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Abstract When model the heteroscedasticity in a broad class of partially linear mod-
els, we allow the variance function to be a partial linear model as well and the
parameters in the variance function to be different from those in themean function.We
develop a two-step estimation procedure, where in the first step some initial estimates
of the parameters in both the mean and variance functions are obtained and then in the
second step the estimates are updated using the weights calculated based on the initial
estimates. The resulting weighted estimators of the linear coefficients in both the mean
and variance functions are shown to be asymptotically normal, more efficient than the
initial un-weighted estimators, and most efficient in the sense of semiparametric effi-
ciency for some special cases. Simulation experiments are conducted to examine the
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numerical performance of the proposed procedure, which is also applied to data from
an air pollution study in Mexico City.

Keywords Efficiency · Generalized least squares · Generalized partially linear
model · Kernel regression · Profiling · Variance function

1 Introduction

The partially linear model (PLM) is an important generalization of the linear model.
Since it was proposed by Engle et al. (1986), it has gained a lot of efforts during the
past decades (Härdle et al. 2004; Liang et al. 1999; Robinson 1988; Speckman 1988)
and become a useful tool in statistical analysis for parsimoniously reflecting nonlinear
trend of some continuous covariate. More importantly, it has been applied to explore
data in various disciples such as econometrics (Yatchew and No 2001), biomedicine
(Hunsberger et al. 2002; Liang et al. 2008; Zeger andDiggle 1994), and environmetrics
(Prada-Sánchez et al. 2000).

The model has the flexibility of a nonparametric regression model, while contains
a linear combination of coefficients, whose estimators can achieve nice asymptotic
normality as it were a pure linear model under mild conditions. Several methods have
been proposed to estimate linear coefficients, including profile (Speckman 1988),
backfitting (Opsomer and Ruppert 1997), regression spline (Chen 1988), and smooth-
ing spline (Engle et al. 1986; Heckman 1986). The generalized partially linear model
(GPLM), a generalization of the PLM, was also well studied (Carroll et al. 1997;
Härdle et al. 1998; Wang et al. 2011; Xia and Härdle 2006).

However, most existing work focuses on statistical inferences for the parameters
in the mean function and variance function estimation has received much less atten-
tion in the literature than it deserves. Although a wealth of work has been done to
take heteroscedasticity into account for enhancing the efficiency of estimating the
parameters in the mean function, estimating variance function is of independent inter-
est. A simple example is when one derives confidence intervals/bands for the mean
function, an appropriate estimator of the variance is needed (Cai and Wang 2008).
Alternative examples where the variance function estimation plays an important
role include a study of kinetic rate parameters (Box and Hill 1974), quality con-
trol (Box and Meyer 1986), and a study of social inequality (Western and Bloome
2009). More recently, Thomas et al. (2012) demonstrated that individual variability
in longitudinal measurements for an individual can be predictive of a health outcome,
and Teschendorff and Widschwendter (2012) argued that differential variability can
be as important as differential means for predicting disease phenotypes in cancer
genomics.

In response to these demonstrations of the importance of variance function, flexible
and efficient methods for variance function estimation are in demand. Here we give
a brief survey on variance function estimation in models related to the GPLM; see
Carroll (2003) and Carroll and Ruppert (1988) for comprehensive surveys. Repre-
sentative work on modeling heteroscedasticity in linear or nonlinear models includes
Carroll and Ruppert (1982), Carroll (1982), and Bickel (1978). Along with these,
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Variance function estimation 1149

many parametric and nonparametric approaches have been developed (Carroll and
Härdle 1989; Fuller and Rao 1978; Hall and Carroll 1989). Recently, Ma et al. (2006)
studied the heteroscedastic partially linear model and Ma and Zhu (2012) extended
their strategy to the heteroscedastic partially linear single index model. While they
emphasized heteroscedasticity, their focus was still on the estimation of the mean
function and the variance in their model was assumed to be a function of the mean
function.

In this paper, we consider the variance function generalized partially linear model
(VFGPLM), a heteroscedastic regression model where the mean function is a partially
linear model and the variance function depends upon a generalized partially linear
model. Unlike the classical generalized partially linear model, here we do not insist
that the variance function depends only upon the mean function. The model under
consideration is

Y = μ(X, Z;α0, mμ) + g{ν(X, Z;β0, mν)}ε, (1a)

μ(X, Z;α0, mμ) = XTα0 + mμ(Z), (1b)

ν(X, Z;β0, mν) = XTβ0 + mν(Z), (1c)

where g(·) is a known function, while mμ(·) and mν(·) are two unknown smoothing
functions, ε is independent of X and Z , E(ε) = 0 and E(|ε|) = 1. Generally, either
g(ν) = ν2 or g(ν) = exp(ν).

Lian et al. (2015) studied the variance function partially linear single index model
(VFPLSIM), in which the variance function is a function of the sum of linear and
single index functions and the parameters in the variance function are allowed to
be different from those in the mean function. They developed efficient and practical
estimators for the parameters in the mean and variance functions, and weighted the
objective function to obtain more efficient estimators for the parameters in the mean
function. Although model (1) looks similar to a special version of the model studied
in Lian et al. (2015), it is still worth studying in detail for the following reasons.
First, model (1) is of its own importance and interest because of the popularity of the
PLM. Second, in the mean and variance functions in model (1), the nonparametric
and parameter parts involve different predictors, whereas the same set of predictors
are involved in both the nonparametric and parametric parts in the model of Lian et al.
(2015). Third, through model (1), it is easier to demonstrate the efficiency gain of the
second step in our proposed procedure. Fourth, the weighted least squares procedure
for the variance function estimation proposed was not discussed in Lian et al. (2015)
because of the complexity of their model, while we give a comprehensive discussion
in Sect. 3.

We organize the paper as follows. In Sect. 2, we describe the estimation procedures
for the variance function generalized partially linear model. In Sect. 3, we present the
main theoretical results and their implications. We examine numerical performance
of the proposed method in Sect. 4 through simulation studies and analysis of a real
dataset. Some discussion is presented in Sect. 5 and all the technical assumptions and
proofs of the theoretical results are placed in “Appendix”.
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2 Estimation methods

2.1 Outline and notation

The main goal is to develop efficient and practical estimators of the variance function,
which is of its own interest and can improve the efficiency of estimating the mean
function. Our approach proceeds in two steps.

• Step 1: (1) Obtain an initial estimate of the mean function ignoring the het-
eroscedasticity; (2) Then obtain an initial estimate of the variance function using
the absolute residuals from the initial estimate of the mean function.

• Step 2: (1) Update the estimate of the mean function using weights based on the
initial variance function estimation; (2) Then update the estimate of the variance
function using absolute residuals from the updated estimate of the mean function
and using weights based on the initial variance function.

