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Abstract A negative binomial (NB) distribution is useful to model over-dispersed
count data arising from agriculture, health, and pest control. We design purely sequen-
tial bounded-risk methodologies to estimate an unknown NB mean μ(> 0) under
different forms of loss functions including customary and modified Linex loss as well
as squared error loss. We handle situations when the thatch parameter τ(> 0) may
be assumed known or unknown. Our proposed methodologies are shown to satisfy
properties including first-order asymptotic efficiency and first-order asymptotic risk
efficiency. Summaries are provided fromextensive sets of simulations showing encour-
aging performances of the proposed methodologies for small and moderate sample
sizes. We follow with illustrations obtained by implementing estimation strategies
using real data from statistical ecology: (1) weed count data of different species from
a field in Netherlands and (2) count data of migrating woodlarks at the Hanko bird
sanctuary in Finland.
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1050 N. Mukhopadhyay, S. R. Bapat

1 Introduction

In this paper, we develop purely sequential methodologies for estimating the mean μ

of a negative binomial (NB) distribution under various forms of the loss function. A
NB distribution has been used widely to model over-dispersed count data in ecology
and agriculture. Anscombe (1949, 1950) emphasized the role of NB modeling in the
case of insect count data in entomological research.

We will work with a NB parametrized by Anscombe (1949) where one assumes
the following probability mass function (p.m.f.):

f (x;μ, τ) ≡ Pμ,τ (X = x) =
(
1 + μ

τ

)−τ �(τ + x)

x !�(τ)

(
μ

μ + τ

)x

, x = 0, 1, 2, . . .

(1)
Here, the response variable X may stand for the count of insects on plants or count of
a particular variety of weed in an agricultural plot.

The probability model (1) is referred to as a NB distribution involving two param-
eters abbreviated as NB(μ, τ) where 0 < μ, τ < ∞. This notation pretends
that μ, τ are both unknown. If τ is known, then we will interpret f (x;μ, τ) as
f (x;μ) ≡ Pμ(X = x). In what follows, we use the notation IA or I (A) inter-
changeably to denote the indicator function of set A.

The mean parameter μ is unknown, but τ may or may not be known. We have
included both situations where τ is assumed known (Sect. 2) or τ is assumed unknown
(Sect. 3).

The parameterμ used in (1) is interpreted as the average insect count or the average
number of weed per sampling unit, whereas τ indicates the degree of clumping or
thatching of infestation per sampling unit. The mean and variance for the distribution
(1) are given by:

Eμ,τ [X ] ≡ μ and Vμ,τ [X ] ≡ σ 2 = μ + τ−1μ2. (2)

Again, this notation pretends that μ, τ are both unknown. If τ is known, then we will
interpret Eμ,τ [.] and Vμ,τ [.] as Eμ[.] and Vμ[.], respectively.

Some selected references interfacing a NB model and sequential and/or multistage
sampling strategies in agriculture and biology include: Bliss and Owen (1958), Kuno
(1972), Mukhopadhyay (2002), Mukhopadhyay and de Silva (2005), Mukhopadhyay
and Banerjee (2014, 2015), and Banerjee and Mukhopadhyay (2016). For a general
overview in the broad area of sequential and multistage inference methodologies, one
may refer toMukhopadhyay and Solanky (1994), Ghosh et al. (1997), Mukhopadhyay
et al. (2004), Mukhopadhyay and de Silva (2009), Zacks (2009), and other sources.

Willson and Folks (1983) and Willson et al. (1984) contained a wide variety
of sequential problems arising from estimation of a NB mean. One may refer to
Mukhopadhyay and Diaz (1985) for an overview of a two-stage point estimation
problem. Mukhopadhyay and Banerjee (2014, 2015) included an extensive set of
literature review. A majority of sources had dealt with problems of sequential fixed-
width or fixed-accuracy confidence intervals, point estimation under a squared error
loss (SEL), or tests for μ.
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Bounded-risk estimation of the negative binomial mean 1051

A customary Linex loss, introduced originally by Varian (1975), combined a linear
component with an exponential component. Such an asymmetric loss has been widely
used in situations where one assigns unequal penalties for over-estimation and under-
estimation. Varian’s (1975) Linex loss in estimating a generic parameter θ with θ̂n is
defined as follows:

Ln ≡ Ln
(
θ̂n, θ

) = exp
{
a(θ̂n − θ)

} − a(θ̂n − θ) − 1, a ∈ R. (3)

One may refer to Zellner (1986) and Chattopadhyay (1998, 2000) to gain a broader
perspective. One may additionally refer to Mukhopadhyay and Bapat (2016a, b) for
further practical applications under appropriate modifications of (3) under negative
exponential models. In this paper, we develop only purely sequential methodologies
for bounded-risk point estimation. Next, we describe the layout of this paper.

1.1 Layout of this paper

Let us provide a precise outline of this paper for a clear and crisp road-map. In all
sections, our primary goal is estimation of unknown μ with a preassigned risk-bound
ω(> 0).

(a) Section 2 assumes τ known:
• Section 2.1 develops an estimation strategy under modified Linex loss defined
in (5).

• Section 2.2 develops an estimation strategy under squared error loss (SEL)
defined in (32).

• Both subsections show first-order asymptotic efficiency and risk efficiency
properties (Theorems 1, 2).

(b) Section 3 assumes τ unknown:
• Section 3.1 develops an estimation strategy under squared error loss (SEL)
defined in (51).

• Section 3.2 develops an estimation strategy under customaryLinex loss defined
in (56).

• Both subsections derive first-order asymptotic efficiency and risk efficiency
properties (Theorems 3, 4).

(c) Section 4 summarizes performances obtained fromsimulations.All requisite com-
puter programs were prepared using our own R (R Core Team 2014) codes:
• Sections 4.1, 4.2 address the two problems from Sects. 2.1, 2.2 (τ known).
• Sections 4.3, 4.4 address the two problems from Sects. 3.1, 3.2 (τ unknown).

(d) Section 5 summarizes performances obtained from real data applications from
ecology:
• Sections 5.1, 5.2 address the problems from Sects. 2.1, 2.2 (τ known).
• Sections 5.3, 5.4 address the problems from Sects. 3.1, 3.2 (τ unknown).

(e) Section 6 gives some brief concluding thoughts.
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1052 N. Mukhopadhyay, S. R. Bapat

2 The thatch parameter τ is known

This section develops purely sequential bounded risk estimation methodologies for
μ when the thatch parameter τ is assumed known under two different formulations.
Specifically, Sects. 2.1 and 2.2 formulate and investigate appropriated approaches
associated with (i) modified Linex loss under CV and (ii) squared error loss, respec-
tively.

2.1 Modified Linex loss under CV approach

In this section, we introduce an appropriate modification to the conventional
form of Linex loss shown in (3). We assume that we have available a sequence
{X1, . . . , Xn, . . .} of independent and identically distributed (i.i.d.) random variables
from a NB(μ, τ ) population. Then, we develop a purely sequential bounded-risk
methodology to estimate the NB mean μ under modified Linex loss (5) when τ is
assumed known.

