∑
u

π(2,1)(u) log
π(2,1)(u)

g[2k−1](u)
−

∑
v

π(2,1)(v) log
π(2,1)(v)

g[2k+1](v)

=
∑
u

∑
v

π(2,1)(u)tuv log
π(2,1)(u)tuv

g[2k−1](u)tuv

(
since

∑
v

tuv = 1for all u

)

−
∑
u

∑
v

π(2,1)(u)tuv log
π(2,1)(v)

g[2k+1](v)

(
since

∑
u

π(2,1)(u)tuv = π(2,1)(v)

)

=
∑
u

∑
v

π(2,1)(u)tuv log
π(2,1)(u)tuv

π(2,1)(v)g[2k−1](u)tuv

g[2k+1](v)

.

Let h1(u, v) = π(2,1)(u)tuv and h2(u, v) = π(2,1)(v)g[2k−1](u)tuv

g[2k+1](v)
where (u, v) ∈ Ω×Ω .

Because

∑
u

∑
v

h1(u, v) =
∑
u

∑
v

π(2,1)(u)tuv =
∑
u

π(2,1)(u) = 1

and

∑
u

∑
v

h2(u, v) =
∑
u

∑
v

π(2,1)(v)g[2k−1](u)tuv

g[2k+1](v)
=

∑
v

π(2,1)(v)g[2k+1](v)

g[2k+1](v)
= 1.

Therefore, both h1 and h2 are pdfs on Ω × Ω . This implies that

I (π(2,1); g[2k−1]) − I (π(2,1); g[2k+1]) = I (h1; h2),

which is strictly positive until g[2k−1] = g[2k+1] and the iterative I ∗-projections have
converged. Hence, g[2k+1] converges to π(2,1). By the same token, g[2k+2] converges
to π(1,2). �	

Becauseπ(2,1) andπ(1,2) are stationary distributions of T2T1 and T1T2, respectively,
we have limk→∞(T2T1)k = 1n1n2π

(2,1) and limk→∞(T1T2)k = 1n1n2π
(1,2) where

1n1n2 is the (n1n2) × 1 vector with all entries equal to 1.
The following proposition characterizes the relationship between π(1,2) and π(2,1).

Proposition 2 Pseudo-Gibbs pdfs π(2,1) and π(1,2) satisfy (1) π(1,2)T1 = π(2,1) ,
π(2,1)T2 = π(1,2), π(1,2)T2 = π(1,2) and π(2,1)T1 = π(2,1); (2) π(2,1) ∈ C1 and
π(1,2) ∈ C2; and (3) π(2,1) and π(1,2) have the same x1-marginal pdf and the same
x2-marginal pdf.
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C1

C2
· · ·

π(2,1)

π(1,2)
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g[3]
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g[0]

T2T1T2T1T2T1
T1

T2

T1

Fig. 1 The iterative I∗-projections and the two stationary PGS distributions

Proof 1. Because π(1,2)T1 − π(2,1) = (π(1,2)T1T2)T1 − π(2,1)T2T1 = (π(1,2)T1 −
π(2,1))T2T1, we must have either π(1,2)T1−π(2,1) = π(2,1) or π(1,2)T1−π(2,1) =
0. But π(1,2)T1 = 2π(2,1) is impossible because 2π(2,1) is not a pdf. Thus, we
have π(1,2)T1 = π(2,1). In addition, because T2 is idempotent, we have π(1,2)T2 =
(π(1,2)T1T2)T2 = π(1,2)T1T2 = π(1,2).

2. Because π(2,1) = π(2,1)T1, we have π(2,1) ∈ C1.
3. Because π(2,1)T2 = π(1,2), π(1,2) is the I ∗-projection of π(2,1) into C2, therefore

they have the same x1-marginal pdf. Similarly, π(1,2)T1 = π(2,1) implies that
π(1,2) and π(2,1) also have the same x2-marginal pdf. �	

Figure 1 illustrates the iterative I ∗-projections, and the iterations stop when the
two stationary distributions have the same marginal pdfs. When f1|2 and f2|1 are
compatible, C1 and C2 will intersect at π(1,2) = π(2,1). Conditional model has 2n1n2−
n1 − n2 parameters, while π(1,2) and π(2,1) collectively have 2n1n2 − 2 parameters.
Due to shared marginal pdfs that number is reduced by n1 + n2 − 2, and the two sides
are balanced.