For this goal, let (Yi , X i , Zi ), i = 1, . . . , n, be independent and identi-
cally distributed realizations of (Y, X, Z). Denote the error term as εi = Yi −
μ(X i , Zi ;α0, mμ) and its absolute value as Ri = |Yi − μ(X i , Zi ;α0, mμ)|. Denot-
ing Gi = g{ν(X i , Zi ;β0, mν)}, because E(|εi |) = 1, we have E{Ri |X i , Zi } =
Gi . Also denote Di = I(εi >0) − I(εi ≤0) = sign(εi ) and δi = Ri − Gi . Let
g(1) denote the first derivative of g and define g(1)2 = (g(1))2. Consequently,
let G(1)

i = g(1){ν(X i , Zi ;β0, mν)}. Let ˜X i = X i − E{X i |Zi }, X̌ i = X i −
E{X i/G2

i |Zi }/E{1/G2
i |Zi }, X̆ i = X i − E{G(1)2

i X i |Zi }/E{G(1)2
i |Zi }, and X̄ i =

X i − E{G(1)2
i X i/G2

i |Zi }/E{G(1)2
i /G2

i |Zi }.
The population counterparts are the above terms with subscript i suppressed. For

example, ε = Y −μ(X, Z;α0, mμ), D = sign(ε), R = |ε|,G = g{ν(X, Z;β0, mν)},
δ = R − G, G(1) = g(1){ν(X, Z;β0, mν)}, ˜X = X − E{X|Z}, X̌ = X −
E{X/G2|Z}/E{1/G2|Z}, X̆ = X − E{G(1)2X|Z}/E{G(1)2|Z}, and X̄ = X −
E{G(1)2X/G2|Z}/E{G(1)2/G2|Z}. In addition, let σ 2 = V ar(ε), p(z) be the den-
sity function of Z , and A⊗2 = AAT for any matrix A.

2.2 Initial estimator of the mean function

Methods for estimating mμ(·) and α0 in the mean function μ(X, Z;α0, mμ) have
alreadybeenwell-established if the potential heteroscedasticity is ignored (Härdle et al.
2000; Speckman 1988). For given α, mμ(z;α) = argminξ E{[Y − (ξ + XTα)]2|Z =
z} can be estimated by kernel regression of Y − XTα on Z ; that is, by

m̂μ(z;α) = argmin
ξ

n
∑

i=1

[

Yi −
(

ξ + X i
Tα
)]2

Kh(Zi − z), (2)

where K is a kernel function, Kh(·) = K (·/h)/h and h is the bandwidth. Then α0
can be estimated by profiling; that is, by
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α̂ = argmin
α

n
∑

i=1

[

Yi −
{

m̂μ(Zi ;α) + X i
Tα
}]2

. (3)

The final estimate of mμ(z) is m̂μ(z) = m̂μ(z; α̂).
Local constant regression (2) can be replaced by local linear regression, but all

the asymptotic properties derived in Sect. 3 remain almost the same. More efficient
estimators for {mμ(·),α0} can be obtained via generalized least squares, which we
discuss in Sect. 2.4.

2.3 Initial estimator of the variance function

Davidian andCarroll (1987) developed some generalmethodology and theory for vari-
ance function estimation in the parametric case. They distinguished between methods
based on squared residuals and those based on absolute residuals, the former being
more efficient if the regressions errors εi ’s are normally distributed, but called this
potential efficiency gain “tenuous” because it is less robust to outliers. Here we use
absolute residuals and follow a profiling approach analogous to the one in Sect. 2.2.

Define absolute residuals ̂Ri = |Yi − {X i
Tα̂ + m̂μ(Zi )}| and ̂R = |Y − {XTα̂ +

m̂μ(Z)}|. Recall that E(|ε|) = 1. Then, approximately, E{̂R|X, Z} ≈ g{XTβ0 +
mν(Z)}. A very quickway to estimate {mν(·),β0} is to regress ̂R on g{XTβ+mν(Z)}.

For given β, mν(z;β) = argminζ E{(R − g{ζ + XTβ})2|Z = z} can be estimated
by

m̂ν(z;β) = argmin
ζ

n
∑

i=1

[

̂Ri − g
{

ζ + X i
Tβ
}]2

Kh(Zi − z). (4)

Here kernel K and bandwidth h could be different from the ones used in (2) as long
as they satisfy the assumptions, but for notational simplicity, we use same K and h
throughout. Then β0 can be estimated by profiling,

̂β = argmin
β

n
∑

i=1

[

̂Ri − g
{

m̂ν(Zi ;β) + X i
Tβ
}]2

. (5)

The final estimate of mν(z) is m̂ν(z) = m̂ν(z;̂β) and the estimate of variance function
Gi is

̂Gi = g
{

m̂ν(Zi ) + X i
T
̂β
}

. (6)

Again local constant regression (4) can be replaced by local linear regression, but
all the asymptotic properties remain almost the same. More efficient estimators for
estimating {mν(·),β0} can be obtained using absolute residuals from the more effi-
cient estimate of the mean function and/or using weights based on the initial variance
function estimate, as we discuss in Sect. 2.4.
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2.4 More efficient estimators

The parameters {α0,β0} can be estimated more efficiently via generalized least
squares. After the initial estimate of variance function is obtained, the estimators
(2) and (3) for estimating {mμ(z;α),α0} can be replaced by, respectively,

m̂μ,wls(z;α) = argmin
ξ

n
∑

i=1

[

Yi −
(

ξ + X i
Tα
)]2

Kh(Zi − z)

/

̂G2
i , (7)

α̂wls = argmin
α

n
∑

i=1

[

Yi −
{

m̂μ,wls(Zi ;α) + X i
Tα
}]2
/

̂G2
i . (8)

Then an updated estimator for the variance function can be obtained via the same
method in Sect. 2.3 except that the absolute residuals Ri are the ones from the above
updated estimates, ̂Ri,wls = |Yi −{X i

Tα̂wls + m̂μ,wls(Zi )}|. That is, the estimators (4)
and (5) for estimating {mν(z;β),β0} can be replaced by, respectively,

m̂ν,R(z;β) = argmin
ζ

n
∑

i=1

[

̂Ri,wls − g
{

ζ + X i
Tβ
}]2

Kh(Zi − z), (9)

̂β R = argmin
β

n
∑

i=1

[

̂Ri,wls − g
{

m̂ν,R(Zi ;β) + X i
Tβ
}]2

, (10)

where subscript “R” means the improvement comes from the improved estimates of
Ri . The estimators (4) and (5) for estimating {mν(z;β),β0} can be further improved
using weights based on the initial variance function. That is, the estimators (4) and (5)
can be replaced by

m̂ν,wls(z;β) = argmin
ζ

n
∑

i=1

[

̂Ri,wls − g
{

ζ + X i
Tβ
}]2

Kh(Zi − z)
/

̂G2
i , (11)

̂βwls = argmin
β

n
∑

i=1

[

̂Ri,wls − g
{

m̂ν,wls(Zi ;β) + X i
Tβ
}]2 /

̂G2
i . (12)

The counterparts of the procedure consisting of (7) and (8) and the one of (9) and
(10) for the VFPLSIM were discussed in Lian et al. (2015). However, Lian et al.
(2015) did not investigate the counterpart of the procedure consisting of (11) and (12),
because of the complexity of the VFPLSIM. We believe the theoretical properties of
the procedure consisting of (11) and (12) derived in Sect. 3 could help understand the
potential properties of its counterpart for the VFPLSIM.

