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1. ESTIMATOR FOR SMALL SAMPLES

The proposed estimator is motivated by the asymptotic theory and an intensive numerical

study presented in the next section. The cosine basis, used in the asymptotic analysis,

performs exceptionally well for a majority of hazards discussed in the literature but can

be improved for hazards that change rapidly near boundaries. For instance, there is an

important class of bathtub-shaped hazards that can be seen in the bottom row of Figure

1. Note that the hazards are almost vertical near boundaries. According to Jankowski

and Welner (2009), all traditional nonparametric estimators do not perform well for bathtub

hazards, and hence in that paper a smart procedure of piece-wise approximations is proposed.

Our numerical study of bathtub hazards shows that cosine estimators perform well in terms of

the ISE, but their visual appeal near boundaries is not satisfactory. To resolve the boundary

issue, it is recommended to complement the cosine basis by linear and quadratic terms as

is explained in the proof of Theorem 2. This simple method, as we will see shortly, yields

satisfactory visualization of bathtub shapes. At the same time, the recommended estimator

uses linear and quadratic terms only if there is a statistically significant evidence for the

need of a boundary correction.
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To utilize the proposed method, we are using the Gram-Schmidt orthonormalization

procedure. Note that it is always better to deal with a basis defined on a fixed interval, say

[0, 1] and then correspondingly rescale data. Let J be a nonnegative integer. Choose J + 1

elements of the cosine basis ϕ∗0(x) := 1, ϕ∗j(x) := 21/2 cos(πjx), j = 1, 2, . . . and complement

them by linear and quadratic terms using the Gram-Schmidt orthonormalization,

ψJ,1(x) :=
x− 1/2− 2π−2

∑J
j=1 j

−2((−1)j − 1) cos(πjx)

[1/12− 2π−4
∑J

j=1 j
−4((−1)j − 1)2]1/2

, (A.1)

ψJ,2(x) :=
x2 − 1/3− (2/π)2

∑J
j=1 j

−2(−1)j cos(πjx)− c∗ψJ,J+1(x)

[4/45− c2
∗ − 8π−4

∑J
j=1 j

−4]1/2
. (A.2)

In (A.1) and (A.2) it is assumed that
∑0

j=1 xj := 0 and in (A.2)

c∗ :=
1/12 + 4π−4

∑J
j=1 j

−4((−1)j − 1)

[1/12− 2π−4
∑J

j=1 j
−4((−1)j − 1)2]1/2

. (A.3)

The proposed estimator for an interval of interest [a, a+ b] is

h̃X
∗
(x) := b−1[

J̃∑
j=0

max(1− d̂/(nθ̃2
j ), 0)θ̃jϕ

∗
j((x− a)/b) (A.4)

+
2∑
i=1

I(κ̃2
J,i > 2 ln(n)d̃n−1)κ̃J,iψJ,i((x− a)/b), x ∈ [a, a+ b]. (A.5)

Here

θ̃j :=
n∑
l=1

∆lϕ
∗
j([Yl − a]/b)η−1

l I(Yl ∈ [a, a+ b]) (A.6)

and

κ̃J,i :=
n∑
l=1

∆lψJ,i([Yl − a]/b)η−1
l I(Yl ∈ [a, a+ b]) (A.7)
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are estimators of Fourier coefficients,

d̂ := d̂a,b := nb−1

n∑
l=1

∆lη
−2
l I(Yl ∈ [a, a+ b]) (A.8)

is the estimator of the coefficient of difficulty,

J̃ := argmin0≤J≤4+(1/2) ln(n)[2(J + 3)d̃n−1 −
J∑
j=0

θ̃2
j − κ̃2

J,1 − κ̃2
J,2] (A.9)

is the cutoff which minimizes the empirical ISE, and

ηl :=
n∑
s=1

I(Ts ≤ Yl ≤ Ys). (A.10)

Because ηl ≥ 1, using its reciprocal is correct.

Let us comment on the estimator. Not surprisingly, some of its components are the same

as in the asymptotic estimators of Section 3. The cosine part (A.4) is motivated by the

asymptotic theory, and it is a classical cosine series estimator. Two-terms polynomial part

(A.5) is used solely for correcting boundary effects, and it is used only if there is a statis-

tically significant evidence for doing this; the latter is done by the universal thresholding.

Because estimators of Fourier coefficients are sample mean estimators, it is straightforward

to establish pointwise confidence bands, see Wasserman (2005). Let us also comment on a

question which is often asked about the used cosine basis complemented by two polynomials.

Why do not use a polynomial basis instead? The answer is that while this basis is excellent

for polynomial functions, in general polynomial approximations are not visually appealing

and there is no suitable approximation theory for differentiable functions; see a discussion in

Efromovich (1999,ch.2). Recall that the latter is the reason why a smooth piece-wise poly-

nomial approximation is often recommended, which is called the approximation by splines.

Interestingly, spline bases, used for the asymptotic analysis, resemble the cosine basis, and

this sheds another light on the recommended basis.
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2. NUMERICAL STUDY OF THE ESTIMATOR

To evaluate performance of the proposed estimator (A.4) for small sample sizes, it is conve-

nient to have a benchmark to compare with. The chosen benchmark is an oracle-estimate

that knows an underlying LTRC mechanism as well as an estimated hazard rate. This oracle

is a familiar kernel estimator (see, for instance, Uzunogullari and Wang 1992 as well as the

review in Hagar and Dukic 2015 and the R-package muhaz) which is transformed into oracle

by: (i) Using the golden-rule bandwidth based on all unknown to a statistician underlying

functions (see more in Marron and Wand 1992 and Efromovich 1999). This solves the issue

of adaptation to unknown smoothness of an underlying hazard rate; (ii) Using all observa-

tions (not just belonging to [a, a+ b]). This solves the familiar boundary problem. Then the

oracle-estimator is defined as

ȟ(x, ν(x)) := n−1

n∑
l=1

K
(x− Yl
ν(x)

) ∆l

ν(x)g(Yl)
(A.11)

where K(x) is the Gaussian kernel, g(x) = P(T ≤ x ≤ Y ), and ν(x) is the golden-rule

oracle-bandwidth

ν(x) := n−1/5 [hX
∗
(x)
∫
K2(t)dt]1/5

[h′′(x)
∫
t2K(t)dt]2/5[g(x)]1/5

. (A.12)

Note that (A.11) is not a data-driven estimator and it is used to create a benchmark. Further,

using the positive Gaussian kernel for small samples is recommended in Marron and Wand

(1992) because, together with the optimal adaptation, this kernel oracle outperforms oracles

using asymptotically optimal kernels taking negative values.

Now let us describe statistical experiments used in the study. Underlying distributions

of X∗ are either Weibull W (γ, β), where γ and β are the shape and scale parameters, re-

spectively, or it is a Bathtub (BT ) distribution generated by X∗ := min(V1, V2) with V1

and V2 being W (0.3, 1) and W (15, 1), respectively. Weibull distribution is of interest be-

cause its hazard rate is decreasing, constant and increasing for the shape parameter γ < 1,

4



γ = 1 and γ > 1, respectively. Bathtub distributions, implying a convex bathtub-shaped

hazard function, occur in a number of applications; an interesting discussion can be found

in Jankowski and Welner (2009). The above-described distributions allow us to test per-

formance of the estimator on increasing, decreasing, and convex bathtub-shaped hazard

functions, see solid lines in Figure 1. Figure 1 also exhibits series and oracle estimates for

a single simulation, and note how well the oracle performs near boundaries due to using

observations beyond the interval of estimation. In experiments with independent random

variables the underlying distributions of T ∗ and Z∗ are either exponential or uniform, and

experiments with dependent T ∗ and Z∗ will be explained shortly. Several different intervals

[a, b] and n ∈ {100, 200, 300, 400, 500, 1000} are considered (next section is devoted to discus-

sion of the interval of estimation). For each experiment, defined by underlying distributions

as well as by an interval [a, a + b] and a sample size, 5000 simulations are conducted. For

each simulation the empirical integrated squared error of the oracle (ISEO) and the empirical

integrated squared error of the proposed data-driven series estimator (ISEE) are calculated.

Then the median ratio (over 5000 simulations) of ISEO/ISEE, denoted as M , is shown in

Table 1 together with the average number of observations fallen within a studied interval

[a, a+ b], denoted as m. The corresponding entry in Table 1 is written as M/m. The num-

ber m is informative because empirical Fourier coefficients (A.6) and (A.7) are based only

on Yl ∈ [a, a + b]. In other words, we can say that m is the “effective” sample size used

to estimate Fourier coefficients (of course, all n observations are used to estimate nuisance

functions).

Five bottom rows in Table 1 are devoted to experiments where T ∗ and Z∗ are dependent.

