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Abstract In the mean regression context, this study considers several frequently
encountered heteroscedastic error models where the regression mean and vari-
ance functions are specified up to certain parameters. An important point we note
through a series of analyses is that different assumptions on standardized regres-
sion errors yield quite different efficiency bounds for the corresponding estimators.
Consequently, all aspects of the assumptions need to be specifically taken into
account in constructing their corresponding efficient estimators. This study clarifies
the relation between the regression error assumptions and their, respectively, effi-
ciency bounds under the general regression framework with heteroscedastic errors.
Our simulation results support our findings; we carry out a real data analysis
using the proposed methods where the Cobb–Douglas cost model is the regression
mean.
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1 Introduction

Regression models with the form Y = m(X,α) + ε are among the oldest statisti-
cal models studied in statistics. Here, m is a known function and α is an unknown
parameter vector that has to be estimated. The most familiar assumption on the regres-
sion error ε is that E(ε) = 0, which leads to the classical mean regression model. It
has often been implied—rather than written out explicitly—that the regression error is
independent of covariates; that is, ε ⊥ X. In fact, strictly speaking, we obtain two quite
different models based on whether or not the independence assumption holds. While
under the independence assumption one would commonly require the regression error
to have a mean zero, when there is no independence assumption, a mean regression
model would typically require the conditional regression mean to be zero, that is,
E(ε | X) = 0. This subtle difference actually leads to two quite different models,
each having its own estimation and inference procedures and deserving separate stud-
ies. Generally, E(ε | X) = 0 is the minimum assumption required to justify the term
“mean regression model.” Since this is a relatively weak assumption, very often other
assumptions are added. Jacquez et al. (1968), Bement andWilliams (1969), and Fuller
and Rao (1978) assumed unequal variances in addition, given the covariates, and stud-
ied weighted least squares procedures. Carroll and Ruppert (1982) and Carroll (1982)
adopted specific variance functions, assuming the unknown symmetric distribution of
ε in heteroscedastic linear models. Müller and Zhao (1995) studied a general semi-
parametric variance function model. Kim and Ma (2012) proposed semiparametric
efficient estimators in heteroscedastic nonlinear models under a known variance func-
tion. Ma et al. (2006) found the semiparametric efficiency bound in a heteroscedastic
partially linear regression model with a nonparametric variance function.

Assumption E(ε | X) = 0motivates us to considermodelY = m(X,α)+eσ(X,β)ε,
which uses parameterization eσ(X,β) to ensure that the standard deviation of the regres-
sion error is positive. This is a typical regression model with heteroscedastic error
modeling heteroscedasticity in a parametric form. Under this framework, ε is a stan-
dardized regression error that generally satisfies E(ε | X) = 0 and var(ε | X) = 1.
As mentioned earlier, it is not written out explicitly, but often implied that ε andX are
independent of each other. Hall and Carroll (1989) proposed a method for the simul-
taneous estimation of a variance and a mean function in a parametric heteroscedastic
regression model under the implicit assumption of independence of ε and X. Lian
et al. (2015) proposed a method for the estimation of mean and variance functions
in heteroscedastic models when both the functions depend on partially linear single-
index models. Fang et al. (2015) extended the model of Lian et al. (2015) to additive
partial linear models. Lian et al. (2015) and Fang et al. (2015) assumed that E(ε) = 0
and E(|ε|) = 1, implicitly confirming the independence of ε and X. However, we
surprisingly find the efficiency bounds when estimating α and β usually different both
with and without the additional independence assumption. In addition, at times we
assume for convenience that the distribution of ε is symmetric, adding yet another
layer of complexity when analyzing the efficiency of any specific estimator.

Since we frequently face these similar yet different regression models with various
assumptions on the regression errors, and at times come across efficiency statements
in the literature that give no rigorous proofs or careful justifications, we consider it
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Efficient estimators in heteroscedastic models 3

necessary to study these regression models more carefully and systematically. The
main purpose of this study is to investigate four regression models with identical
regressionmean and variance but different assumptions on the standardized regression
error. We perform a semiparametric analysis of these models and derive their optimal
efficiency bounds in Sect. 2. We carry out a comparison of these models in Sect.
3, showing that all the aspects of the assumptions need to be specifically taken into
account when deriving the optimal estimators. Some numerical illustrations of the
efficient estimators are provided in Sect. 4. We conclude the study in Sect. 5. The
technical details and proofs of the study are provided in appendix and supplement.

2 Four heteroscedastic regression models

The four regression models with heteroscedastic errors that we consider here have the
common form

Y = m(X,α) + eσ(X,β)ε, (1)

where Y ∈ R is the response variable and X ∈ R
d is a covariate vector. The mean

function m is a known function up to the unknown parameter vector α ∈ R
k , and the

heteroscedasticity of the model is reflected in the regression error eσ(X,β)ε, where σ

is a known function up to the parameter vector β ∈ R
l . Now, ε is a “standardized”

regression error satisfying

E(ε | X) = 0, var(ε | X) = 1. (2)

The model in (1) and (2) is the most basic one considered in this study. It is the first
heteroscedastic regression model we consider here.

For notational convenience, we give θ = (αT,βT)T as our parameter of interest.
Here, our aim is to estimate θ without imposing any parametric distributional assump-
tion on ε. Thus, we consider model (1) along with constraint (2) as our semiparametric
model. Assume that Z = (Y,X). The density of the single observation z is

fZ(z, θ , fX, fε|X) = fε,X(ε, x) = fε|X(ε, x) fX(x),

where θ is the finite-dimensional parameter of interest, and fX and fε|X are two
infinite-dimensional nuisance parameters. Here, fε|X is the conditional probability
density function (pdf) of ε, given X, and fX is the pdf of X. We assume that both
functions are twice differentiable and have the first four moments.

The assumption on the standardized regression error ε can be strengthened in var-
ious ways. Specifically, we consider the following four cases; the first case has no
assumption other than (1) and (2).

Case 1. (1) and (2).

Case 2. ε ⊥ X, in addition to (1) and (2).

Case 3. fε|X(ε, x) = fε|X(−ε, x), in addition to (1) and (2).
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4 M. Kim, Y. Ma

Case 4. ε ⊥ X, fε(ε) = fε(−ε), in addition to (1) and (2).

Obviously, Case 1 has the weakest assumption. This case is often referred to as the
location scale model. Case 2 additionally has the independence assumption between
the standardized regression error and the covariates. Thus, this case has a more strin-
gent assumption than Case 1. Since a more stringent model assumption implies more
model structures, and more estimators are available for Case 2, the optimal efficiency
bound of Case 2 should improve upon Case 1. Likewise, compared to Case 1, Case 2
further assumes symmetry on the standardized regression error ε. Thus, its efficiency
bound should further improve uponCase 1. Finally, because Case 4 assumes both sym-
metry and independence, it should yield the best efficiency bound of all the four cases.
We now investigate each of the four cases to illustrate quantitatively the differences
of the four optimal estimators and their, respectively, efficiency bounds. Generally,
to conceptually derive efficient estimators, one has to derive the efficient score Seff ,
defined as orthogonal projection of the score function of θ onto the so-called nuisance
tangent space orthogonal complement (Tsiatis 2006). We denote the nuisance tangent
space �, its orthogonal complement �⊥. In each of the four models, the nuisance
tangent space is the space the score spans with respect to the error distribution; this
is assumed to be one of the infinite-dimensional nuisance parameters. To derive �

mathematically is highly technical and often hard. Operationally, for each model, we
first derive �, �⊥, project the score function Sθ onto �⊥, obtain the efficient score
function Seff , and finally use this efficient score function to construct the estimation
equation

∑
Seff = 0. The root of this estimation equation forms the efficient estima-

tor, whose estimation variability is given as {E(Seff STeff)}−1. This estimator is known
to be minimum among all consistent estimators of θ (Bickel et al. 1998). For these
derivations, we routinely require that the pdf be a sufficiently smooth function of
both the random variable and parameter in the neighborhood of the true parameter
value. For all the four cases considered here, we obtain efficient estimators; we pro-
vide their detailed derivations in appendix (Case 1) and supplement (Cases 2, 3, and 4).