2.1.1 A modified Linex loss

We revisit the coefficient of variation (CV) approach originated by Willson and
Folks (1983) which was further developed by Mukhopadhyay and Diaz (1985) and
Mukhopadhyay and de Silva (2005). The customary Linex loss from (3)may bemildly
modified by taking the CV approach into account. We may let:

W ∗
n ≡ W ∗

n

(
θ̂n, θ

) = exp

{
a(θ̂n − θ)

θ

}
− a(θ̂n − θ)

θ
− 1, a ∈ R, (4)

pretending that the unknown θ parameter is non-zero and it is estimated by a generic
estimator θ̂n .

Having recorded X1, . . . , Xn , we denote the samplemean Xn = n−1�n
i=1Xi which

estimates μ and in the light of (4), we propose a modified Linex loss function for the
point estimation problem on hand as follows. We define:

Ln ≡ Ln
(
Xn, μ

) = exp

{
a(Xn − μ)

μ

}
− a(Xn − μ)

μ
− 1, a ∈ R. (5)

Next, we express the risk function as follows:

Eμ[Ln] = Eμ

[
exp

{
a(Xn − μ)

μ

}]
− Eμ

[
a

(
Xn − μ

μ

)]
− 1

= e−a
[
1 + μ

τ
(1 − et )

]−nτ − 1, usingm.g.f. of Xn

= exp

(
a2

2nμ

)
+ a2

2nτ
+ o

(
1

n

)
− 1. (6)
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Bounded-risk estimation of the negative binomial mean 1053

Thus, from (6), the risk associated with themodified Linex loss function (5) reduces
to:

Rn ≡ Eμ[Ln] = a2

2n

(
τ−1 + μ−1

)
+ o(n−1). (7)

2.1.2 Sequential bounded risk estimation

The idea here is to bound the risk Rn given in (7) from above by a suitable constant,
namely the risk-bound, ω(> 0) for all μ. This leads us to obtain the optimal fixed
sample size n∗ approximately as follows:

n ≥ a2

2ω

{
τ−1 + μ−1

}
= a2

2ω

σ 2

μ2 = n∗, say. (8)

The magnitude of n∗ remains unknown even though its expression is given by (8).
Hence, we resort to developing a purely sequential bounded risk estimation strategy
next.

Now, Looking back at the expression of n∗ from (8), we see clearly that

n∗ >
a2

2ωτ
, (9)

and hence, we determine the pilot size m as follows: Let

m ≡ m(ω) =
⌊

a2

2ωτ

⌋
+ 1, (10)

where �u� denotes the largest integer < u(> 0) and we first gather pilot data Xi , i =
1, . . . ,m.

After pilot data, we gather one additional observation at-a-time, as needed, accord-
ing to the stopping rule that is defined next. Since Xn may be zero with a positive
probability, whatever be n, we fix a number γ (> 1

2 ) and define:

N = inf

{
n ≥ m : n ≥ a2

2ω

[
τ−1 + (

Xn + n−γ
)−1

]}
. (11)

Here, Xn + n−γ is an estimator of μ that is positive with (Pμ) probability one
and that the classical central limit theorem (CLT) will remain in effect for
n1/2

(
Xn + n−γ − μ

)
since γ > 1

2 . At termination, based on the fully gathered data
{N , X1, . . . , Xm, . . . , XN }, we propose to estimate μ by the sample mean XN .

Now, we prove a lemma which will be useful in the sequel in proving asymptotic
risk efficiency property for the estimation strategy (N , XN ).

Lemma 1 For the estimation strategy (N , XN ) defined via (11), for each fixed μ ∈
R+, τ ∈ R+, γ > 1

2 , and s ∈ R+, we have as ω→0:

Eμ

[∣∣XN − μ
∣∣s] → 0.
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1054 N. Mukhopadhyay, S. R. Bapat

Proof Consider s fixed. We begin with the following inequality:

0 ≤ XN ≤ supn≥1Xn = W, say, (12)

where certainly all positive powers of W are integrable in view of Wiener’s (1939)
ergodic theorem because all positive moments of the X ’s are finite. Obviously, XN →
μ in probability (Pμ) as ω→0. Hence, we can claim:

Eμ

[
X
k
N

]
→ μk, (13)

since X
k
N is uniformly integrable in view of (12), for all k > 0.

Now, for a fixed positive integer r(> s), we apply Jensen’s inequality to write:

Eμ

[∣∣XN − μ
∣∣r] = μr Eμ

[∣∣∣∣∣
XN

μ
− 1

∣∣∣∣∣
r]

≤ μr E1/2
μ

⎡
⎣
∣∣∣∣∣
XN

μ
− 1

∣∣∣∣∣
2r
⎤
⎦ . (14)

But, since 2r is an even positive integer, we can express:

Eμ

⎡
⎣
∣∣∣∣∣
XN

μ
− 1

∣∣∣∣∣
2r
⎤
⎦ = �2r

i=0(−1)i
(
2r

i

)
Eμ

⎡
⎣
(
XN

μ

)2r−i
⎤
⎦ < ∞, (15)

in view of binomial theorem and (13). Combining (14), (15), we can immediately
claim uniform integrability of

∣∣XN − μ
∣∣s which completes the proof. ��

We now establish a number of attractive first-order asymptotic properties in The-
orem 1 for the proposed purely sequential estimation strategy (N , XN ). Their proofs
are outlined in Sect. 2.1.3.

Theorem 1 With loss function LN , pilot size m, and terminal sample size N defined
in (5), (10) and (11), respectively, under the purely sequential estimation rule (N , XN )
from (11), for each fixed μ ∈ R+ and τ ∈ R+ we have as ω→0:

(i) N/n∗ Pμ→ 1 if γ > 1
2 ;

(ii) Eμ

[
(N/n∗)s

]→1 for all s, i f γ > 1
2 (or > 1) when s < (or >)0 [asymptotic

first-order efficiency];
(iii) Eμ [LN ] /ω → 1 if γ > 1 [asymptotic risk efficiency];

where n∗ comes from (8).

Part (ii) shows that the sequential methodology (11) is asymptotically efficient
in the sense of Chow and Robbins (1965) and asymptotically first-order efficient in
the sense of Ghosh and Mukhopadhyay (1981). That is, we may expect the terminal
sample size N to hover around the optimal fixed sample size n∗ when n∗ is large.
Part (iii) shows that the achieved risk Eμ [LN ] may be expected to hover around the
preassigned risk-bound ω when n∗ is large.
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Bounded-risk estimation of the negative binomial mean 1055

2.1.3 Proof of Theorem 1

Part (i):
From (11), we get the following inequality:

a2

2ω

{(
XN + N−γ

)−1 + τ−1
}

≤ N ≤ a2

2ω

{(
XN−1 + (N − 1)−γ

)−1 + τ−1
}
I (N > m)

+ (m − 1)I (N = m) + 1 w.p.1(Pμ). (16)

Dividing (16) throughout by n∗ we get:

{(
XN + N−γ

)−1 + τ−1
}

(μ−1 + τ−1)−1 ≤ N/n∗

≤
{(

XN−1 + (N − 1)−γ
)−1 + τ−1

}

×(μ−1 + τ−1)−1 + (m − 1)n∗−1 I (N = m)

+2ω

a2
(μ−1 + τ−1)−1 w.p.1(Pμ). (17)

Next, taking limits on all sides of (17) and noting the following facts: N → ∞
w.p.1(Pμ), XN → μ w.p.1(Pμ), m/n∗ = O(1), and Pμ(N = m) → 0 as ω → 0,
completes the proof of Part (i).