In these experiments Z∗ := T ∗+R∗ where T ∗ and R∗ are independent and X∗ is independent

of (T ∗, R∗). To define R∗, denote by U(c1, c2) a uniform on [c1, c2] random variable which

is independent of all other random variables involved in an experiment. In “Case1” we set

R∗ = U(0, 2) with probability 0.7 and R∗ = 2 with probability 0.3. This is the case when

some subjects may leave a study before its end and others are censored by the end of the
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study. In “Case2” we add the possibility for a subject to leave a study during a single

follow-up. Namely, we set R∗ = U(0, 2) with probability 0.4, R∗ = 1 with probability 0.3,

and R∗ = 2 with probability 0.3. In “Case3” a subject is additionally “allowed” to leave

a study immediately at the baseline, and then we set R∗ = U(0, 5) with probability 0.2,

R∗ = 0 with probability 0.2, R∗ = 2.5 with probability 0.2, and R∗ = 5 with probability 0.4.

Table 1. Results of Monte Carlo simulations. Distributions are denoted asW (γ, β), BT , U(c1, c2)
and E(λ) for Weibull with shape parameter γ and scale parameter β, Bathtub cor-
responding to the minimum of random variables with distributions W (0.3, 1) and
W (15, 1), uniform on the interval [c1, c2], and exponential with 1/λ being the mean,
respectively. An entry in the Table is written as M/m where M is the median of 5000
ratios ISEO/ISEE and m is the average number of observations fallen within interval
[a, a+ b].

n
X∗ T ∗ Z∗ [a, a + b] d 100 200 300 400 500 1000
W (3, 4) U(0, 3) U(3, 10) [0.5, 4] 0.54 0.80/59 0.92/118 1.07/177 1.20/237 1.15/295 1.41/590
W (3, 4) U(0, 3) U(3, 10) [1, 4] 0.61 0.71/58 0.87/116 0.88/174 1.10/232 1.01/290 1.32/580
W (3, 4) U(0, 3) U(3, 10) [1, 5] 1.72 0.71/80 0.89/161 1.02/241 1.03/320 1.26/400 1.41/800
W (1.2, 5) E(1) E(0.05) [1, 5] 0.41 0.92/48 1.03/95 1.27/143 1.33/200 1.45/251 1.43/480
W (0.5, 2) E(2) E(0.05) [0.5, 8] 0.63 0.72/46 0.80/91 0.86/138 0.97/182 1.07/230 1.44/462
W (0.5, 2) E(5) E(0.05) [0.1, 3] 0.65 0.69/47 0.83/95 0.90/142 0.94/190 1.01/237 1.24/474
W (0.3, 1) E(2) E(0.05) [0.2, 6] 0.44 0.73/32 0.92/64 1.00/96 1.08/128 1.19/160 1.58/320
W (3, 2) E(1) E(0.15) [1, 2] 1.90 0.91/38 0.99/74 1.13/111 1.11/151 1.24/188 1.56/371
W (3, 2) E(1) E(0.15) [0.5, 2] 1.37 0.84/45 0.91/91 1.09/137 1.04/182 1.15/229 1.42/456
W (3, 2) E(1.5) E(0.1) [0.5, 2.5] 3.33 0.76/72 0.94/144 1.03/215 1.12/287 1.10/360 1.47/720
BT E(80) E(0.5) [0.05, 0.9] 2.04 0.78/45 0.90/90 1.08/135 1.16/180 1.38/225 1.40/450
W (2.5, 1) E(2) Case1 [0.1, 1] 1.98 0.70/51 0.93/102 1.02/153 1.08/204 1.19/255 1.23/511
W (4, 1) E(3) Case2 [0.4, 1] 3.12 0.84/56 0.91/112 1.03/168 1.05/223 1.06/278 1.10/561
W (5, 2) E(1) Case2 [0.3, 2.1] 2.46 0.70/64 0.78/130 0.93/195 1.07/260 1.10/324 1.29/654
W (1.1, 1) E(5) Case3 [0.3, 2] 4.65 1.31/53 1.23/106 1.26/158 1.30/211 1.38/364 1.19/528
W (1.1, 7) E(0.5) Case3 [0.5, 5] 0.39 1.01/48 1.25/96 1.27/144 1.25/192 1.32/240 1.47/480

We begin discussion of results, presented in Table 1, with the “effective” sample sizes

m. They are relatively small with respect to n. Just as an example, for n = 200 and X∗

being W (0.3, 1), we have m = 64 and this is a very small (for a nonparametric setting)

number of “efficient” observations. As a result, it is not surprising that overall the kernel

oracle-estimator, that knows much more than an estimator, outperforms our data-driven

estimator for smallest sample sizes 100 and 200 (this can be observed from values of M
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being smaller than 1). For larger sample sizes the series estimator performs on par and even

begins to outperform the oracle for n larger 400. Marron and Wand (1992) argue that the

ratio M larger than 0.75 is a good outcome when a data-driven estimator is compared with

an oracle. If we look at the ratios for n = 100, the smallest M = 0.69 and this is not a bad

outcome because the corresponding effective size is m = 47. Furthermore, for n = 200 the

smallest ratio is 0.78 and it passes the above-cited threshold. Parameter d, shown in column

5, is the coefficient of difficulty (11) and it sheds light on relative complexity of a particular

experiment.

Results shown in five bottom raws of Table 1 support conclusion of Theorem 4 that the

proposed estimator is not sensitive to deviations from the main model which assumes that

hidden random variables are independent and continuous. Overall, we may conclude that

the data-driven estimator performs reasonably well for small sample sizes and the variety of

underlying models.

3. INTERVAL OF ESTIMATION

The literature on the effect/choosing of the interval of estimation [a, a + b] is next to none

even for the case of direct observations when the hazard rate is traditionally estimated over

an interval [0, b] with b = 1 being a popular choice. It is a difficult problem indeed, and

hence its discussion is of a special interest.

The asymptotic theory, presented in Section 3 of the paper, sheds light on the effect of

the interval on the MISE convergence. Namely, if the interval is fixed then asymptotically

MISE = P (α,Q, 1)b1/(2α+1)
[
b−1

∫ a+b

a

hX
∗

0 (v)g−1
0 (v)dv

]2α/(2α+1)

n−2α/(2α+1)(1 + on(1)).

(A.13)

Expression in the square brackets is the coefficient of difficulty d(a, a + b) (recall formula

(11)), and function g0(x) is defined in (9) and it reflects the effect of the LTRC on the MISE.

Note that function g0(v) vanishes as v → 0 because of the LT and it also vanishes as

v →∞ due to the RC and the fact that GX∗
0 (v) = ov(1). Of course, in general it may even
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vanish beyond some interval [c1, c2], 0 < c1 < c2 < ∞. This is what may preclude us from

estimation over an interval dictated by substantive issues stemming from the motivating

problem. Underlying functions F T ∗
, GZ∗

and GX∗
0 , defining the function g0, are unknown,

and this explains complexity of the problem of choosing a feasible interval of estimation for

the LTRC data.

To shed light on a possible solution, let us look at an example of particular functions

1/g0(x) and d(1, x) for the experiment 3 of Section 2. In Figure 2, the top diagram shows us

function 1/g0(x) for x ∈ [1, 5]. Beyond this interval the reciprocal of g0(x) increases very fast,

for instance it takes on values 46 and 447 for x = 6 and x = 7, respectively. Similar outcomes

have been observed for all other experiments, with the reciprocal of g0(x) sharply increasing

beyond some specific intervals. This observation hints upon a method of choosing reasonable

intervals of estimation based on the analysis of the reciprocal of g0(x). The coefficient of

difficulty d(1, x), x = 1 + b, a = 1 is shown in the second from the top diagram. In addition

to the graphic, note that d(1, 6) = 8 and d(1, 7) = 66. Not surprisingly, the coefficient of

difficulty also has sharply increasing tails.

The two bottom diagrams allow us to understand the effect of the interval [a, a+b] = [1, x]

on the proposed estimate (A.4). The solid line exhibits the underlying hazard. The hazard

increases but its derivate is relatively small and makes no significant impact on the coefficient

of difficulty (look again at the two top diagrams and make your own conclusion about effects

of 1/g0(x) and hX
∗
(x) on the coefficient of difficulty). Now let us look at estimates of the

hazard for different intervals of estimation. The estimates are based on the same sample of

size n = 500. The second from the bottom diagram shows us, by the long-dashed and short-

dashed lines, estimates for intervals [1, 4] and [1, 5], respectively. Note that the estimate for

the smaller interval, which corresponds to reasonably small values of 1/g0(x) and moderate

values of the coefficient of difficulty, is truly good. The estimate for the larger interval is still

good but we may already notice signs of deterioration in the quality of estimation. This is

due to relatively large values of 1/g0(x) for x > 4.5. The situation changes more dramatically

for larger intervals. The bottom diagram shows us estimates for intervals [1, 6] (the long-

dashed line) and [1, 7] (the short-dashed line), and recall that the corresponding coefficients
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of difficulty are 8 and 66. Right tails of the estimates wrongly exhibit the underlying hazard

rate, and we can conclude that estimation of the hazard over intervals with large values of

1/g0(x) should be avoided.

