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S.1 Proof of Proposition

Similar to the proof of Proposition [I} before starting the formal proof, we note that the

construction of ¢ ensures the property
E(et) = E(é*) — E()E(e?) — E(e) = E(¢*) — E(¢*) = 0,

which is useful in the later development.

We derive nuisance tangent space A and its orthogonal complement A+ for this model
and then we find the semiparametric efficient estimator by projecting score function onto
At

We will construct A = A, @ A, where A, is a subspace with functions of X and A, is a
subspace with functions of e.

Since the predicting variable X does not have any constraint and all functions are defined

in Hilbert space, we have the following property for A,.
A, = {a(x): F{a(X)} = 0}.

We now investigate A.. The nuisance tangent space A and its orthogonal complement

At can be derived based on the relations

ffe(e)de =1, Jefe(e)de =0, Je2f€(e)de = 1.
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An arbitrary function b(e) in A, satisfies F{b(¢)} = 0 in Hilbert space. Following Tsi-
atis (2006, Section 4.5), the second constraint allows E{eb(e)} = 0. Similarly, we obtain
E{e*b(e)} = 0 from the third constraint. Thus,

A. = {b(e): E{b(e)} = E{eb(e)} = E{c’b(e)} = 0}
= {b(e) : E{b(e)} = E{eb(e)} = E{tb(c)} = 0},

where t = €2 — E(e*)e — 1. In the above,
E{tb(e)} = E{e’b(e)} — E(¢’) E{eb(e)} — E{b(e)} = E{e’b(e)} = 0.
Thus, we have
A=A @A = {a(x) +b(e) : E{a(X)} =0, E{b(c)} = 0, E{cb(e)} = 0, E{tb(c)} = 0}.

Note that A, and A, are orthogonal because we assume x and € are independent.

We now prove that
A = g(x,e) : E{g(X,6)|X} =0, B{g(X,€)|e} = cie + cat : 1,y € RFFY

Let K = {g(x,¢) : E{g(X,¢)|X} = 0, E{g(X,¢)|e} = ci1€ + cot,cy,co € RF}. We will
show K < A+ and At c K.
For any a(x) + b(e) € A and g(x,¢) € K, we have

Big(X, 0 a(X)} = E[B{g(X, /x| a(X)] =0,

E{g(X,e)'b(e)} = E [E{g(X, e)|e}Tb(e)] =F {(c1€ + c2t)Tb(e)} = 0.
Hence, we obtain
Blg(X,e)" {a(X) + b(e)}] = 0.

Thus, K < A*.
Next, we need to show At < K. We assume h(x, ¢) € At. We can decompose h(x, ¢) as
h(X,e) = hi(X,¢e) + r(X,¢€). Here, hi(X,¢) and r(X, €) are given below.

E{th(X,e)}

hy(X,6) = h(X,e) — E{h(X, )X} — E{h(X, e)|e} + E{eh(X,€)}e + E(2)

t,

Efth(X, o)},

r(X,9 = B{h(X,9[X}+ B(h(X,9le} - B{eh(X, )} - —F oy



Also, we can decompose r(x,€) as r(X,€) = r1(x) + ra(€), where
I‘1(X) = E{h(X, €)|X}7

Efth(X, o}

r2(€) = E{h(Xa €)|6} - E{Eh(X, 6)}6 - E(tZ)

Then, the followings satisfy.

Eiri(X)} = E[EI(X, X}] = E{h(X, )} =0,

E{ry(e)} = FE [E{h(X,e)k} — E{eh(X, €)}e — %t] =0
= FE{h(x,¢)} + F{eh(X,e)}E(e) — %E( ) =0,

Bles(0) = E{EMX, Olc)e - Blen(X, ) — ABEO}
B

E{th(X. o)}
= E(eh)—E(eh)-l—W.():O’
E{trs(e)} = E {E{th(X, e)le} — E{eh(X, ¢)}et — E{tggj), 6)}752}
_ B{ih(X. )} — B(eh) -0 — XD ey g

E(t?)
Thus, rq(x) € A; and ro(x) € A.. It implies that r(X, €) € A. For hy(x,€) = h(x,€) —r(x,€),
we can easily calculate E{h;(X, €)|X} and E{h;(X, €)|e}.

E{h;(X,€)|X} = E{h(X,¢)|X} — E{h(X,¢)|X} — E[E{h(X,¢€)|e}] + E{eh(X, €)}E(e)
E{th(X,e€)}

E@) E(t) =0,
E{h;(X,e)le} = FE{h(X,e)le} — E[E{h(X,€)|X}] — E{h(X,¢)|e} + E{ch(X,¢€)}e
E{th(X,e€)}
E(t2)

E{th(X,¢)}
= E{Eh(X, E)}E + Wﬁ
From the above results, we obtain h;(x,¢) € K < At. Since h(x,¢) € AL, r(x,¢) =
h(X,¢) — hy(x,¢) € AL, The fact r(x,¢) € At and r(x,€) € A implies r(x,¢) = 0. We have

h(x,¢) = hi(x,¢€) € K for arbitrary h(x, ¢) € A+. Thus At < K. O



S.2 Proof of Theorem 2|

The joint probability distribution of X and Y can be written as

eg(x;ﬁ)

o) = FxGof { TR~ iGantoe 79,

Score functions of the parameters 8 = (™, 3")T are given by
dlogfx,y(x,y) fde) _ (X,8) !
a = 7 = — 7 X7 )
S Yo fe(e)e m, (X, o)
a1ngX,Y(X7 y) fé(e) / /
Sﬁ = aﬁ = _fe(e) EUB(X7 ) O-B(Xv )
We claim Seg = (Skt o, Sez )", where
_ _fe/(e) —0(X,8) ! _ —0(X,8) 0!
Seta = —f( ) [e m, (X, a) — E{e ma(X,a)}]
(€
E(€) —a(X,B) 4/
—l—{e— E(tQ)t} Efe m, (X, o)},

I VG R Py o
Sua = ~{ e+ 1HobX.8) - Bl DY) + s FloBX.H)

To prove the above claim, we first verified that Sg — S € A.