Part (ii):

Case 1: s < 0.
From (11) we get the following inequality w.p.1(Pμ):

N

n∗ ≥ 1

n∗
a2

2ω

(
1

XN + N−γ

)
= μ2

σ 2

(
1

XN + N−γ

)

⇒ n∗

N
≤ σ 2

μ2

(
XN + N−γ

) ≤ σ 2

μ2 supn≥1
(
Xn + 1

) = W, say,⇒
(
N

n∗

)s

≤ Ws .

But, again Ws is clearly integrable in view of Wiener’s (1939) ergodic theorem.
Thus, using part (i), we conclude:

Eμ

[(
N

n∗

)s]
→ 1 asω → 0when s < 0. (18)

Note that γ > 1
2 suffices when s < 0.

Case 2: s > 0.
This part follows along the lines of Willson and Folks (1983) who improvised upon
some of the original techniques fromMukhopadhyay (1974). Accordingly, we first fix
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1056 N. Mukhopadhyay, S. R. Bapat

some arbitrarily small ε > 0 and define β = (1+ ε)1/sn∗. We tacitly disregard that β
may not be an integer. Then, we may write:

Eμ[Ns] ≤ (β + 1)sn∗s Pμ(N ≤ β + 1) + T (β), say,

where T (β) = �∞
n>β+1n

s Pμ(N = n).
Next, using the moment generating function of �n

i=1Xi , which is distributed as

N B(nμ, nτ), we show that T (β) ≤ �∞
n=1dn where dn > 0 and d1/nn → d, 0 < d < 1,

as n → ∞. Hence, we can claim:

lim supω→0Eμ

[(
N/n∗)s] ≤ 1 + ε, (19)

but ε(> 0) is arbitrary. Also, from part (i) and Fatou’s lemma, we have:

lim infω→0Eμ,τ

[(
N/n∗)s] ≥ Eμ,τ

[
lim infω→0

(
N/n∗)s] = 1. (20)

Essential details are included inBapat (2017).Now, combining (18)–(20) completes
the proof of Part (ii).
Part (iii):

We will improvise upon some of the techniques developed recently by Mukhopad-
hyay and Zacks (2017). For a clear presentation, we split the proof into a number of
(main) steps as follows:

Step 1:
From (5), we express:

ω−1Eμ[LN ]
= n∗

σ 2 Eμ

[
(XN − μ)2

]
+ a

3μ
Eμ

[
n∗

σ 2 (XN − μ)3e
a
μ

ξN

]

= n∗

σ 2 Eμ[I1] + a

3μσ 2 n
∗Eμ[I2], say, (21)

where ξN is a random variable between 0 and (XN − μ).

Step 2:
Wefirst address the termn∗Eμ[I2] from (21) and show that it iso(1). FromAnscombe’s
(1952) random CLT, with WN = �N

i=1Xi , we can claim:

U ≡ UN = WN − Nμ

σ
√
n∗

£→ N (0, 1), as ω → 0. (22)

With U from (22), we may express n∗ I2 as follows w.p.1(Pμ):

n∗5/2

N 3 σ 3U 3e
a
μ

ξN = σ 3e
a
μ

ξN

(
n∗

N

)3

n∗−1/2U 3. (23)
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Bounded-risk estimation of the negative binomial mean 1057

Case 1: On the set where a
μ
ξN < 0, (23) gives w.p.1(Pμ):

n∗ |I2| I
(
a

μ
ξN < 0

)
≤ σ 3

(
n∗

N

)3

n∗−1/2 |U |3 . (24)

From Theorem 2 of Chow et al. (1979), we can claim: |U |s is uniformly integrable
for all s > 0 when γ > 1. Also, from Theorem 1, part (ii), it follows that (n∗/N )s is
uniformly integrable for fixed s > 0 when γ > 1

2 . Using Cauchy-Schwartz inequality,
we claim:

Eμ

[∣∣∣∣∣
(
n∗

N

)3

U 3

∣∣∣∣∣

]
≤ E1/2

μ

[(
n∗

N

)6
]
E1/2

μ

[∣∣∣U 6
∣∣∣
]

= O(1),

which combined with (24) shows (when γ > 1):

Eμ

[
n∗ |I2| I

(
a

μ
ξN < 0

)]
= o(1). (25)

Case 2: On the set where a
μ
ξN ≥ 0, (23) gives w.p.1(Pμ):

n∗ |I2| I
(
a

μ
ξN ≥ 0

)
= σ 3e

a
μ

ξN

(
n∗

N

)3

n∗−1/2 |U |3 I
(
a

μ
ξN ≥ 0

)
, (26)

and we will now show that

Eμ

[(
n∗

N

)3

e
a
μ

ξN |U |3 I
(
a

μ
ξN ≥ 0

)]
= O(1).

Upon repeated uses of Holder’s inequality to split the expectations of various terms
within (26), with appropriate choices of α > 1, β > 1, α−1 + β−1 = 1 and α′ >

1, β ′ > 1, α′−1 + β ′−1 = 1, we claim (when γ > 1):

Eμ

[(
n∗

N

)3

e
a
μ

ξN |U |3 I
(
a

μ
ξN ≥ 0

)]
≤ O(1)E1/βα′

μ

[
e

a
μ

βα′ξN I

(
a

μ
ξN ≥ 0

)]
.

(27)
Next, we verify:

Eμ

[
eλξN I

(
a

μ
ξN ≥ 0

)]
= O(1),

where we see λ = a
μ
βα′ from (27) and thus write w.p.1(Pμ):

eλξN I

(
a

μ
ξN ≥ 0

)
≤ e

∣∣λ(XN−μ
)∣∣ = �∞

s=0
1

s!
∣∣λ (XN − μ

)∣∣s , (28)
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1058 N. Mukhopadhyay, S. R. Bapat

with each term positive and integrable. So, by applying the monotone convergence
theorem, we have from (28):

Eμ

[
eλξN I

(
a

μ
ξN ≥ 0

)]
≤ �∞

s=0
1

s! Eμ

[∣∣λ (XN − μ
)∣∣s] . (29)

Then, after using Lemma 1, from (29), we can claim (when γ > 1):

limω→0Eμ

[
eλξN I

(
a

μ
ξN ≥ 0

)]
= 0. (30)

A combination of (23), (25), and (30) leads us to conclude (when γ > 1):

n∗Eμ[I2] = o(1). (31)

Step 3:
Next, we go back to the term n∗

σ 2 Eμ[I1] from (21), and show that it converges to 1 as
ω → 0. Upon improvising the proof found in Mukhopadhyay (1978), a precursor of
Ghosh and Mukhopadhyay (1979), we can conclude that limω→0

n∗
σ 2 Eμ[I1] = 1. This

completes the proof of Part (iii). ��
Remark 1 Itwill be a fair question to askwhether one could develop apurely sequential
bounded risk approach under customary Linex loss in the spirit of (3). Yes, that is
certainly possible. In Sect. 4 of the original version of this paper, we had included
such details. In this present version, however, we have omitted that for brevity. Much
related details are still available in Bapat (2017).