3 Theoretical results

Theorem 1 Suppose that Assumptions A in “Appendix” hold. Define Qα = E(˜X
⊗2

).
As n → ∞, nh4 → ∞, and nh6 → 0, we have
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m̂μ(z, α̂)−mμ(z) = 1

n

n
∑

i=1

Kh(Zi −z)
εi

p(z)
−E{XT|Z = z}(̂α − α0)

+ bμ(z)κμh2 + op(1/
√

n), (13)

where bμ(z) = m(2)
μ (z)/2 + m(1)

μ (z)p(1)(z)/p(z) if local constant regression is used

in (2), bμ(z) = m(2)
μ (z)/2 if local linear regression is used, and op(1/

√
n) is uniform

over z, and

√
nQα(̂α − α0) = 1√

n

n
∑

i=1

εi˜X i + op(1). (14)

Accordingly,
√

nQα(̂α − α0)
D−→ Normal(0,Σα), where Σα = σ 2E{(G˜X)⊗2}.

Theorem 2 Suppose that Assumptions A and B in “Appendix” hold. Define Qβ =
E{(G(1) X̆)⊗2}. As n → ∞, nh4 → ∞, and nh6 → 0, we have

m̂v(z,̂β) − mν(z) = 1

n

n
∑

i=1

Kh(Zi − z)G(1)
i δi

p(z)E{G(1)2|Z = z} −
[

E{G(1)2XT|Z = z}
E{G(1)2|Z = z}

]

(̂β − β0)

+ bν(z)κνh2 −
[

E{G(1)D˜XT|Z = z}
E{G(1)2|Z = z}

]

(̂α − α0)

+ op(1/
√

n), (15)

where bν(z), which depends on whether local constant regression or local linear
regression is used in (4), is defined in “Appendix A.3” and op(1/

√
n) is uniform over

z, and

√
nQβ(̂β − β0) = 1√

n

n
∑

i=1

(

δi G
(1)
i X̆ i − εi

[

E{G(1) D X̆˜XT}Q−1
α
˜X i

+E
{

G(1)
i Di X̆ i |Zi

}])

+ op(1). (16)

Accordingly,
√

nQβ(̂β − β0)
D−→ Normal(0,Σβ), where

Σβ = E
(

δG(1) X̆ − ε
[

E{G(1) D X̆˜XT}Q−1
α
˜X + E{G(1)D X̆|Z}

])⊗2
.

Theorem 3 Suppose that Assumptions A and B “Appendix” hold. Define Qα,wls =
E{(X̌/G)⊗2}. As n → ∞, nh4 → ∞, and nh6 → 0, we have
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m̂μ,wls(z, α̂wls) − mμ(z) = 1

n

n
∑

i=1

Kh(Zi − z)
εi/G2

i

p(z)E{1/G2|Z = z}

+ bμ(z)κμh2 −
[

E{XT/G2|Z = z}
E{1/G2|Z = z}

]

(̂αwls − α)

+ op(1/
√

n), (17)

where bμ(z) is the same as the one in Theorem 1 and op(1/
√

n) is uniform over z,
and

√
nQα,wls(̂αwls − α0) = 1√

n

n
∑

i=1

εi X̌ i/G2
i + op(1). (18)

Accordingly,
√

n(̂αwls − α0)
D−→ Normal(0, σ 2Q−1

α,wls). Further, when ε is normally
distributed, α̂wls is the most efficient estimator in the sense of semiparametric efficiency.

Theorem 4 Suppose that Assumptions A and B in “Appendix” hold. Define Qβ =
E{(G(1) X̆)⊗2}. As n → ∞, nh4 → ∞, and nh6 → 0, we have

m̂ν,R(z,̂β R) − mν(z) = 1

n

n
∑

i=1

Kh(Zi − z)G(1)
i δi

p(z)E{G(1)2|Z = z}

−
[

E{G(1)2XT|Z = z}
E{G(1)2|Z = z}

]

(̂βwls − β0)

+ bν(z)κνh2 −
[

E{G(1) D X̌T|Z = z}
E{G(1)2|Z = z}

]

(̂αwls − α0)

+ op(1/
√

n), (19)

where bν(z) is the same as the one defined in Theorem 2 and op(1/
√

n) is uniform
over z, and

√
nQβ(̂β R − β0) = 1√

n

n
∑

i=1

(

δi G
(1)
i X̆ i − εi

[

E{G(1) D X̆ X̌T}Q−1
α,wls X̌ i/G2

i

+E
{

G(1)
i Di X̆ i |Zi

}])

+ op(1).

(20)

Accordingly,
√

nQβ(̂β R − β0)
D−→ Normal(0,Σβ,R), where

Σβ,R = E
(

δG(1) X̆ − ε
[

E{G(1) D X̆ X̌T}Q−1
α,wls X̌/G2 + E{G(1) D X̆|Z}

])⊗2
.
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Theorem 5 Suppose that Assumptions A and B in “Appendix” hold. Define Qβ,wls =
E{(G(1) X̄/G)⊗2}. As n → ∞, nh4 → ∞, and nh6 → 0, we have

m̂ν,wls(z,̂βwls) − mν(z) = 1

n

n
∑

i=1

Kh(Zi − z)G(1)
i δi/G2

i

p(z)E{G(1)2/G2|Z = z}

−
[

E{G(1)2XT/G2|Z = z}
E{G(1)2/G2|Z = z}

]

× (̂βwls − β0) + bν,wls(z)κνh2

−
[

E{G(1) D X̌T/G2|Z = z}
E{G(1)2/G2|Z = z}

]

(̂αwls − α0)

+ op(1/
√

n), (21)

where bν,wls(z) is defined in “Appendix A.5” and op(1/
√

n) is uniform over z, and

√
nQβ,wls(̂βwls − β0) = 1√

n

n
∑

i=1

(

δi G
(1)
i X̄ i/G2

i

− εi

[

E{G(1) D X̄ X̌T/G2}Q−1
α,wls X̌ i/G2

i

+ E
{

G(1)
i Di X̄ i/G2

i |Zi

}])

+ op(1). (22)

Accordingly,
√

nQβ,wls(̂βwls − β0)
D−→ Normal(0,Σβ,wls), where

Σβ,wls = E
(

δG(1) X̄/G2 − ε
[

E{G(1) D X̄ X̌T/G2}Q−1
α,wls X̌/G2

+ E{G(1) D X̄/G2|Z}
])⊗2

.

Now we compare the asymptotic covariance of the initial estimator for α0, α̂, with
that of the weighted estimator, α̂wls. In this and next comparisons, for simplicity,
we ignore the factor n. The asymptotic variance of α̂ is σ 2[E(˜X

⊗2
)]−1E{(G˜X)⊗2}

[E(˜X
⊗2

)]−1 and the asymptotic variance of α̂wls is σ 2[E{(X̌/G)⊗2}]−1. Noting that

M1 = E

{

(

X̌/G
G˜X

)⊗2
}

=
(

E{(X̌/G)⊗2} E(˜X
⊗2

)

E(˜X
⊗2

) E{(G˜X)⊗2}

)

≥ 0,

we see that E{(X̌/G)⊗2} ≥ E(˜X
⊗2

)[E{(G˜X)⊗2}]−1E(˜X
⊗2

), where the strict
inequality holds as long as the above covariance matrix M1 is positive definite. This
means that weighted estimator α̂wls is more efficient than initial estimator α̂.