3 The d-dimensional pseudo-Gibbs distributions

Without loss of generality, we assume that each constituent xi of x = (x1, . . . , xd)
is univariate. Let the supports of xi and x be, respectively, Ωi = {1, . . . , ni } and
Ω = Ω1×· · ·×Ωd . For the rest of the paper, we assume that x1, . . . , xd are variation-
independent so that the joint pdf g(x) > 0 for all x ∈ Ω . For a ⊆ {1, . . . , d}, we
use ga to represent the (xi : i ∈ a)-marginal pdf of g. Let the symbol “−i” mean
{1, . . . , i − 1, i + 1, . . . , d}, hence x−i = (x1, . . . , xi−1, xi+1, . . . , xd) has marginal
pdf g−i , and the full conditional of xi is gi |−i = g/g−i .

We assume that the d strictly positive full conditionals, f j |− j , 1 ≤ j ≤ d, have
been calculated. Let In be the identity matrix of size n, let 1n be the n × 1 vector of
1’s, and let δn, j be the n × n matrix whose ( j, j)th entry is 1, and the rest are all 0′s.
The transition matrix Tj , based on f j |− j , can be expressed as

Tj =
∑

x− j∈Ω− j

δnd ,xd ⊗ · · · ⊗ δn j+1,x j+1 ⊗ [1n j f j |− j (·|x− j )]

⊗δn j−1,x j−1 ⊗ · · · ⊗ δn1,x1

123



Pseudo-Gibbs sampler for discrete conditional distributions 99

where f j |− j (·|x− j ) ≡ ( f j |− j (1|x− j ), . . . , f j |− j (n j |x− j )) and ⊗ is the Kronecker
product. Also, define matrix Ma = Qd ⊗ Qd−1 ⊗ · · · ⊗ Q1, where Q j = In j if
j ∈ a, and Q j = 1n j if j /∈ a, and it can be shown that ga = gMa . Sometimes
it is easier to use the a-complement as the subscript, such as g−a = gM−a . For
d = 4, g124 = gM−3 = gM124 and g13 = gM13 = gM−24. Using the above matrix
representations, we can prove the following lemma.

Lemma 1 For 1 ≤ j ≤ d, we have (1) Tj Tj = Tj ; and (2) for j ∈ a, Tj M−a = M−a,
thus, Tj M− j = M− j .

LetD be the space of joint pdfs of x , and let C j be the set of all the joint pdfs having
f j |− j as their (x j |x− j )-conditional. The following Lemma 2 shows that Tj replaces
the (x j |x− j )-conditional of g by f j |− j , but keeps its original g− j unaltered.

Lemma 2 For g ∈ D, we have gTj ∈ C j and the the x− j -marginal pdf of gTj and g
are the same.

Proof Consider the x− j -marginal pdf of gTj ,

(gTj )− j = gTj M− j = g(Tj M− j ) = gM− j = g− j .

Moreover, for every x ∈ Ω ,

gTj (x) =
∑
y∈Ω

y− j=x− j

g(y) f j |− j (x j |x− j ) = g− j (x− j ) f j |− j (x j |x− j ).

�	
Lemma 2 implies that Tj (D) ≡ {gTj : g ∈ D} ⊂ C j which in conjunction with Tj

being an idempotent implies that Tj (D) = C j . Mapping Tj is clearly not one-to-one
because g1Tj = g2Tj whenever g1− j = g2− j .

Let (i1, . . . , id) be any permutation of (1, . . . , d). For a systematic Gibbs sampler
with scan order (i1, . . . , id) (i.e., the variables are repeatedly updated in the order
xi1 → · · · → xid → xi1 → · · · ) and initial pdf g[0], the Gibbs sampler sequen-
tially produces pdfs: g[1] = g[0]Ti1, g[2] = g[1]Ti2 , . . . , g[d] = g[d−1]Tid , g[d+1] =
g[d]Ti1 , . . ., and g[dk+ j] = g[dk+ j−1]Ti j for k = 0, 1, 2, . . . and 1 ≤ j ≤ d.

The Kullback–Leibler information divergence of τ = f j |− jτ− j ∈ C j at g ∈ D is

I (g; τ) = I (g; gTj ) + I (gTj ; τ).

Therefore,

min
τ∈C j

I (g; τ) = I (g; gTj ).