2.2 Squared error loss approach

In this section, we develop a purely sequential estimation strategy for estimating the
mean of a NB(μ, τ ) population under squared error loss (SEL). Having recorded
X1, . . . , Xn , recall that the sample mean Xn = n−1�n

i=1Xi estimates μ and we
propose SEL:

Ln ≡ Ln(Xn, μ) = b(Xn − μ)2, b > 0. (32)

We express the risk function associated with (32) as:

Rn ≡ Eμ[Ln] = b

n

(
μ + τ−1μ2

)
. (33)

2.2.1 Sequential bounded risk estimation

We will again bound the risk Rn given in (33) from above by ω(> 0). This leads us
to the optimal fixed sample size n∗ approximately as follows:

n ≥ b

ω

(
μ + τ−1μ2

)
= n∗, say. (34)
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Bounded-risk estimation of the negative binomial mean 1059

Themagnitude of n∗ remains unknown even though its expression is in (34). Again,
we resort to developing a purely sequential estimation strategy next.

A major difference between (8) and (34) is the fact that we do not have a known
and positive lower bound along the line of (9) for n∗ defined in (34). Thus, we first fix
m(≥ 1) and gather pilot data Xi , i = 1, . . . ,m of size m from the NB population and
define our stopping variable as:

N = inf

{
n ≥ m : n ≥ b

ω

[
Xn + τ−1X

2
n + n−γ

]}
, (35)

where γ (> 1
2 ) is fixed. Based on full data {N , X1, . . . , Xm, . . . , XN }, we propose to

estimate μ by the sample mean XN .
Theorem 2 shows a set of attractive first-order asymptotic properties for the

proposed purely sequential estimation methodology (N , XN ) obtained from (35).
Interpretations of these results stay similar to those explained under Theorem 1.

Theorem 2 With loss function LN and terminal sample size N defined in (32) and
(35), respectively, under the purely sequential estimation rule (N , XN ) from (35), for
each fixed μ ∈ R+ and τ ∈ R+ we have as ω→0:

(i) N/n∗ Pμ→ 1 if γ > 1
2 ;

(ii) Eμ

[
(N/n∗)s

] → 1 for all s > 0, if γ > 1
2 [asymptotic first-order efficiency];

(iii) Eμ [LN ] /ω → 1if γ > 1[asymptotic risk efficiency];
where n∗ comes from (34).

2.2.2 Proof of Theorem 2

Wemay construct a proof of Part (i) along the line of our proof of Part (i) in Theorem 1.
Hence, we omit it.
Part (ii):

From (35), we express the following inequality (for sufficiently large n∗) w.p.1(Pμ):

N/n∗ ≤
(
XN−1 + τ−1X

2
N−1 + (m − 1)−γ

)
(μ + τ−1μ2)−1 + m. (36)

Now, denoting sup
n≥2

(
Xn + τ−1X

2
n

)
as W we can claim w.p.1(Pμ):

N/n∗ ≤ (μ + τ−1μ2)−1{W + 1} + m. (37)

The right-hand side of (37) is free from ω and using Wiener’s (1939) ergodic
theorem we can claim the uniform integrability of all positive powers of N/n∗. Next,
appealing to Part (i), we complete the proof. Here, γ > 1

2 suffices.
Part (iii): This proof is split into a number of steps for clarity by improvising on the
techniques that were originally developed by Ghosh and Mukhopadhyay (1979) and
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1060 N. Mukhopadhyay, S. R. Bapat

then moved further along by Sen and Ghosh (1981). Throughout, we fix an arbitrary
ε in (0, 1).

Step 1: We note:

Eμ[LN ]/ω = b

ω
Eμ

[
(XN − μ)2

]
= n∗

σ 2 Eμ

[
(XN − μ)2

]
.

Now, we need to verify that n∗
σ 2 Eμ

[(
XN − μ

)2] → 1 as ω → 0 when γ > 1. This

can be shown as follows:
In the spirit of (21), we express:

n∗

σ 2 Eμ

[(
XN − μ

)2] = Eμ

[
U 2

N

]
+Eμ

[
U 2

N

{
n∗2

N 2 − 1

}]
= Eμ [I1]+Eμ [I2] , say,

(38)
where

UN = WN − Nμ

σ
√
n∗ with WN = �N

i=1Xi and N comes from (35).

In a straightforward fashion, we can claim that Eμ [I1] → 1 as ω → 0 when
γ > 1

2 . Next, we have to verify:

Eμ [I12] → 0 as ω → 0. (39)

Step 2:
On the set |N − n∗| ≤ εn∗, we can express:

1

1 + ε
≤ n∗

N
≤ 1

1 − ε
⇒ −ε(2 + ε)

(1 + ε)2
≤
(
n∗2

N 2 − 1

)
≤ ε(2 + ε)

(1 − ε)2
,

which shows:

∣∣∣∣∣
(
n∗

N

)2

− 1

∣∣∣∣∣ I[|N−n∗|≤εn∗] ≤ ε(2 + ε)(1 − ε)−2. (40)

Step 3:

We recall that UN
£→ N (0, 1) by Anscombe’s (1952) random CLT so that U 2

N
£→ χ2

1
as ω → 0, and since Eμ

[
U 2

N

] → 1 as ω → 0, we claim that U 2
N is uniformly

integrable. Then, in view of (38), we have w.p.1(Pμ):

U 2
N

∣∣∣∣∣
(
n∗

N

)2

− 1

∣∣∣∣∣ I[|N−n∗|≤εn∗] ≤ ε(2 + ε)(1 − ε)−2U 2
N .
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Thus, U 2
N

∣∣∣∣
(
n∗
N

)2 − 1

∣∣∣∣ I[|N−n∗|≤εn∗] is also uniformly integrable when γ > 1
2 . In

view of Part (i), we have:

U 2
N

∣∣∣∣∣
(
n∗

N

)2

− 1

∣∣∣∣∣ I[|N−n∗|≤εn∗]→0 in probability (Pμ) asω→0,

so that we have:

Eμ

[
U 2

N

∣∣∣∣∣
(
n∗

N

)2

− 1

∣∣∣∣∣ I[|N−n∗|≤εn∗]

]
→ 0 asω → 0. (41)

Step 4:

Next, on the set N > n∗(1 + ε), we observe

∣∣∣∣
(
n∗
N

)2 − 1

∣∣∣∣ < 1 so that we can express

U 2
N

∣∣∣∣∣
n∗2

N 2 − 1

∣∣∣∣∣ I[N−n∗>εn∗] ≤ U 2
N .

Thus, U 2
N

∣∣∣∣
(
n∗
N

)2 − 1

∣∣∣∣ I[N−n∗>εn∗] is uniformly integrable when γ > 1
2 . In view

of Part (i), we have:

U 2
N

∣∣∣∣∣
(
n∗

N

)2

− 1

∣∣∣∣∣ I[N−n∗>εn∗] → 0 in probability (Pμ) asω → 0,

so that we conclude:

Eμ

[
U 2

N

∣∣∣∣∣
(
n∗

N

)2

− 1

∣∣∣∣∣ I[N−n∗>εn∗]

]
→ 0 asω → 0. (42)

Step 5:
Next, we outline a proof of the following claim:

Eμ

[
U 2

N

∣∣∣∣∣
n∗2

N 2 − 1

∣∣∣∣∣ I[N−n∗<−εn∗]

]
→ 0 as ω → 0. (43)

Let q(> 0) be a generic constant that does not involve ω. From (35), we can claim

that N ≥ b
ω
N−γ w.p.1(Pμ) so that N ≥ ( b

ω

)1/(1+γ ) = O(n∗1/(1+γ )) w.p.1(Pμ). This
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implies that
(
n∗
N

)2 ≤ qn∗2γ /(1+γ ) w.p.1(Pμ) and then we can write:

∣∣∣∣∣Eμ

[
U 2

N

∣∣∣∣∣
n∗2

N 2 − 1

∣∣∣∣∣ I[N−n∗<−εn∗]

]∣∣∣∣∣ ≤ qn∗(2γ−1)/(1+γ )Eμ

[(
WNk − Nkμ

)2
I[N≤k]

]
,

(44)
where we denote: k = �n∗(1 − ε)� = O(n∗), Nk = min(N , k). In the sequel, we also
use γ ′ = Eμ[(X1 − μ)3] and γ ′′ = Eμ[(X1 − μ)4].