Repeated simulations for the experiments of Section 2 revealed similar outcomes. Our

conclusion is that the analysis of 1/g0(x), and to the lesser degree of the coefficient of difficulty

(because its estimation involves the function 1/g0(x)), may be used in choosing the interval

of estimation. But how well these two functions can be estimated?

Figure 3 sheds light on the issue. Here the sample of Figure 2 is used. The estimator of

the coefficient of difficulty is defined in (A.8), and 1/g0(x) is estimated by n/
∑n

s=1 I(Ts ≤

x ≤ Ys) (compare with (A.10) and note that the estimator is motivated by the definition

g0(x) := P(T ≤ x ≤ Y )). The dotted lines in Figure 3 show us estimates of 1/g0(x)

and d(1, x) = d(1, x), and the solid lines show the underlying functions. As we see from the

diagrams, the estimates do a good job. Similar outcomes were observed for other experiments

of Section 2. We may conclude that visualization of the estimate of 1/g0(x), complemented

by visualization of the estimate of the coefficient of difficulty, may give us a good idea of

how to choose an interval of estimation.

Let us recall that the proposed approach was used for the analysis of the WHEL breast

cancer data.

We finish this section by the following remark about the used minimax. Formula (7y) is

important, and it is necessary to keep in mind that it is obtained for homogeneous Sobolev

classes where parameters (α,Q) do not depend on the interval [a, a+ b]. In general, parame-

ters (α,Q) may depend on the interval. This fact does not change the main conclusion of the

theory because our estimator adapts to (α,Q). At the same time, considering inhomogeneous

Sobolev classes is a new and open problem.

4. Proofs of lower bounds in Theorems 1 and 2

Let us make a preliminary comment about verifying the two lower bounds. The proposed

verification contains several steps. The first one is to replace function classes (4) and (13)
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by a parametric subclass (the same for both function classes). The second step is to convert

the study of the minimax MISE into the study of a sequence of minimax parametric mean

squared errors. The third step is a traditional one, where a minimax risk is replaced by

a Bayes risk with the least favorable prior distribution. The final step is to evaluate the

sum of Bayes risks. These steps, of course, are known in the literature and go back to

Pinsker (1980) and Efromovich and Pinsker (1982) for simpler settings of filtering and density

estimation for direct observations, correspondingly. The considered problem of the hazard

estimation for the LTRC is more complicated. Recently, Efromovich (2016) used a similar

methodology to establish a lower bound for hazard estimates based on a sample from the

random variable of interest X∗. While that proof cannot be used here directly due to the

LTRC complications, some of its technical results may help us to make the proposed proof

shorter; to make references on those results more transparent we are using the same notation

whenever possible. In what follows on(1) and Cs denote generic vanishing sequences and

positive constants, and we may add the asterisk and write o∗n(1) and C∗ to stress the fact

that these generic vanishing sequences and positive constants do not depend on all other

parameters considered in a proof. bxc denotes the smallest positive integer larger than x,

and recall that n > 20 so in what follows all sequences in n are well defined. Let us also

stress that the lower bounds are asymptotic, and hence all assertions should be valid only

for large sample sizes.

Now we begin step 1 of the proof by introducing a parametric function subclass of (4) and

(13). According to (13), a perturbation q(x) should be zero near boundaries. Also, (7) implies

that the shape of anchor h0(x) affects the sharp minimax constant. To take care about these

issues, we divide the interval [a, a + b] into increasing (as n → ∞) number of subintervals,

then define parametric function classes on each subinterval, and finally smooth functions from

each subinterval to satisfy (5) and (16). Denote the total number of subintervals as s := sn :=

2+3bln(ln(n))c. At the boundary subintervals we set q(x) = 0 and note that [3 ln(ln(n))]−2 <

1/s; the latter is important for satisfying (14). Then for the s − 2 inner subintervals,

defined by index k = 1, . . . , s − 2, introduce notation Isk := h−1
0 (a + kb/s)p−1

0 GZ∗
(a +

kb/s)F T ∗
(a + kb/s)G0(a + kb/s) where G0(x) := e−

∫ x
0 h0(v)dv, p0 := Ph0(min(X∗, Z∗) > T ∗),

10



Is := [
∑s−2

k=1 I
−1
sk ]−1, Qsk := (1 − 1/s)IsI−1

sk Q, J := bb[n(2α + 1)(α + 1)s−2α(απ2α)−1(1 −

s−1)IsQ]1/(2α+1)c, J∗ = bJ(s)/ ln(n)c, ϕskj(x) = (2s/b)1/2 cos(πj[sb−1(x − a) − k]). Set

~νsk := {νskJ∗ , . . . , νskJ}.

Now introduce a sequence φ(n, v), v ∈ (−∞,∞) of flattop nonnegative kernels defined

on a real line such that for a given n the kernel φ(n, v) is zero beyond (0, 1), it is α-fold

continuously differentiable on (−∞,∞), 0 ≤ φ(n, v) ≤ 1, φ(n, v) = 1 for 2(ln(n))−2 ≤ v ≤

1−2(ln(n))−2, and |φ(r)(n, v)| ≤ C(ln(n))2r for r = 1, . . . , α. The kernel is constructed using

a mollifier defined in Efromovich (1999, ch.7). Finally, set φsk(x) := φ(n, sb−1(x− a)− k).

For each of s− 2 “inner” subintervals define a parametric function class,

Hsk :=
{
fsk : fsk(x|~νsk) :=

J∑
j=J∗

νskjϕskj(x),
J∑

j=J∗

(πjs/b)2αν2
skj ≤ bQsk,

|fsk(x|~νsk)| ≤ [s4 ln(n)]1/2n−α/(2α+1), x ∈ [a, a+ b]
}
, k = 1, . . . , s− 2, (A.14)

and then introduce a new parametric function class on [a, a+ b],

Hs :=
{
h : h(x|~νs) = h0(x) + g(x|~νs),

g(x|~νs) :=
s−2∑
k=1

[fsk(x|~νsk)− µsk]φsk(x),

µsk :=

∫ a+b

a
fsk(z|~νsk)φsk(z)dz∫ a+b

a
φsk(z)dz

,

fsk ∈ Hsk, h(x|~νs) ≥ 0
}
. (A.15)

Here ~νs := (~νs1, . . . , ~νs(s−2)) and ~νsk := (νskJ∗ , . . . , νskJ). In what follows we may also use

notation f̃sk(x) := fsk(x)− µsk.

The term µsk is used solely to make function g(x|~νsk), defined in (A.15), integrable to

zero on [a, a + b]. The term is negligibly small for all our purposes. To show this, let us

recall a known technical result (see, for instance, Efromovich 2001)).
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Lemma S.1. Let a function q(x) be α-times differentiable on [a, a+b],
∫ a+b

a
[q(α)(x)]2dx <∞,

and for all positive and odd r < α

q(r)(a) = q(r)(a+ b) = 0. (A.16)

Then cosine coefficients θj :=
∫ a+b

a
q(x)ϕj(x)dx of the function q satisfy the Parseval-type

identity
∞∑
j=1

(πj/b)2αθ2
j =

∫ a+b

a

[q(α)(x)]2dx. (A.17)

This result, together with (A.14), the assumed α-fold differentiability of φ(x) and the

Cauchy-Schwarz inequality, allows us to write,

µ2
sk = [

J∑
j=J∗

νskj

∫ a+b

a

ϕskj(z)φsk(z)dz/

∫ a+b

a

φsk(z)dz]2

≤ C∗s2

J∑
j=J∗

ν2
skj

J∑
j=J∗

[

∫ a+b

a

ϕskj(z)φsk(z)dz]2 ≤ C∗(J/ ln2(n))−4α. (A.18)

Similarly we establish that

[∂µsk/∂νskj]
2 ≤ C∗s2(J/ ln2(n))−2α. (A.19)

Now we continue Step 1 and would like to show that the parametric function class (A.15)

is a subset of function classes (4) and (13). Let us check this. The second requirement (14)

is valid due to the second line in (A.15). For all sufficiently large n, parametric functions h

from (A.15) satisfy the second inequality in (5) as well as (15). The first relation in (14) is

valid due to zero additive perturbations on the two boundary subintervals of [a, a + b]. We

are left with verification of the first inequality in (5) and relation (16). We begin with (16).
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Recall that α ≥ 1 and write,

∫ a+b

a

[q(α)(x)]2dx =

∫ a+b

a

[g(α)(x|~νs)]2dx =
s−2∑
k=1

∫ a+(k+1)b/s

a+kb/s

[g(α)(x|~νs)]2dx

=
s−2∑
k=1

∫ a+(k+1)b/s

a+kb/s

[(f̃sk(x|~νsk)φsk(x))(α)]2dx, (A.20)

and here we used our notation f̃sk(x|~νsk) := fsk(x|~νsk) − µsk. Using Cauchy inequality we

get ∫ a+(k+1)b/s

a+kb/s

[(f̃sk(x|~νsk)φsk(x))(α)]2dx

≤ (1 + 1/s)

∫ a+(k+1)b/s

a+kb/s

[f̃
(α)
sk (x|~νsk)]2dx

+(1 + s)

∫ a+(k+1)b/s

a+kb/s

[(f̃sk(x|~νsk)(1− φsk(x)))(α)]2dx =: A1k + A2k. (A.21)

Using (A.14) and the Parseval identity we can evaluate A1k,

A1k = (1 + 1/s)
J∑

i=J∗

(πis/b)2αν2
ski ≤ (1 + 1/s)bQsk.