Next we compare the asymptotic covariances of those estimators for β0, ̂β,
̂β R and ̂βwls. For simplicity, we only consider the special case where ε is sym-
metric. In this special case, E(D) = 0 and therefore the last two terms in
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each of Σβ , ΣR and Σwls become zero. Noting that V ar(δ/G) = V ar(|ε| −
1) = σ 2 − 1, the asymptotic variances of ̂β and ̂β R are both equal to (σ 2 −
1)[E{(G(1) X̆)⊗2}]−1E{(GG(1) X̆)⊗2}[E{(G(1) X̆)⊗2}]−1. This means that in this spe-
cial case, partially updated estimator ̂β R is asymptotically as efficient as initial
estimator̂β. The asymptotic variance of̂βwls is (σ 2−1)[E{(G(1) X̄/G)⊗2}]−1. Noting
that

M2 = E

{

(

G(1) X̄/G
GG(1) X̆

)⊗2
}

=
(

E{(G(1) X̄/G)⊗2} E{(G(1) X̆)⊗2}
E{(G(1) X̆)⊗2} E{(GG(1) X̆)⊗2}

)

≥ 0,

we see that E{(G(1) X̄/G)⊗2} ≥ E{(G(1) X̆)⊗2}[E{(GG(1) X̆)⊗2}]−1E{(G(1) X̆)⊗2},
where the strict inequality holds as long as the above covariance matrix M2 is positive
definite. This means that weighted estimator̂βwls is more efficient than the other two
estimators.

We conclude this section with some discussion on estimating the asymptotic
covariances. We only provide estimators for the asymptotic covariance matrices of
α̂wls and ̂βwls. The asymptotic covariance matrices of the other estimators can be
estimated similarly. To abuse notation, let ̂Gi = g{X i

T
̂βwls + m̂ν,wls(Zi )} and

̂G(1)
i = g(1){X i

T
̂βwls + m̂ν,wls(Zi )}.

The asymptotic covariance of
√

nα̂wls isσ 2Q−1
α,wls. SinceV ar(ε) = σ 2, a consistent

estimator of σ 2 is σ̂ 2 = ∑

ε̂2i /(n− p), where ε̂i = [Yi −{X i
Tα̂wls+m̂μ,wls(Zi )}]/̂Gi .

Recall that Qα,wls = E{(X̌/G)⊗2}. A consistent estimator of E{(X̌/G)⊗2} is
n−1∑(X̌

∗
i /
̂Gi )

⊗2, where

X̌
∗
i = X i −

∑n
j=1 X j Kh(Z j − Zi )/̂G2

j
∑n

j=1 Kh(Z j − Zi )/̂G2
j

.

The asymptotic covariance of
√

n̂βwls is Q−1
β,wlsΣβ,wlsQ−1

β,wls. Recall that Qβ,wls =
E{(G(1) X̄/G)⊗2}. A consistent estimator of E{(G(1) X̄/G)⊗2} is n−1
∑

(̂G(1)
i X̄

∗
i /
̂Gi )

⊗2, where

X̄
∗
i = X i −

∑n
j=1

̂G(1)2
j X j Kh(Z j − Zi )/̂G2

j
∑n

j=1
̂G(1)2

j Kh(Z j − Zi )/̂G2
j

.

If ε is symmetric, then Σβ,wls = (σ 2 − 1)Qβ,wls. Otherwise, in general, Σβ,wls can
be estimated by

1

n

n
∑

i=1

[

(|̂εi | − 1)̂G(1)
i X̄

∗
/̂Gi − ε̂i M ̂Q−1

α,wls X̌
∗
/̂Gi − ε̂iπ(Zi )̂Gi

]⊗2
,

where M = n−1∑ sign(̂εi )̂G
(1)
i X̄

∗
i X̌

∗T
i /̂Gi and π(z) =

∑

sign(̂ε j )̂G
(1)
j X̄

∗
j Kh(Z j −z)/̂G2

j
∑

Kh(Z j −z) .
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4 Numerical results

4.1 Simulations

We generated data frommodel (1), with g(ν) = exp(ν) and ε ∼ Normal(0, σ 2). Note
that the parameter identification assumption that E(|ε|) = 1 made below model (1)
can be satisfied by the following re-parametrization: ε̃ = ε/E(|ε|), g̃ = E(|ε|)g, and
σ̃ 2 = V ar(|̃ε|). The covariates (X0, X1, . . . , X8)

T were generated from amultivariate
Gaussian distribution with covariance given by cov(Xi , X j ) = (0.3)|i− j |, setting
Z = X0 and X = (X1, . . . , X8)

T. We considered two simulation examples. In the
first example, we set

α0 = (1,−1, 1,−1, 1,−1, 1,−1)T, mμ(z) = 10 sin(z),

β0 = (−0.1, 0.2,−0.1, 0.2, 0.1, 0.2, 0.2, 0.1)T, mν(z) = cos(z) + 1.

In the second example, we set

α0 = (1, 1, 1, 1,−0.5,−0.5,−0.5,−0.5)T, mμ(z) = exp(z),

β0 = (0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2)T, mν(z) = log{(z − 1)2 + 1}.

We considered sample size n = 200 and four noise levels, σ = 0.1, 0.2, 0.5, 1.0. For
each scenario, we randomly generated 100 datasets. We considered the following five
groups of estimates described in Sect. 2.

E1. The initial unweighted estimates for the mean function, (2) and (3),
E2. The initial unweighted estimates for the variance function, (4) and (5),
E3. The updated weighted estimates for the mean function, (7) and (8),
E4. The partially updated estimates for the variance function, (9) and (10),
E5. The updated weighted estimates for the variance function, (11) and (12).

We compared these estimators with the following three groups of infeasible estimates,
“infeasible” indicating they are not real estimators because someunknowncomponents
are utilized.

IE1. The infeasible weighted estimates for the mean function when the variance
function is known in calculation of the weights,

IE2. The infeasible unweighted estimates for the variance function when the mean
function is known in calculation of the absolute residuals,

IE3. The infeasible weighted estimates for the variance functionwhen themean func-
tion is known in calculation of the absolute residuals and the variance function
is known in calculation of the weights.

