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Abstract Left truncation and right censoring (LTRC) presents a unique challenge for
nonparametric estimation of the hazard rate of a continuous lifetime because consistent
estimation over the support of the lifetime is impossible. Tounderstand the problemand
make practical recommendations, the paper explores how the LTRC affects a minimal
(called sharp) constant of a minimax MISE convergence over a fixed interval. The
corresponding theory of sharp minimax estimation of the hazard rate is presented, and
it shows how right censoring, left truncation and interval of estimation affect theMISE.
Obtained results are also new for classical cases of censoring or truncation and some
even for the case of direct observations of the lifetime of interest. The theory allows
us to propose a relatively simple data-driven estimator for small samples as well as
the methodology of choosing an interval of estimation. The estimation methodology
is tested numerically and on real data.
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1 Introduction

Consider a continuous nonnegative random variable of interest X∗ which can be a
lifetime, or a time to event of interest, or an insurance loss, or a commodity price. In
all these examples, it is rather typical that a sample from X* is not observed directly
due to the left truncation and right censoring (LTRC). The problem of interest is to
estimate, under the mean integrated squared error (MISE) criterion, the hazard rate
function h X∗

(x) of X∗,

h X∗
(x) := f X∗

(x)

G X∗
(x)

, G X∗
(x) > 0, x ≥ 0, (1)

where f X∗
(x) is the probability density of X∗, G X∗

(x) := ∫∞
x f X∗

(u)du = 1 −
F X∗

(x) is the survivor function, and F X∗
(x) is the cumulative distribution function

of X∗. In what follows, we are using names “hazard rate function,” “hazard rate” and
“hazard” interchangeably. Recall that the hazard quantifies the trajectory of imminent
risk, and it may be referred to by other names in different sciences, for instance, as
the failure rate in reliability theory and the force of mortality in sociology. Further,
similarly to the density or survivor function, the hazard is a unique characteristic of
X∗. See a thorough discussion of the hazard and its pivotal role for the analysis of
truncated and censored data in Cox and Oakes (1984), Gill (2006) and Fleming and
Harrington (2011).

Let us review known results about nonparametric hazard estimation. On the one
hand, the problem appears to be similar (if not almost identical) to the density esti-
mation, and this is also the impression that one can get from the literature. Indeed,
the literature traditionally considers estimation over a fixed interval, typically the unit
interval [0, 1] given that G X∗

(1) > 0. This approach is justified by the fact that the

hazard is not integrable over its support, to see this note that G X∗
(x) = e− ∫ x

0 h X∗
(v)dv .

Further, according to (1) the hazard inherits smoothness of the density because the
survival function is smoother than the density. In particular, if the density is α-fold
differentiable, then the hazard rate is also α-fold differentiable. As a result, estimation
procedures suggested for the density can be used for the hazard and, based on a sample
of size n, imply the familiar density’s rate n−2α/(2α+1) of the MISE convergence. The
interested reader can find a number of smart estimation procedures and a discussion
of the problem in Silverman (1986), Döhler and Rüschendorf (2002), Wang (2005),
Müller and Wang (2007), Jankowski and Wellner (2009), Fleming and Harrington
(2011), Bagkavos and Patil (2012), Brody (2012), Klugman et al. (2012), Patil and
Bagkavos (2012), Lee and Wang (2013) and Daepp et al. (2015).

On the other hand, the problem of hazard estimation is more complicated than its
density counterpart even for the case of a direct sampling from X∗. Indeed, consider
estimation of the hazard over an interval [0, b]. Efromovich (2016) has established that
the sharp constant in the MISE convergence is proportional to [1− G X∗

(b)]/G X∗
(b),

while for the density estimation the sharp constant is proportional to F X∗
(b). As a

result, while for the density estimation the constant is bounded, for the hazard rate it
is unbounded. This is what makes estimation of the hazard more complicated and, at
the same time, more interesting and challenging than its density counterpart.
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Hazard rate estimation for LTRC data 891

As we shall see shortly, left truncation (LT) and right censoring (RC) make non-
parametric estimation of the hazard even more difficult. Statistical model of the LTRC
will be defined shortly in Sect. 2, and here let us just recall that the LT means that
only a lifetime exceeding a truncating variable is available, and the RC means that
only a lifetime exceeding a censoring random variable is available and otherwise the
censoring variable is observed, and this fact is known. Even from these heuristic def-
initions, it becomes clear that the LT may preclude us from estimation of the hazard
(and correspondingly the density) near zero, and the RC may dramatically reduce the
maximum value of a possible interval of estimation.