Case 1
Case 1 is the most general model among the four cases. Because this case has

the weakest model assumption, it has the smallest class of consistent estimators. In
order to find the class of estimators and the semiparametric efficient estimator for this
class, we derive the entire nuisance tangent space orthogonal complement �⊥ and the
efficient score function (Tsiatis 2006).

Proposition 1 The nuisance tangent space � and its orthogonal complement space
�⊥ of the Case 1 model are, respectively,

� = {h(x, ε) : E{h(X, ε)} = E{εh(X, ε)|X} = E{th(X, ε)|X} = 0}
and

�⊥ = {g(x, ε) : g(x, ε) = g1(x)ε + g2(x)t},

where t = ε2 − E(ε3|X)ε − 1.
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Efficient estimators in heteroscedastic models 5

By projecting the score vector with respect to θ , Sθ (X,Y ), onto �⊥, we obtain the
efficient score vector Seff(X,Y ).

Theorem 1 The efficient score vector in Case 1 is Seff(X,Y ) = (STeff,α, STeff,β)T,
where

Seff,α = e−σ(X,β)m′
α(X,α)

{

ε − E(ε3|X)

E(t2|X)
t

}

,

Seff,β = 2t

E(t2|X)
σ ′

β(X,β), (3)

and t = ε2 − E(ε3|X)ε − 1. The optimal efficiency matrix is

M1 ≡ E
(
Seff STeff

)
=

{
E

(
Seff,αSTeff,α

)
E
(
Seff,αSTeff,β

)

E
(
Seff,β STeff,α

)
E
(
Seff,β STeff,β

)

}

,

where

E
(
Seff,αSTeff,α

)
= E

{[

1 + {E(ε3|X)}2
E(t2|X)

]

e−2σ(X,β)m′
α(X,α)m′T

α(X,α)

}

,

E
(
Seff,αSTeff,β

)
= E

(
Seff,β S

T
eff,α

)T

= E

{

−2E(ε3|X)

E(t2|X)
e−σ(X,β)m′

α(X,α)σ ′T
β(X,β)

}

,

E
(
Seff,β S

T
eff,β

)
= E

{
4

E(t2|X)
σ ′

β(X,β)σ ′T
β(X,β)

}

.

Note that the variance–covariance matrix of the efficient estimator is the inverse of
the optimal efficiency matrix E(Seff STeff). In other words, when estimating θ for the
Case 1 model, the minimum possible variance is E(Seff STeff)

−1.

Case 2
For Case 2, we further add the independence assumption of ε andX to the assump-

tion of Case 1. As with Case 1, we can construct the nuisance tangent space � and its
orthogonal complement �⊥ for Case 2.

Proposition 2 The nuisance tangent space � and its orthogonal complement space
�⊥ of the model in Case 2 are, respectively,

� = {a(x) + b(ε) : E{a(X)} = 0, E{b(ε)} = 0, E{εb(ε)} = 0, E{tb(ε)} = 0},
and

�⊥ =
{
g(x, ε) : E{g(X, ε)|X} = 0, E{g(X, ε)|ε} = c1ε + c2t : c1, c2 ∈ R

k+l
}

,

where t = ε2 − E(ε3)ε − 1.
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6 M. Kim, Y. Ma

Theorem 2 The efficient score vector in Case 2 is Seff(X,Y ) = (STeff,α, STeff,β)T,
where

Seff,α = − f ′
ε(ε)

fε(ε)

[
e−σ(X,β)m′

α(X,α) − E
{
e−σ(X,β)m′

α(X,α)
}]

+
{

ε − E(ε3)

E(t2)
t

}

E
{
e−σ(X,β)m′

α(X,α)
}

,

Seff,β = −
{
f ′
ε(ε)

fε(ε)
ε + 1

} [
σ ′

β(X,β) − E
{
σ ′

β(X,β)
}]

+ 2t

E(t2)
E

{
σ ′

β(X,β)
}

,

(4)

and t = ε2 − E(ε3)ε − 1. The optimal efficiency matrix is

M2 ≡ E
(
Seff STeff

)
=

{
E

(
Seff,αSTeff,α

)
E
(
Seff,αSTeff,β

)

E
(
Seff,β STeff,α

)
E
(
Seff,β STeff,β

)

}

,

where

E(Seff,αS
T
eff,α) = E

{
f ′
ε(ε)

2

fε(ε)2

}

E
{
e−2σ(X,β)m′

α(X, α)m′
α
T
(X, α)

}

+
[

1 + {E(ε3)}2
E(t2)

− E

{
f ′
ε(ε)

2

fε(ε)2

}]

E
{
e−σ(X,β)m′

α(X, α)
}

× E
{
e−σ(X,β)m′

α(X, α)
T}

,

E
(
Seff,αS

T
eff,β

)
= E

(
Seff,β S

T
eff,α

)T

= E

{
f ′
ε(ε)

2

fε(ε)2
ε

}

E
{
e−σ(X,β)m′

α(X, α)σ ′
β
T
(X, β)

}

−
[

E

{
f ′
ε(ε)

2

fε(ε)2
ε

}

+ 2E(ε3)

E(t2)

]

E
{
e−σ(X,β)m′

α(X, α)
}
E

{
σ ′

β (X, β)T
}

,

E
(
Seff,β S

T
eff,β

)
= E

{
f ′
ε(ε)

2

fε(ε)2
ε2 − 1

}

E
{
σ ′

β (X, β)σ ′
β
T
(X, β)

}

+
[

−E

{
f ′
ε(ε)

2

fε(ε)2
ε2

}

+ 1 + 4

E(t2)

]

E
{
σ ′

β (X, β)
}
E

{
σ ′

β (X, β)T
}

.

Case 3
For Case 3, we strengthen the Case 1 assumption by further assuming symmetry of

the standardized regression error distribution; that is, fε|X(ε, x) = fε|X(−ε, x). The
nuisance tangent space � and its orthogonal complement �⊥ for Case 3 are given
below.
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Efficient estimators in heteroscedastic models 7

Proposition 3 The nuisance tangent space � and its orthogonal complement space
�⊥ of the model in Case 3 are, respectively,

� = {h(x, ε) : E{h(X, ε)} = E{th(X, ε)|X} = 0,h(x, ε) = h(x,−ε)}
and

�⊥ = {g(x, ε) : g(x, ε) = a(x, ε) + b(x)t, a(x, ε) + a(x,−ε) = 0},

where t = ε2 − 1.

Because of symmetry of the distribution of ε conditional on X, we have t = ε2 − 1 in
Case 3, whereas t = ε2 − E(ε3|X)ε − 1 in Case 1.

Theorem 3 The efficient score vector in Case 3 is Seff(X,Y ) = (STeff,α, STeff,β)T,
where

Seff,α = −∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
e−σ(X,β)m′

α(X,α),

Seff,β = 2t

E(t2|X)
σ ′

β(X,β), (5)

and t = ε2 − 1. The optimal efficiency matrix is

M3 ≡ E
(
Seff STeff

)
=

{
E

(
Seff,αSTeff,α

)
0

0 E
(
Seff,β STeff,β

)

}

,

where

E
(
Seff,αSTeff,α

)
= E

{(
∂ fε|X(ε,X)/∂ε

fε|X(ε,X)

)2

e−2σ(X,β)m′
α(X,α)m′T

α(X,α)

}

,

E
(
Seff,β S

T
eff,β

)
= E

{
4

E(t2|X)
σ ′

β(X,β)σ ′T
β(X,β)

}

.

The optimal efficiency matrix of Case 3 is simpler than that of Case 1 because of the
symmetry of ε, given X.

Case 4
Case 4 assumes independence of the covariates and normalized regression error as

well as the symmetry of the normalized regression error distribution; that is, ε ⊥ X
and fε(ε) = fε(−ε). In this case, we obtain the following results.
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8 M. Kim, Y. Ma

Proposition 4 The nuisance tangent space � and its orthogonal complement space
�⊥ of the model in Case 4 are, respectively,

� = {a(x) + b(ε) : E{a(X)} = 0, E{b(ε)} = 0, E{tb(ε)} = 0,b(ε) = b(−ε)}
and

�⊥ = {
g(x, ε) : E{g(X, ε)|X} = 0, E {g(X, ε)|ε} = a(ε) + bt, a(ε)

+ a(−ε) = 0,b ∈ R
k+l},

where t = ε2 − 1.