To evaluate A2k we note that max0≤r≤α
∫ a+b

a
[(φsk(x)− 1)(r)]2dx < C∗(s(ln2(n))2α and

[(f̃sk(x|~νsk))(α−r)]2 = o∗n(1)J−1/2 for 0 < r ≤ α. This, together with the Leibnitz rule of

differentiation of the product of two functions, yield A2k = o∗n(1)s−2. We conclude that for

all sufficiently large n ∫ a+b

a

[g(α)(x|~νs)]2dx < bQ. (A.22)

Using this in (A.20) verifies (16).

Lemma S.1 and (A.22) imply validity of the first inequality in (5). This finishes step 1

of the proposed proof, and from now on in the proof of the two lower bounds the original

function classes can be replaced by their parametric subclass (A.15).

Step 2 is to convert the study of the minimax MISE into the study of a minimax sum of

mean squared errors of parameters from the class (A.15). This step is usually straightforward
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as, for instance, in Efromovich (2016), but not here due to the specific of function g(x|~νs)

in (A.15). Here we proceed as follows. Recall that we are establishing a lower bound for a

dealer-estimator ȟ, which knows the anchor h0, and hence we can set ȟ := h0 + ǧ and then

write for hazards from the parametric class (A.15),

∫ a+b

a

(ȟ(x)− h(x))2dx

=
s−2∑
k=1

∫ a+(k+1)b/s

a+kb/s

(ǧ(x)− f̃sk(x|~νsk)φsk(x))2dx.

Using the Cauchy-Schwarz inequality, we can continue

∫ a+b

a

(ȟ(x)− h(x))2dx

≥ (1− 1/s)
s−2∑
k=1

∫ a+(k+1)b/s

a+kb/s

(ǧ(x)− f̃sk(x|~νsk))2dx

−s
s−2∑
k=1

∫ a+(k+1)b/s

a+kb/s

(f̃sk(x|~νsk)(φsk(x)− 1))2dx

=: A3 − A4. (A.23)

Set ν̌skj :=
∫ a+(k+1)b/s

a+kb/s
ǧ(x)ϕj(x)dx. Using the Bessel inequality implies that

A3 ≥ (1− 1/s)
s−2∑
k=1

J∑
j=J∗

(ν̌skj − νskj)2. (A.24)

In the right side of (A.24) we have the wished sum of squared errors for the parameters.

Let us show that A4 is smaller in order than the verified lower bound, namely that A4 =

o∗(1)n−2α/(2α+1). Using (A.14), (A.18) and definition of the flattop kernel allows us to write,

A4 ≤ s
s−2∑
k=1

∫ a+(k+1)b/s

a+kb/s

[f̃sk(x|~νsk)(φsk(x)− 1)]2dx

14



< s2[4/(s ln2(n))][s4 ln(n)n−2α/(2α+1)] = o∗(1)[ln(n)]−1/2n−2α/(2α+1). (A.25)

Using obtained bounds (A.24) and (A.25) in (A.23) we conclude that

∫ a+b

a

(ȟ(x)− h(x))2dx

≥ (1− 1/s)
s−2∑
k=1

J∑
j=J∗

(ν̌skj − νskj)2 − o∗(1)[ln(n)]−1/2n−2α/(2α+1). (A.26)

We converted the nonparametric estimation under the ISE into estimation of a finite

number of parameters under the SE. To finish step 2 we need to add appropriate minimax

expressions in both sides of (A.26), and to do this we need a new notation. For each

functional class Hsk, defined in (A.14), let us introduce the corresponding set of vector-

parameters ~νsk. Set Vsk := V̇sk ∩ V̈sk where V̇sk := {~νsk :
∑J

j=J∗
(πsj/b)2αν2

skj ≤ bQsk}

and V̈sk := {~νsk : maxx∈[a,a+1] |
∑J

j=J∗
νskjϕskj(x)| ≤ [s4 ln(n)]1/2n−α/(2α+1)}. For Hs the

corresponding set of parameters is Vs :=
∏s−1

k=0 Vsk := Vs0 × . . . × Vs(s−1). In what follows

we may also use negative subscripts to indicate that a specific part of a vector or a set

is skipped. For instance, V−sr :=
∏

k∈{0,...,s−1}\r Vsk and ~ν−s2 := (~νs1, ~νs3, . . . , ~νs(s−2)). Also,

denote by ~v−skj a vector ~vs with its element vskj being replaced by zero.

Using this notation and (A.26) we can write

inf
ȟ∗

sup
hX∗∈S̃

EhX∗

{∫ a+b

a

(ȟ∗(x)− hX∗
(x))2dx

}
≥

inf
ȟ∗

sup
hX∗∈Hs

EhX∗

{∫ a+b

a

(ȟ∗(x)− hX∗
(x))2dx

}
≥

≥ (1− s−1) inf
~̌νs

sup
~νs∈Vs

s−2∑
k=1

J∑
j=J∗

E~νs{(ν̌skj − νskj)2}+ o∗n(1)n−2α/(2α+1).

= (1− s−1)
s−2∑
k=1

[
inf
~̌νsk

sup
~νsk∈Vsk

J∑
j=J∗

E~νs{(ν̌skj − νskj)2}
]

+ o∗n(1)n−2α/(2α+1), (A.27)

where S̃ is either class (4) or (13). The last equality in (A.27) is valid because ~νsk are
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mutually unconstraint for different k (different subintervals). This finishes the second step

of the proposed proof.

Step 3 is a traditional one when a minimax risk is replaced by a Bayes risk, and here

we can restrict our attention to a particular kth subinterval. We need to introduce a prior

for ~νsk, and this could be a simple problem if parameters in the vector were not mutually

restricted. The latter is not the case according to definition (A.14) of the class Hsk (also

recall the corresponding set Vsk). To take those restrictions on the parameters into account,

the idea is to introduce independent normal random variables and then project them onto

the set Vsk. This is how we will implement this approach. First, for each triplet (s, k, y) we

define a Gaussian random variable ζskj which has zero mean and variance

σ2
skj := n−1(1− 3s−1/2)I−1

sk max(s−1/2,min(s1/2, (J/j)α − 1)). (A.28)

This choice takes into account the restrictions of class (A.14) because we can show that

P(~ζsk ∈ Vsk) = 1 + o∗n(1). Indeed, recall our notation Vsk = V̇sk ∩ V̈sk, and note that

P(~ζsk ∈ V̇sk) = 1 + o∗n(1) (the latter follows from Pinsker 1980), while Theorem 6.2.2 in

Kahane (1985) yields P(~ζsk ∈ V̈sk) = 1 + o∗n(1). We have proved that if we define a Gaussian

stochastic process as a function from Hsk with νskj being replaced by random ζskj, then the

probability for the Gaussian stochastic process to belong to the class Hsk tends to one. This

sheds light on the choice of parameters (A.28), and we define the prior as the conditional

distribution of ~ζsk given ~ζsk ∈ Vsk.