First, Sq — Scfr.a = E{e™*XPm! (X, )} { L) o4 B )t} is a pure function of .

fe(e) E(t%)

E(Sa — Seta) = Bfe*®Pml (X { }’Zlg e+ gg;t} -0,
E{e(Sa = Sera)} = E{e™®Pm (X { ]ffg o ggz; et} -
E{t(Se — Seia)} = E{e*XPm/ { ‘J’Zlggt — et + ﬁigﬂ} =0.
Additionally, S — Sur s = E{oy(X, 8)} { ¢ 1 - 2L is also a pure function of c.
E(Sp—Senp) = E{os(X, 5)}5’{ %3 —1- %} ~ 0,
Ble(Sa—Sua) = BlopXppp{-fde-c- 2l oo
E{t(Sg— Sex )} = E{a’ﬁ(X,ﬁ)}E{ ?8 et —t— EZ(L;)} —0.



The above calculation justifies that Sg — Seg € A.

E(SalX) = —FE {ZE ;} [e_”(xﬂ)m;(X,a) _ E{e_a(xﬁ)m;(X,a)}]

+E{e *Xfm! (X, a)}F {e — gi;;t} =0,

E(Scale) = —?ZIEZE[QJ(Xﬁ)m;(X?a) Efe X8y L(X, )]

+E{e *®Pm! (X, a)} {e — gii;t}
E{e~*XAm! (X, a)}E(e%)
E(t?)

Note that the fact E{f!(¢)/f.(e)} = 0 and E(e) = E(t) = 0 is used in the above calculation.

= Bf{e *®Pm! (X, a)}e - t.

In the above derivation, E(Seso|X) = 0 and E(Seg «|€) has a form of cie + cof, where

c; and cy are constant vectors.

(S sX) E{ ;8 1} [o5(X, B) — E{oy(X, 8)}] + E{o’s(X, B)}E {Ef;)} ~o0,
E(Seiple) = { E ; 1} Elos(X,8) — E{op(X, 8)}] + E{os(X, B)} E?;)
| 28{0l(X.8))
B(t2)

The fact E {—f!(e)e/f.(e)} = 1 simplifies the above equation.

Thus, for the Seg g, we also have E(Sex g|X) = 0 and E(Seg gl€) is of the form a constant
vector times ¢t. Therefore, S5 € AT

Now we find the optimal efficiency matrix E(SeSeg). We can consider E(Se,aSef o),
E(SctaSet3), E(Set St g) separately.

1. E(SeiaSer?)

T
Seff,aSeﬂ@

O ik -t ]

T
X [e“’(x’ﬁ)m;(X, a) — B{e™" P m{ (X, a)}]

2
+{€—E(63)t E{e="XBm! (X, a)}E{e="®Am’ " (X, a))

_ fele) {6 B E(f?’)t} B "®Am! (X, o)} [efa(X,ﬁ)m/a(X7a) _ E{e"’(x’ﬁ)m;(x,a)}r
{ t} [e—ﬂXﬁ)mg(x, @) + E{e="®Bm’ (X, a)}] E{e= XA m’ (X, a)).
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Note that because X and € are independent, we have F{g;(X)ga(¢)} = F{g1(X)} E{g2(¢)}.

Hence, we have

E(Seﬂ,aSeﬂTa)

e’
- F {f;(e)?}

x{ Ble XMl (X, apmi," (X, )} = Ble M ml, (X, @)} O m), T} ]

[+ O] e (x a0} e, x, ).

E(Seﬂ",aSeff,Tﬁ)

Seﬁ,aSeH:Fﬁ

_ fel(e) fe,(ﬁ)6 o 7 XB) ! o oo (X.8) ! o
fe(e){fe(e) “}[ oX, ) — B «(X, )}

< [o5(X, 8) - B{oh(X, 8)}]"

f/E ; ?t = [e_g(x,g)m/ (X, a) — E{e™° XB)m’ (X,a)}] E{U',@(X”@)T}

_{6 E(e)t
E(t?)
B 2t o exm) (X a) Bl T
+{ ol )} ol )E{ m,, (X, o)} E{og(X,8)" }.

Now we apply the independence assumption of X and e, then we calculate
() {fé(e)6 H _ Jile )
Bl o g E{ [AGE
z E()t) 2t _ 2E(€)

H T E®) } E(t%] T E@®)

MG bt 059m, (%, ) oy 8) — Bl X o)

This leads to

E(S;Fﬁ,aseff’,%)

_ ),

- F {ﬂ(e)? }
< { Ble "®Pm (X, a)oy" (X, B)} - Ble "M, (X, a)}E{oh(X, 8)"} |
2 Bl I (X, )} Bl (X, 0]
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T

_ {fé(e)6+ 1} [o5(X, B8) = E{os(X, B)}] [5(X, B) — E{op(X, 8)}]

g | ElobX AN Bl A

(
B {fge + 1} a [05(X, B) — E{o}3(X,B)}] E{o)s(X,B)"}

E(t?)
fi(e) 2t / ! — E{o’ B
_{meﬂ}mg{aﬁ(x,g>}[aﬂ<x,ﬂ> Bloh(X. 8"

Taking expectations, we have

E(Set,3Setr )

_E { (? ; 1)} | B{oh(X, 8)0}" (X, 8)} - Eloh(X, B)}E{oh(X,8)}]

€

L p{o,(X.8)}E{oy(X. B)")

TE@)
- { fFe 1} |Bloa(X. 80" (X, B)} ~ Blop(X. )} Blola(X, 5)")]
L B Elo (X, 0)")

S.3 Proof of Proposition

Similar to the proof of Proposition [2] before starting the formal proof, we note that

E(et|X) = E(¢*|X) — E(e]X) = 0,

because fx (¢|X) is a symmetric function of € at any X. This property will be used through-

out the proof.