Now, using Cauchy-Schwartz inequality and Wald’s fourth lemma (Theorem 7,
Chow et al. (1965); Theorem 2.4.7, Ghosh et al. (1997)), we have:

Eμ

[(
WNk − Nkμ

)2
I[N≤k]

]

≤
{
6σ 2Eμ

[
Nk

(
WNk − Nkμ

)2] + 4γ ′Eμ

[
Nk

(
WNk − Nkμ

)]

+γ ′′Eμ[Nk]
}1/2

P1/2
μ (N ≤ k). (45)

But, we have Nk ≤ k w.p.1(Pμ). Next, we further use Wald’s second equation
(Theorem 8, Chow et al. (1965); Theorem 2.4.5, Ghosh et al. (1997)) and Cauchy-
Schwartz inequality in (45) to obtain:

Eμ

[(
WNk − Nkμ

)2
I[N≤k]

]
≤
{
6σ 4k2 + 4γ ′k3/2σ + γ ′′k

}1/2
P1/2

μ (N ≤ k). (46)

Step 6:

Let h =
⌊( b

ω

)1/(1+γ )
⌋

+ 1. We may pick ω small enough so that h ≤ k where k was

defined underneath (44) and write:

Pμ

{
N ≤ n∗(1 − ε)

} = �k
n=h Pμ(N = n) ≤ �k

n=h Pμ

{
n ≥ n∗

σ 2 Xn

}
. (47)

Now, with fixed but otherwise arbitrary ν(≥ 1), we may rewrite (47):

Pμ

{
N ≤ n∗(1 − ε)

} ≤ (εμ)−ν�k
n=h Eμ

[∣∣Xn − μ
∣∣2ν] ≤ q�k

n=hn
−ν . (48)

The last step in (48) follows from the lemma of Sen and Ghosh (1981). One may also
refer to Lemma 9.2.3 in (Ghosh et al. (1997), pp. 275–276).

Next, whatever be ν(≥ 1), (48) leads to:

Pμ

{
N ≤ n∗(1 − ε)

} ≤ qkh−ν ≤ O(n∗)O(n∗−ν/(1+γ )) = O
(
n∗(1+γ−ν)/(1+γ )

)
.

(49)
Now, by combining (44)–(46) with (48), (49), we obtain:

Eμ

[
U 2

N

∣∣∣∣∣
n∗2

N 2 − 1

∣∣∣∣∣ I[N−n∗<−εn∗]

]
= O(n∗(3γ−ν)/(1+γ )), (50)
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which validates (43) for any γ > 1/2, provided that we pick ν > max(2, 3γ ) which
is certainly possible to do. Proof of Theorem 2 is thus complete. ��
Remark 2 (Negative moments of N/n∗ for estimation strategy (35)). Now, we
may summarize asymptotic behavior of Eμ

[
(N/n∗)s

]
when s < 0. Clearly,

Eμ

[
(N/n∗)s I

(
N > 1

2n
∗)] → 1. But, then, in view of (49), we also have:

Eμ

[
(N/n∗)s I

(
N ≤ 1

2
n∗
)]

= O
(
n∗−s+((1+γ−ν)/(1+γ ))

)
= o(1),

if we pick ν > max(2, (1 + γ )(1 − s)) which is certainly possible to do. Thus, it
follows that Eμ

[
(N/n∗)s

] → 1 when γ > 1
2 , s < 0.

3 The thatch parameter τ is unknown

This section develops purely sequential bounded risk estimation methodologies for μ

when the thatch parameter τ is assumed unknown under two different formulations.
Specifically, Sects. 3.1 and 3.2 formulate and investigate appropriated approaches
associated with (i) squared error loss and (ii) customary Linex loss.

3.1 Squared error loss approach

We develop a purely sequential estimation strategy for μ in a NB(μ, τ ) population
under SEL assuming that both parameters are unknown.Having recorded X1, . . . , Xn ,
we propose SEL as follows:

Ln ≡ Ln(Xn, μ) = b(Xn − μ)2, b > 0. (51)

for estimating μ with Xn . The loss function (51) looks similar to (32), but τ remains
unknown too.

We express the risk function as follows:

Rn ≡ Eμ,τ [Ln] = b

n
σ 2, (52)

parallel to (33) with σ 2 from (2).

3.1.1 Sequential bounded risk estimation

The goal is to bound the risk Rn given in (52) from above by ω(> 0). This leads to
the optimal fixed sample size n∗ as follows:

n ≥ b

ω
σ 2 = n∗, say. (53)
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The magnitude of n∗ remains unknown and thus we develop a purely sequential esti-
mation strategy in the spirit of Chow and Robbins (1965).

We first fix m(≥ 2) and begin with pilot data Xi , i = 1, . . . ,m of size m from
the NB population. Since σ 2 is unknown, we estimate it using the customary sample
variance, S2n ≡ (n − 1)−1�n

i=1(Xi − Xn)
2, n ≥ m. However, since S2n may be zero

with a positive probability, whatever be n, we also fix a number γ (> 1
2 ) and define a

final sample size:

N = inf

{
n ≥ m : n ≥ b

ω

[
S2n + n−γ

]}
. (54)

We ensure that our estimated variance S2n + n−γ remains positive with probability 1
(Pμ,τ ) for all n ≥ m.

Next, based on the fully gathered data {N , X1, . . . , Xm, . . . , XN }, we propose to
estimate μ by XN . The following Theorem gives a set of attractive first-order asymp-
totic properties for the purely sequential methodology (54). Interpretations of these
results stay similar to those explained under Theorem 1.

Theorem 3 With loss function LN and terminal sample size N defined in (51) and
(54), respectively, under the purely sequential estimation rule (N , XN ) from (54), for
each fixed μ ∈ R+ and τ ∈ R+ we have as ω→0:

(i) N/n∗ Pμ,τ→ 1;
(ii) Eμ,τ

[
(N/n∗)s

] → 1 for alls[asymptotic first-order efficiency];
(iii) Eμ,τ [LN ] /ω → 1 if γ > 1[asymptotic risk efficiency];
where n∗ comes from (53).

3.1.2 An outline of a Proof of Theorem 3

Part (i) follows from the basic inequality:

(
S2N + N−γ

)
σ−2 ≤ N/n∗ ≤

(
S2N−1 + (N − 1)−γ

)
σ−2 + n∗−1 w.p.1(Pμ,τ ),

(55)
and the facts that N → ∞, S2N → σ−2, S2N−1 → σ−2 w.p.1(Pμ,τ ) as ω → 0.