Theorem 4 The efficient score vector in Case 4 is Seff(X,Y ) = (STeff,α, STeff,β)T,
where

Seff,α = − f ′
ε(ε)

fε(ε)
e−σ(X,β)m′

α(X,α),

Seff,β =
{

− f ′
ε(ε)

fε(ε)
ε − 1

} [
σ ′

β(X,β) − E{σ ′
β(X,β)}

]
+ 2t

E(t2)
E{σ ′

β(X,β)},
(6)

and t = ε2 − 1. The optimal efficiency matrix is

M4 ≡ E
(
Seff STeff

)
=

⎧
⎨

⎩

E
(
Seff,αSTeff,α

)
0

0 E
(
Seff,β STeff,β

)

⎫
⎬

⎭
,

where

E
(
Seff,αSTeff,α

)
= E

{
f ′
ε(ε)

2

fε(ε)2

}

E
{
e−2σ(X,β)m′

α(X,α)m′
α
T
(X,α)

}
,

E
(
Seff,β S

T
eff,β

)
= E

{
f ′
ε(ε)

2

fε(ε)2
ε2 − 1

}

E
{
σ ′

β(X,β)σ ′
β(X,β)T

}

+
[

−E

{
f ′
ε(ε)

2

fε(ε)2
ε2

}

+1+ 4

E(t2)

]

E
{
σ ′

β(X,β)
}
E

{
σ ′

β(X,β)T
}

.

3 Comparison of optimal efficiency matrices

Since we have the optimal efficiency matrices for all cases, we can now draw a formal
comparison between the cases. Specifically, we can calculate the difference between
the covariancematrices and study the difference.We present the results of the theorems
and their proofs in supplement.
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Efficient estimators in heteroscedastic models 9

Comparison of Cases 1 and 2
In general, because the Case 2 model has stronger assumptions than the Case 1

model, the estimators derived in Case 2 are not necessarily consistent with the assump-
tions of Case 1. Of course, it would not be fair to compare the estimation efficiency
of two estimator families when one has consistent and the other has inconsistent esti-
mators. We thus consider exclusively the situation where the Case 2 assumptions are
satisfied and compare the optimal efficiencies of the Case 1 and Case 2 estimators.
Here, note that the Case 2 model has consistent estimators and specifically takes into
account the independence assumption, whereas the Case 1 model also has consistent
estimators but ignores the additional independence property. Thus, intuitively, theCase
2 model estimators are larger than the Case 1 model estimators, and we can expect the
optimal efficiency matrices to satisfy that M2 − M1 is positive definite.

Theorem 5 For the Case 2 assumption, M2 − M1 = E(uuT), where

u =
⎡

⎢
⎣

{
ε − E(ε3)

E(t2)
t + f ′

ε (ε)

fε (ε)

} [
e−σ(X,β)m′

α(X,α) − E{e−σ(X,β)m′
α(X,α)}]

{
f ′
ε (ε)

fε (ε)
ε + 1 + 2t

E(t2)

} [
σ ′

β(X,β) − E{σ ′
β(X,β)}

]

⎤

⎥
⎦ .

Thus, M2 − M1 is nonnegative definite.

In general, because u �= 0, we have M2 �= M1. The only exception is when both
the mean and variance functions, that is, m(x,α) and σ(x,β), are constants, or when
ε − t E(ε3)/E(t2) + f ′

ε(ε)/ fε(ε) = ε f ′
ε(ε)/ fε(ε) + 1 + 2t/E(t2) = 0. The latter

relation leads to

f ′
ε(ε)

fε(ε)
= −ε,

where fε(ε) is a standard normal distribution. Thus, we conclude that, in general, the
optimal efficiency matrix M2 is larger than M1 in terms of positive definiteness, but
in the degenerate case when both the mean and variance of the regression function
are constants or the normalized error is independent of the covariates and is normally
distributed, the two efficiency matrices are identical.

The case of constant mean and variance is of course very special and not where a
typical heteroscedastic regression model can be used. On the other hand, a normally
distributed standardized regression error is often possible. If this is indeed the case,
the additional symmetric assumption of Case 2 will not bring in any efficiency gain.

Comparison of Cases 1 and 3
Similarly, Case 3 also has a stronger assumption than Case 1. We derive a corre-

sponding result for the two estimator classes in terms of optimal efficiency bounds.

Theorem 6 Under the Case 3 assumption, M3 − M1 = E(uuT), where

u =
[{

∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
+ ε

}
e−σ(X,β)m′

α(X,α)

0

]

.
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10 M. Kim, Y. Ma

Thus, M3 − M1 is nonnegative definite.

In general, u �= 0, except when the mean function m(x,α) is a constant or
∂ fε|X(ε,X)/∂ε/ fε|X(ε,X) + ε = 0. The latter relation implies that ε is indepen-
dent of X and has a standard normal distribution. Thus, we conclude that the optimal
efficiency matrix M3 is in general larger than M1 in terms of positive definiteness.
Except the degenerated case when m(x,α) is a constant, only when the standard-
ized regression error is normally distributed and independent of the covariates, the
symmetric error assumption of Case 3 does not bring in additional gain.

Comparison of Cases 2 and 4
We similarly compare Cases 2 and 4 under the Case 4 assumption, which is stronger

than the Case 2 assumption.

Theorem 7 Under the Case 4 assumption, M4 − M2 = E(uuT), where

u =
[{

f ′
ε (ε)

fε (ε)
+ ε

}
E{e−σ(X,β)m′

α(X,α)}
0

]

.

Therefore, M4 − M2 is nonnegative definite.

Because u �= 0, the optimal efficiency matrix M4 in general is larger than M2
in terms of positive definiteness. As with the previous comparisons, the two excep-
tional situations are when E{e−σ(X,β)m′

α(X,α)} = 0 and when ε has a standard
normal distribution. If one of these situations occurs, the symmetry assumption of
Case 4 does not bring in additional gain. Note that unlike with the earlier analysis,
E{e−σ(X,β)m′

α(X,α)} = 0 imposes a nontrivial relation between the regression mean
function in terms of its derivative and the regression standard deviation function that
holds in some practical situations.

Comparison of Cases 3 and 4
Finally, we compare Cases 3 and 4 under the Case 4 assumption.

Theorem 8 Under the Case 4 assumption, M4 − M3 = E(uuT), where

u =
[

0{
f ′
ε (ε)

fε (ε)
ε + 1 + 2t

E(t2)

} [
σ ′

β(X,β) − E
{
σ ′

β(X,β)
}]

]

.

Thus, M4 − M3 is nonnegative definite.

Because u �= 0 in general, M4 �= M3. Thus, the Case 4 assumption brings in
efficiency gain over Case 3. Note that u = 0 only when σ(x,β) is a constant or
ε f ′

ε(ε)/ fε(ε)+1+2t/E(t2) = 0. From the latter relation, fε(ε) is a standard normal
distribution. Thus, we conclude that the optimal efficiency matrix M4 in general is
larger thanM2 in terms of positive definiteness, but when themodel has homoscedastic
error or the standardized error is normally distributed, the two efficiency matrices are
identical and hence the additional independence assumption of Case 4 does not bring
in any additional efficiency gain.
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Efficient estimators in heteroscedastic models 11

We left out the comparison of Cases 2 and 3 because the assumptions of these two
cases do not have a clearly stronger or weaker relation and no definitive conclusion
can be drawn in terms of M3 − M2.

4 Numerical results

4.1 Simulations

Using simulations, we show the finite sample performance of semiparametric estima-
tors under the four cases. For all the cases, the model used is

Y = 5 exp(0.08X1 − 0.15X2) + exp(0.06X1 + 0.04X2)ε.

Thus, the mean and log-standard deviation functions are given, respectively, by

m(X,α) = α0 exp(α1X1 + α2X2), where α = (5, 0.08,−0.15)T, and (7)

σ(X,β) = β1X1 + β2X2, where β = (0.06, 0.04)T. (8)

4.1.1 Data generation

We generate X1 and X2 from the uniform distributions in (0,10) and (0,15), respec-
tively. We decide the methodology of generating ε for the four cases from the
corresponding assumptions for ε; they are presented below. We generated 1000 data
sets with sample size n = 500.