We can construct a nuisance tangent space which satisfies the model assumptions. Ac-

cording to Tsiatis (2006, Section 4.5), we derive the nuisance tangent space A; with respect

to fx(x).

A = {a(x): Efa(X)} = 0}.
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Similarly, we have the following conditions for a nuisance tangent space A, which is associ-

ated with fox(e,x). For b(x,€) € Ay,
E{b(X,€)|X} = E{eb(X, ¢)|X} = E{’b(X, ¢)|X} = 0.

Suppose that f,x (€,x,y) is a parametric submodel of f,x (€,x). The nuisance tangent space

dlogfex{ex,7)

Ay is spanned by S, = P

lvy» Where fox(€,X,7,) is the true density fqx(€,x). Sy
refers to a nuisance score vector. From the symmetry assumption of fix (e, x), we have

alngdx(E, X, ’Y) _ alogfe\x(—@ X, 7)
o~y oy

This indicates a nuisance score vector S is also a symmetric function of € for fixed x.

Hence, we have

Ay = {b(x,¢): b(x,¢) = b(x, —¢), E{b(X, €)|X} = E{eb(X, ¢)|X} = E{*b(X, €)|X} = 0}
= {b(x,¢) : b(x,¢) = b(x, —¢), E{b(X, ¢)|X} = E{’b(X, €)|X} = 0}
= {b(x,¢): b(x,¢) = b(x,—¢), E{b(X, €)|X} = E{tb(X, €)|X} = 0},

where t = €2 — 1.
The above equality holds because €2 1b(x, €) is an odd function of € at any fixed x for

any integer k. In the above,

E{tb(X, )X} = E{’b(X, )X} — E{b(X, ¢)|X}
= E{b(X, €)X} = 0.
Note that E(et|X) = E(e3|X) — E(e|X) = 0, because ¢ is symmetrically distributed given

X = x.

From the above two subspace A; and Ay, we have

A= AMDA,
= {h(x) + hy(x,¢) : E{h;(X)} = E(hy|X) = E{e’hy(X, €)|X} = 0, hy(x, €) = hy(x, —¢)}
= {h(x,¢): E{h(x,¢)} = F{th(X,¢)|X} = 0,h(x,€) = h(x, —¢)}.

First, we find A{. We claim A = {g(x,¢) : B{g(X,¢)|X} = 0}.



Assume K = {g(x,¢€) : F{g(X,¢)|X} = 0}. For any hy(x) € A; and g(x,¢€) € Ky,
E{hy(X) g(X, 6)} = E[E{h(X)"g(X, €)|X}] = E[h (X)" E{g(X, ¢)|X}] = 0.

Therefore, K; < Af.

We need to show A{ < K;. Assume g(x,¢) € A;. We can decompose
g(X,¢) = g(X, ) — E{g(X, o)X} + E{g(X, ¢)[X}.
Since g(x, €) is included in the Hilbert space H,
ElE{g(X,)X}] = E{g(X, )} = 0.
From the above relationship, E{g(X, ¢)|X} € A;. Consider g(X,¢) — E{g(X, ¢)|X}.
E[g(X, €) — E{g(X, )| X}X] = E{g(X, 6)|X} — E{g(X, ¢)|X} = 0.

This indicates g(X, €)— E{g(X, ¢)|X} € K; < A{. Since g(x, €) € A{, it is naturally obtained
that E{g(X,€)|X} € A{. Simultaneously, E{g(X,¢)|X} € A; and E{g(X,€)|X} € At.
Consequently, we have E{g(X,€)|X} = 0. This results in g(x, ¢) € K; and A} < K;.

Next, we derive Ay. We claim Ay = {a(x,¢€) + b(x)t + c(x) : a(x,¢€) + a(x, —¢) = 0}.
Let Ky = {a(x,€) + b(x)t + c(x) : a(x, €) + a(x, —¢) = 0}. We will show Ky = Ay. For an

arbitrary h(x, €) € Ay and an arbitrary g(x,€) = a(x, €) + b(x)t + ¢(x) € Ky, we have

E{h(X, ) g(X, €)}
= E[h(X,e){a(X,€) + b(X)t + ¢(X)}]
= FE{h(X,¢)"a(X,e)} + E[E{h(X, )t[X} " b(X)| + E [E{h(X, €)| X} c(X)] .(S.1)

Consider the first term in (S.1). Because h(x,¢) is an even function of € at any fixed x,

a(x, €) is an odd function of € at any fixed x and f.x(e,x) is an even function of €, we have
E{h(X,e)"a(X,e)} = E|E{h(X,¢)"a(X,e)X}] =0.

The second term and the third term in (S.1]) are zero because E{h(X, €)t|X} = E{h(X, ¢)|X} =
0 if h(x,€) € Ay. Thus, we conclude that Ky = Ay. We will prove that Ay < Kj.