Next, for small enough ω, observe that the right-hand side of (55) implies
w.p.1(Pμ,τ ):

N/n∗ ≤ σ−2
{
2N−1�N

i=1(Xi − μ)2 + 1
}

+ 1

≤ σ−2supn≥2

{
2n−1�n

i=1(Xi − μ)2 + 1
}

+ 1.

Now, when s > 0, Part (ii) follows in the spirit of our proofs of Theorems 1, 2.
When s < 0, a proof in the spirit of Remark 2 can be easily put together since S2n is a
U-statistic. Part (iii) can be proved along the line of the proof of Theorem 2, part (iii).
Details are left out for brevity. ��
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3.2 Customary Linex loss approach

We develop a purely sequential estimation strategy for μ in a NB(μ, τ ) population
under customary Linex loss in the spirit of (3). Having recorded X1, . . . , Xn , we
propose the following loss:

Ln ≡ Ln(Xn, μ) = exp
{
a(Xn − μ)

} − a(Xn − μ) − 1, a ∈ R. (56)

Next, we express the associated risk function as follows:

Rn ≡ Eμ,τ [Ln] = Eμ,τ

[
exp

{
a(Xn − μ)

} − a(Xn − μ) − 1
]
. (57)

Upon simplifying the risk from (57) along the lines of (6), it reduces to:

Rn = a2

2n
σ 2 + o(n−1). (58)

3.2.1 Sequential bounded risk estimation

The goal is to bound the risk Rn given in (58) from above by ω(> 0). This leads to
the optimal fixed sample size n∗ as follows:

n ≥ a2

2ω
σ 2 = n∗, say. (59)

Again, the magnitude of n∗ remains unknown even though its expression is given
by (59). Hence, we resort to developing a purely sequential bounded risk estimation
strategy.

We fix m(≥ 2) and gather pilot data Xi , i = 1, . . . ,m of size m from the NB
population. We also fix a number γ (> 1

2 ) and define:

N = inf

{
n ≥ m : n ≥ a2

2ω

[
S2n + n−γ

]}
. (60)

Next, based on the fully gathered data {N , X1, . . . , Xm, . . . , XN }, we propose
to estimate μ by the sample mean XN . Theorem 4 gives a set of attractive first-
order asymptotic properties for the proposed purely sequential methodology (60). For
brevity, it is stated without explicitly providing a proof. Interpretations of these results
stay similar to those explained under Theorem 1.

Theorem 4 With loss function LN and terminal sample size N defined in (56) and
(60), respectively, under the purely sequential estimation rule(N , XN ) from (60), for
each fixed μ ∈ R+ and τ ∈ R+ we have as ω→0:

(i) N/n∗ Pμ,τ→ 1;
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(ii) Eμ,τ

[
(N/n∗)s

] → 1 for all s [asymptotic first-order efficiency];
(iii) Eμ,τ [LN ] /ω → 1 if γ > 1 [asymptotic risk efficiency];
where n∗ comes from (59).

4 Summaries from simulations

In this section, we provide summaries derived from sets of simulation studies. These
were run to examine performances of our proposed purely sequential estimation strate-
gies from Sects. 2 and 3 for both small and moderate values of n∗.

4.1 Performances of estimation strategy (11) from Sect. 2.1.2: τ known

Wefirst generated pseudorandom observations from the distribution (1) with combina-
tions of choices for μ and τ . We fixed values a = 1, γ = 1.5, and determined m from
(10). Each row in Table 1 corresponds to averages from 10,000 replications which
were run under a given configuration. In order to represent varying sample sizes, we
show results for fixed values of n∗ = 50 (small), 200 (medium).

Table 1 shows n∗ (column 3), ω (column 4), the estimated values x and sx (column
5), estimated values n, sn (column 6), the ratio n/n∗ (column 7), the values of z and
sz (column 8) and the ratio r/n (column 9) where we denote:

N = ni , ri = a2

2ni

(
1

μ
+ 1

τ

)
as in (7) under the i th replication,

and r = H−1�H
i=1ri , sr =

√
(H2 − H)−1�H

i=1(ri − r)2,

so that z = r/ω, sz = sr/ω, H = 10000. (61)

The column 9 quantifies estimated average risk per unit average number of samples.
We say a bit more about this at the end of Sect. 4.

Table 1 Simulation results from 10,000 replications for the purely sequential procedure (11) with m from
(10): a = 1, γ = 1.5

μ τ n∗ ω x n n/n∗ z r/n
sx sn sz

2 3 50 0.0083 2.0178 51.65 1.0330 1.0155 1.63 × 10−4

0.0026 0.0683 9.72 × 10−6

200 0.0020 2.0032 201.70 1.0085 1.0084 9.99 × 10−6

0.0013 0.1275 1.24 × 10−6

3 4 50 0.0058 3.0178 51.21 1.0242 1.0072 1.14 × 10−4

0.0032 0.0504 5.32 × 10−6

200 0.0014 3.0080 201.33 1.0066 1.0040 6.98 × 10−6

0.0016 0.0973 6.79 × 10−7
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Table 2 Simulation results from 10,000 replications for the purely sequential procedure (35): b = 1,
γ = 1.5, m = 5

μ τ n∗ ω x n n/n∗ z r/n
sx sn sz

2 3 50 0.0667 2.0035 49.53 0.9907 1.0626 1.43 × 10−3

0.0026 0.0943 2.58 × 10−4

200 0.0167 2.0001 199.37 0.9968 1.0148 8.50 × 10−5

0.0013 0.1817 5.61 × 10−5

3 4 50 0.1050 3.0056 49.90 0.9981 1.0307 2.10 × 10−3

0.0032 0.0783 2.11 × 10−4

200 0.0262 3.0006 200.14 1.0007 1.0055 1.31 × 10−4

0.0016 0.1568 2.11 × 10−5

The x values are very close to the correspondingmeans in each case with very small
standard error values sx . These become even closer for n∗ = 200. The values of n seem
to estimate n∗ very accurately across the rows. We see that the n values overestimate
n∗ by a small margin. The last column shows that both sequential methodologies tend
to provide a risk-bound close (or smaller) to preset goal ω for small (moderate) n∗.
Clearly, the proposed strategy (11) performs very well.

4.2 Performances of estimation strategy (35) from Sect. 2.2.1: τ known

A summary is provided from simulations that were carried out rather analogously
as we had explained in Sect. 4.1. One difference however is that we had to fix m
arbitrarily in the present scenario. We fixed the values b = 1, m = 5, and γ = 1.5.
The sets of notation used in Tables 1 and 2 are very similar with one exception:
ri = b

ni

(
μ + τ−1μ2

)
.

Table 2 shows performances similar to those summarized in Table 1. Clearly, the
proposed strategy (35) performs very well.

4.3 Performances of estimation strategy (54) from Sect. 3.1.1: τ unknown

A summary is provided from simulations that were carried out rather analogously
as we had explained in Sect. 4.1. One difference however is that we had to fix m
arbitrarily in the present scenario. We fixed the values a = 1,m = 5, and γ = 1.5.
The sets of notation used in Tables 1, 2 and 3 are also very similar with one exception:
ri = b

ni
σ 2.