Thus, we have the following theorem.
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Theorem 2 For a scan order (i1, . . . , id), g[dk+ j] is the I ∗-projection of g[dk+ j−1]
into Ci j for every nonnegative integer k and 1 ≤ j ≤ d.

For scan order (i1, . . . , id), its transition matrix is Ti1 · · · Tid , and its pseudo-Gibbs
distribution is denoted by π(i1,...,id ) = π(i1,...,id )Ti1 · · · Tid . By Lemma 2, π(i1,...,id ) ∈
Cid . When there exists a g ∈ ∩d

j=1C j , we have gTj = g for all j , which implies
gTi1 · · · Tid = g for all d! scan orders. Hence, the model conditionals are compatible
if and only if ∩d

j=1C j �= ∅.
Let S denote the symmetric group of all possible permutations of (1, . . . , d). Cir-

cular operator σ : S → S is defined as σ(i1, . . . , id) = (i2, . . . , id , i1). Applying the
circular operator j times, σ j (i1, . . . , id) = (i j+1, . . . , id , i1, . . . , i j ), and σ 0 = σ d

is the identity operator. Two scan orders u and v are said to be circularly related if
v = σ j (u) for some j , and S can be partitioned into circularly related equivalence
classes.

Theorem 3 For a scan order u = (i1, . . . , id) and 1 ≤ j ≤ d, I (πσ j (u); g[dk+ j]) >

I (πσ j (u); g[d(k+1)+ j]), unless g[dk+ j] = g[d(k+1)+ j]. Therefore, g[dk+ j] converges to
πσ j (u) as k approaches ∞.

The proof of Theorem 3 is similar to that of Theorem 1 so we omit it.
Let G = {π(i1,...,id ) : (i1, . . . , id) ∈ S} be the collection of d! pseudo-Gibbs

distributions, which may be partitioned by two different ways. First, G is partitioned
into ∪d

j=1(C j ∩G), where the (d−1)! distributions of C j ∩G share the same (x j |x− j )-
conditional f j |− j . Second, G is partitioned into (d − 1)! equivalent classes of Gu =
{πσ j (u) : 0 ≤ j ≤ d−1}, collection of d circularly related pseudo-Gibbs distributions.
Theorem 4 In a Gu where u = (i1, . . . , id), we have (1) πσ j (u)Ti j+1 = πσ j+1(u), and

πσ j+1(u) is the I ∗-projection of πσ j (u) into Ci j+1; and (2) πσ j (u)Ti j = πσ j (u).

Proof 1. Because πσ j (u)Ti j+1 −πσ j+1(u) = (πσ j (u)Ti j+1 −πσ j+1(u))Ti j+2 · · · Tid Ti1
· · · Ti j+1 , we have πσ j (u)Ti j+1 − πσ j+1(u) = 0 or πσ j (u)Ti j+1 − πσ j+1(u) =
πσ j+1(u). The latter is impossible because πσ j (u)Ti j+1 is a pdf.

2. Because Ti j is idempotent, we have

πσ j (u)Ti j = (πσ j (u)Ti j+1 · · · Tid Ti1 · · · Ti j )Ti j = πσ j (u).

�	
The following corollary shows the cyclic nature of Gu , thus, its pseudo-Gibbs

distributions form a cycle.

Corollary 1 For a scan order u = (i1, . . . , id) and 1 ≤ j �= k ≤ d, we have

πσ k (u) =
{

πσ j (u)Ti j+1 · · · Tik , if k > j,

πσ j (u)Ti j+1 · · · Tid Ti1 · · · Tik , if k < j.
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Pseudo-Gibbs sampler for discrete conditional distributions 101

Next, we identify shared marginal pdfs between πσ j (u) and πσ k (u).

Theorem 5 For a scan order u = (i1, . . . , id) and 1 ≤ j �= k ≤ d, set a =
{i j+1, . . . , ik} when j < k or a = {ik+1, . . . , i j } when j > k. Among circularly

related pseudo-Gibbs pdfs, both π
σ j (u)
a = π

σ k (u)
a , and π

σ j (u)
−a = π

σ k (u)
−a hold.