Assume g(x, €) € Ay. We can decompose g(x, €) as

g(X7 6) =M (X7 6) + 72(X7 6)7

where
(%, €) = g(x, ) +2g(x, - ?(ﬁ')}g))t _ B{g(X, )X},
Yo(x, €) = 8(X, ) —Qg(x, ) g((ii;())t + E{g(X, ¢)|X}.
We let

g(X7 6) B g(X> _6)'

a(x,€) = 5

Then a(x, €) is an odd function of €. Therefore, v,(x, €) € Ky = Ay. Since both g(x,€) € Ay
and v,(x, €) € Ay, we obtain «,(x,€) € Ay. On the other hand,

milxg — ERITERZO L FER, - plgix o) =7 (x o)
Elg(X, )X} + B(g(X.—0|X} _ E(glX)

2 E(2|X)

Eimi (X, e)[X} =

E(tX) — E{g(X, o)X} = 0.

The last equality hold because E{g(x, €)|X} = F{g(x, —¢)|X}, specifically,

00

E{g(X> €)|X} = ). g(X> E)fe\x(E, X)de

= g(X7 _€)f6|X(_€7X)d(_€)

Joo
00

= g(X7 _E)fe\X(_€7X)d6
J—o0
[0

= g(x, =€) fex (6, x)de = E{g(X, —¢)|X}.

J—0o0

In addition,

E{ty,(X, €)X}
Elig(X, o)X} + B{tg(X, —¢)[X}  E(tg|X)
2 E(®|X)

E(t*X) — E{g(X, )| X} E(t|X) = 0.

Similarly, the above equality holds because E{tg(x, €)|X} = E{tg(x, —¢)|X}. It is calculated
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in the following way.

BgX,0X) = [ (@~ gl o) fox(e.x)de

(~—0

= (62 - l)g(X, _E)f€|X(_€7 X)d(—é)

- [ @ Dt - tix(—exae
o [ @ Vst - ot - Bl X0

Thus, v,(x,€) € Ay. Since v,(x,€) € Ay and v,(x,€) € Ay, we have v,(x,¢) = 0.
Consequently, we have g = v, € Ky. It proves that Ay < Ko.

From the fact A+ = A{ n Ay, we obtain

A = {a(x,€) + b(x)t,a(x, €) + a(x, —¢) = 0}.

S.4 Proof of Theorem 3

The joint probability distribution of X and Y is given by

fxy (%) = fx(x)e 7P fix (e, x),

Yy— m(X7 a)
60’(){,,3)
We obtain the score functions of 8 = (o™, 8")T as

where € =

g dlogfxy(x,y) _6fe\X(€7X)/6E€fU(X,ﬁ)

= _ f6|X(€7 X) rn'a (X, a)7
0 € s 0 / /

Here S, is an odd function of €, S is an even function of e. We now show that the efficient

scores are

_ 0.fqx (€, X)/a€€—a(X,ﬁ)

St o m (X, a),
d fox(6X) (X, a)
Surp = = ol(X,8)

eff,3 — E(t2|X)aﬂ y .
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Here, Sef o is an odd function of € for a fixed x and Seg g has a form of b(x)t. Thus,
Seﬁ‘ e AL
Now we prove that Sg — Scg € A. Sg — Seg is given by
Sa_seff,a = 07

B 0fx (€, X)/0e 2t ,
Sﬁ_seﬁ”,ﬁ - {_ fe\X(@X) e—1- E(t2|X)}Uﬁ(X>/B)

Obviously, So — Seff,o € A. For S — Seq g, we need to show it is an even function of € and

E(Sg— Serp) =0, E{t(Sg— S )X} =0.
Ofqx (€, X)/0€

For fixed x, we can easily verify that — € and t are even function of €. It

fe\X(€7X)
follows that Sz — Ses s is even function of e. Also, we obtain
0fex(€,X)/0¢ 2t } ,
E(Sg—SgglX) = E{———"F—¢c—1—-—|X}0o3(X,8) =0,
( B f‘f,,3| ) { fe|X(€7X) € E(t2|X)| B( IB)
0fex(€,X)/0€ 212 } ,
E{t(Sg — S. X E{—————¢et—1t— Xtos(X,8)=0.
(18— SaallX) = B{-TEETIL 1 X} o)

Thus, Sﬁ — Seﬁﬁ € A.

Now we find the optimal efficiency matrix.

T T
Seﬁ,aSeﬂ,a SemaSeff,ﬁ

E(SeffSeTff) =E T T
ScrpSea Se,3Ser

where
0fex (€, X)/0¢
fex (e, X)
 Ofex(e,X)/0€ 2te~7(XB)
fox(e,X)  E(#*|X)
BSuaSls) = B|porsgrobX 0056
Since E(SexSl) = E{E(SexSer™|X)}, E(Serr,aSls ) is simplified as

Ofox(€,X)/0e2teoXB) /T
E{‘ (6 X) BEX) m““’“”ﬁ(x’ﬁ)}

FE {E (_wﬂx) Qeia(Xﬂ)m:x(Xv a)U,E(Xa /3) }

2
E(ScftaSera) = E[{ } eQU(X’ﬁ)mL(X,a)m'Z(X,a)],

E(SuraSh,) = E{ i, (X, a)a';“(x,ﬂ)},

feIX(ev X) E(t2|X)
B 2e77XBm! (X, a)a"g(X, B
= E{O- E(@X) =0.
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S.5 Proof of Proposition

Similar as before, we note that
E(et) = E(e*) — E(e) = 0,

because f.(€) is a symmetric function of e.
We construct A = A, @ A, where A, is a subspace with functions of X and A, is a
subspace with functions of €. Since X does not have any constraint and all functions are

defined in Hilbert space, we obtain the following subspace Ay in H.
Ax = {a(x): F{a(X)} = 0}.