Recall that a minimax risk is not smaller than a corresponding Bayes risk, and our

proposed step 4 of the proof is to evaluate the Bayes risk. We begin with calculating the

classical Fisher information for parameter νskj. Specific of the calculation is that we need to

take into account the LTRC mechanism and that the dealer knows everything apart of an

underlying vector-parameter ~νs. Recall that the Fisher information of interest is defined as

Iskj := E−~νskj ,h0,FT∗ ,GZ∗{[∂ ln(fY,T,R~νs
(Y, T,R))/νskj]

2}, ~νs ∈ Vs. (A.29)

16



The joint density of the observed triplet of random variables is

fY,T,∆~νs
(y, t, δ) = p−1

~νs
fT

∗
(t)I(t ≤ y)[fX

∗

~νs (y)GZ∗
(y)I(δ = 1) +GX∗

~νs (y)fZ
∗
(y)I(δ = 0)], (A.30)

where

fX
∗

~νs (y) = h~νs(y)e−
∫ y
0 h~νs (v)dv, (A.31)

p~νs =

∫ ∞
0

fT
∗
(t)GX∗

~νs (t)GZ∗
(t)dt, (A.32)

and

GX∗

~νs (t) =

∫ ∞
t

fX
∗

~νs (x)dx. (A.33)

Let us calculate the partial derivative of the density. Write for 0 ≤ t ≤ y <∞

∂fY,T,∆~νs
(y, t, δ)/∂νskj (A.34)

= [∂p−1
~νs
/∂νskj]f

T ∗
(t)[fX

∗

~νs (y)GZ∗
(y)I(δ = 1) + fZ

∗
(y)GX∗

~νs (y)I(δ = 0)]

+p−1
~νs

[∂fX
∗

~νs (y)/∂νskj]f
T ∗

(t)GZ∗
(y)I(δ = 1)

+p−1
~νs

[∂GX∗

~νs (y)/∂νskj]f
T ∗

(t)fZ
∗
(y)I(δ = 0)

=: A1(y, t, δ) + A2(y, t, δ) + A3(y, t, δ). (A.35)

Now we are considering these three terms in turn. To evaluate A1 we note that

∂p−1
~νs
/∂νskj = −p−2

~νs
∂P~νs(Y ∗ ≥ T ∗)/∂νskj

= −p−2
~νs

∫ ∞
0

fT
∗
(t)GZ∗

(t)[∂GX∗

~νs (t)/∂νskj]dt. (A.36)

Set µ′skj := ∂µsk/∂νskj. Derivative of the survivor function can be written as follows,

∂GX∗

~νs (t)/∂νskj = ∂e−
∫ t
0 h~νs (v)dv/∂νskj = −

∫ t

0

[∂h~νs(v)/∂νskj]dvG
X∗

~νs (t)
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= −[

∫ t

0

ϕskj(v)φsk(v)dv]GX∗

~νs (t) + µ′skj[

∫ t

0

φsk(v)dv]GX∗

~νs (t). (A.37)

Consider the integral in the first term of right side of (A.37). First, let us mention several

properties of rescaled flattop kernels. Function φsk(v) is zero beyond (a + bk/s, a + b(k +

1)/s), it is equal to 1 on [a + bk/s + 2b[s ln2(n)]−1, a + b(k + 1)/s − 2b[s ln2(n)]−1] and

|φ(r)
sk (v)| ≤ C(s/b)r(ln(n))2r for r = 1, . . . , α. Second, remember that we are considering

j > Cn1/(2α+1)/[s ln(n)]. Using these facts and integration by parts we can write,

|
∫ t

0

ϕskj(v)φsk(v)dv| = |
∫ min(t,a+b)

a

ϕskj(v)φsk(v)dv|I(a ≤ t)

= (πsj/b)−1(2s/b)1/2I(a ≤ t)| sin(πj[sb−1(min(t, a+ b)− a)− k])φsk(min(t, a+ b))

−
∫ min(t,a+b)

a

sin(πj[sb−1(min(t, a+ b)− a)− k])(dφsk(v)/dv)dv| = o∗n(1)n−1/(2α+2). (A.38)

Using (A.38) and (A.19) in (A.37) we get

|∂GX∗

~νs (t)/∂νskj| = o∗n(1)n−1/(2α+2). (A.39)

This yields that

|∂p−1
~νs
/∂νskj| = o∗n(1)n−1/(2α+2)p−2

~νs

∫ ∞
0

fT
∗
(t)GZ∗

(t)dt = o∗n(1)n−1/(2α+2). (A.40)

We conclude that the term A1(y, t, δ) satisfies the following relation,

|
1∑
δ=0

∫
{(t,y): 0≤t≤y<∞}

[A1(y, t, δ)]2[fY,T,∆~νs
(y, t, δ)]−1dydt = o∗n(1)n−1/(2α+2). (A.41)

Now we are considering the second term A2(y, t, δ) in (A.35). Write

∂fX
∗

~νs (y)/∂νskj = ∂[h~νs(y)e−
∫ y
0 h~νs (v)dv]/∂νskj

= (ϕskj(y)− µ′skj)φsk(y)e−
∫ y
0 h~νs (v)dv −

∫ y

0

(∂h~νs(v)/∂νskj)dvf
X∗

~νs (y)
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= ϕskj(y)φsk(y)e−
∫ y
0 hνs (v)dv −

∫ y

0

ϕskj(v)φsk(v)dvfX
∗

~νs (y)− µ′skjφsk(y)e−
∫ y
0 hνs (v)dv. (A.42)

The last term is evaluated using (A.19). Using (A.38) we can evaluate the integral in the

second term of (A.42),

|
∫ y

0

ϕskj(v)φsk(v)dv| = o∗n(1)n−1/(2α+2). (A.43)

For the first term in (A.42), using definitions of φsk and A2(y, t, δ), we can write

∫
{(t,y):0≤t≤y<∞}

[p−1
~νs
fT

∗
(t)GZ∗

(y)ϕskj(y)φsk(y)e−
∫ y
0 h~νs (v)dv]2

p−1
~νs
fT ∗(t)GZ∗(y)fX

∗
~νs

(y)
dtdy

= p−1
~νs

∫ a+(k+1)b/s

a+kb/s

ϕ2
skj(y)φ2

sk(y)GZ∗
(y)[h~νs(y)]−1e−

∫ y
0 h~νs (v)dv[

∫ y

0

fT
∗
(t)dt]dy

= p−1
~νs
GZ∗

(a+ kb/s)[hX
∗

~νs (a+ kb/s)]−1e−
∫ a+kb/s
0 hX

∗
~νs

(v)dvF T ∗
(a+ kb/s)(1 + o∗n(1)).

This is the main term in the evaluated Fisher information Iskj, and one can compare it with

defined in the beginning of the proof quantity Isk. Finally, using (26) we evaluate A3(y, t, δ)

and conclude that

E−~νskj ,h0,FT∗ ,GZ∗{A2
3(Y, T,∆)[fY,T,∆~ν−skj

(Y, T,∆)]−2dydt} = o∗n(1). (A.44)

Combining obtained results we get an important relation which explains our choice of

used sequences,

Iskj = Isk(1 + o∗n(1)). (A.45)

Now we have arrived at the previously explained point where we can begin using some

technical results from the proof in Efromovich (2016). The technical results begin with line

(45) in that proof. We need to make one comment about notation. In that paper b and q

denote specific parameters not related to our parameters, and for our purposes we can set

q = b = s1/2. Then in line (81) of Efromovich (2016) the factor [1 + o∗n(1) + o∗q(1) + o∗b(1)]
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can be replaced by [1 + o∗n(1)]. This allows us to write,

inf
~νs

sup
~νs∈Vs

s−2∑
k=1

J∑
j=J∗

E~νs{(ν̌skj − νskj)2} ≥
[ s−2∑
k=1

J∑
j=J∗

(Iskn)−1σ2
skj

(Iskn)−1 + σ2
skj

]
(1 + o∗n(1)). (A.46)

Note that a particular term in the sum (A.46) is a familiar variance of the Bayes estimator

for the mean of a normal random variable with a conjugate normal prior, that is, we indeed

were able to evaluate from below the minimax MSE by the classical Bayes one. Then a

direct calculation yields that

J∑
j=J∗

(Iskn)−1σ2
skj

(Iskn)−1 + σ2
skj

≥ (Iskn)−1

J∑
J∗

[1− (j/J)α](1 + o∗n(1))

= (Iskn)−1J(1− (1 + α)−1)(1 + o∗n(1))

= I−1
sk [(b/s)2αIs]1/(2α+1)P (α, bQ, 1)n−2α/(2α+1)(1 + o∗n(1)). (A.47)

Using this inequality in the right side of (A.46), we continue evaluation of the left side of

(A.46),

inf
~νs

sup
~νs∈Vs

s−2∑
k=1

J∑
j=J∗

E~νs{(ν̌skj − νskj)2}

≥
s−2∑
k=1

I−1
sk [(b/s)2αIs]1/(2α+1)P (α, bQ, 1)n−2α/(2α+1)(1 + o∗n(1))

= I−1
s [(b/s)2αIs]1/(2α+1)P (α, bQ, 1)n−2α/(2α+1)(1 + o∗n(1))

= [(b/s)I−1
s ]−2α/(2α+1)P (α, bQ, 1)n−2α/(2α+1)(1 + o∗n(1)). (A.48)

Note that

[(b/s)I−1
s ]2α/(2α+1) = [bd]2α/(2α+1)(1 + o∗n(1)), (A.49)

where d is defined in (11). Using (A.49) in (A.48), and then the obtained inequality in
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(A.27), we conclude that

inf
ȟ∗

sup
hX∗∈S̃

EhX∗

{∫ a+b

a

(ȟ∗(x)− hX∗
(x))2dx

}
≥ [d/n]2α/(2α+1)P (α,Q, b)(1 + o∗n(1)). (A.50)

Remember that S̃ denotes either the class (4) or (13), and inequality (A.50) is valid for both

these classes. This verifies validity of the dealer’s lower bounds of Theorems 1 and 2. Note

that they are the same for the two classes, and this is due to the fact we used the same

parametric class (A.15) which is the subset of both (4) and (13). What was wished to show.