There is a vast statistical literature devoted to the case of theLTRCwith amajority of
those publications devoted to the RC. Let us mention books by Cox and Oakes (1984),
Andersen et al. (1993), Efromovich (1999), Klein and Moeschberger (2003), Fleming
and Harrington (2011) and Lee and Wang (2013), as well as recent papers Su and
Wang (2012),Huang andQin (2013), Zhang andZhou (2013), Bindera andSchumache
(2014), Lu and Min (2014), Qian and Betensky (2014), Shi et al. (2015), Wang et al.
(2015), Bremhorsta and Lamberta (2016) and Talamakrouni et al. (2016). A number
of smart and very elaborate procedures of nonparametric estimation of the hazard over
a fixed interval are suggested. For instance, more than 20 years ago Uzunogullari and
Wang (1992) proposed a kernel estimator which is still highly regarded in the literature
(wewill use its oracle version as a benchmark in the numerical study). Antoniadis et al.
(1999) proposed a two-step wavelet estimator which estimates the density and then
divides it by an estimator of the survival function. Wu and Wells (2003) proposed an
estimator based on the idea of a wavelet transform of the Nelson–Aalen cumulative
hazard. An adaptive sieved maximum-likelihood estimator is proposed in Döhler and
Rüschendorf (2002). For the RC, a thorough discussion of projection estimators, based
on the Kaplan–Meyer methodology and a penalized minimum contrast, can be found
in Brunel and Comte (2008). Cao et al. (2005) considered the problem of estimation
of the relative hazard rate estimation for the LTRC. Review of available R-packages
can be found in Hagar and Dukic (2015).

There are several important conclusions from the literature. First, under reasonable
smoothness assumptions and considering a sufficiently small fixed interval of esti-
mation, the LTRC does not slow down the rate of the MISE convergence. Second,
proposed estimators for small samples are rather complicated, especially if smooth-
ness of the hazard is unknown. Third, it is unknown how the LT, RC and an interval
of estimation affect the MISE convergence. Finally, the literature on how to choose a
feasible interval of estimation for LTRC data is next to none and this task is typically
left to practitioners (see, for instance, a review in Hagar and Dukic 2015). Of course,
in practice this interval may be dictated by substantive issues stemming from the moti-
vating problem, but then it is up to the statistician to check if the interval is feasible
for data at hand and, if the conclusion is negative, to explain this to practitioners.

All these issues are explored in the paper, and thismakes it large; hence, some results
are placed in the online Supplementary Materials (SM). The context is as follows. The
studied model of the LTRC is introduced in Sect. 2. Asymptotic theory is presented
in Sect. 3. Theorems 1 and 2 present sharp minimax lower bounds for two functional
classes, while Theorems 3 and 4 are devoted to properties of a data-driven estimator for
the cases of independent and dependent truncating and censoring random variables,
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892 S. Efromovich, J. Chu

respectively. The recommended estimator for small samples, its numerical analysis
and the methodology of choosing a feasibly large interval of estimation can be found
in the SM. Section 4 presents main results of the analysis of the NIH WHEL breast
cancer data, based on the developed methodology of estimation for the LTRC data,
and more can be found in the SM. The SM also contains colored figures. Section 5
contains some proofs, and all remaining proofs can be found in the SM.

2 The LTRC model

We begin with a classical general model of the LTRC following Gill (2006). There
is a hidden sequential sampling from a triplet of nonnegative random variables
(T ∗, X∗, Z∗) whose joint distribution is unknown. In the triplet T ∗ is the truncat-
ing random variable, X∗ is the random variable of interest (lifetime), and Z∗ is
the censoring random variable. While all realizations of the triplet are not avail-
able (they are hidden), some may be observed. Namely, we observe the triplet
(T, Y,�) := (T ∗,min(X∗, Z∗), I (X∗ ≤ Z∗)) if min(X∗, Z∗) ≥ T ∗ and other-
wise we do not even know that the hidden realization occurred. The hidden sequential
sampling from the triplet (T ∗, X∗, Z∗) stops as soon as nth observation is obtained.
Note that the hidden mechanism of collecting data can be described via a negative
binomial experiment such that the experiment stops as soon as nth “success” occurs,
data is collected only when a “success” occurs, there is no information on how many
“failures” occurred between “successes”, and the probability of “success” is

p := P(T ∗ ≤ min(X∗, Z∗)) > 0. (2)