We also have the following conditions for a nuisance tangent space A, which is associated

with f.(e). For b(e) € A,
E{b(e)} = E{eb(e)} = E{e’b(e)} = 0.

Suppose that f.(e,7) is a parametric submodel of f.(¢). The nuisance tangent space A,

dlogfe(eyy
0

is spanned by S, = ~ )|.,O, where f(e,7,) is the true density f.(e). S, refers to a

nuisance score vector. From the symmetry assumption of f.(¢), we have

dlogfe(e,~y) _ dlog fo(—e€,7)
oy oy ‘

This indicates a nuisance score vector S, is also a symmetric function of €. Hence, we have

A, = {b(e) : b(e) = b(—e¢), E{b(e)} = E{eb(e)} = E{¢’b(¢)} = 0}
= {b(e) : b(e) = b(—¢), E{b(e)} = E{e’b(e)} = 0}
= {b(e) : b(e) = b(—¢).E{b(e)} = E(tb) = 0},

where t = €2 — 1. The above equality holds because €% 1b(e) is an odd function of € for any
integer k.

In the above,
E{tb(e)} = E{¢’b(e)} — E{b(e)} = E{e’b(e)} = 0.
Note that E(et) = E(e*) — E(e) = 0, because € is symmetrically distributed.
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Thus, we have
A = Ac@A ={a(x)+b(e): E{a(x)} =0, E{b(e)} = 0, E{tb(e)} = 0,b(e) = b(—e¢)}.

Note that Ay and A, are orthogonal because we assume x and € are independent.

We claim AL = {g(x,¢) : E{g(X,¢)|X} = 0, E{g(X,¢)|e} = a(e) + bt,a(e) + a(—e¢) =
0,b € R¥}. The orthogonal tangent space At can be obtained by constructing A+ =
AL~ AL

First, We claim Af = {g(x,¢) : E{g(X,¢)|X} = 0}. Assume K; = {g(x,¢) : F{g(X,¢)|X} =
0}. For any h(x) € A« and g(x,¢€) € Ky,

E{h(X)"g(X, )} = E[E{h(X) g(X, ¢)|X}] = E[h(X)" E{g(X, ¢)|X}] = 0.

Therefore, K; < A;.

We need to show AL < K;. Assume g(x,¢) € AL. We can decompose
g(x,¢) = g(x, ¢) — E{g(X, )|X} + E{g(X, ¢)[X}.
Since g(x, €) is in Hilbert space H,
E{g(X, o)} = E[E{g(X, €)[X}] = 0.
It also indicates that F{g(X,€)|X} € Ax. Now consider g(x,¢) — E{g(X, €)|X}.
Elg(X, ¢) — E{g(X, o) X}[X] = E{g(X, 6)[X} - E{g(X, ¢)|X} = 0.

This indicates g(x,¢) — F{g(X,€)|X} € K; = AL. Since we assume that g(x,e) € AL, it
is naturally obtained that E{g(X,€)|X} € AL. Simultaneously, E{g(X,¢)|X} € A, and
E{g(X,e)|X} € AL Tt results in E{g(X,€)|X} = 0. Thus, g(x,¢) € K; for an arbitrary
g(x,€) € AL. Consequently, we have AL < K;.

Let Ky = {g(x,¢€) : E{g(X,¢)|e} = a(e) + bt,a(e) + a(—¢) = 0,b € RFF}.

We will show K, = Al. For an arbitrary h(e) € A, and an arbitrary g(x,€) € Ky, we

have

E{h(e)"g(X, €)}

E{h(e)"E{g(X,¢)|e}} = E [h(e) {a(e) + bt}]
= FE{h(e)Ta(e)} + E{h(e)t}"b = 0.
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In the above, because h(e) is an even function, a(e) is an odd function of € and f(€) is an
even function, then we have E{h(e)Ta(e)} = 0. And E{h(e)t}"b = 0 since E{h(e)t} = 0
for h(x, €) € A.. Thus, we conclude that Ky < AL.

Now we will show that AL = K,. For an arbitrary g(x,e¢) € AL, we can decompose

g(x,¢) as
g(x, €) = v1(€) +7a(x,€),
where
() = E{g(x, c)le} +2E{g(x, —e)le}  Eftg(x, ;)E Jgtz)g(}g o
() = gx.e)— E{g(x, €)|e} +2E{g(x, -9lg E{tg(x’g)EJ(rtz;g(X’ =

Consider =, (€).

E{g(x, )le} + E{g(x, —e)le} _ Efig(x,¢) + tg(x, —€)}

Yi(e) = 2 2E(12) t =y (=),
Bl - B8 0L+ Bl =0} _ Bltale o+ —0b )
Blim() = APEROIIEIEIER —oid]  ELeR st e
_ Eftg(x,e) +tg(x,—6)}  E{ig(x,€) +tg(x, —€)} 0
2E(#?) 2E(1?) '

Hence, we have ~,(¢) € A..

In v,(x, €), we let

g1(x,¢) = g(x,€) — Elg(x, e)|e} +2E{g(x, —e)|e}'

Then we have

E{gi(x,6)le} = F{g(x,e)le} — E{g(x,€)|e} +2E{g(x, —e)|e}

_ Blg(x,0)le —f{g(x, ~N _ g, (x, ).