The numerical results reported here were based on locally linear regression. The
bandwidths were chosen simply by Silverman’s rule of thumb. Although this choice
was non-optimal for regression, it still performed well in simulations and was empir-
ically more stable than data-driven methods such as cross-validation or plug-in
methods, significantly shortening the computational time. The results are given in
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Table 1 RMSE of eight groups
of estimates in Example 1

σ α0 mμ

E1. Initial mean est

0.1 0.145 (0.048) 0.185 (0.040)

0.2 0.285 (0.092) 0.266 (0.074)

0.5 0.712 (0.222) 0.521 (0.188)

1 1.421 (0.439) 0.866 (0.363)

E3. Weighted mean est

0.1 0.122 (0.036) 0.184 (0.037)

0.2 0.220 (0.064) 0.265 (0.066)

0.5 0.525 (0.149) 0.512 (0.175)

1 1.120 (0.326) 0.860 (0.345)

IE1. Infeasible weighted mean est

0.1 0.118 (0.050) 0.184 (0.037)

0.2 0.219 (0.066) 0.264 (0.065)

0.5 0.494 (0.143) 0.509 (0.169)

1 1.081 (0.325) 0.867 (0.331)

σ β0 mν

E2. Initial var est

0.1 0.288 (0.078) 0.176 (0.074)

0.2 0.283 (0.073) 0.173 (0.074)

0.5 0.287 (0.079) 0.182 (0.079)

1 0.287 (0.080) 0.181 (0.087)

E4. Partially updated var est

0.1 0.286 (0.076) 0.168 (0.081)

0.2 0.281 (0.070) 0.162 (0.079)

0.5 0.282 (0.074) 0.178 (0.087)

1 0.283 (0.080) 0.179 (0.091)

E5. Weighted var est

0.1 0.262 (0.071) 0.148 (0.062)

0.2 0.268 (0.072) 0.165 (0.085)

0.5 0.274 (0.077) 0.159 (0.084)

1 0.272 (0.080) 0.165 (0.085)

IE2. Infeasible unweighted var est

0.1 0.263 (0.073) 0.147 (0.047)

0.2 0.261 (0.059) 0.144 (0.051)

0.5 0.258 (0.057) 0.140 (0.062)

1 0.259 (0.059) 0.138 (0.049)

Tables 1 and 2, which report the root mean squared errors (RMSE) of different quan-
tities, for the two examples respectively. For example, for α0 the RMSE is ‖α̂ − α0‖
and for mμ the RMSE is

√

∑50
t=1{m̂μ(zt ) − mμ(zt )}2/50, where (z1, . . . , z50) are
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Table 1 continued
σ β0 mν

IE3. Infeasible weighted var est

0.1 0.248 (0.051) 0.134 (0.055)

0.2 0.245 (0.048) 0.133 (0.060)

0.5 0.247 (0.050) 0.134 (0.056)

1 0.248 (0.052) 0.134 (0.053)

Numbers in parentheses are
standard deviations of RMSE
from 100 repetitions

Table 2 RMSE of eight groups
of estimates in Example 2

σ α0 mμ

E1. Initial mean est

0.1 0.105 (0.045) 0.102 (0.036)

0.2 0.146 (0.091) 0.169 (0.065)

0.5 0.412 (0.226) 0.340 (0.139)

1 1.037 (0.460) 0.610 (0.263)

E3. Weighted mean est

0.1 0.071 (0.038) 0.099 (0.033)

0.2 0.123 (0.061) 0.163 (0.063)

0.5 0.321 (0.185) 0.321 (0.119)

1 0.841 (0.489) 0.555 (0.217)

IE1. Infeasible weighted mean est

0.1 0.064 (0.032) 0.099 (0.032)

0.2 0.094 (0.044) 0.162 (0.060)

0.5 0.264 (0.188) 0.319 (0.112)

1 0.795 (0.510) 0.552 (0.209)

σ β0 mν

E2. Initial var est

0.1 0.355 (0.095) 0.235 (0.094)

0.2 0.357 (0.097) 0.192 (0.077)

0.5 0.357 (0.094) 0.196 (0.076)

1 0.356 (0.090) 0.198 (0.077)

E4. Partially updated var est

0.1 0.351 (0.102) 0.222 (0.074)

0.2 0.331 (0.097) 0.196 (0.069)

0.5 0.336 (0.093) 0.200 (0.071)

1 0.343 (0.092) 0.191 (0.070)

equally-spaced grid points on an interval with lower bound being the 0.01 quantile of
the sampled Z values and upper bound the 0.99 quantile.

First, from Tables 1 and 2, we see that the noise level σ has a large impact on
estimating parameters {α0, mμ} in the mean function, whereas it has a much smaller
impact on estimating parameters {β0, mν} in the variance function. Therefore, we ver-
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Table 2 continued
σ β0 mν

E5. Weighted var est

0.1 0.346 (0.121) 0.213 (0.129)

0.2 0.330 (0.109) 0.191 (0.116)

0.5 0.329 (0.098) 0.190 (0.100)

1 0.339 (0.101) 0.182 (0.111)

IE2. Infeasible unweighted var est

0.1 0.339 (0.130) 0.204 (0.100)

0.2 0.321 (0.125) 0.185 (0.084)

0.5 0.311 (0.103) 0.183 (0.082)

1 0.323 (0.116) 0.188 (0.081)

IE3. Infeasible weighted var est

0.1 0.312 (0.113) 0.178 (0.070)

0.2 0.297 (0.077) 0.175 (0.087)

0.5 0.293 (0.062) 0.167 (0.077)

1 0.293 (0.066) 0.168 (0.081)

Numbers in parentheses are
standard deviations of RMSE
from 100 repetitions

ify this well-known phenomenon of the variance function estimation firstly discussed
in Davidian and Carroll (1987).

By comparing the RMSEs in Tables 1 and 2, we see that the mean function estima-
tion (E3) with weighting is more efficient than that without weighting (E1), as implied
by the theoretical results. Similarly, we also see that the variance function estimation
with weighting (E5) is more efficient than the partially updated variance function (E4),
which is more efficient than the initial variance function estimation (E2).

In addition, although asymptotically the weighted estimators are as efficient as the
infeasible counterparts (E3 vs IE1, E4 vs IE2, and E5 vs IE3), from Tables 1 and 2
we can still see some differences between them with finite sample sizes, infeasible
estimators exhibiting more efficiency than their counterparts.

To further examine the performance of estimating non-parametric components mμ

and mν , for each scenario we present the three estimated curves whose RMSE cor-
respond to the 1st, 2nd and 3rd quartiles of the RMSEs among the 100 replicates. We
display these estimated curves in Figs. 1 and 2 (in red, green, blue, respectively), along
with the true non-parametric estimands shown in black solid curves. From these two
figures, we see that the nonparametric functions are estimated reasonably well. We
also see that the noise level σ has a large impact on estimating mμ, whereas it has a
small impact on estimating mν .