Simulation 1. Generate ε = (e− p(X))/
√
2p(X), where e ∼ χ2{p(X)} and p(X) =

(X1 + X2) + 0.5. Then, the probability density function of ε, given X, is

fε|X(ε, x) =
√
2p(x)

{√
2p(x)ε + p(x)

}p(x)/2−1

2p(x)/2	 {p(x)/2}
× exp

[
−

{√
2p(x)ε + p(x)

}/
2
]
I
{
ε > −√

p(x)/2
}
, (9)

where I (·) is an indicator function.

Simulation 2. Generate ε = (e − q)/
√
2q , where e ∼ χ2(q) and q = 13. Then, ε

has the following probability density function:

fε(ε) =
√
2q

(√
2qε + q

)(q/2−1)

2q/2	 (q/2)
exp

{
−(

√
2qε + q)

/
2
}
I
(
ε > −√

q/2
)
,

(10)

where I (·) is an indicator function.
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12 M. Kim, Y. Ma

Simulation 3. Generate ε from the different distributions according to x.

ε|X ∼
{
Unif(−√

3,
√
3), if x ∈ A,

GN
(
0,

√
	(1/k)
	(3/k) , k

)
, k = 1.7, otherwise,

where A = {(0, 5) × (0, 7.5), (5, 10) × (7.5, 15)}. Here, (a1, a2) × (b1, b2) denotes
the rectangular area with x1 ∈ (a1, a2) and x2 ∈ (b1, b2). GN(0, s, k) stands for the
generalized normal distribution with scale parameter s and shape parameter k. Its
probability density function is given by

k

2s	(1/k)
e−(|ε|/s)k . (11)

Simulation 4. Generate ε from Logistic(0,
√
3/π).

In Simulation 1, we generate ε from a standardized Chi-squared distribution whose
degree of freedom depends on X. This satisfies the error properties E(ε|X) = 0
and var(ε|X) = 1 of Case 1. For Simulation 2, we used a standardized Chi-squared
distribution whose degree of freedom is independent ofX. This ensures that ε depends
on the covariates in Simulation 1 but is independent in Simulation 2. In other words,
the data in Simulation 2 satisfy the assumption of Case 2. For Simulation 3, we used a
standardized generalized normal distribution (Nadarajah 2005), with both parameters
depending on the covariates. Here, we set s = √

	(1/k)/	(3/k) in (11) so that
E(ε|X) = 0 and var(ε|X) = 1. Thus, Simulation 3 fulfills the condition of Case 3.
Finally, for Simulation 4, we generated ε from Logistic(0,

√
3/π). The generation

strategies used here ensure that ε is symmetrically distributed for both Simulations 3
and 4, is dependent on the covariates in Simulation 3, and is independent in Simulation
4. Thus, Simulation 3 belongs to Case 4.

4.1.2 Estimation

We implement all the four estimators corresponding to the assumed four error struc-
tures for four simulations, yielding a total of 16 sets of results. Some of the assumptions
match the data generation procedure and hence are ideal. Some of the assumptions
mismatch the data generation procedure and hence lead to either an inconsistent esti-
mator when the assumptions are stronger than the true data property, or an inefficient
estimator when the assumptions are weaker than the true data property. Specifically,
we implement the methods of Cases 1–4 as shown below.

1. The Case 1 method This method is based on the weakest assumption of ε, taking
only the conditional mean and variance. Thus, to implement the method of Case 1,
we adopt the standardized Chi-squared distribution family with degree of freedom
p(x) for the model fε|X(ε, x), as given in (9). From this, we calculate E(ε3|X)

and E(t2|X) for the efficient score function (3), regardless of how the εi ’s are
generated. We then construct the efficient score function from (3) and proceed to
obtain the semiparametric efficient estimator for each simulation. We select the
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Efficient estimators in heteroscedastic models 13

degree of freedom p(x) for Simulations 1, 2, and 4 using p(x) = x1 + x2 + 0.5.
This p(x) is the true degree of freedom for Simulation 1. For the estimation of
Simulation 3, we use the degree of freedom p(x) = 10(x1 + x2 + 1), for an
acceptable performance.

2. The Case 2 method This method assumes that ε and X are independent, although
fε(ε) is not necessarily symmetric. To implement the model of Case 2, we use a
standardized Chi-squared distribution fε(ε) with degree of freedom q, as given in
(10). Using this distribution, we calculate E(ε3), E(t2), and f ′

ε(ε)/ fε(ε), to form
the efficient score function (4). We then proceed to obtain the semiparametric
efficient estimator for each simulation. For Simulations 1 and 2, we set q = 13,
which is the true parameter for Simulation 2. For Simulations 3 and 4, we use
q = 21 and q = 180, respectively.

3. The Case 3 method This method assumes fε|X(ε, x) to be a symmetric func-
tion of ε, although ε and X are not necessarily independent. To reflect this
distribution property in Simulations 1, 2, and 4, we adopt the generalized nor-
mal distribution GN(0, s, k) for fε|X(ε, x). Here, we set the scale parameter
s = √

	(1/k)/	(3/k) to ensure the unit variance property; we then set dif-
ferent values for the shape parameter k in (11). By letting k depend on X through
k = 0.06(X1 + X2)+ 1.5, we establish the dependence between ε and X. We cal-
culate E(t2|X) and f ′

ε|X(ε,X)/ fε|X(ε,X) based on the above model, to form the
efficient score function (5). For Simulation 3, we illustrate the performance of the
efficient estimator by adopting the mixture of the generalized normal distribution
that generated the data.

4. The Case 4 method This method is based on the symmetric density fε(ε),
which does not involve x. For the estimations in Simulations 1, 2, and 4, we
use the Logistic(0,

√
3/π) distribution for symmetric fε(ε). Note that Logistic

(0,
√
3/π) is the true density for Simulation 4. For Simulation 3, we implement

the GN(0,
√

	(1/k)/	(3/k), k) model for fε(ε), where k = 5.4.

For a detailed description of the efficient score function for the calculation of each
method, see Section S.11.

The results of the four methods used for Simulations 1–4 are given in Tables 1, 2,
3, and 4, respectively. From the results, we make the following observations. First,
in terms of estimation consistency, (1) only the estimator of Case 1 is consistent for
Simulation 1; (2) the estimators of both Cases 1 and 2 are consistent for Simulation
2; (3) the estimators of both Cases 1 and 3 are consistent for Simulation 3; and (4) all
the estimators are consistent for Simulation 4. The separation of consistent and incon-
sistent results is best reflected in the coverage of the 95% confidence intervals. When
an estimator is inconsistent, it has a large bias compared to its estimation standard
error, leading to a much lower coverage rate than the nominal level. This observation
confirms that to achieve consistency, we need to make only right or weaker assump-
tions on the error distribution. Any stronger assumptions made during the estimation
procedure that do not satisfy the true error structure can lead to inconsistencies.

Further, compared to the other methods used for the same simulation settings, we
observe that the estimation variabilities are minimized for the method of Case 1 in
Simulation 1, Case 2 in Simulation 2, Case 3 in Simulation 3, and Case 4 in Simulation
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14 M. Kim, Y. Ma

Table 1 Results of Simulation 1

Estimator Bias Bias (%) Var Var1 95% cov (%) 95% CI

Case 1

α̂0 5.0030 0.0030 0.06 0.0327 0.0300 95.8 (4.6898, 5.3538)

α̂1 0.0799 − 0.0001 − 0.14 3.25e−5 3.18e−5 95.9 (0.0693, 0.0909)

α̂2 − 0.1499 0.0001 − 0.06 5.34e−5 5.07e−5 94.1 (−0.1638, −0.1352)

β̂1 0.0594 − 0.0006 − 1.02 9.73e−5 8.53e−5 93.7 (0.0399, 0.0788)

β̂2 0.0401 0.0001 0.36 3.88e−5 3.59e−5 93.8 (0.0276, 0.0526)

Case 2

α̂0 5.1229 0.1229 2.46 0.0278 0.0261 88.2 (4.8038, 5.4518)

α̂1 0.0772 − 0.0028 − 3.45 2.86e−5 2.80e−5 91.4 (0.0670, 0.0877)

α̂2 − 0.1507 − 0.0007 0.45 5.13e−5 4.74e−5 94.1 (−0.1648, −0.1364)