It implies that F{g;(x,¢€)|e} + E{gi(x, —¢)|e} = 0. We calculate E(vy(x,€)|e) as

E(’Y2(X, 6)|€) = E{g1(X, €)|€} i E{tg(X, ;?E"i(_tz;g(x, —6)}
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Then we have that v,(x,¢) € Ko « AL, Since both g(x,€) € AL and ~v,(x,¢€) € AL, we
obtain ~,(€) = g(x, €) — v,(x,€) € AL. Note that v,(x,¢€) € A and ~,(x,€) € AL. Thus, we
have ~,(x,¢) = 0. Consequently, we have g(x,€) = v5(x,¢) € K, for an arbitrary g € A
It proves that Al < Ko.

We conclude that AL = {g(x,¢) : E{g(X,¢)|X} =0} and AL = {g(x,¢) : E{g(X,¢)|e} =

a(e) + bt,a(e) + a(—e€) = 0,b € RF*'}. Further, we have

At = {g(x,¢) : E{g(X,€)|X} =0, B{g(X,€)|e} = a(e) + bt,a(e) + a(—e) = 0,b e RF}.

S.6 Proof of Theorem (4

We have the joint probability distribution function as

— 1
fX,Y(Xa y) = fX(X)fE {y ez;r(ic(,}[:; a)} eo(x.8

) = fX (X) fe (E)eia(Xﬂ)?

y_mx,a) Tr(L(;(; a). This model assumes that E(e) = 0 and E(e?) = 1. From the fact
eo(x,

fe(e) = fo(—€), we also have E(e*) = 0.

where € =

We have score functions of 8 = (a™,3")" as

dogfxy(x,y) _ 0fc(e)/0e o o(X8

— - ) ,
Sa = oo a fe(e) (%)
Sy - 510gf);g(x> y) _ _af}(zgaeed'g(xa B) — op(x,8).

Note that S, is an odd function of €, Sz is an even function of € for fixed x. We claim

St = (Sl Siiz )T, where

off,a?
Sefia = _%eo(xﬁ)m/a(xva)?
Sua = {01} o x.) - Bl (X 8] + o B (X))
We calculate conditional expectations of S.¢ in the following.
E(SetalX) = —F {%(3} e XPm! (X, a) =0-e7FPm! (X, a)} =0,
BSual) = ~f5 Ele "®9m (X, a)).
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Since F(Seg.o|X) =0 and E(Scg.«le) is an odd function, Seg o € AL

B(SursX) = E(—%—l) [ag<x,ﬂ>—E{ag<X,ﬁ>}]+%?E{ag(m)}=o,

€

E(Suipl) - (—§ )[E{a’ﬁ(Xﬁ)}—E{ah(X,ﬂ)}]Jr%E{a}a(Xﬂ)}

2t

= WE{UE(Xﬁ)}-

In the above, E(S.sg|X) = 0 and E(Scxgle) is a constant vector times ¢. Therefore, we
have Seg g € AL
To prove the claim, we also need to verify that S¢ — Seg € A. Since Sq = Sefas
obviously we have S — Seg.a = 0€ A. S5 — Se g is given by
! 2t
f - Em)

S — Seq g is a pure function of €. Also, Sg — Seg g is an even function of e.

S — Senr g = E{o(X, B)} {

(e) 2 _
G E<t2>} 0
fl(e) L, 2t2 _
AR E<t2>} 0

The above calculations justify that Sg — Ses g € Ac. Thus, we obtain Sg — S € A.

E(Sp— Surp) = E{a@(X,m}E{

E{t(Sp — Surp)} E{a@(X,,@)}E{

In order to find optimal efficiency matrix, we calculate E(Scr.aSeg.a), E(SeraSets)

and E(Seg,ﬁSeTHﬁ).

L. (SeﬁaSeﬁ”a)

T
SEff,C!Seff,a = {

B(SuaSh.) = E { Jd) } Bfe P m!, (X, ), (X, o)},
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2. E(Sefr,aSirs)

'(e ? fé(e) —o(X, 4
Seff,aSeTff,B - [{f:( )} €+f—()]€ *Am (X, o)

! !/ 2t o_/
Sua = {~915e= 1} [oh(X.0) - Blop(X. B + 5z EloLX.H),
SurpSliy = <§8+2§8+1> [0(X., 5) — B{oy(X, B)}]

N {_J"L'(E)6 B 1} i[a’ﬁ(X,ﬂ) — E{o}3(X, B)}|E{os(X,B8)}"

fe(e) E(#?)

1O L 2 g X B o (X.B) — Eloy(X. B
+{—me 1} E(tQ)E{ [3(X B}l ,6( B

4¢?

o ols(X, BT,
+WE{ ﬁ(XHB)}E{ 5( ’8)}
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Taking expectation for the above, we have

B(SuroS k)
ol
xE ([a’BEX ) = E{os(X, B)}][op(X. 5)
(50
o (i) s st
Bl (X, B)1 Bl (X, B)"
- E{}iff 1} BlohX. By (X, 9)

/
6 E
6

LA
1 5

S.7 Proof of Theorem [

Under the assumption of Case 2, we have

M M M,; M,
2 — 1= )
M’EQ M272
where
fl(e)? {E(e*))?
M = F —1-
fe(e)? E(t?)