Table 3 shows performances similar to those summarized in Tables 1 and 2. Clearly,
the proposed strategy (54) performs very well.
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Table 3 Simulation results from 10,000 replications for the purely sequential procedure (54): b = 1,
γ = 1.5,m = 5

μ τ n∗ ω x n n/n∗ z r/n
sx sn sz

2 3 50 0.0667 1.9989 46.15 0.9231 1.2634 1.82 × 10−3

0.0029 0.1491 4.72 × 10−4

200 0.0167 1.9972 197.69 0.9884 1.0358 8.74 × 10−5

0.0013 0.2939 2.79 × 10−5

3 4 50 0.1050 3.0036 46.10 0.9220 1.2731 2.89 × 10−3

0.0036 0.1438 8.54 × 10−4

200 0.0262 2.9995 196.92 0.9846 1.0369 1.37 × 10−4

0.0016 0.2758 4.11 × 10−5

Table 4 Simulation results from 10,000 replications for the purely sequential procedure (60) with a = 1,
γ = 1.5, m = 5

μ τ n∗ ω x n n/n∗ z r/n
sx sn sz

2 3 50 0.0333 2.0006 43.67 0.8735 1.5633 1.19 × 10−3

0.0032 0.1660 5.15 × 10−4

200 0.0083 1.9999 195.74 0.9787 1.0545 4.47 × 10−5

0.0013 0.3035 4.08 × 10−5

3 4 50 0.0525 2.9960 43.91 0.8782 1.5894 1.90 × 10−3

0.0040 0.1590 9.66 × 10−4

200 0.0131 3.0007 195.50 0.9775 1.0562 7.07 × 10−5

0.0016 0.2785 9.09 × 10−5

4.4 Performances of estimation strategy (60) from Sect. 3.2.1: τ unknown

A summary is provided from simulations that were carried out rather analogously as
we had explained in Sect. 4.1. One difference however is that we had to fixm arbitrarily
in the present scenario. We fixed the values a = 1, m = 5, and γ = 1.5. The sets of
notation used in Tables 3 and 4 are similar.

Table 4 shows performances similar to those summarized in Tables 1, 2 and 3.
Clearly, the proposed strategy (60) performs very well.

4.5 Which loss function to use in practice?

This is a difficult question to answer precisely and mathematically. In fact, there may
not be such a resolution. Under the umbrella of statistical decision making, a loss
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Table 5 Ad hoc comparisons of loss functions

μ τ n∗ Average risk per average sample size, r/n, values from column 9 in
Tables 1, 2, 3 and 4

τ known τ unknown

Table 1 Table 2 Table 3 Table 4

2 3 50 0.00016300 0.001430 0.0018200 0.0011900

3 4 50 0.00011400 0.002100 0.0028900 0.0019000

2 3 200 0.00000999 0.000085 0.0000874 0.0000447

3 4 200 0.00000698 0.000131 0.0001370 0.0000707

function is an essential input that must be arrived by the practitioner in the substantive
field.

In the case of the four bounded-risk problems which have been under our consid-
erations in Sects. 2 and 3, we may however attempt to suggest some ad hoc guidelines
supported by the presented data analyses from Tables 1, 2, 3 and 4. Since n values
are very close to the n∗ values all across Tables 1, 2, 3 and 4, we suggest utilizing the
information obtained from column 9 from each table regarding the achieved values
r/n which indeed estimate the “risk per unit sample size.” In Table 5, we present them
all in one place to facilitate comparisons in our earnest hope that a kind of data-based
theme may emerge to help a practitioner.

For the range of values ofμ, τ under consideration, Table 5 shows that the estimated
values of ”risk per unit sample size” associated with the modified or customary Linex
loss come out sizably smaller than those associated with SEL. This feature holds
whether the thatch parameter τ is known or unknown. Such limited empirical evidence
may suggest that one could treat the modified or customary Linex loss (Sects. 2.1
and 3.2) more seriously than SEL (Sects. 2.2 and 3.1) while handling the class of
problems under discussion.

4.6 How to pick the risk-bound ω?

Again, theremay not be a precisemathematical approach to quantifyω, the risk-bound.
In statistical decision making, a practitioner or his/her team in a substantive applied
field must come up with a risk-bound that may be acceptable and relevant to them in
the context of an estimation problem on hand.

The papers ofWillson and Folks (1983) andWillson et al. (1984) were derived from
their practical field-work on entomological studies with the Agricultural Experiment
Station, Oklahoma State University. The values of μ, τ, ω used in Tables 1, 2, 3 and 4
are reasonably consistent under a number of practical scenarios summarized by them.
In our view, we should not attempt to prescribe a choice ofω quantifying an acceptable
error bound that is supposed to work across all problems.

For example, we may revisit SEL from (32) with b = 1. Now, if one knows a’priori

that μ is rather small, then
∣∣Xn − μ

∣∣2 may be expected to be much smaller in view
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of consistency, perhaps leading one to pick ω = (0.01)2 or even smaller than that.

However, if one knows a’priori that μ is rather medium or large, then
∣∣Xn − μ

∣∣2 may
not be expected to be all that small for comparable sample sizes. In this case ω could
be chosen bit larger.

The point is this: Estimating average weekly salary as opposed to annual salary
in a population must be treated differently. It may suffice to estimate average weekly
salary within ±5 dollars or ±10 dollars based on sample size n. With a comparable
sample size, it may be impossible to estimate the average annual salary within ±5
dollars. On the other hand, it may be more reasonable to estimate the average annual
salary with ±500 dollars or ±1000 dollars bringing down the required sample size
substantially.

The bottom line: A practically realistic-appropriate-useful choice of ω must be
problem-dependent. Subject matter practitioners should not shy away from specifying
his/her practically realistic-appropriate-useful choice of ω while handling a particular
problem or scenario.

5 Real data illustrations

Sections 5.1–5.4 highlight performances of our estimation strategies using real data
from statistical ecology. We have used emphasized (i) weed count data (Sects. 5.1
and 5.3) of different species from a field in Netherlands and (ii) count data of migrating
woodlarks (Sects. 5.2 and 5.4) from the Hanko bird sanctuary in Finland.

5.1 Estimation strategy (11) with τ known: weed count data

We resort to dataset from ecology and make use of the weed count data presented by
Heijting (2013). Heijting et al. (2007) recorded data from quadrats on part of an arable
maize field in Wageningen, Netherlands, prior to herbicide application. We looked at
data from the year 2001 between 18 and 21 June, and applied our methodology (11)
on Capsella bursa-pastoris L. (Shephard’s purse). The field was cultivated and sown
in north-south direction and the observation area was divided into 16 × 67 = 1072
quadrats of 0.75 × 0.75 meters. Further information are available from:

http://dx.doi.org/10.17026/dans-zu9-r7y8 and Heijting et al. (2007).
The dataset consists of 1072 rows and a NB fit was seen as appropriate with a

p-value of 0.84. We found μ̂ = 0.3 and τ̂ = 3.98 from full data. This dataset was
treated as our population with unknown mean μ with a known value 3.98 for τ . We
fixed a = 1 and γ = 1.5, implemented the methodology (11) by drawing observations
from the full set of data without replacement. Sampling with or without replacement
made practically no difference.