�

Proof of Theorem 3. The proof is written in such a way that it can be also used to verify

assertion of Theorem 4. The proof also uses some technical results of the previous proofs so

we continue to use the same notation. We begin with some preliminary calculations. Recall

that J∗ in (59) is an arbitrary integer number, and then we can write for the first term in

(59),
Kn∑
k=1

∑
j∈Bk

[n−1d∗λ2
j + (1− λj)2θ2

j ]

=
Kn∑
k=1

Lk[n
−1d∗µ2

k + (1− µk)2Θk] + [n−1d∗
Kn∑
k=1

∑
j∈Bk

(λ2
j − µ2

k)

+
Kn∑
k=1

∑
j∈Bk

(2− µk − λj)(µk − λj)θ2
j ]

=: A+B, where µk := max
j∈Bk

λj, (A.51)

and recall that Θk := L−1
k

∑
∈Bk θ

2
j . Let us find lower bounds for the two terms in (A.51).

To evaluate A, we note that the minimum of ψ(z) := L[n−1d∗z2 +(1−z)2Θ] over z ∈ [0, 1] is

attained at z∗ = Θ/[Θ + n−1d∗], and then ψ(z∗) = n−1dLz∗ = n−1d∗LΘ/[Θ + n−1d∗]. Using

this fact we conclude that

A ≥ n−1d∗
Kn∑
k=1

LkΘk[Θk + n−1d∗]−1. (A.52)
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To evaluate from below the term B in (A.51), we note that in B the second sum is nonneg-

ative. For the first sum, which is nonpositive, let us additionally assume that

µk+1 ≤ min
j∈Bk

λj, k = 1, . . . , Kn − 1. (A.53)

(Note that (A.53), as well as the earlier made assumptions about {λj}, hold for the shrinkage

coefficients used by the linear estimate, and this is the reason why we add these restrictions).

Write,
Kn∑
k=1

Lkµ
2
k ≤ L1 +

Kn∑
k=2

Lkµ
2
k ≤ L1 +

Kn∑
k=2

[Lk/Lk−1]
∑

j∈Bk−1

λ2
j

= L1 +
Kn−1∑
k=1

[Lk+1/Lk]
∑
j∈Bk

λ2
j

≤ C∗ ln(n) +
[1 + 1/(ln(n) ln(ln(n)))]bln(n)c+1 + 1

[1 + 1/(ln(n) ln(ln(n)))]bln(n)c

Kn−1∑
k=bln(n)c+2

∑
j∈Bk

λ2
j

≤ (1 + o∗n(1))
Kn∑
k=1

∑
j∈Bk

λ2
j + C∗ ln(n). (A.54)

Using (A.54) we conclude that given (A.53) the term B in (A.51) can be bounded from

below,

B ≥ −|o∗n(1)|n−1d∗
Kn∑
k=1

∑
j∈Bk

λ2
j − C∗n−1 ln(n). (A.55)

Using (A.52) and (A.55) in (A.51), and then using the obtained inequality in (59) we conclude

that given (A.53) the following inequality holds uniformly over all considered sets {λj},

n−1d∗
Kn∑
k=1

Lk
Θk

Θk + d∗n−1

≤ (1 + o∗n(1))EhX∗{
∫ a+b

a

(h̄(x, {λj})− hX
∗
(x))2dx}+ C∗n−1 ln(n). (A.56)
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Now we are introducing an oracle-estimator

h̃∗(x, g, hX
∗
) :=

Kn∑
k=1

Θk[Θk + d∗n−1]−1
∑
j∈Bk

θ̂jϕj(x).

The oracle uses an underlying hazard rate for optimal blockwise smoothing. As we shall see

shortly, this oracle is sharp minimax for the considered setting, and the oracle motivates the

proposed data-driven estimator.

Set λj = Θk[Θk + d∗n−1]−1 for j ∈ Bk, k ∈ {1, 2, . . . , Kn}. It is sufficient to consider

the case
∑Kn

k=1

∑
j∈Bk λ

2
j → ∞ as n → ∞ because otherwise the hazard rate on [a, a + b] is

parametric and it is estimated by the oracle-estimator with the MISE proportional to n−1.

Using (59), together with the remark made below that line, we can write,

|EhX∗{
∫ a+b

a

(h̃∗(x, g, hX
∗
)− hX∗

(x))2dx} − [n−1d∗
Kn∑
k=1

LkΘk

Θk + d∗n−1
+
∑
j>J∗

θ2
j ]|

≤ o∗n(1)n−1d∗
Kn∑
k=1

Lk

[ Θk

Θk + d∗n−1

]2

+Cn−1I
( Kn∑
k=1

Lk

[ Θk

Θk + d∗n−1

]2

< ln(ln(n))
)
. (A.57)

Set λ∗j := [1− (j/J)α]I(j < J). A direct calculation shows that

sup
hX∗∈S(α,Q,h0,a,b)

EhX∗{
∫ a+b

a

(h̄(x, {λ∗j})− hX
∗
(x))2dx}

≤ P (α,Q, b)[dn−1]2α/(2α+1)(1 + on(1)). (A.58)

This inequality, together with (A.56) and (A.57), proves sharp-minimaxity of the oracle-

estimator h̃∗(x, g, hX
∗
).

Now we are going to show that the proposed data-driven estimator matches MISE of the

oracle-estimator. Using the Cauchy inequality we can bound the estimator’s MISE via the
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oracle’s MISE

EhX∗{
∫ a+b

a

(ĥ(x)− hX∗
(x))2dx}

≤ EhX∗{
∫ a+b

a

(h̃∗(x, g, hX
∗
)− hX∗

(x))2dx}(1 + γ)

+EhX∗{
∫ a+b

a

(h̃∗(x, g, hX
∗
)− ĥ(x))2dx}(1 + γ−1), γ > 0. (A.59)

The MISE of oracle-estimator h̃∗(x, g, hX
∗
) is already evaluated, and we are considering the

second expectation in (A.59) using the Parseval identity,

EhX∗{
∫ a+b

a

(h̃∗(x, g, hX
∗
)− ĥ(x))2dx} = EhX∗

{ Kn∑
k=1

[
Θk

Θk + d∗n−1

−
L−1
k

∑
j∈Bk θ̂

2
j − d̂n−1

L−1
k

∑
j∈Bk θ̂

2
j

I(L−1
k

∑
j∈Bk

θ̂2
j > (d̂+ 1/ ln(n))n−1)]2

∑
j∈Bk

θ̂2
j

}
. (A.60)

Let us consider a particular k ∈ {1, . . . , Kn} in the sum, set Θ̂k := L−1
k

∑
j∈Bk θ̂

2
j − d∗n−1

(note that this is not a statistic due to using d∗), and write

[
Θk

Θk + d∗n−1
−
L−1
k

∑
j∈Bk θ̂

2
j − d̂n−1

L−1
k

∑
j∈Bk θ̂

2
j

I(L−1
k

∑
j∈Bk

θ̂2
j > (d̂+ 1/ ln(n))n−1)]2

∑
j∈Bk

θ̂2
j

=
n−2Lk[d

∗(Θk − Θ̂k) + (d̂− d∗)(Θk + d∗n−1)]2

(Θk + d∗n−1)2(Θ̂k + d∗n−1)
I(Θ̂k > (d̂− d∗ + 1/ ln(n))n−1)

+
Θ2
kLk(Θ̂k + d∗n−1)

(Θk + d∗n−1)2
I(Θ̂k ≤ (d̂− d∗ + 1/ ln(n))n−1) := Ak1 + Ak2. (A.61)

We begin with the analysis of Ak1. Using the Cauchy inequality we get,

Ak1 ≤
2n−2Lk[(d

∗(Θ̂k −Θk))
2 + (d̂− d∗)2(Θk + d∗n−1)2]

(Θk + d∗n−1)2(Θ̂k + d∗n−1)

×I(Θ̂k > (d̂− d∗ + 1/ ln(n))n−1). (A.62)

Now we need two directly verified inequalities which are established following the proof of
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(55),

EhX∗{(d̂− d∗)2} ≤ C∗n−1, EhX∗{(Θ̂k −Θk)
2} ≤ C∗L−1

k n−1(Θk + n−1), k ∈ {1, . . . , Kn},

(A.63)

where here and in what follows generic constants C∗s are uniformly bounded for all considered

hazard rates hX
∗

and n. Also note that by its definition d̂ > 0, and that [Θ̂k+d∗n−1]−1I(Θ̂k >

(d̂− d∗ + 1/ ln(n))n−1) < ln(n)n. Using these results we establish that

EhX∗{ n−2Lk(d
∗)2(Θ̂k −Θk)

2

(Θk + d∗n−1)2(Θ̂k + d∗n−1)
I(Θ̂k > (d̂− d∗ + 1/ ln(n))n−1)} ≤ C∗ ln(n)n−1,

and

EhX∗{n
−2Lk(d̂− d∗)2

(Θ̂k + d∗n−1)
I(Θ̂k > (d̂− d∗ + 1/ ln(n))n−1)} ≤ C∗ ln(n)n−2Lk.