[
M, = E{
[

e T E{fxe)f _1_E(tQ)}[E{Ub(x’ﬂ)alg(x’ﬂ)}_

19

Iﬁ(X7B) -

— Bloly(X.8)}]")
ot t) 0 Elob(X.0) = Bloh(X. AIE(,(X. 8))"

E{Uﬂ(X :3)}E{J/3(X 5) -

E{op(X,8)}]"



N fﬁ(ﬁ)}[efa(xﬁ)m’a(X a) — E{e " ®Pm, (X, a)}] ]

t
[E0c 114 25 [oh(X, ) — B{os(X. B)}]

T T

T uu;; uu,
uu- = ,

T T

we have

where

e @R P 2B RO EE S
B = [ FEerE T e Be T E(tQ)fe(E)t]

x&ﬂdxmm%x(mm”ocay—f“*mmMwaE{EWXJ”mQVX*”}

_E{efa(xﬂ X o }6 X IB) ' T(X,a)
+F {G_U(Xﬁ)ma X,a }E {6 (X’ /B)m:lT(X, a)}] ’
e [fl( Vet ey 20 B0, B, 2B JU 1O

O TTE® T E® LT E® T E®E T e L
2t f’ ]

" [ (Xﬁ) ' (X, a)a’ﬁT(X B) —e 7 XPm! (X, a) E{a};(X,ﬁ)}T

~E{e (X, B)m, (X, a)} o5 (X, 8) + E{e (X, 8)m X,a)}E{a’ﬁ(X,B)}T],

uwaf, = (wl,)’,

v (e, T GO I GO
Uizz [fﬁ@z rEER e T E@ Lo T E®)
< [05(X,B)0'5(X. B) — 05(X. B)E {o's(X,B)) " — E{o’a(X,8)} o'5(X, B)

+E{o'a(X, B)} E{o's(X,B)}" .

It can be easily verified that My — M; = E(uuT). Hence, My — M, is nonnegative
definite. O
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S.8 Proof of Theorem

Under the assumption of Case 3, we have

M;; O
Ms; - M, = ,
0 0
where
Of.x(e,X)/0e)?
M, = E {—fx(e )/ 6} — 1| e ®Am (X, a)m/ (X, o) | .
fe|X(€7X)
From
Ofx(e,X)/0€ .
| PR e e X pml(Xa) |
0
we have
uul, 0
uu’ = L1 ,
0 0
where
Ofqx (e, X)/0e}? Ofqx (€, X)/0€ 3 T
uu] :[{ X + 2 ’ e+ e ?XAm! (X, a)m’', (X, a).
0T @ X fox(e.X) (X, ajmq (X, @)

It is easy to verify that My — M; = E(uu®). Thus, M3 — M is nonnegative definite. [

S.9 Proof of Theorem [T

Under the assumption of Case 4, we have

Ml,l 0
M4 - M2 = 5
0 0
where
1/ N2
M, = [E { jﬁé; } - 1] Ble P m (X, a)}Bfe " Pm)," (X, )}
(€
From

{419 + e} Ble—®Pm(, (X, )}
u — €
0

)
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we have
uul, 0
uu’ = L1 ,
0 0

waf, = {8 42l e ppe ool (%, Bl (X, @)

It is easily obtained that My — My = E(uu?). Thus, My — M, is nonnegative definite. [

S.10 Proof of Theorem

Under the assumption of Case 4, we have

0 0
M4 - M3 = )
0 M;,

where
Mo = | EJ LD 2l A (o, g1} (X B)) — Eloly(X. 8)) Eloly(X. B)7)]
2,2 fo(e)? E(t?) B B ) B\ B\ ‘
From
0
R A0 2 \ [ T ’
{ H9et 1+ E(tQ)} [0,(X, B) — E{o’s(X, B)}]
we have
: [0 O
Vo uu;, ’
where
N /1 P R /(G B 2 £ I
[fe(e)Q TTEER RO E@ Lo B

< [05(X.B)0'5(X.8) - oh(X, AE {o's(X,B))" — E{0'a(X. B)} o'5(X. )
+E{0o(X,B)} E{o's(X. B} |.

It is easy to verify that My — M3 = E(uu”’). Hence, M, — M3 is nonnegative definite. [
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S.11 Simulation Details

We describe in detail how to obtain the efficient estimators in the simulation studies in
Section [A.1.21

In each simulation, we generated 1000 data sets with sample size n = 500. For each
data set, we obtain the semiparametric efficient estimator 0 = (&,B)T through solving
D Ser(xi,yi,0) = 0. We then calculate Se(x;, i, @) and obtain the estimated variance

for @ through [Zyzl{seg (X4, Yis g’) otr.s (Xis i @)}} . We reported the simulation results in
Tables [1] to [l where the notations have the following meaning.

e Estimator: median of 1000 estimators

e Bias: Estimator - true 6

e Bias(%): (Bias/true 8) x100

e Var: variance of 1000 estimators

e Varl: median of 1000 estimated variances

e 95% cov: (the number of 95% confidence intervals which include true 8/1000)x 100
(95% confidence interval is obtained as (8 — 1.96 s.e(8), 8 + 1.96 s.e(8)), where s.¢(6)

is the square root of the estimated variance described above.)
e 95% CI: (25th value, 975th value) of 1000 sorted estimators

Now we explain how to construct the efficient score Sg(X,Y). The efficient score
functions are given in Theorems [I] to [4] in Section [2] for the four different methods. For
all Cases, the efficient score functions include the terms my, (X, ) and o4(X,3) which
depends on the assumed model. The mean and log-standard deviation functions considered

in the simulation are given in and respectively. From the m and ¢ models considered
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in the simulation study, we get

exp(a1 X1 + @ Xs)
mIa(Xa a) = Xiexp(an X1 + a2 Xs) |
XQ exp(oale + OéQXQ)

X4
X5

op(X.8) =

We then plug the above expressions into the efficient score function Sez(X,Y’) in each case

as described below.

S.11.1 Case 1 method

The semiparametric efficient estimator is obtained thorough solving the efficient score func-
tion (3). The efficient score function (3) contains terms E(€*|X) and E(¢?|X), which need
to be calculated based on the distribution of € conditional X.