β̂1 0.0599 − 0.0001 − 0.16 7.22e−5 6.26e−5 93.7 (0.0429, 0.0750)

β̂2 0.0425 0.0025 6.20 2.88e−5 2.63e−5 91.4 (0.0318, 0.0529)

Case 3

α̂0 4.8337 − 0.1663 − 3.33 0.0474 0.0449 82.5 (4.4554, 5.2788)

α̂1 0.0835 0.0035 4.32 4.39e−5 4.29e−5 91.1 (0.0707, 0.0964)

α̂2 − 0.1435 0.0065 − 4.34 6.42e−5 5.95e−5 85.9 (−0.1597, −0.1275)

β̂1 0.0594 − 0.0006 − 1.02 1.04e−4 8.91e−5 93.2 (0.0394, 0.0787)

β̂2 0.0402 0.0002 0.53 4.33e−5 3.82e−5 93.0 (0.0270, 0.0535)

Case 4

α̂0 4.8689 − 0.1311 − 2.62 0.0435 0.0416 86.7 (4.5238, 5.3038)

α̂1 0.0822 0.0022 2.80 4.17e−5 4.23e−5 93.6 (0.0697, 0.0946)

α̂2 − 0.1559 − 0.0059 3.94 6.57e−5 6.40e−5 90.5 (−0.1712, −0.1396)

β̂1 0.0594 − 0.0006 − 0.96 9.54e−5 8.95e−5 94.5 (0.0398, 0.0775)

β̂2 0.0414 0.0014 3.47 4.03e−5 3.88e−5 94.2 (0.0289, 0.0536)

For the data corresponding to the model of Case 1, the table uses the estimation methods of Cases 1–4. The
estimatorsmedian, the estimators median bias, the sample variance (Var) of 1000 estimators, and themedian
of 1000 estimated variances (Var1) are presented. The results are based on 500 and 1000 simulations, where
α = (5, 0.08,−0.15)T and β = (0.06, 0.04)T, respectively
The bolded method shows better result than other methods

4. This confirms the efficiency results bywhich the error properties should be exploited
to maximize the benefits of those properties. In these cases, note that the estimated
variances are very close to the sample variances, leading to a better 95% coverage rate
compared to the other estimation methods.

Third, when a weaker assumption is made with regard to the error structure, such
as for the methods of (1) Case 1 in Simulations 2, 3, and 4 and the methods of (2)
Cases 1, 2, and 3 in Simulation 4, the resulting estimators retain their consistency. In
addition, the inferences are reasonably good: The estimated variances are close to the
sample variances, and the 95% confidence interval coverage rates are also close to
the nominal level. The cost of such “wasteful” practices affects estimation efficiency;
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Table 2 Results of Simulation 2

Estimator Bias Bias (%) Var Var1 95% cov (%) 95% CI

Case 1

α̂0 5.0013 0.0013 0.03 0.0437 0.0407 94.7 (4.6343, 5.4238)

α̂1 0.0802 0.0002 0.19 3.90e−5 3.84e−5 94.7 (0.0677, 0.0925)

α̂2 − 0.1506 − 0.0006 0.41 5.27e−5 5.50e−5 95.6 (−0.1650, −0.1367)

β̂1 0.0594 − 0.0006 − 0.95 9.44e−5 8.25e−5 93.6 (0.0401, 0.0782)

β̂2 0.0401 0.0001 0.26 4.00e−5 3.47e−5 94.0 (0.0273, 0.0519)

Case 2

α̂0 5.0032 0.0032 0.06 0.0386 0.0345 94.3 (4.6509, 5.4020)

α̂1 0.0800 − 0.0000 − 0.03 3.55e−5 3.55e−5 94.0 (0.0682, 0.0920)

α̂2 − 0.1508 − 0.0008 0.56 4.87e−5 4.87e−5 95.7 (−0.1644, −0.1372)

β̂1 0.0593 − 0.0007 − 1.20 6.35e−5 6.36e−5 94.4 (0.0446, 0.0747)

β̂2 0.0400 0.0000 0.07 2.83e−5 2.83e−5 92.6 (0.0288, 0.0503)

Case 3

α̂0 4.8672 − 0.1328 − 2.66 0.0507 0.0495 88.4 (4.4492, 5.3332)

α̂1 0.0828 0.0028 3.56 4.42e−5 4.51e−5 93.1 (0.0692, 0.0954)

α̂2 − 0.1440 0.0060 − 3.97 5.91e−5 6.09e−5 87.2 (−0.1601, −0.1303)

β̂1 0.0594 − 0.0006 − 1.02 9.92e−5 8.58e−5 93.0 (0.0404, 0.0781)

β̂2 0.0399 − 0.0001 − 0.19 4.42e−5 3.73e−5 92.6 (0.0261, 0.0525)

Case 4

α̂0 4.9514 − 0.0486 − 0.97 0.0538 0.0514 93.1 (4.5369, 5.4438)

α̂1 0.0809 0.0009 1.07 4.56e−5 4.75e−5 95.2 (0.0668, 0.0933)

α̂2 − 0.1575 − 0.0075 4.98 6.43e−5 6.70e−5 86.8 (−0.1735, −0.1422)

β̂1 0.0593 − 0.0007 − 1.11 8.72e−5 8.59e−5 94.6 (0.0414, 0.0778)

β̂2 0.0403 0.0003 0.63 4.08e−5 3.80e−5 94.0 (0.0270, 0.0520)

For the data corresponding to the model of Case 2, the table uses the estimation methods of Cases 1–4.
The estimators median, the estimators median bias, the sample variances (Var) of 1000 estimators, and the
median of 1000 estimated estimator variances (Var1) are presented. The results are based on 500 and 1000
simulations, where α = (5, 0.08,−0.15)T and β = (0.06, 0.04)T, respectively
The bolded method shows better result than other methods

that is, they have large estimation variability compared to the corresponding efficient
estimators.

Finally, for each simulation, the estimators with stronger assumptions on the error
structure have smaller estimation variance. For example, in all the tables, the Case 1
method has the largest variance, while the Case 4 method has the smallest variance.
The Case 2 and Case 3 methods fall between the Case 1 and Case 4 methods, while
the relation between the Case 2 and Case 3 methods is not conclusive. This is a direct
consequence of the indefinite relation between the Case 3 and Case 4 assumptions.
Thus, to minimize the estimation variability, we need to utilize as much properties of
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Table 3 Results of Simulation 3

Estimator Bias Bias (%) Var Var1 95% cov (%) 95% CI

Case 1

α̂0 5.0183 0.0183 0.37 0.0555 0.0524 93.2 (4.5425, 5.5187)

α̂1 0.0795 − 0.0005 − 0.62 4.82e−5 4.54e−5 93.2 (0.0657, 0.0939)

α̂2 − 0.1501 − 0.0001 0.09 6.67e−5 6.11e−5 94.2 (−0.1678, −0.1357)

β̂1 0.0594 − 0.0006 − 0.99 7.12e−5 6.78e−5 94.0 (0.0422, 0.0752)

β̂2 0.0401 0.0001 0.28 3.10e−5 3.03e−5 94.5 (0.0294, 0.0510)

Case 2

α̂0 5.0595 0.0595 1.19 0.0656 0.0502 91.6 (4.5351, 5.5775)

α̂1 0.0779 − 0.0021 − 2.58 5.99e−5 4.46e−5 90.6 (0.0628, 0.0936)

α̂2 − 0.1503 − 0.0003 0.20 9.95e−5 6.48e−5 91.4 (−0.1698, −0.1307)

β̂1 0.0583 − 0.0017 − 2.84 1.81e−4 7.04e−5 85.5 (0.0330, 0.0876)

β̂2 0.0405 0.0005 1.29 8.69e−5 3.24e−5 86.7 (0.0237, 0.0588)

Case 3

α̂0 5.0095 0.0095 0.19 0.0085 0.0064 93.7 (4.8250, 5.1925)

α̂1 0.0798 − 0.0002 − 0.28 1.86e−5 1.69e−5 92.6 (0.0708, 0.0877)

α̂2 − 0.1502 − 0.0002 0.16 1.54e−5 1.45e−5 94.4 (−0.1577, −0.1424)

β̂1 0.0595 − 0.0005 − 0.77 6.32e−5 6.04e−5 93.2 (0.0437, 0.0747)