Let us explain the model via a particular example of the NIH WHEL breast cancer
project discussed shortly in Sect. 4. Variable X∗ is the time from a breast surgery
to the cancer recurrence (relapse). Censoring variable Z∗ is the time from surgery
until a patient stops participation in the project (due to health issues, death, end of the
project, moving from the area, etc.) Truncation variable T ∗ is the time between surgery
and the baseline (beginning) of the project. Now let us comment upon the sequence
of events. A potential participant will not be available for the study (truncated) if
min(X∗, Z∗) ≤ T ∗. Indeed, if the relapse occurs before the baseline or the patient is
not available/qualified/motivated at the baseline, no information about that patient is
available in the data (it will be hidden). Note that in the project the truncation may
occur after or before censoring. This is what makes the example so interesting.

In what follows, the asymptotic sharp minimax theory will be developed for the
case when the three variables in the hidden triplet (T ∗, X∗, Z∗) are independent and
continuous. At the same time, it will be shown that if the lifetime of interest X∗ is
independent from the pair (T ∗, Z∗), where T ∗ and Z∗ may be dependent and have a
mixed joint distribution, then the proposed estimator is still rate minimax. Example
of the last setting is when Z∗ := T ∗ + R∗, P(R∗ ≥ 0) = 1 and R∗ may have a
mixed distribution. More examples and a thorough discussion of models can be found
in Klein and Moeschberger (2003), Gill (2006) and Brody (2012).
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Hazard rate estimation for LTRC data 893

3 Asymptotic theory

What is known in the hazard estimation literature about the MISE convergence for
the LTRC? Surprisingly, not much. First, it is known that neither the LTRC nor a
“reasonable” interval of estimation affects the rate of a minimax MISE convergence.
Interestingly, this conclusion is based on results established for the density rather than
the hazard. Hence, to understand how the LTRC and an interval of estimation [a, a+b]
may affect the MISE, a sharp constant in the MISE convergence should be studied.
In its turn, this requires to develop a sharp lower bound for the MISE. Second, for
the case of direct observations Efromovich (2016) established that the shape of an
estimated hazard does not affect the MISE convergence, and this is why in that article
both global and local hazard classes have been studied. As we shall see shortly, this is
no longer the case for the LTRC. Hence, a local minimax approach should be used to
understand how a hazard affects the MISE convergence.

Now we are in a position to explain the methodology of developing the asymptotic
minimax theory of hazard estimation based on LTRC data. First, let us formulate a
minimax approach based on the game theory considering a play between the dealer
and nature [it is shown in Efromovich (2016) that this approach is instrumental in
obtaining a sharp constant for the case of direct observations, and as we shall see
shortly it becomes even more pivotal when we are dealing with the LTRC]. Under
the approach, the dealer and nature are participating in a minimax game whose rules
are defined by a class S of hazard functions, a chosen risk, and a generator of LTRC
observations. The rules are known to the dealer and nature. Nature begins the game by
choosing a hazard from the class S whose estimation maximizes the risk, generates
a LTRC sample and then presents it to the dealer. The dealer proposes an estimator
whichminimizes theMISE and then that minimum defines the dealer’s minimax lower
bound.

Any dealer’s lower bound is of a theoretical interest, but if it can be attained by
an estimator (statistic) then the lower bound becomes of a practical interest and that
estimator is called efficient. In what follows, we first propose a sharp dealer’s lower
minimaxbound and then introduce an efficient estimator that attains the dealer’s bound.

In what follows, in addition to notation of the previous sections, (0, ch) denotes
the largest interval for which we estimate the hazard. An interval [a, a + b], with
0 < a < a + b < ch and b > 2[3 ln(ln(n))]−2, will be referred to as the interval
of interest over which an underlying hazard rate h(x) := h X∗

(x) should be estimated
based on a LTRC sample of size n > 20. For the interval of interest, ϕ0(x) := b−1/2,
ϕ j (x) := (2/b)1/2 cos(π j (x − a)/b), j = 1, 2, . . . is the classical cosine basis. Also,
in what follows α is a nonnegative integer and q(α)(x) := dαq(x)/dxα denotes the
αth derivative of q(x).