Proof Suppose that j < k, by Corollary 1 and (2) of Lemma 1, we have

πσ k (u)M−a = πσ j (u)Ti j+1 · · · Tik M−a = πσ j (u)M−a,

and

πσ j (u)Ma = πσ j (u)Ti j+1 · · · Tid Ti1 · · · Ti j Ma = πσ j (u)Ti j+1 · · · Tik Ma = πσ k (u)Ma .

Suppose that j > k, we have

πσ k (u)Ma = πσ j (u)Ti j+1 · · · Tid Ti1 · · · Tik Ma = πσ j (u)Ma,

and

πσ j (u)M−a = πσ j (u)Ti j+1 · · · Tid Ti1 · · · Ti j M−a

= πσ j (u)Ti j+1 · · · Tid Ti1 · · · Tik M−a = πσ k (u)M−a .

�	
Example 1 Suppose that d = 5 and u = (1, 3, 5, 4, 2), consider πσ 2(u) = π(5,4,2,1,3)

and πσ 4(u) = π(2,1,3,5,4). Let a = {5, 4} then π
(5,4,2,1,3)
45 = π

(2,1,3,5,4)
45 and

π
(5,4,2,1,3)
123 = π

(2,1,3,5,4)
123 . In general, when two circularly related pseudo-Gibbs pdfs

can be written as π(a,−a) and π(−a,a), they share the same xa-marginal and x−a-
marginal distributions.

The immediate neighbors of πu on the circle are πv and πw such that σ(v) = u
and σ(u) = w, and three of them share a (d − 2)-dimensional marginal pdf. By
induction, members of Gu share the same one-dimensional marginal distributions,
though they belong to Cid , Ci1 , . . . , and Cid−1 , respectively. A natural application to
multiple imputation is that one-dimensional consistency is guaranteed when the orders
of imputation are circularly related.

Proposition 3 In a Gu, all members have the same one-dimensional marginal distri-

butions. That is, πu
j = π

σ(u)
j = · · · = π

σ d−1(u)
j , 1 ≤ j ≤ d.

Example 2 For d = 4, G has 4! = 24 distinguishable pseudo-Gibbs distributions.
First, G is partitioned as ∪4

j=1(C j ∩ G) where

C1 ∩ G =
{
π(2,3,4,1), π(2,4,3,1), π(3,2,4,1), π(3,4,2,1), π(4,2,3,1), π(4,3,2,1)

}
,
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C2 ∩ G =
{
π(1,3,4,2), π(1,4,3,2), π(3,1,4,2), π(3,4,1,2), π(4,1,3,2), π(4,3,1,2)

}
,

C3 ∩ G =
{
π(1,2,4,3), π(1,4,2,3), π(2,1,4,3), π(2,4,1,3), π(4,1,2,3), π(4,2,1,3)

}
,

C4 ∩ G =
{
π(1,2,3,4), π(1,3,2,4), π(2,1,3,4), π(2,3,1,4), π(3,1,2,4), π(3,2,1,4)

}
.

All pdfs in C j ∩ G have the same (x j |x− j )-conditional. The second partition divides
G into six circularly related classes with shared marginals:

G(1,2,3,4) =
{
π(1,2,3,4), π(2,3,4,1), π(3,4,1,2), π(4,1,2,3)

}
,

G(1,2,4,3) =
{
π(1,2,4,3), π(2,4,3,1), π(4,3,1,2), π(3,1,2,4)

}
,

G(1,3,2,4) =
{
π(1,3,2,4), π(3,2,4,1), π(2,4,1,3), π(4,1,3,2)

}
,

G(1,3,4,2) =
{
π(1,3,4,2), π(3,4,2,1), π(4,2,1,3), π(2,1,3,4)

}
,

G(1,4,2,3) =
{
π(1,4,2,3), π(4,2,3,1), π(2,3,1,4), π(3,1,4,2)

}
,

G(1,4,3,2) =
{
π(1,4,3,2), π(4,3,2,1), π(3,2,1,4), π(2,1,4,3)

}
.

Figure 2 illustrates the two partitions of G.
A conditional model is compatible when every pair of conditionals are compatible,

otherwise it is incompatible. When every pair of conditionals are incompatible, the
model is said to be maximally incompatible. For a maximally incompatible model P ,
the number of free parameters of all PGS distributions is equal to the number of free
parameters ofP . The following theorem implies that shared conditionals within C j ∩G
plus share marginal within Gu exhaust all possible commonalities.