β̂2 0.0400 0.0000 0.01 2.75e−5 2.69e−5 95.1 (0.0297, 0.0502)

Case 4

α̂0 5.0219 0.0219 0.44 0.0522 0.0339 92.4 (4.5772, 5.4496)

α̂1 0.0792 − 0.0008 − 1.01 8.98e−5 4.83e−5 88.9 (0.0603, 0.0979)

α̂2 − 0.1502 − 0.0002 0.16 1.53e−4 8.78e−5 89.5 (−0.1766, −0.1262)

β̂1 0.0588 − 0.0012 − 1.92 1.41e−4 7.04e−5 83.3 (0.0347, 0.0807)

β̂2 0.0410 0.0010 2.45 6.04e−5 3.11e−5 84.6 (0.0253, 0.0556)

For the data corresponding to the model of Case 3, the table uses the estimation methods of Cases 1–4.
The estimators median, the estimators median bias, the sample variances (Var) of 1000 estimators, and the
median of 1000 estimated variances (Var1) are presented. The results are based on 500 and 1000 simulations,
where α = (5, 0.08,−0.15)T and β = (0.06, 0.04)T, respectively
The bolded method shows better result than other methods

the error structure as possible. On the other hand, one has to be careful not to impose
structures not satisfied by the error distribution, since it could lead to inconsistencies.

4.2 Data analysis

We analyze a data set of 145 US electricity producers in 1955. Nerlove (1963) sug-
gested the following Cobb–Douglas cost function to model the economic scale.

log

(
C

PF

)

= α0 + α1logQ + α2log

(
PL
PF

)

+ α3log

(
PK
PF

)

+ u, (12)
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Table 4 Results of Simulation 4

Estimator Bias Bias (%) Var Var1 95% cov (%) 95% CI

Case 1

α̂0 5.0087 0.0087 0.17 0.0611 0.0540 93.5 (4.5205, 5.4841)

α̂1 0.0803 0.0003 0.39 5.12e−5 4.83e−5 94.7 (0.0666, 0.0946)

α̂2 − 0.1503 − 0.0003 0.23 7.36e−5 6.61e−5 94.1 (−0.1679, −0.1345)

β̂1 0.0596 − 0.0004 − 0.62 1.23e−4 1.11e−4 94.4 (0.0373, 0.0806)

β̂2 0.0396 − 0.0004 − 1.00 5.57e−5 4.86e−5 92.5 (0.0249, 0.0548)

Case 2

α̂0 5.0037 0.0037 0.07 0.0543 0.0506 94.9 (4.5547, 5.4602)

α̂1 0.0801 0.0001 0.12 4.55e−5 4.50e−5 94.9 (0.0672, 0.0942)

α̂2 − 0.1504 − 0.0004 0.27 6.55e−5 6.04e−5 94.8 (−0.1673, −0.1358)

β̂1 0.0599 − 0.0001 − 0.16 1.25e−4 1.02e−4 93.3 (0.0373, 0.0809)

β̂2 0.0394 − 0.0006 − 1.44 5.46e−5 4.48e−5 92.7 (0.0252, 0.0550)

Case 3

α̂0 4.9949 − 0.0051 − 0.10 0.0484 0.0483 94.9 (4.5836, 5.4238)

α̂1 0.0800 0.0000 0.05 4.25e−5 4.38e−5 96.0 (0.0678, 0.0929)

α̂2 − 0.1505 − 0.0005 0.36 6.72e−5 6.30e−5 95.1 (−0.1672, −0.1354)

β̂1 0.0595 − 0.0005 − 0.90 1.09e−4 9.83e−5 93.6 (0.0383, 0.0793)

β̂2 0.0398 − 0.0002 − 0.51 4.88e−5 4.33e−5 93.0 (0.0251, 0.0537)

Case 4

α̂0 5.0006 0.0006 0.01 0.0459 0.0459 94.6 (4.5852, 5.4022)

α̂1 0.0802 0.0002 0.29 4.00e−5 4.14e−5 94.5 (0.0683, 0.0929)

α̂2 − 0.1506 − 0.0006 0.39 5.64e−5 5.55e−5 95.3 (−0.1657, −0.1364)

β̂1 0.0598 − 0.0002 − 0.28 9.72e−5 9.58e−5 95.1 (0.0394, 0.0775)

β̂2 0.0398 − 0.0002 − 0.55 4.37e−5 4.24e−5 94.3 (0.0265, 0.0529)

For the data corresponding to the Case 4 model, the table uses the estimation methods of Cases 1–4.
The estimators median, the estimators median bias, the sample variances (Var) of 1000 estimators, and the
median of 1000 estimated variances (Var1) are presented. The results are based on 500 and 1000 simulations,
where α = (5, 0.08,−0.15)T and β = (0.06, 0.04)T, respectively
The bolded method shows better result than other methods

where C is the cost, Q output, PK capital, PL labor, PF fuel, and u the error
term. Assume that Y = log(C/PF ), X1 = logQ, X2 = log(PL/PF ), and X3 =
log(PK /PF ). Then, (12) can be simplified as

Y = α0 + α1X1 + α2X2 + α3X3 + u. (13)

Economic theory requires that α1, α2, and α3 be positive, because the cost increases
when the output, labor, and capital increase. However, we find a negative α̂3 in Table 5
for the ordinary least squares (OLS) estimation. Since the adjusted R2 is 0.93, the
mean model in (13) represents the data sufficiently.
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Table 5 Regression estimations for the US electricity data

(a) OLS (b) Case 1 (c) Case 2 (d) Case 3 (e) Case 4

α̂0 −4.6858 (0.7837) −6.2103 (0.1836) −6.0962 (0.1369) −6.9715 (0.2667) −6.3525 (0.2144)

α̂1 0.7207 (0.0003) 0.8641 (0.0004) 0.8551 (0.0003) 0.9459 (0.0036) 0.8628 (0.0003)

α̂2 0.5940 (0.0418) 0.4874 (0.0095) 0.4974 (0.0064) 0.4569 (0.0009) 0.4540 (0.0113)

α̂3 −0.0085 (8.4253) 0.0950 (0.0080) 0.0852 (0.0058) 0.1141 (4.04e−5) 0.1255 (0.0094)

β̂0 0.0499 (0.0002) 0.0301 (0.0003) 0.0726 (0.0003) 0.0592 (0.0002)

β̂1 −0.8568 (0.0215) −0.5814 (0.0399) −1.1940 (0.0395) −0.9573 (0.0264)

β̂2 −0.5126 (0.0121) −0.4098 (0.0192) −0.8869 (0.0269) −0.5883 (0.0146)

β̂3 0.2953 (0.0292) −0.0358 (0.0245) 0.3963 (0.0356) 0.3064 (0.0300)

The parameter estimates and their variances for each estimationmethod are presented. The estimated variances
are given in parentheses. (a)OLS estimation. (b) Semiparametric estimation: Case 1with themixed asymmetric
distribution assumption of ε, givenX. (c) Semiparametric estimation: Case 2 with the Chi-squared distribution
assumption of ε, d f = 8.17. (d) Semiparametric estimation: Case 3 with the mixed generalized normal
distribution assumption of ε, given X. (e) Semiparametric estimation: Case 4 with the normal distribution
assumption of ε

The OLS is the efficient estimator for α = (α0, α1, α2, α3)
T when u is normally

distributed and homoscedastic. We thus further test the normality of u in (13). We
check the Shapiro–Wilk and Anderson–Darling tests using the null hypothesis H0;
“the regression error has a normal distribution.” The Shapiro–Wilk test statistic is
0.92 with the p value 2.25e−7, and the Anderson–Darling test statistic is 2.19 with
the p value 1.41e−5 for (13). In addition, we carry out White’s test to check for
the null hypothesis of homoscedasticity, to obtain the test statistic 70.81 with the p
value 1.06e−11. Thus, we conclude that the data set does not satisfy the normal error
assumption and reveals heteroscedasticity. Therefore, we proceed to further investigate
the error distribution by allowing for heteroscedastic nonnormal error, retaining the
Cobb–Douglas cost function. Specifically, we consider the following heteroscedastic
error model.