Using the last two inequalities and (A.62) imply that for k ∈ {1, . . . , Kn}

EhX∗{Ak1} ≤ C∗ ln(n)n−1. (A.64)

Now let us evaluate EhX∗{Ak2}. Write,

EhX∗{Ak2} =
LkΘ

2
k

(Θk + d∗n−1)2
EhX∗{(Θ̂k + d∗n−1)I(Θ̂k ≤ (d̂− d∗ + 1/ ln(n))n−1)}

=:
LkΘ

2
k

(Θk + d∗n−1)2
Dk. (A.65)

To evaluate Dk we can write,

Dk = EhX∗{(Θ̂k + d∗n−1)I(Θ̂k ≤ (d̂− d∗ + 1/ ln(n))n−1)}

= EhX∗{(Θ̂k + d∗n−1)[I(|d̂− d∗| < 1/ ln(n)) + I(|d̂− d∗| ≥ 1/ ln(n))]

×I(Θ̂k ≤ (d̂− d∗ + 1/ ln(n))n−1)}.

25



Using (A.63) and the Chebyshev inequality we can continue,

Dk ≤ C∗n−1EhX∗{I(Θ̂k ≤ 2n−1/ ln(n))}

+EhX∗{(|d̂− d∗|+ 1/ ln(n) + d∗)n−1I(|d̂− d∗| ≥ 1/ ln(n))}

≤ C∗n−1EhX∗{I(Θ̂k ≤ 2n−1/ ln(n))}[I(Θk < 4n−1/ ln(n))

+I(Θk ≥ 4n−1/ ln(n))] + C∗n−2 ln2(n).

Note that

I(Θk ≥ 4n−1 ln(n))I(Θ̂k ≤ 2n−1/ ln(n)) ≤ I(Θk − Θ̂k ≥ Θk/2)I(Θk ≥ 4n−1/ ln(n)).

Using this, with the help of (A.63) and the Chebyshev inequality, we continue evaluation of

Dk,

Dk ≤ C∗n−1I(Θk < 4n−1/ ln(n))

+C∗n−1L
−1/2
k n−1/2(Θk + n−1)1/2Θ−1

k I(Θk ≥ 4n−1/ ln(n)) + C∗n−2 ln2(n).

Using the last inequality in (A.65) we get

EhX∗{Ak2} ≤
C∗LkΘkn

−1

Θk + d∗n−1

[ Θk

Θk + d∗n−1
I(Θk < 4n−1/ ln(n))

+
ΘkL

−1/2
k n−1/2(Θk + n−1)1/2

(Θk + d∗n−1)Θk

I(Θk ≥ 4n−1/ ln(n)) + C∗n−1 ln2(n)
]

≤ C∗LkΘkn
−1

Θk + d∗n−1

×
[

ln−1(n)I(Θk < 4n−1/ ln(n)) + L
−1/2
k I(Θk > 4n−1/ ln(n)) + C∗n−1 ln2(n)

]
. (A.66)

In (A.66) let us look at the effect of the second term in the square brackets (it contains

factor L
−1/2
k ). Set t := b3 ln(n)(ln ln(n))2c, note that for all sufficiently large n we have
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ln(n) < t < Kn, and write,

n−1

Kn∑
k=1

LkΘkL
−1/2
k I(Θk > 4n−1/ ln(n))

Θk + d∗n−1

≤ n−1

t∑
k=1

Lk + L
−1/2
t n−1

Kn∑
k=t+1

LkΘkI(Θk > 4n−1/ ln(n))

Θk + d∗n−1
.

For the first sum we have

t∑
k=1

Lk ≤ t+
t∑

k=bln(n)c+1

[1 + 1/(ln(n) ln(ln(n)))]k

≤ C∗ ln(n)[ln(ln(n))]e3 ln(ln(n)) ≤ C∗ ln9/2(n).

Furthermore, Lt > [1 + ln−1(n)/ ln(ln(n))]t > C∗e3 ln(ln(n)) = C∗ ln3(n). We conclude that

n−1

Kn∑
k=1

LkΘkL
−1/2
k I(Θk > 4n−1/ ln(n))

Θk + d∗n−1

≤ n−1C∗ ln9/2(n) + C∗ ln−3/2(n)[n−1

Kn∑
k=1

LkΘk

Θk + d∗n−1
I(Θk > 4n−1/ ln(n)]. (A.67)

Using (A.67) in (A.66) we conclude that

EhX∗{
Kn∑
k=1

Ak2} ≤ C∗
Kn∑
k=1

Lkn
−1Θk

Θk + d∗n−1
ln−1(n) + C∗n−1 ln9/2(n). (A.68)

Now we can return to (A.59). With the help of (A.60), (A.61), (A.64) and (A.68) we

conclude that

EhX∗{
∫ a+b

a

(ĥ(x)− hX∗
(x))2dx} ≤ EhX∗{

∫ a+b

a

(h̃∗(x, g, hX
∗
)− hX∗

(x))2dx}(1 + γ)

+
[
C∗

Kn∑
k=1

Lkn
−1Θk

Θk + d∗n−1
ln−1(n) + C∗n−1 ln9/2(n)

]
(1 + γ−1). (A.69)
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Set γ = ln−1/2(n), and continue (A.69) using (A.57),

EhX∗{
∫ a+b

a

(ĥ(x)− hX∗
(x))2dx}

≤ EhX∗{
∫ a+b

a

(h̃∗(x, g, hX
∗
)− hX∗

(x))2dx}[1 + C∗ ln−1/2(n)] + C∗n−1 ln5(n). (A.70)

What we see in (A.70) is the so-called oracle-inequality which relates the MISEs of the

estimate and the oracle-estimate. Now remember that constants C∗s do not depend on hX
∗

and n, and then assertion of Theorem 3 follows from (A.58) and (A.70). �

Proof of Theorem 4. Consider moments of a variable Vj := ∆ϕj(Y )I(Y ∈ [a, a+b])g−1(Y ),

where g(v) := PhX∗ (T ≤ v ≤ Y ). Recall the assumption infv∈[a,a+b] g(v) > C∗ > 0. The first

moment of V is

EhX∗{Vj} = EhX∗{∆ϕj(Y )I(Y ∈ [a, a+ b])g−1(Y )}

=

∫ a+b

a

hX
∗
(y)g(y)ϕj(y)g−1(y)]dy =

∫ a+b

a

hX
∗
(y)ϕj(x)dx = θj. (A.71)

We conclude that Vj is unbiased estimate of the jth Fourier coefficient whenever g(v) is

known (otherwise it is an oracle-estimate). For the second moment we can write,

EhX∗{V 2
j } =

∫ a+b

a

hX
∗
(y)g(y)ϕ2

j(y)g−2(y)dy

≤ (2/b)

∫ a+b

a

hX
∗
(y)g−1(y)dy ≤ C∗ <∞. (A.72)

These two results allow us to follow along lines of the proof of Theorem 3 (recall that it was

explained that the proof was written in such a way that it could be used here) and establish

rate-minimaxity of the estimate (19). Theorem 4 is proved. �
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APPENDIX B. Useful Formulae for Understanding the LTRC Model

Let us present formulae that shed light on relationship between the hidden triplet (T ∗, X∗, Z∗)

and, given T ∗ ≤ Y ∗ := min(X∗, Z∗), the observed statistic (T, Y,∆) where T := T ∗, Y := Y ∗,

and ∆ := ∆∗ := I(X∗ ≤ Z∗). Recall that p := P(T ∗ ≤ min(X∗, Z∗)) is defined in (2), and

then we can write for (t, y) ∈ {(u, v) : u ∈ [0,∞), v ∈ [u,∞)} and r ∈ {0, 1} that the joint

cumulative distribution function is

F T,Y,∆(t, y, δ) = F T ∗,Y ∗,∆∗|T ∗≤Y ∗
(t, y, δ) = p−1P(T ∗ ≤ t, T ∗ ≤ Y ∗ ≤ y,∆∗ = δ)

= p−1

∫ t

0

fT
∗
(τ)[

∫ max(τ,y)

τ

fX
∗
(x)GZ∗

(x)dxI(δ = 1) +

∫ max(τ,y)

τ

fZ
∗
(z)GX∗

(z)dzI(δ = 0)]dτ.