3.1 Sharp lower bound

To consider a local minimax, introduce an anchor hazard h0(x), x ≥ 0 with G0(x) :=
e− ∫ x

0 h0(v)dv being the corresponding anchor survival function. Introduce a class of
anchor hazards,
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894 S. Efromovich, J. Chu

H :=
{

h0 :
∫ a+b

0
h0(v)dv < ∞; inf

x∈[a,a+b] h0(x) > 0;

=
∫ ∞

0
h0(x)∞; h0(x) ≥ 0, x ≥ 0

}

. (3)

Note that this class includes any hazard such that G0(a+b) > 0 and h0(x) is separated
from zero over the interval of interest. Then for a given anchor h0 ∈ H, we can define
a local (homogeneous) Sobolev function class of hazards which is created by additive
perturbations of the anchor over the interval of interest,

S(α, Q, h0, a, b, n) :=
⎧
⎨

⎩
h : h(x) = h0(x) +

∞∑

j=0

θ jϕ j (x)I (x ∈ [a, a + b]), x ≥ 0 ;

(4)
∞∑

j=0

(π j/b)2αθ2j ≤ bQ < ∞, sup
x∈[a,a+b]

∣
∣
∣
∣
∣
∣

∞∑

j=0

θ jϕ j (x)

∣
∣
∣
∣
∣
∣
< 1/ ln(n); h(x) ≥ 0, x ≥ 0

⎫
⎬

⎭
.

(5)

Line (4) implies that considered hazards are additive perturbations of the anchor h0
over the interval of interest [a, a + b]. The first inequality in (5) implies that addi-
tive perturbations are from a Sobolev ellipsoid, and the second inequality shows
that the magnitude of perturbations decreases as the sample size n increases. Note
that for all sufficiently large n such that 1/ ln(n) < infx∈[a,a+b] h0(x) we have
infx∈[a,a+b] h(x) > 0, and hence, the last relation in (5) holds. Let us also note that:
(i) (3) and (5) yield that for all considered hazards we have G X∗

(a + b) > 0; (ii) the
perturbations take both positive and negative values; (iii) all functions from the class
(4) are nonnegative and

∫∞
0 h(x)dx = ∞. Hence, these functions are bona fide hazard

rates.
In the minimax game, considered in the next theorem, the dealer chooses: an anchor

h0 from the classH defined in (3), parameters (α, Q, a, b) of the local Sobolev hazard
class (4) and the LTRC mechanism. This information is provided to the nature that
chooses the least favorable for estimation hazard and then generates a LTRC sample
of size n which is used by the dealer for estimating the least favorable hazard.

Theorem 1 Let us assume that nonnegative continuous random variables T ∗, X∗
and Z∗ are mutually independent, h0 ∈ H, the interval of interest [a, a + b] is such
that

min
x∈[a,a+b] G Z∗

(x)FT ∗
(x)G X∗

0 (x) > 0, (6)

and an underlying hazard h(x) := h X∗
(x) is from the class (4). Then the following

dealer’s minimax lower bound holds,
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inf
ȟ∗

sup
h∈S(α,Q,h0,a,b,n)

Eh

{∫ a+b

a
(ȟ∗(x) − h(x))2dx

}

≥ P(α, Q, b)

[(

b−1
∫ a+b

a
h0(v)g−1

0 (v)dv

)2α/(2α+1)]

n−2α/(2α+1)(1 + on(1)),

(7)

where

P(α, Q, b) := Q1/(2α+1)b(2α + 1)1/(2α+1)
[

α

π(α + 1)

]2α/(2α+1)

, (8)

g0(v) := p−1
0 G Z∗

(v)FT ∗
(v)G X∗

0 (v), (9)

p0 := P(T ∗ ≤ min(X∗, Z∗)|h X∗ = h0), (10)

the infimum in the left side of (7) is taken over all possible dealer estimators ȟ∗ based
on sample {(T1, Y1,�1), . . . , (Tn, Yn,�n)} as well as on FT ∗

, G Z∗
and parameters

(α, Q, h0, a, b) defining the underlying local Sobolev class. Furthermore, the lower
bound (7) is attainable by a dealer estimator, and hence, it is sharp.