Table 6 shows results from implementing the estimation strategy (11) in single
runs with 3 different preset values of the risk-bound ω. The terminal estimated value
of μ appear close to the value of μ̂ = 0.3 obtained from full data. The n∗ values
(obtained by pretending that μ = 0.3 and τ = 3.98) are provided as a vehicle for ad
hoc comparison with the observed n values. We have not used these n∗ values in our
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Table 6 Analysis of weed
count data with sequential
strategy (11) assuming known
τ = 3.98 and a = 1, γ = 1.5

n∗ ω μ̂ : n n/n∗ z̃
xn

75 0.0182 0.91 82 1.09 1.2069

200 0.0068 0.44 151 0.75 1.1339

500 0.0027 0.41 607 1.21 0.9052

Table 7 Analysis of woodlarks
data with sequential strategy
(35) assuming known τ = 0.23
and b = 1, γ = 1.5, m = 7

n∗ ω μ̂ : n n/n∗ z̃
xn

30 1.4498 2.61 31 1.03 0.7490

40 1.0873 2.84 39 0.97 0.8939

50 0.8699 3.47 46 0.92 1.3950

implementation. We note that the ratio n/n∗ is reasonably close to 1 which is desired.
In the last column of Table 6, we show a value z̃ obtained from a single run:

N = n, r̃ = a2

2n

(
1

xn
+ 1

τ

)
in the spirit of (61) under

one replication, so that z̃ = r̃/ω. (62)

Column 6 shows z̃ values mainly to grasp a sense of how close the estimated risk
may or may not be when compared with the preset goal ω. The erratic behavior is due
to the fact that z̃ values were obtained from single runs.

5.2 Estimation strategy (35) with τ known: woodlarks data

In this real data illustration, we resort to an ecological count dataset on migrating
woodlarks at Hanko bird sanctuary situated in southwestern Finland. This data were
used by Linden and Mantyniemi (2011) and are available in the Ecological Archives
E092-120-S2. One could also refer to Supplement 2 in Linden andMantyniemi (2011)
for more details.

We used the migration data for Autumn season, 1 September-10 November, 2009
and worked with the daily counts of migrating birds during first four hours of daylight
after sunrise. The dataset included 71 rows and a NB fit was seen as appropriate with
a p-value of 0.35. We found μ̂ = 3.05 and τ̂ = 0.23 from full data which was treated
as our population with unknown μ but with known value 0.23 for τ .

We picked a = 1 and γ = 1.5, implemented the methodology (35) by drawing
observations from the full set of data without replacement. Sampling with or without
replacement made practically no difference.

Table 7 shows results from implementing the estimation strategy (35).in single runs
with 3 different preset values of the risk-bound ω. The terminal estimated values of μ

look bit erratic and these are not too close to the value μ̂ = 3.05, obtained from full
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Table 8 Analysis of weed
count data with sequential
strategy (54) assuming unknown
τ and b = 1, γ = 1.5,m = 10

n∗ ω μ̂ : n n/n∗ z̃
xn

75 0.0148 1.06 65 0.87 1.3860

200 0.0055 0.87 224 1.12 0.8406

500 0.0022 0.92 538 1.07 0.9584

data. The n∗ values (obtained by pretending that μ = 3.05 and τ = 0.23) are merely
provided as a vehicle for ad hoc comparison with the observed n values. We have not
used these n∗ values in our implementation. We note that the sample sizes (Table 7)
are small in the range of 30–50, however the ratio n/n∗ remains close to 1 which is
desired. In the last column of Table 7, we show associated value z̃ obtained from a
single run:

N = n, r̃ = b

n

(
xn + τ−1x2n

)
in the spirit of (61) under

one replication, so that z̃ = r̃/ω. (63)

We observe that z̃ values are smaller than one which indicates that the estimated
risk is smaller than the preset goal ω.

5.3 Estimation strategy (54) with τ unknown: weed count data

We again return to use weed count data in this illustration. We applied our method-
ology (54) on Polygonum aviculare L. (knotweed) from the full set of data without
replacement. A NB fit was seen as appropriate with a p-value of 0.94. We found
μ̂ = 0.91 and τ̂ = 4.11 from full data.

Table 8 shows the real data illustration. The choices of γ and n∗ are consistent with
those in Sect. 5.1 along with b = 1 and m = 10. In column 6 of Table 8, we show a
value z̃ obtained from a single run:

N = n, r̃ = b

n
s2n in the spirit of (61)under

one replication, so that z̃ = r̃/ω. (64)

Again, column 6 shows z̃ values mainly to grasp a sense of how close the estimated
riskmay ormay not bewhen comparedwith the preset goalω. A slight erratic behavior
is due to the fact that z̃ values were obtained from single runs.

5.4 Estimation strategy (60) with τ unknown: woodlarks data

We applied the methodology (60) on the daily counts of migrating birds during first
four hours of daylight after sunrise by drawing observations from the full set of data
without replacement. Table 9 shows this real data illustration. Column 6 of Table 9
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Table 9 Analysis of woodlarks
data with sequential strategy
(60) assuming unknown τ and
a = 1, γ = 1.5, m = 7

n∗ ω μ̂ : n n/n∗ z̃
xn

30 0.7249 2.30 42 1.40 0.7900

40 0.5436 3.36 52 1.30 0.9276

50 0.4349 2.63 39 0.78 0.9640

shows a value z̃ obtained from a single run in the spirits of (63). The z̃ values help in
grasping a sense of how close the estimated risk may or may not be when compared
with the preset goal ω. A slight erratic behavior is due to the fact that z̃ values were
obtained from single runs.

6 Concluding thoughts

In Sect. 2.1, we noted a known lower bound for n∗ in (9) which led to a specific
choice of m in (10). Such a lower bound for n∗ was first noted by Willson and Folks
(1983) in developing their purely sequential methodology. The same lower bound for
n∗ led Mukhopadhyay and Diaz (1985) to obtain an associated two-stage estimation
methodology.

In a different but closely related route, Mukhopadhyay and Duggan (1997) devel-
oped a two-stage fixed-width confidence interval methodology for the normal mean
when the unknown population variance had a known positive lower bound. They
developed asymptotic second-order properties for an appropriatelymodified two-stage
estimation methodology. Proliferation of such core ideas from Mukhopadhyay and
Duggan (1997) in many directions has been widespread and continues to spread in
areas including big data as well as small n large p problems. For brevity, we only
mention Aoshima and Takada (2000), Mukhopadhyay and Duggan (2000, 2001), and
Aoshima and Yata (2010).

We should emphasize that whenμ and τ remain unknown, the literature on sequen-
tial estimation has been rather scarce. One may look back at Mukhopadhyay and de
Silva (2005) for a lone treatment in this case that we are aware of. In this light, Sect. 3
fills a part of this void with interesting directions.

Going back to Sect. 3, one could think of stopping rules different from (54) and
(60) by replacing the sample variance S2n with the following estimator:

μ̂n,MLE + τ̂−1
n,MLEμ̂2

n,MLE,

where μ̂n,MLE and τ̂n,MLE, respectively, denote the maximum likelihood estimators
(MLE) of μ, τ obtained from X1, . . . , Xn, n ≥ m. In other words, at every stage of
sampling one must continue to update μ̂n,MLE and τ̂n,MLE sequentially. Then, com-
plexities of such sequential estimation strategies will increase tremendously, but their
first-order properties and numerical performances may be expected to remain compa-
rable to those reported in Sect. 3.
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