Y = m(X,α) + eσ(X,β)ε, E(ε|X) = 0, Var(ε|X) = 1, (14)

wherem(X,α) = α0+α1X1+α2X2+α3X3 and σ(X,β) = β0X2
1 +β1X1+β2X2+

β3X3.
Figure 1 presents the scatter plots of the (1) Y , (2) OLS residuals, and (3) log of

the OLS residual squares against the covariates. These scatter plots clearly show the
relation between X1 and Y . In the residual plot of X1, we see pattern changes near the
median value of X1. From the plot of the OLS residual squares log against the covari-
ates, we can find the shape of the σ(X,β). Because of the slight curve pattern with
regard to X1, we propose the model in (14) for σ(X,β), which includes the term X2

1.

• Case 1method Weconsider different distributions on ε according toX as follows.

ε|X ∼
{
GN

(
0,

√
	(1/p1)
	(3/p1)

, p1
)

, p1 = 1.95, where X1 ≤ median(X1),

standardized χ2(p2), p2 = 18.29, where X1 > median(X1).
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Fig. 1 US electricity data. We denote Y = log(C/PF ), X1 = logQ, X2 = log(PL/PF ), and X3 =
log(PK /PF ), where C is the cost, Q output, PK capital, PL labor, and PF the fuel. The scatter plots of the
(1) Y , (2) OLS residuals, and (3) log (OLS residual squares) against the covariates are given. In all the plots,
the data with X1 ≤median (X1) are shown in black color and those with X1 >median (X1) are shown in
gray color. In some plots, the dotted line is drawn on the median (X1) = 7.01

We obtain the degree of freedom for the above mixed distribution by minimizing
the difference between the sample and theoretical skewness. Sample skewness
(Joanes and Gill 1998) is calculated as

√
n(n − 1)

n − 2

m3

m3/2
2

,

where m3 = ∑n
i=1(ei − ē)3/n, m2 = ∑n

i=1(ei − ē)2/n, ei = {yi − m(xi , α̂)}
/eσ(xi ,β̂), and ē is the mean of ei ’s.
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• Case 2 method We use a standardized Chi-squared distribution with q = 8.17
in (10). This q value minimizes the difference between the sample and theoretical
skewness.

• Case 3 method The distribution of ε, given X , is assumed to be symmetric. For
a flexible symmetric distribution, we use a generalized normal distribution.

ε|X ∼
⎧
⎨

⎩

GN
(
0,

√
	(1/k)
	(3/k) , k

)
, k = 0.95, where X1 ≤ median(X1),

GN
(
0,

√
	(1/k)
	(3/k) , k

)
, k = 14.19, where X1 > median(X1).

That is, the distribution of ε conditional on X is given by

fε|X(ε,X) = u(X)

2	(1/u(X))
√

	(1/u(X))/	(3/u(X))

× exp

[

−
{ |ε|√

	(1/u(X))/	(3/u(X))

}u(X)
]

,

where u(X) = k1 I {X1 ≤ median(X1)} + k2 I {X1 > median(X1)}. Here, we
obtain k1 = 0.95 and k2 = 14.19 by minimizing the difference between the
sample and theoretical skewness.

• Case 4 method we use N (0, 1) for fε(ε).

The parameter estimates and their variances for Cases 1–4 are given in Table 5.
Note that we obtain a positive α̂3 in (14) with these methods, whereas α̂3 is negative
from OLS. Thus, our model results reflect the economic theory more appropriately.
The Q–Q plots and histograms of the standardized residuals obtained for Cases 1, 2, 3,
and 4 are given in Figs. 2, 3, 4, and 5, respectively . For Case 1, we assume two different
distributions on ε according to X. Figure 2 shows that the Q–Q plots are very close
to a straight line. Also, the histograms of ε̂ show a reasonable fit to the corresponding
distribution. On the other hand, Figs. 3, 4, and 5 give slightly less convincing results in
that theQ–Qplots deviate froma straight line to different extents, and/or the histograms
of the residuals do not fit the distributions well. Hence, we consider the Case 1 method
the most appropriate of the four different methods.

5 Discussion

We developed semiparametric efficient estimators for the heteroscedastic model under
four different error scenarios and studied the issue of misspecifying the standardized
error distribution through underassuming, overassuming, andmisassuming some error
properties. The overall message obtained is that error assumptions play an important
role in mean regression in terms of both efficiency and consistency. When information
is available on the error properties, such information should be taken into account
when constructing efficient estimators. On the other hand, it is risky to assume arbi-
trary structure of error distribution without careful consideration because an incorrect
assumption on an error can lead to inconsistent estimation and misleading results.
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Fig. 2 Q–Q plots and the histograms of standardized residuals obtained from Case 1 for the US electricity
data. The left-hand side of the figure gives the ε̂ versus theoretical quantiles of the assumed distribution.
The right-hand side shows the assumed density curve overlaid on each histogram of ε̂
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Fig. 3 Q–Q plot and the histogram of standardized residuals obtained from Case 2 for the US electricity
data. The left-hand side gives the ε̂ versus theoretical quantiles of the assumed distribution. The right-hand
side shows the assumed density curve overlaid on the histogram of ε̂

We proposed different estimation methods for the different error assumptions of
a regression model. Our methods can be applied practically to the regression model
based on an economic theory such as the Cobb–Douglas function, as shown in the
data example. Since we work with the parametric model for the mean and variance
functions, we need to have suitable parametric forms. Often, the mean model can be
based on practical or scientific knowledge, whereas the variance model relies more on
statistical analysis. An alternative to the model we considered here is a semiparametric
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Fig. 4 Q–Q plots and the histograms of standardized residuals obtained from Case 3 for the US electricity
data. The left-hand side gives the ε̂ versus theoretical quantiles of the assumed distribution. The right-hand
side shows the assumed density curve overlaid on each histogram of ε̂
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Fig. 5 Q–Q plot and the histogram of standardized residuals obtained from Case 4 for the US electricity
data. The left-hand side gives the ε̂ versus theoretical quantiles of the assumed distribution. The right-hand
side shows the assumed density curve overlaid on the histogram of ε̂

variance model along with the parametric mean model, which is a much richer class
and worthy of an in-depth and thorough investigation. Characterizing and modeling
standardized errors also form an important aspect of model building. In case the
standardized error and covariates are independent, the Case 2 and Case 4 methods, for
example, can benefit by taking advantage of this. However, in case the independent
assumption does not hold, it could be difficult to further characterize and model the
distribution of the standardized error, given the covariates. This would especially be
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the case if the number of observation is small and the number of covariates is large.
These issues can be interesting and useful extensions for a future work.

Supplementary materials

Supplement to “Semiparametric efficient estimators in heteroscedastic error
models”

We provide comprehensive proofs of Propositions 2–4 and Theorems 2–8, support-
ing the theory. We also describe in detail the procedures of constructing the efficient
score functions of the methods of Cases 1–4 used in simulations.

Acknowledgements Mijeong Kim was supported by a Ewha Womans University Research Grant of 2015
and a National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-
2017R1C1B5015186). Yanyuan Ma was supported by National Science Foundation DMS-1608540.

Appendix

A.1 Proof of Proposition 1

First, note that the construction of t ensures the property

E(εt |X)=E
(
ε3|X

)
−E

(
ε3|X

)
E

(
ε2|X

)
−E (ε|X)=E

(
ε3|X

)
−E

(
ε3|X

)
=0,

which is crucial for the following proof.
Following the semiparametric consideration in (1), we estimate the parameters

θ , while the nuisance parameter is the distribution fε|X(ε, x), which is subject to the
constraints E(ε|X) = 0 and E(ε2|X) = 1. Note that we do not assume any parametric
distribution model on ε. Thus, (1) is a semiparametric model. We first write out the
joint distribution of (ε,X)

fε,X(ε, x) = fε|X(ε, x) fX(x) = η1(x)η2(ε, x),

where η1(·) and η2(·) denote the infinite-dimensional nuisance parameter function.
Since η1(·) and η2(·) are probability density functions, we have

∫

η1(x)dx = 1, and
∫

η2(ε, x)dε = 1 for all x. (15)

In the Hilbert space H formed by all the mean zero finite variance functions, the
nuisance tangent space of a semiparametric model is the mean squared closure of
all the parametric submodel nuisance tangent spaces. A parametric submodel is
defined as a parametric model included by the original semiparametric model and
includes the true density f (ε,X; θ0, γ 0). A nuisance tangent space of the para-
metric model f (ε,X; θ , γ ) is a linear space spanned by the nuisance score vector
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Sγ = ∂log f (ε,X; θ0, γ )/∂γ |γ 0
. From the above general concept, we first derive the

nuisance tangent space �. From Condition (2), we have

∫

εη2(ε, x)dε = 0 for all x, and
∫

ε2η2(ε, x)dε = 1 for all x. (16)

From (15) and (16), it follows that

�1 = {a(x) : E{a(X)} = 0},
�2 = {b(x, ε) : E{b(X, ε)|X} = E{εb(X, ε)|X} = E{ε2b(X, ε)|X} = 0}

= {b(x, ε) : E{b(X, ε)|X} = E{εb(X, ε)|X} = E{tb(X, ε)|X} = 0}.