Let us make several comments about the result. (i) Factor P(α, Q, 1) is present
in the classical minimax lower bound for the density, supported on [0, 1], and direct
data (see Efromovich and Pinsker 1982). (ii) In (7) the factor in the square brackets
shows how an underlying hazard rate and the LTRC affect the MISE, and following
Efromovich (1999) the functional

d := b−1
∫ a+b

a
h X∗
0 (v)g−1

0 (v)dv (11)

may be referred to as the coefficient of difficulty. As we shall see shortly, variance
of an efficient estimator of θ j is equal to dn−1[1 + on(1) + o j (1)], and this sheds
light on the coefficient of difficulty. (iii) Rate n−2α/(2α+1), known for the case of
direct observations, is preserved. Furthermore, using a sequence (4) of shrinking local
Sobolev classes in the minimax does not affect the rate of the MISE convergence. If
following Efromovich (2016) we consider a larger class by replacing in the second
inequality of (5) the upper bound 1/ ln(n) by a positive constant ρ, then in (7) a larger
constant, depending on ρ, will appear. (iv) Assumption (6) describes restrictions on
supports of the three underlying variables that in general are not necessarily the same.
Let us comment on the restrictions. It is well understood, without invoking any theory,
that if FT ∗

(x1) = 0 and G X∗
(x1) > 0 or G Z∗

(x2) = 0 and G X∗
(x2) > 0 then no

consistent estimation of h X∗
(x) (or F X∗

(x)) is possible in the former case due to
truncation of all observations smaller than x1 and in the latter case due to censoring all
observations larger than x2. Further, a known result Efromovich (2001) on estimation
of the density f X∗

for right censored data shows that the corresponding sharp constant
is proportional to

∫ a+b
a f X∗

(x)[G Z∗
(x)]−1dx . This tells us that ifG Z∗

(a+b) > 0 then
the density estimation is possible. Assumption (6), together with the constant (11),
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896 S. Efromovich, J. Chu

allows us to shed a new light on the effect of censoring on estimation of the hazard rate.
No longer the assumption G Z∗

(a +b) > 0 alone guarantees a consistent estimation of
the hazard rate over [a, a + b], it should be complemented by G X∗

(a + b) > 0. This
is, of course, the specific and complexity of the considered problem of estimation of
the hazard rate, and more discussion can be found in the Supplementary Materials.

Our final comment about the result is as follows. If interval [a, a + b] is fixed and
there is no interest in assessing the hazard beyond this interval, then using of class (4)
is appropriate (as well as standard in the literature). On the other hand, if this interval
is one of possible intervals of interest, then some important issues with the above-
introduced minimax arise. First, it follows from (4) that a function from the class may
not be smooth because no assumption about smoothness of the anchor hazard h0(x)

is made [check (3)]. Second, even if the anchor h0(x) is continuous, a perturbation (4)
can make h(x) discontinuous at the boundary points a and a +b. Third, a perturbation
can change the distribution of X∗ beyond the interval of estimation. Of course, a
traditional answer is that we are interested in estimation only over [a, a + b] and for
the dealer smoothness of an underlying anchor is irrelevant because the dealer knows
the anchor. On the other hand, eventually we will use the dealer’s lower bound for the
analysis of estimates. Hence, is it possible that the above-mentioned issues affect the
lower bound?

This is a licit question, and let us explore it. First, introduce a class of α-fold
differentiable on (0, ch) (recall that this is the largest studied interval of estimation)
anchor hazards,

H∗(α, ch, a, b) :=
{

h0 :
∫ ch

0
h0(x)dx < ∞,

∫ ch

0

[
h(α)
0 (x)

]2
dx < ∞,

min
x∈[a,a+b] h0(x) > 0, h0(x) ≥ 0, x ≥ 0

}

. (12)

For an anchor h0 ∈ H∗(α, ch, a, b), introduce a class ofα-fold differentiable hazard
functions which is obtained by additive perturbations of the anchor on the interval of
interest [a, a + b],

S∗(α, Q, h0, ch, a, b, n) := {h : h(x) = h0(x) + q(x), (13)

q(x) = 0 for x /∈ (a + [3 ln(ln(n))]−2, a + b

−[3 ln(ln(n))]−2) and
∫ a+b

a
q(x)dx = 0, (14)

max
x∈[a,a+b] |q(x)| < 1/ ln(n), (15)

∫ a+b

a
[q(α)(x)]2dx ≤ bQ < ∞

}

. (16)

Let us comment on the class. Line (13) tells us that only additive perturbations of the
anchor h0 are allowed. Line (14) yields that the hazard is equal to the anchor beyond
(a, a + b), and no change in the cumulative hazard (and therefore in the distribution
of X∗) occurs beyond the interval of interest. Line (15) implies the local nature of the
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class, and line (16) means that all hazards from the class are α-fold differentiable over
(0, ch). As a result, this class takes care about the above-raised issues.