Theoretically, the asymptotic distributions in Theorems 3 and 5 are the same as the
asymptotic distributions that would be obtained when the true weights Gi are known,
and thus further updating of the estimates will have no effects on the asymptotic
results. We have also tried using the estimated variance function to further update the
mean estimates and then the variance estimates, but did not observe improvement in
estimation accuracy.
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Fig. 1 The simulation results for Example 1. For each value of σ , the five figures correspond clockwisely to
five feasible non-parametric estimates E1-E5, with the corresponding estimands (black solid), 1st quartile
(red dashed), 2nd quartile (median; green dotted) and 3rd quartile (blue dash-dotted) of RMSE in estimating
the functions
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Fig. 2 The simulation results for Example 2. The caption is the same as in Fig. 1

4.2 An empirical example

The proposed methods are applied to an air pollution study with data collected in
Mexico City. We use a subset of the data that contains the daily mortality and air
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Fig. 3 Scatterplots for the air pollution data

pollution data in the year 1994. The goal of the study was to relate the daily counts
of accidental death (D) to three predictors including temperature (Temp), humidity
(Hum) and levels of ambient concentration of PM10 (PM10), while accounting for the
temporal trend. For 365 days indexed by i = 1, . . . , 365, the scatterplots of log(Di )

versus the three predictors as well as the day index i are shown in Fig. 3. Nonlinear
temporal effect is clearly seen in the lower-right panel. We fit the following model to
the data:

log(Di ) = mμ(i) + α1Tempi + α2Humi + α3PM10i + εi ,

εi = exp{mν(i) + β1Tempi + β2Humi + β3PM10i }εi .

The estimated non-parametric components in the mean function by different meth-
ods are shown on the top row of Fig. 4, with m̂μ in the top-left and m̂μ,wls in the
top-right. Both estimated curves show a dip in the middle of the year. The esti-
mated linear coefficients involved in the weighted estimate of the mean function are
α̂wls = (−0.18,−0.10, 0.19)T. The estimated non-parametric components in the vari-
ance function by different methods are shown on the middle row of Fig. 4, with m̂ν

in the middle-right, m̂ν,R in the middle-middle and m̂ν,wls in the middle-right. In
contrast to that in the mean function, all the three estimates of the non-parametric
components in the variance function show a bump in the middle of the year. The esti-
mated linear coefficients involved in the weighted estimate of the variance function
̂βwls = (−1.56,−1.72,−2.34)T. Examining the signs of these coefficients for the
mean and the variance, we see that higher temperature and higher humidity is asso-
ciated with lower death rate and lower variance of death rate, while higher level of
PM10 is associated with higher death rate but lower variance of death rate.
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Finally, on the bottom row of Fig. 4, we show the plots of log(̂Ri ) versus
ν̂i = m̂ν(i) + ̂β1Tempi + ̂β2Humi + ̂β3PM10i . In the bottom-left, the estimates
are obtained from the initial estimates of the variance function (E2), while from the
partially estimates in the bottom-middle (E4) and from the weighted estimates in the
bottom-right (E5). The solid line in each figure on the bottom row is the straight line
going through origin with slope one, which serves as a reference since we expect that
log(R̂i )would be roughly linear against ν̂i if themodel fit were reasonable. Andwe see
that our model fit the data reasonably well. In practice, this step can be used for model
checking and diagnosis. Numerically, the sum of squared residuals of log(R̂i ) − ν̂i

for the bottom plots are 402.4, 372.4 and 372.2, respectively, indicating slightly better
fit for the updated variance estimates.

5 Discussions

In this paper we investigate a broad class of models, variance function generalized
partially linear models. The flexibility of such models comes from that the variance is
not limited to be a known function of the mean. The models are useful for the settings
where estimating the variance function is of its own interest. The models are also
useful for the settings where estimating the mean function is of main interest, because
taking into account the heteroscedasticity would improve the efficiency of estimating
the mean function.

The asymptotic properties of weighted estimators for the mean function have been
studied in the literature by many authors and it is well known that in general weighted
estimators are more efficient than unweighted estimators. However, the asymptotic
properties of weighted estimators for the variance function draw much less attention.
In this paper, we investigate the asymptotic properties of weighted estimators for the
variance function for this class of models and show that weighted estimators are more
efficient that unweighted estimators.

If the number of predictors is large and curse of high-dimensionality is a concern,
we should consider variable selection. Fortunately, there is a wealthy of literature on
the topic of variable selection in the past two decades andmany existing variable selec-
tion procedures can be easily extended to our setting. For example, we can consider the
penalized profiling procedure proposed in Liang et al. (2010) by adding some sparsity
penalties onto the profiling objective functions in (3) and (5), respectively. Alterna-
tively, we can apply the method of least squares approximation proposed byWang and
Leng (2007) straightforwardly to our setting. The method of least squares approxima-
tion has been applied successfully for variable selection in generalized partially linear
models by Leng et al. (2011).

Finally, we emphasize that a great deal of effort has been put on deciding on which
predictors should be the linear components of both the mean and variance functions.
Scatterplots of the response variable versus those predictors could help us make such
decision for the mean function, as demonstrated in Fig. 3. In this paper, we assume
that the same subset of predictors are put in the linear components of both the mean
and variance function, but using different structures for mean and variance functions
would offer more flexible alternatives. The model (1) can be easily extended to allow
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different subsets of predictors to be put in the linear components of the mean and
variance functions. Scatterplots of the absolute residuals versus those predictors might
help us make a decision on which predictors should be in the linear component of the
variance function.

Appendix

A.1 Assumptions

Assumption A

A1. The density function p(z) of Z is bounded away from zero and continuously
differentiable on [0, 1]. Also, X is in a compact set X ⊂ R

p.
A2. The function mμ(·) is twice continuously differentiable.
A3. The kernel K = Kμ is a bounded and symmetric probability density function,

satisfying

κμ =
∫ ∞

−∞
u2Kμ(u)du 
= 0,

∫ ∞

−∞
|u|i Kμ(u)du < ∞, i = 1, 2, . . . .

A4. The matrix Qα is positive definite.

Assumption B

B1. The functions mν(·) and g(·) are twice continuously differentiable.
B2. There exist positive constants c and C such that c ≤ g{Xβ0 + mν(Z)} ≤ C .
B3. The kernel K = Kν is a bounded and symmetric probability density function,

satisfying

κν =
∫ ∞

−∞
z2Kν(z)dz 
= 0,

∫ ∞

−∞
|z|i Kν(z)dz < ∞, i = 1, 2, . . . .

B4. The matrix Qβ is positive definite.

A.2 Proof of Theorem 1

The asymptotic results of {m̂μ(z; α̂), α̂} have beenwell studied in the literature (Härdle
et al. 2000). Herewe still give a sketch of the proof, which helps us understand themore
complicated proof for Theorem 2. Assume we have shown that α̂ is

√
n-consistent

(Speckman 1988).
Consider (13). It suffices to show that, for any α∗ = α0 + O(1/

√
n),

m̂μ(z;α∗) − mμ(z) = 1

n

n
∑

i=1

Kh(Zi − z)
εi

p(z)
− E(XT|Z = z)(α∗ − α)

+ bμ(z)κμh2 + op(1/
√

n), (23)
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where op(1/
√

n) is uniform over z. Noting that m̂μ(z;α∗) is the solution to equation

n
∑

i=1

(

Yi −̂ξ − XT
i α∗) Kh(Zi − z) = 0,

we have

m̂μ(z;α∗) =
(

n
∑

i=1

Kh(Zi − z)Yi −
n
∑

i=1

Kh(Zi − z)XT
i α∗

)/

n
∑

i=1

Kh(Zi − z).