Since Case 1 method is based on the possibly asymmetric f.x(e,X) where € and X
are not independent, we choose such an model f¢x (e, X) for estimation, regardless of data
generation scheme. Among many possible distributions, we chose a chisquared distribution
with degree of freedom p(X) which is given in ([9)), even for the simulation where the € is not

generated from the density function @D Note that ¢ was not generated from the density

(©) in Simulation 2, 3, and 4. Then we calculate E(e*|X), E(¢*|X) and E(t?|X) as the

following.
24/2
BEx) = 22
p(X)
12
E(X) = 34+ —,
(€1X) p(X)

2 _ el _ &3 2 41 _ i
BEIX) = )~ {BEX)Y 12+ .

Because each simulation generates different data according to its assumption, we use differ-

ent degree of freedom p(X) for estimation as follows.

1. Simulation 1, 2 and 4
We used the chisquared distribution of € with degree of freedom p(X) = (X;+X5)+0.5.
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The calculated E(¢3|X) and E(t?|X) according p(X) = (X; + X5) + 0.5 are plugged

into the efficient score function.

2. Simulation 3
We used the chisquared distribution of € with degree of freedom p(X) = 10(X;+X5+1).
The calculated E(e3|X) and E(#*|X) according p(X) = 10(X; + X, + 1) are plugged

into the efficient score function.

S.11.2 Case 2 method

The efficient score function of Case 2 method is given in (). To solve the efficient score
function (4), we should calculate terms E(e®), E(t?) and f!(e)/f.(e) in (4). Case 2 method
is based on possibly asymmetric f.(¢). For such an asymmetric f.(e), we used a chisquared
distribution with degree of freedom ¢ which is given in for estimation, even for the
simulation where the € is not generated from the chisquared distribution (10). Note that €
was not generated from in Simulation 1, 3, and 4. According the standardized x?(q),

we calculate the following quantities.

24/2

\/a 9
12
BE(eY = 3+ =,
q

E(tz) = E(e4) — {E’(e?’)}2 —1=2+ 3,
7O _ VA=) vE

fle) V2qe + q 2

Because each simulation generates different data according to its assumption, we use differ-

ent degrees of freedom ¢ for estimation as the following.

e Simulation 1 and 2
We used the chisquared distribution e with degree of freedom as ¢ = 13. We plug
E(e?) = 0.7845, E(t?) = 2.3077 and f!(¢)/f.(e) = 11v/26/(2v/26¢ + 26) — v/26/2 into

the efficient score function.

e Simulation 3

We used the chisquared distribution ¢ with degree of freedom as ¢ = 21. We plug
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E(e?) = 0.6172, E(t?) = 2.1905 and f!(€)/f.(€) = 19v42/(2v/42¢ + 42) — \/42/2 into

the efficient score function.

e Simulation 4

We used the chisquared distribution € with degree of freedom as ¢ = 180. We plug
E(e3) = 0.2108, E(t?) = 2.0222 and f'(€)/f.(¢) = 89v/10/(v/10¢ + 30) — 31/10 into the

efficient score function.

S.11.3 Case 3 Method

The efficient score function of Case 3 method is given in ([5). To solve the efficient score
function , we should calculate E(#*|X) and flix (€. X)/ fgx (€, X) in . Case 3 method is

based on the symmetric fx (€, X) conditional on X. For estimation, we chose a generalized

normal distribution with scale parameter s = 4/T'(1/u(X))/T'(3/u(X)) and shape parameter
k = w(X) which is given by

) | { i }”(X)
D(1/u(X) T /XN TE/K) | | VI TB/ulX)

From the above distribution, we obtain

fox(e,X) =

iy POuX))I(1/u(X))
E('X) = NEOE : (S.2)
E#IX) = E(&X) -1, (S.3)
0fex (€, X)/0¢ (1) SBR[y (X) {F(S/U(X)) }u(X)/Q S
fex (€, X) I'(1/u(X)) ’ '

where sgn(e) is a signum function of €. Note that u(X) determines both the scale parameter
and the shape parameter of a generalized normal distribution. Also, note that € was not
generated from the generalized normal distribution in Simulation 1, 2, and 4.

Because each simulation generates different data according to its assumption, we use

different parameter for estimation of each simulation as follows.

e Simulation 1, 2 and 4
We choose u(X) = 0.06(X; + X») + 1.5 which varies in [1.5,3]. According to u(X),
the calculated F(t*|X) and flix(€,X)/ fex (e, X) are plugged into the efficient score

function.
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e Simulation 3
We choose u(X) =20I(X € A) + 1.71(X € A°) where A = {(0,5) x (0,7.5), (5,10) x
(7.5,15)} and I(-) is an indicator function. Using (S.2), and (S.4), we can cal-
culate E(t*|X) and fix(€,X)/ fex (€, X) conditional on X for the above distributions

and plug them into the efficient score functions.

S.11.4 Case 4 Method

The efficient score function of Case 3 method is given in @ To construct the efficient score

function, we should calculate E(¢*) and f!(e)/fc(¢).

e Simulation 1, 2 and 4

We use Logistic(0, v/3/7) distribution for symmetric f.(¢). Then we obtained

B(e) = 42, Jleg __m o, 2exp (—em/V/3)

fe(e) V3 V3{1 +exp(—en/V3)} /T

We plug the above terms in the efficient score function.

e Simulation 3

For Simulation 3, we choose a GN(0, s, k) for a symmetric f.(e), where s = 4/T'(1/k)/T(3/k)
and k = 5.4. We calculate
) L(5/R)T(1/k)
L@3/k?
E{t*) = E(eY)—1,
)

(¢ k/2
fe( _ (_1)Sgn(e)|€|k1k{£2?7;;} )

The above terms are plugged in the efficient score function.
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