Now let us comment on the sequence of events in the new minimax game. The
dealer chooses parameters of the class (12), then chooses an anchor h0 from this class
as well as parameters of the class (13) and then informs nature about the class (13).
Additionally, the dealer chooses the LTRC mechanism and informs nature about it.
Then nature chooses a hazard, which is the least favorable for estimation, from class
(13) and generates a LTRC sample of size n. The dealer uses the sample, together with
information provided by nature, to estimate the hazard.

Theorem 2 Consider a LTRC model where nonnegative continuous random variables
T ∗, X∗ and Z∗ are mutually independent, an anchor h0 is from class (12), and the
interval of interest [a, a + b] is such that

min
x∈[a,a+b] G Z∗

(x)FT ∗
(x)G X∗

0 (x) > 0. (17)

Then

inf
ȟ∗

sup
h X∗∈S∗(α,Q,h0,ch ,a,b,n)

Eh

{∫ a+b

a
(ȟ∗(x) − h(x))2dx

}

≥ P(α, Q, b)

[(

b−1
∫ a+b

a
h0(v)g−1

0 (v)dv

)2α/(2α+1)]

n−2α/(2α+1)(1 + on(1)),

(18)

where the infimum in the left side of (18) is taken over all possible dealer’s estimates
ȟ∗ based on a sample (T1, Y1,�1), . . . , (Tn, Yn,�n), FT ∗

, G Z∗
, and parameters

(α, Q, h0, ch, a, b, n). Furthermore, the lower bound (18) is attainable by a dealer
estimator and hence it is sharp.

Note that the lower bound (18) is the same as in Theorem 1, and hence, neither
smoothness of the anchor nor a possible changing by an additive perturbation of the
distribution of X∗ beyond the interval of interest affects the sharp lower bound. We
also conclude that using the classical Sobolev class (4) is a feasible approach for the
considered LTRC setting.

3.2 Sharp minimax data-driven estimation

The aim is to propose an estimator, based only on a sample (T1, Y1,�1), , . . . , (Tn, Yn,

�n), whose MISE attains the dealer’s minimax lower bound (7). This is a challenging
problem keeping in mind that the dealer knows the function class (4) and the LTRC
mechanism.

To define an estimator, we need several new notations. In what follows, �z�
denotes the largest integer which is smaller or equal to z. Introduce a sequence
of blocks {Bk, k = 1, 2, . . .} that partition nonnegative integers (frequencies of
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the cosine basis {ϕ j (x), j = 0, 1, . . .}) into nonoverlapping blocks of cardinality
(length) Lk . To be specific, set Lk := 1 for k = 1, 2, . . . , �ln(n)� and Lk :=
�(1 + ln−1(n)/ ln(ln(n)))k� + 1 for k > �ln(n)�, this defines blocks B1 := {0}
and Bk := {∑k−1

s=1 Ls, . . . ,
∑k

s=1 Ls − 1} for k = 2, 3, . . . Also introduce a
sequence of integers Kn such that Kn is the smallest positive integer satisfying
∑Kn

k=1 Lk > n1/3 ln(ln(n)). Note that the largest length L Kn is of order n1/3/ ln(n),
Kn is of order ln2(n) ln(ln(n)), and the total number of estimated Fourier coefficients
is of order n1/3 ln(ln(n)). The latter is due to the assumed restriction α ≥ 1 which
implies that the effect of not estimated Fourier coefficients on the MISE is of order
[n1/3 ln(ln(n))]−2α = on(1)n−2α/(2α+1).