The right-hand-side of the above equation equals

(

n
∑

i=1

Kh(Zi − z)mμ(Zi ) −
n
∑

i=1

Kh(Zi − z)XT
i (α∗ − α0)

+
n
∑

i=1

Kh(Zi − z)εi

)/

n
∑

i=1

Kh(Zi − z).

It is well-known that, as nh4 → ∞ and nh6 → 0,

n
∑

i=1

Kh(Zi − z)mμ(Zi )

/

n
∑

i=1

Kh(Zi − z) = mμ(z) + bμ(z)κμh2 + op(1/
√

n),

n
∑

i=1

Kh(Zi − z)X i

/

n
∑

i=1

Kh(Zi − z) = E(X|Z = z) + op(1),

where op(·) is uniform over z ∈ [0, 1]. Then (23) follows.
Next consider (14). By (23), α̂ of (3) is the solution to

n
∑

i=1

˜X i

(

Yi − m̂μ(Zi ; α̂) − XT
i α̂
)

= 0.

By (13), the above equation becomes

n
∑

i=1

˜X i˜X
T
i (̂α − α0) =

n
∑

i=1

˜X iεi −
n
∑

i=1

bμ(Zi )˜X iκ2h2

−
n
∑

i=1

˜X i

⎛

⎝

1

n

n
∑

j=1

Kh(Z j − Zi )
ε j

p(Z j )

⎞

⎠ .
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The last term equals
∑n

i=1 εi

(

1
n

∑n
j=1 Kh(Z j − Zi )˜X j/p(Zi )

)

and n−1∑n
j=1

Kh(Z j − z)˜X j
/

p(z) = op(1). In the next term to the last,
∑n

i=1 bμ(Zi )˜X i =
Op(

√
n). Then (14) follows from

∑n
i=1

˜X i˜X
T
i

/

n → Qα .

A.3 Proof of Theorem 2

In what follows, we assume that

̂β = β0 + Op(n
−1/2) and sup

z
|m̂ν(z;β∗) − mν(z)| = op(n

−1/4), (24)

for anyβ∗ = β0+O(n−1/2). Follow the samearguments as in the proof of Propositions
1 and 2 in Severini and Staniswalis (1994), we can prove such consistency. However,
such a proof would be long, detailed, and essentially noninformative. Therefore, as in
Davidian and Carroll (1987) and Lian et al. (2015), we skip such proof and assume
that we have shown the above consistency.

To show (15), it suffices to show that, for any β∗ = β + O(1/
√

n),

m̂v(z,β
∗) − mν(z) = 1

n

n
∑

i=1

Kh(Zi − z)G(1)
i δi

p(z)E{G(1)2|Z = z}

−
[

E{G(1)2XT|Z = z}
E{G(1)2|Z = z}

]

(β∗ − β0)

+ κ2bν(z)h
2 −

[

E{G(1) D˜X
T|Z = z}

E{G(1)2|Z = z}

]

(̂α − α0)

+ op(1/
√

n), (25)

where op(1/
√

n) is uniform over z. Given β = β∗, the minimizer of (4) is the solution
to equation

n
∑

i=1

Kh(Zi − z)
(

̂Ri − g
(

̂ζ + XT
i β∗)) g(1)

(

̂ζ + XT
i β∗) .

By (24) and the assumption of h, the left hand side is

n−1
∑

Kh(Zi − z)(̂Ri − Ri )G
(1)
i + n−1

∑

Kh(Zi − z)(Ri − Gi )G
(1)
i

+ n−1
∑

Kh(Zi − z)
(

Gi − g
(

̂ζ + XT
i β∗)) g(1)

(

̂ζ + XT
i β∗)+ op(1/

√
n),

(26)
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where op(·) is uniform over z. Consider the first term of (26). We give an expression
for ̂Ri − Ri . Using an identity in Knight (1998, p. 758),

̂Ri − Ri = −̂Si {I(εi >0) − I(εi ≤0)} + 2
∫
̂Si

0
{I(εi <s) − I(εi ≤0)}ds,

wherêSi = (

m̂μ(Zi ; α̂) + XT
i α̂
)−(mν(Zi ) + XT

i α0
)

. By Theorem 1, ̂Ri − Ri equals

−Di˜X
T
i (̂α − α0) − Di

n

n
∑

j=1

Kh(Z j − Zi )
ε j

p(Zi )

+ 2
∫
̂Si

0
{I(εi <s) − I(εi ≤0)}ds + op(1/

√
n). (27)

Then, by (27), the first term of (26) is equal to

−1

n

n
∑

i=1

Di G
(1)
i
˜X

T
i Kh(Zi − z)(̂α − α0)

− 1

n2

n
∑

i=1

n
∑

j=1

Di G
(1)
i Kh(Zi − z)Kh(Z j − Zi )

ε j

p(Zi )

+ 2

n

n
∑

i=1

Kh(Zi − z)G(1)
i

∫
̂Si

0
{I(εi <s) − I(εi ≤0)}ds. (28)

Following the same arguments as in the proof of Theorem 3.2 in Lian et al. (2015),
we have

n−2
n
∑

i=1

n
∑

j=1

Di G
(1)
i Kh(Zi − z)Kh(Z j − Zi )

ε j

p(Zi )
= op(n

−1/2),

n−1
n
∑

i=1

Kh(Zi − z)G(1)
i

∫
̂Si

0
{I(εi <s) − I(εi ≤0)}ds = op(n

−1/2).

Then the first term of (26) equals −n−1∑n
i=1 Kh(Zi − z)G(1)

i Di˜X
T
i (̂α − α0) +

op(n−1/2), which is further equal to

−E{G(1) D˜X
T|Z = z}p(z)(̂α − α0) + op(n

−1/2).

The second term of (26) equals n−1∑n
i=1 Kh(Zi − z)G(1)

i δi . By Taylor expansion,
the third term of (26) equals
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1

n

n
∑

i=1

Kh(Zi − z)
[

g
(

mν(Zi ) + XT
i β0

)

− g
(

mν(z) + XT
i β0

)]

g(1)

×
(

mν(z) + XT
i β0

)

− 1

n

n
∑

i=1

Kh(Zi − z)g(1)2
(

mν(z) + XT
i β0

)

×
[

(̂ζ − mν(z)) + XT
i (β∗ − β0)

]

+ op(n
−1/2). (29)

Following the similar arguments of deriving bμ(z), we can show that the first term of
(29) equals κνbν(z)h2 + op(n−1/2), where if local constant regression is used in (4),

bν(z) = m(1)(z)p(1)(z)

p(z)
+ m(2)

ν (z)

2
+ E{G(2)G(1)|Z = z}

2E{G(1)2|Z = z} m(1)
ν (z),

while if local linear regression is used in (4),

bν(z) = m(2)
ν (z)

2
+ E{G(2)G(1)|Z = z}

2E{G(1)2|Z = z} m(1)
ν (z).

And the second term of (29) equals

−E{G(1)2|Z = z}p(z)
(

̂ζ −mν(z)
)−E{G(1)2XT|Z = z}p(z)(β∗ − β0) + op(n

−1/2).