(B.1)

Via direct differentiation, this formula for the cumulative distribution function yields the

following formula for the joint probability density,

fT,Y,∆(t, y, δ) = p−1fT
∗
(t)I(t ≤ y)[fX

∗
(y)GZ∗

(y)I(δ = 1) + fZ
∗
(y)GX∗

(y)I(δ = 0)]. (B.2)

Next, we have

F Y,∆=1(y) = FX∗,X∗≤Z∗|T ∗≤min(X∗,Z∗)(y) = P(X∗ ≤ y,X∗ ≤ Z∗|T ∗ ≤ min(X∗, Z∗))

= p−1P(X∗ ≤ y,X∗ ≤ Z∗, T ∗ ≤ X∗) = p−1

∫ y

0

fX
∗
(x)GZ∗

(x)F T ∗
(x)dx, y ≥ 0. (B.3)

This yields the corresponding probability density

fY,∆=1(y) = p−1fX
∗
(y)GZ∗

(y)F T ∗
(y)I(y ≥ 0)

= hX
∗
(y)[p−1GZ∗

(y)F T ∗
(y)GX∗

(y)I(y ≥ 0)]. (B.4)

In its turn, for x such that GZ∗
(x)F T ∗

(x) > 0, the last relation yields for the density of the
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random variable of interest X∗ the expression

fX
∗
(x) =

fY,∆=1(x)

p−1GZ∗(x)F T ∗(x)
whenever GZ∗

(x)F T ∗
(x) > 0. (B.5)

Now we focus on the denominator in (B.5). Write for v ∈ (0,∞),

P(T ≤ v ≤ Y ) = P(T ∗ ≤ v ≤ Y ∗|T ∗ ≤ Y ∗) = [p−1GZ∗
(v)F T ∗

(v)]GX∗
(v) =: g(v). (B.6)

Note that the right side of (B.6) contains, as a factor in the square brackets, the denominator

of the ratio in (B.5). This yields the following expression for the probability density of X∗,

fX
∗
(x) =

fY,∆=1(x)GX∗
(x)

P(T ≤ x ≤ Y )
whenever GZ∗

(x)F T ∗
(x) > 0. (B.7)

The last formula points upon a feasible estimator of the density, but we can also realize

that another unique characteristic of the distribution, the hazard rate function, has a nice

expression via estimable functions,

hX
∗
(x) =

fY,∆=1(x)

P(T ≤ x ≤ Y )
whenever GZ∗

(x)F T ∗
(x) > 0. (B.8)

Finally, because the hazard rate is estimable, we may use the following familiar formula that

relates the density, survival function and the hazard rate function, fX
∗
(x) := hX

∗
(x)e−

∫ x
0 hX

∗
(v)dv

and GX∗
(x) = e−

∫ x
0 hX

∗
(v)dv.
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Conclusions from the formulae: (i) For estimation, if θj =
∫ a+b

a
hX

∗
(x)ϕj(x)dx then its

reasonable estimator is defined in (20)-(21). The underlying idea of ηl, defined in (20), is that

n−1
∑n

s=1 I(Ts ≤ v ≤ Ys) is the sample mean estimator of the probability P(T ≤ v ≤ Y ).

(ii) For establishing a lower bound, the following relation is useful,

fT,Y,∆(t, y, δ) = fT
∗,Y ∗,∆∗|T ∗≤Y ∗

(t, y, δ)

= p−1I(t ≤ y)fX
∗
(y)fT

∗
(t)GZ∗

(y)I(δ = 1) + p−1I(t ≤ y)fZ
∗
(y)fT

∗
(t)GX∗

(y)I(δ = 0).
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Figure 1: Estimation of the hazard rate function (solid line) by oracle kernel estimate (dot-
dash line) and proposed estimate (dash line). Top left, top right and two bottom diagrams
correspond to the third, sixth and eleventh experiments described in Section 2. Subtitles
show the total sample size n and the number m of Y s observed within an interval of estima-
tion.
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Figure 2: Effect of the interval of estimation [a, a+b]. Experiment 3 of Section 2 is considered
with a = 1 and x = a+b ≥ 1.Two top diagrams show functions only for x ∈ [1, 5] because they
increase rapidly beyond the interval. In particular, for values 6 and 7, the function 1/g0(x)
takes on values 46 and 447 while the coefficient of difficulty is 8 and 66, respectively. Two
bottom diagrams show the underlying hazard rate by the solid line, and estimates are shown
by the long-dashed and short-dashed lines over corresponding intervals with x = 4, 5, 6, 7.
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Figure 3: Estimates of 1/g0(x) and coefficient of difficulty d(1, x). The sample is the same
as in Figure 2.
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Figure 4: Estimation for intervention and comparison groups in the WHEL study. The mid-
dle and bottom diagrams correspond to estimates for intervals [1, 12] and [1, 10], respectively.
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Figure 5: Estimates of the cumulative hazard HX∗
(1, x) :=

∫ x
1
hX

∗
(v)dv and corresponding

90 percent confidence bands for intervention and comparison groups in the WHEL study
calculated for cases [a, a+ b] = [1, 12] (the top diagrams) and [a, a+ b] = [1, 10] (the bottom
diagrams).
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Figure 6: The effect of plasma alpha-carotene on hazard rates. Group 1 consists of women
with levels of plasma alpha-carotene larger than the median level for all participants, all
other women belong to group 2. The structure of the figure is identical to Figure 4.
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Figure 7: The effect of plasma alpha-carotene on cumulative hazard. Group 1 consists of
women with levels of plasma alpha-carotene larger than the median level for all participants,
all other women belong to group 2. The structure of the figure is identical to Figure 5.
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Figure 8: The effect of plasma beta-carotene on the hazard rate. The structure of the figure
is identical to Figure 4.
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Figure 9: The effect of plasma beta-carotene on the cumulative hazard. The structure of the
figure is identical to Figure 5.

41



0 2 4 6 8 10 12

0
5

10
15

20
Estimates of 1/g0(x)

x

group 1
group 2

8 9 10 11 12 130.
03

0
0.

04
0

0.
05

0

Estimates of d(1, x)

x

group 1
group 2

2 4 6 8 10 12

0.
00

0.
02

0.
04

Hazard rate estimates

Recurrence−free survival

group 1
group 2

2 4 6 8 10 12

0.
00

0.
02

0.
04

90 percent confidence bands

Recurrence−free survival

group 1
group 2

2 4 6 8 10

0.
00

0.
02

0.
04

Hazard rate estimates

Recurrence−free survival

group 1
group 2

2 4 6 8 10

0.
00

0.
02

0.
04

90 percent confidence bands

Recurrence−free survival

group 1
group 2

Figure 10: The effect of plasma lycopene on the hazard rate. The structure of the figure is
identical to Figure 4.
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Figure 11: The effect of plasma lycopene on the cumulative hazard. The structure of the
figure is identical to Figure 5.
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Figure 12: The effect of plasma cryptoxanthin on the hazard rate. The structure of the
figure is identical to Figure 4.

44



2 4 6 8 10 12

0.
00

0.
10

0.
20

Estimates of H(1, x)

Recurrence−free survival

group 1
group 2

2 4 6 8 10 12

0.
00

0.
10

0.
20

90 percent confidence bands

Recurrence−free survival

group 1
group 2

2 4 6 8 10

0.
00

0.
10

0.
20

Estimates of H(1, x)

Recurrence−free survival

group 1
group 2

2 4 6 8 10

0.
00

0.
10

0.
20

90 percent confidence bands

Recurrence−free survival

group 1
group 2

Figure 13: The effect of plasma cryptoxanthin on the cumulative hazard. The structure of
the figure is identical to Figure 5.
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Figure 14: Analysis of the Channing House data. The left diagram shows estimated hazard
rates for male (the dotted line) and female (the solid line) residents. The right diagram
shows the relative hazard rate which is the ratio of the male’s estimated hazard rate to the
female’s estimated hazard rate.
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Figure 15: 80 percent confidence band for Channing House data.
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