The estimator is defined as

ĥ(x) :=
Kn∑

k=1

[

1 − d̂n−1

L−1
k

∑
j∈Bk

θ̂2j

]

I

⎛

⎝L−1
k

∑

j∈Bk

θ̂2j > (d̂ + 1/ ln(n))n−1

⎞

⎠

×
∑

j∈Bk

θ̂ jϕ j (x), x ∈ [a, a + b]. (19)

Here

θ̂ j :=
n∑

l=1

�lϕ j (Yl)η
−1
l I (Yl ∈ [a, a + b]), (20)

ηl :=
n∑

s=1

I (Ts ≤ Yl ≤ Ys), (21)

note that ηl ≥ 1 and hence its reciprocal may be used in (20), and

d̂ := nb−1
n∑

l=1

�lη
−2
l I (Yl ∈ [a, a + b]) (22)

is the estimate of the coefficient of difficulty (11).
Let us make a comment about observations (Ts, Ys,�s) used by the estimator.

Observations with Ys /∈ [a, a + b] are used only to calculate statistics ηl . Further, we
need to calculate ηl only for indexes l such that Yl ∈ [a, a + b]. As a result, in some
cases only values of Ys ∈ [a, a + b] are needed to construct the proposed estimator.
For instance, suppose that FT (a) = 1. Then we can use η′

l := ∑n
s=1[I (Yl ≤ Ys ≤

a + b) + I (Ys > a + b)] in place of ηl . Indeed, η′
l = ηl if Yl ∈ [a, a + b] and it is at

least 1 otherwise.
Now we need to add a new reasonable assumption about an anchor h0 used in the

local minimax. The dealer knows the anchor h0, while an estimator is based only on
data and does not know the anchor which is not necessarily even continuous according
to (3). To give an estimator a chance to compete with the dealer, let us additionally
assume that the anchor is sufficiently smooth on the interval of interest, namely for
some positive constant β [compare with the first inequality in (5)]
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∞∑

j=0

(1 + j2α+β)

[∫ a+b

a
h0(x)ϕ j (x)dx

]2
< ∞. (23)

Theorem 3 Let the assumption of Theorem 1 and (23) hold. Then estimator (19) is
sharp minimax and adapts to parameters of the local Sobolev class and nuisance
functions defining the LTRC mechanism, that is,

sup
h X∗∈S(α,Q,h0,a,b,n)

Eh X∗
{∫ a+b

a
(ĥ(x) − h X∗

(x))2dx

}

≤ P(α, Q, b)

[(

b−1
∫ a+b

a
h0(x)g−1

0 (x)dx

)2α/(2α+1)]

n−2α/(2α+1)(1 + on(1)).

(24)

Now let us explore robustness of the proposed estimator. It was explained in Sect. 2
that in some practical situations random variables T ∗ and Z∗ may be dependent and/or
not have a continuous joint distribution. For instance, this occurs when Z∗ = T ∗ + R∗
and R∗ is a nonnegative random variable which may have a mixed distribution. No
sharp lower bound is known for this case (it is an open problem). At the same time,
we can show that the estimator (19) is rate minimax and its MISE attains the rate
n−2α/(2α+1) known for the case of direct observations.

Theorem 4 Let us assume that a continuous random variable X∗ is independent of the
pair (T ∗, Z∗), this pair may have a mixed (continuous and discrete) joint distribution,

inf
x∈[a,a+b]P(T ∗ ≤ x ≤ min(X∗, Z∗)) > 0, (25)

and (23) holds. Then estimator (19) is rate minimax, that is,

sup
h X∗∈S(α,Q,h0,a,b,n)

Eh X∗
{∫ a+b

a
(ĥ(x) − h X∗

(x))2dx

}

≤ C∗n−2α/(2α+1), C∗ < ∞.

(26)

We conclude that the proposed estimator is robust.
Modification of the estimator, proposed for small samples, as well as its numerical

study, confidence bands and the methodology of choosing a feasibly large interval of
estimation can be found in the online Supplementary Materials. Next section explains
its use for the analysis of real data.

4 Analysis of real data

The NIH breast cancer project WHEL is described in Rock et al. (2005) and Pierce
et al. (2007). The project was designed to address the question of whether high intake
of vegetables and fruits, rich in carotene, could reduce breast cancer recurrence. Con-
clusion of the project was negative, and this created a controversy. Our aim is to revisit
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the collected data and use the proposed estimator for its analysis. Then, at the end
of the section, we also consider another example devoted to longevity at a retirement
community. (Recall that colored figures, as well as more discussion and a numerical
study, may be found in the Supplementary Materials.)