Therefore, combining final expressions of those three terms of (26), (25) follows.
Next, consider (16). By (25), minimizer̂β of (5) is the solution to

n
∑

i=1

X̆ i

(

̂Ri − g
(

m̂ν(Zi ;̂β) + XT
i
̂β
))

g(1)
(

m̂ν(Zi ;̂β) + XT
i
̂β
)

= 0.

Similarly, using Taylor expansion and the assumptions of h, we know that the left
hand side is

n−1
n
∑

i=1

X̆ i (̂Ri − Ri )G
(1)
i + n−1

n
∑

i=1

X̆ i (Ri − Gi )G
(1)
i

− n−1
n
∑

i=1

X̆ i

(

g
(

m̂ν(Zi ;̂β) + XT
i
̂β
)

− Gi

)

G(1)
i + op(n

−1/2). (30)

For the first term of (30), by (27), it is equal to

−n−1
n
∑

i=1

G(1)
i Di X̆ i˜X

T
i (̂α − α0) − n−2

n
∑

i=1

G(1)
i Di X̆ i

n
∑

j=1

Kh(Z j − Zi )
ε j

p(Zi )

+ n−1
n
∑

i=1

2G(1)
i X̆ i

∫
̂Si

0
{I(εi <s) − I(εi ≤0)}ds.
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Following the same arguments as in the proof of Theorem 3.2 in Lian et al. (2015),
we have

n−2
n
∑

i=1

Di G
(1)
i X̆ i

n
∑

j=1

Kh(Z j − Zi )
ε j

p(Zi )

= n−1
n
∑

i=1

εi E
{

Di G
(1)
i X̆ i |Zi

}

+ op(n
−1/2),

n−1
n
∑

i=1

G(1)
i X̆ i

∫
̂Si

0
{I(εi <s) − I(εi ≤0)}ds = op(n

−1/2).

Then the first term of (30) equals

−E{G(1) D X̆˜X
T}(̂α − α0) − n−1

n
∑

i=1

εi E
{

Di G
(1)
i X̆ i |Zi

}

+ op(n
−1/2).

The second term of (30) equals n−1
n
∑

i=1
δi G

(1)
i X̆ i . The third term of (30) equals

−n−1
n
∑

i=1

X̆ i G
(1)2
i

(

(

m̂ν(Zi ,̂β) − mν(Zi )
)+ XT

i (̂β − β0)
)

+ op(n
−1/2),

which, by (15), is further equal to

−1

n

n
∑

i=1

G(1)2
i X̆ i

p(Zi )E
{

G(1)2
i |Zi

}

1

n

n
∑

j=1

Kh(Z j − Zi )G
(1)
j δ j

+1

n

n
∑

i=1

G(1)2
i X̆ i

⎡

⎣

E
{

G(1)2
i XT

i |Zi

}

E
{

G(1)2
i |Zi

}

⎤

⎦ (̂β − β0)

+1

n

n
∑

i=1

G(1)2
i X̆ i

⎡

⎣

E
{

G(1)
i Di˜X

T
i |Zi

}

E
{

G(1)2
i |Zi

}

⎤

⎦ (̂α − α0)

−1

n

n
∑

i=1

G(1)2
i X̆ iκνbν(z)h

2 − 1

n

n
∑

i=1

G(1)2
i X̆ i XT

i (̂β − β0) + op(1/
√

n).

Noting that E{G(1)2 X̆|Z = z} = 0, we see that the second term to the last in the
above formula is op(n−1/2). Then the third term of (30) equals
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E

⎡

⎣

G(1)2
i X i E

{

G(1)
i Di˜X

T
i |Zi

}

E
{

G(1)2
i |Zi

}

⎤

⎦ (̂α − α0) − E{(G(1) X̆)⊗2}(̂β − β0)

−1

n

n
∑

i=1

δi G
(1)
i

⎡

⎣

E
{

G(1)2
i X i |Zi

}

E
{

G(1)2
i |Zi

}

⎤

⎦+ op(1/
√

n),

which further equals−E{(G(1) X̆)⊗2}(̂β−β0)+op(1/
√

n), noting that E{G(1)2 X̆|Z}
= 0.

Combining the final expressions of those three terms of (30),
√

nQβ(̂β−β0) equals

1√
n

n
∑

i=1

δi G
(1)
i X̆ i − 1√

n

n
∑

i=1

εi E
{

Di G
(1)
i X̆ i |Zi

}

−√
nE{G(1) D X̆˜X

T}(̂α − α0) + op(1).

Thus, by the expression of α̂ − α0 in Theorem 1, (16) follows.

A.4 Proof of Theorem 3

Define the following score function of parameter α with nuisance parameters
{H, mμ, G},

�(H, mμ, G;α, Y, X) =
(

Y − mμ(Z) − XTα
)

(X − H(Z))/G2,

where H(Z) = E{X/G2|Z}/E{1/G2|Z}. Following the similar arguments as in the
proof of Theorem 3.1 in Lian et al. (2015) and Lemma 5.1 in Newey (1994), we can
show that α̂wls has the same limit distribution as the solution to the equation

n
∑

i=1

�(H, mμ, G;α, Yi , Xi ).

And it can bee seen the solution to the above equation has the same limit distribution
of (18). The efficiency of α̂wls can be approved by the similar arguments as in the proof
of Theorem 3.1 in Lian et al. (2015) and the theory in Bickel et al. (1993). Thus second
part of the theorem is proved. The first part of the theorem follows consequently.

A.5 Proof of Theorem 4

First we give an expression of ̂Ri,wls − Ri . Because

̂Ri,wls − Ri = −̂Si,wls{I(εi >0) − I(εi ≤0)} + 2
∫
̂Si,wls

0
{I(εi <s) − I(εi ≤0)}ds,
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where ̂Si,wls = (

m̂μ,wls(Zi ; α̂wls) + XT
i α̂wls

) − (

mν(Zi ) + XT
i α0

)

. By Theorem 3,

the dominant term of ̂Ri,wls − Ri is −Di X̌
T
i (̂αwls − α0).

Then the proof of (19) is identical to that of (15), except that α̂wls replaces α̂ every-
where, where the asymptotic expression of

√
n(̂αwls − α0) is obtained in Theorem 3.

A.6 Proof of Theorem 5

As in Sect. A.3, assume that ̂βwls = β0 + Op(n−1/2) and supz |m̂ν,wls(z,β
∗) −

mν(z)| = op(n1/4) for any β∗ = β0 + Op(n−1/2).
The proof of (21) is similar to that of (15), except that 1/G2

i is added to each term
and bν,wls(z) is defined differently. If local constant regression is used in (11),

bν,wls(z) = m(1)(z)p(1)(z)

p(z)
+ m(2)

ν (z)

2
+ E{G(2)G(1)/G2|Z = z}

2E{G(1)2/G2|Z = z} m(1)
ν (z),

while if local linear regression is used in (11),

bν,wls(z) = m(2)
ν (z)

2
+ E{G(2)G(1)/G2|Z = z}

2E{G(1)2/G2|Z = z} m(1)
ν (z).

The proof of (22) is similar to that of (16), except that 1/G2
i is added to each term

and X̆ is replaced by X̄ .
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