In the above, we use

E{tb(X, ε)|X} = E{ε2b(X, ε)|X} − E(ε3|X)E{εb(X, ε)|X} − E{b(X, ε)|X}
= E{ε2b(X, ε)|X} = 0.

Combining �1 and �2, the nuisance tangent space � can be written as

� = �1 ⊕ �2

= {h1(x) + h2(x, ε) : E{h1(X)} = E{h2(x, ε)|X} = E{εh2(x, ε)|X}
= E{th2(X, ε)|X} = 0}

= {h(x, ε) : E{h(x, ε)} = E{εh(x, ε)|X} = E{th(X, ε)|X} = 0}.

In order to find �⊥, we let K = {g(x, ε) : g(x, ε) = g1(x)ε + g2(x)t} and have
�⊥ = K by showing that K ⊂ �⊥ and �⊥ ⊂ K.

For arbitrary h(x, ε) ∈ � and g(x, ε) = g1(x)ε + g2(x)t ∈ K,

E{h(X, ε)Tg(X, ε)}
= E

[
E{h(X, ε)Tg(X, ε)|X}

]

= E
[
E{εh(X, ε)|X}Tg1(X)

]
+ E

[
E{th(X, ε)|X}Tg2(X)

]
= 0.

Hence, g(x, ε) = g1(x)ε + g2(x)t ∈ �⊥. Thus, K ⊂ �⊥.
Now, we will show �⊥ ⊂ K.

For arbitrary h(x, ε) ∈ �⊥, we can decompose h(x, ε) into h(x, ε) = r1(x, ε) +
r2(x, ε), where

r1(X, ε) = h(X, ε) − E{εh(X, ε)|X}ε − E{th(X, ε)|X}
E(t2|X)

t,

r2(X, ε) = E{εh(X, ε)|X}ε + E{th(X, ε)|X}
E(t2|X)

t.
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It is obvious that r2(x, ε) ∈ K. Since r2(x, ε) ∈ K ⊂ �⊥ and h(x, ε) ∈ �⊥, we have
r1(x, ε) = h(x, ε) − r2(x, ε) ∈ �⊥. For r1, we can easily verify that

E{r1(X, ε)} = E{εr1(X, ε)|X} = E{tr1(X, ε)|X} = 0.

This indicates that r1(x, ε) ∈ �. Since r1(x, ε) is also an element of�⊥, it follows that
r1(x, ε) = 0, and we obtain h(x, ε) = r2(x, ε) ∈ K. We next show that h(x, ε) ∈ K
for arbitrary h(x, ε) ∈ �⊥. Thus, �⊥ ⊂ K.

Consequently, we have

�⊥ = {g(x, ε) : g(x, ε) = g1(x)ε + g2(x)t}.

�

A.2 Proof of Theorem 1

In model (1), we obtain the score functions of θ = (αT,βT)T as

Sα = ∂log fX,Y (X, y)

∂α
= −∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
e−σ(X,β)m′

α(X,α),

Sβ = ∂log fX,Y (X, y)

∂β
= −∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
εσ ′

β(X,β) − σ ′
β(X,β).

By projecting the above score vectors onto �⊥, we can find the efficient score vectors
of α and β.

First, Seff,α and Seff,β are the form of g1(x)ε + g2(x)t . Thus, Seff ∈ �⊥.
Now, we verify that Sθ − Seff ∈ �. Sθ − Seff is given by

Sα − Seff,α = e−σ(X,β)m′
α

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
− ε + E(ε3|X)

E(t2|X)
t

}

,

Sβ − Seff,β = σ ′
β(X,β)

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
ε − 1 − 2t

E(t2|X)

}

.

We verify Sθ − Seff ∈ � by showing the following.

E(Sθ − Seff) = 0, E{ε(Sθ − Seff)|X} = 0, E{t (Sθ − Seff)|X} = 0.

We can check the details as follows.

E(Sα − Seff,α|X)= e−σ(X,β)m′
α(X,α)E

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
−ε+ E(ε3|X)

E(t2|X)
t |X

}

=0,

E(Sβ − Seff,β |X) = σ ′
β(X,β)E

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
ε − 1 − 2t

E(t2|X)
|X

}

= 0.
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The above results imply that E(Sθ − Seff) = 0.

E{ε(Sα − Seff,α)|X} = e−σ(X,β)m′
α(X,α)

E

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
ε − ε2 + E(ε3|X)

E(t2|X)
εt |X

}

= 0,

E{t (Sα − Seff,α)|X} = e−σ(X,β)m′
α(X,α)

E

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
t − εt + E(ε3|X)

E(t2|X)
t2|X

}

= 0,

E{ε(Sβ − Seff,β)|X} = σ ′
β(X,β)E

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
ε2 − ε − 2εt

E(t2|X)
|X

}

= 0,

E{t (Sβ − Seff,β)|X} = σ ′
β(X,β)E

{

−∂ fε|X(ε,X)/∂ε

fε|X(ε,X)
εt − t − 2t2

E(t2|X)
|X

}

= 0.

The above equations verify that Sθ − Seff ∈ �.
Now, we find the optimal efficiency matrix. First, we calculate Seff STeff .

Seff STeff =
{
Seff,αSTeff,α Seff,αSTeff,β
Seff,β STeff,α Seff,β STeff,β

}

,

where

Seff,αSTeff,α =
{

ε − E(ε3|X)

E(t2|X)
t

}2

e−2σ(X,β)m′
α(X,α)m′T

α(X,α),

Seff,αSTeff,β = 2te−σ(X,β)

E(t2|X)

{

ε − E(ε3|X)

E(t2|X)
t

}

m′
α(X,α)σ ′T

β(X,β),

Seff,β S
T
eff,β = 4t2

{E(t2|X)}2 σ ′
β(X,β)σ ′T

β(X,β).

Since E(Seff STeff) = E{E(Seff SeffT|X)}, we have each block inside E(Seff STeff) as
follows.

1. E(Seff,αSTeff,α) is equivalent to

E

(

E

[{

ε − E(ε3|X)

E(t2|X)
t

}2

|X
]

e−2σ(X,β)m′
α(X,α)m′T

α(X,α)

)

.

From the above expression, we can rewrite the part E

[{
ε − E(ε3|X)

E(t2|X)
t
}2 |X

]

as

E

[{

ε − E(ε3|X)

E(t2|X)
t

}2

|X
]

= 1 + {E(ε3|X)}2
E(t2|X)

.
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Thus, E(Seff,αSTeff,α) becomes

E

([

1 + {E(ε3|X)}2
E(t2|X)

]

e−2σ(X,β)m′
α(X,α)m′T

α(X,α)

)

.

2. E(Seff,αSTeff,β) can be rewritten as

E

[

E

{

εt − E(ε3|X)

E(t2|X)
t2|X

}
2

E(t2|X)
e−σ(X,β)m′

α(X,α)σ ′T
β(X,β)

]

= E

{

−2E(ε3|X)

E(t2|X)
e−σ(X,β)m′

α(X,α)σ ′T
β(X,β)

}

.

3. E(Seff,β STeff,β) is equivalent to

E

(
4E(t2|X)

{E(t2|X)}2 σ ′
β(X,β)σ ′T

β(X,β)

)

= E

{
4

E(t2|X)
σ ′

β(X,β)σ ′T
β(X,β)

}

.

Theorem 1 is the immediate consequence of the above calculations. �
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