Theorem 6 Both P and G have the same number of free parameters when P is
maximally incompatible.

Proof For 1 ≤ j ≤ d, the support of x j is Ω j = {1, . . . , n j }; therefore, the total
number of degrees of freedom of P is

d∑
j=1

(n j − 1)

∏d
i=1 ni
n j

.

Without commonality, the total number of degrees of freedom of G would be
d!(∏d

j=1 n j − 1). Within each C j ∩ G, there is a [(d − 1)! − 1](n j − 1)
∏d

i=1 ni/n j

reduction of parameters due to shared conditionals. Within every Gu , there is a∑d
j=1(

∏d
i=1 ni/n j −1) reduction parameters due to shared marginals. The total num-

ber of degrees of freedom of G is computed by:

d!
⎛
⎝ d∏

j=1

n j − 1

⎞
⎠ −

d∑
j=1

[(d − 1)! − 1](n j − 1)

∏d
i=1 ni
n j
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Fig. 2 Commonalities among
pseudo-Gibbs distributions for
d = 4. The vertical lines
represent the spaces with
common conditional
distribution, while the circles of
the dotted line depict the six
equivalence classes where
marginal distributions are shared
in a circular fashion

C1 C2 C3 C4

π(2,3,4,1) π(4,1,2,3)

π(3,4,1,2) π(1,2,3,4)

π(3,2,4,1) π(2,4,1,3)

π(4,1,3,2) π(1,3,2,4)

π(2,4,3,1) π(1,2,4,3)

π(4,3,1,2) π(3,1,2,4)

π(4,2,3,1) π(1,4,2,3)

π(3,1,4,2) π(2,3,1,4)

π(3,4,2,1) π(4,2,1,3)

π(1,3,4,2) π(2,1,3,4)

π(4,3,2,1) π(2,1,4,3)

π(1,4,3,2) π(3,2,1,4)
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−(d − 1)!
d∑
j=1

(∏d
i=1 ni
n j

− 1

)
=

d∑
j=1

(n j − 1)

∏d
i=1 ni
n j

.

�	

4 Conclusions

Incompatibility broadens not only the applications of Gibbs sampling but also the
understanding of the algorithm itself. New insights are gained by viewing the compat-
ible Gibbs sampler as a special case of pseudo-Gibbs samplers. The existence of d!
distinct pseudo-Gibbs distributions is under the assumption that the conditional model
is maximally incompatible. For incompatible model which is not maximally incom-
patible, the total degree of freedom of pseudo-Gibbs distributions will be reduced
to maintain balance of degrees of freedom. Accounting the additional commonality
among pseudo-Gibbs distributions can be dealt with on a case-by-case base. How-
ever, balance of parameters between P and G should always be preserved, and such a
balance will help us to determine the number of distinct pseudo-Gibbs distributions.

By showing that the effect of Gibbs sampling is an I ∗-projection, and proving that
successive projections reduce the information divergence, the convergence of pseudo-
Gibbs sampler is thus guaranteed. Our approachmimics Darroch and Ratcliff’s (1972)
proof of the convergence of the iterative proportional fitting algorithm. They also
proved that convergence in divergence implies convergence in L2 norm for probability
vectors. It is interesting to note the complimentary nature of the two algorithms. The
Gibbs sampling replaces the conditional but leaves the marginal unaltered, while the
iterative proportional fitting algorithm replaces the marginal but leaves the conditional
invariant. Regardless of compatibility, Gibbs sampling is an algorithm that replaces its
conditional distributions iteratively until convergence.Coincidentally, the convergence
of both algorithms is proved via the information divergence.

This article provides a theoretical study about the richness and commonalities
among pseudo-Gibbs distributions. Though there is a one-to-one correspondence
between the scan orders and the pseudo-Gibbs distributions, the optimality in terms of
divergence imposesmaximal commonality among the stationarydistributions. Pseudo-
Gibbs sampler translates the incompatibility among conditionalmodels into an ordered
diversity. By organizing the ensemble of joint distributions in a systematical fashion,
their commonality becomes easily understood. The knowledge about the effect of
imputation order on imputed values can alleviate some of the conflicts caused by
PIGS. For regression switching, the d imputations from d circularly related scan
orders not only incorporate the dependence of every conditional but also achieve uni-
variate marginal consistency. In addition, the d imputations provide good information
to estimate the standard error.
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