TheNIH project included 3088women previously treated for breast cancer andwho
were cancer free at the baseline. Participants were randomly assigned to either a diet
intervention, done via intensive consulting, or to a comparison group. This was done
from year 1995 to year 2000, and then participants were followed upon through 2006.
Plasma carotenoids concentrations were measured at baseline using blood samples
(only 3044 participants provided blood samples and therefore are considered). The
variable of interest, X∗, is the recurrence-free survival time which is defined as the
time from the date of initial breast cancer diagnosis (for all our purposes that date can
be considered as the date of surgery) to the date of diagnosis of the cancer relapse. The
data is right censored because some participants dropped the study (by any reason apart
of the breast cancer relapse) and also due to the end of the project in 2006. The data
are also left truncated because at the baseline potential participants (who had surgery
in areas of the study) must be alive, cancer free, still live in areas of the study and
agree to participate in the study. Note that censoring due to death, or leaving the area,
or not agreeing to participate in the study may occur before truncation by the baseline,
and hence P(T ∗ < Z∗) < 1. The primary hypothesis is that the intervention dietary
pattern implies a lesser risk of breast cancer recurrence. This hypothesis was tested via
comparison of Kaplan–Meier estimates of survivor functions for censored lifetimes
(the effect of left truncation was ignored due to randomization used for choosing
the two groups and we will comment on this shortly). Analysis of the Kaplan–Meier
estimates revealed no difference between the intervention and control groups.

The available data are LTRC, and the proposed estimator allows us to visualize
and compare hazard rates for the intervention and control groups. Following the
methodology of choosing an interval of estimation, outlined in Section 3 of the online
Supplementary Materials, we begin with the analysis of function 1/g0(x) and coeffi-
cient of difficulty d(1, x) for intervention and comparison groups.

Their estimates are shown in the top row of Fig. 1 (estimates for the coefficient of
difficulty are shown for interval [8, 13] to better exhibit the interesting shapes, and note
that colored graphics may be found in the Supplementary Materials). They allow us to
suggest the interval of estimation from 1 to 10 years; wewill also exhibit results for the
larger interval from 1 to 12 years to show the consequences of this decision. Hazard
rate estimates and the corresponding confidence bands are exhibited in the middle and
bottom rows of Fig. 1. Furthermore, estimates of the cumulative hazard H(1, x) :=∫ x
1 h X∗

(v)dv are shown in Fig. 2. Note that H(1, x) = Eh X∗ {�g−1
0 (Y )I (Y ∈ [1, x])}

and then its natural sample mean estimate is Ĥ(1, x) := ∑n
l=1 �lη

−1
l I (Yl ∈ [1, x]);

comparewith (20).Aswe see, there is no evidence that the intervention and comparison
groups are different. This also points upon good randomization used in the WHEL
study.

We conclude that taking into effect the LT and considering hazard rates does not
change the NIH conclusion. At the same time, our approach of estimating hazard rates
for LTRC data allows us to shed a new light on recurrence-free survival after breast
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Fig. 1 Estimation for intervention and comparison groups in the WHEL study. The middle and bottom
diagrams correspond to estimates for intervals [1, 12] and [1, 10], respectively.

surgery. First, hazard rate estimates allow us to visualize and appreciate how the hazard
of cancer recurrence changes in time. Namely, Fig. 1 indicates that the largest hazard
rate is during first several years after breast surgery, and then the rate significantly
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Fig. 2 Estimates of the cumulative hazard H X∗
(1, x) := ∫ x

1 h X∗
(v)dv and corresponding 90% confidence

bands for intervention and comparison groups in the WHEL study calculated for cases [a, a + b] = [1, 12]
(the top diagrams) and [a, a + b] = [1, 10] (the bottom diagrams)

(almost in half) slows down toward the sixth year. After the sixth year, there may be
a modest increase in the hazard rate.

Second, it is important to stress that the NIH conclusion does not reject benefits
of a carotene-rich diet; it simply tells us that the studied diet intervention (an after-
surgery recommendation to enrich diet by carotene) does not imply the desired effect.
On the other hand, is there a relationship between levels of carotene, shown in blood
tests collected at the baseline, and the recurrence-free survival? In other words, does
the level of carotene affects the hazard rate? The proposed estimator for the LTRC
can help us to answer this question. For each type of plasma carotenoids, we divide
3044 patients, who provided blood samples at baseline, into two groups using median
concentration as the threshold. For example, if plasma alpha-carotene is the variable
of interest, then participants whose plasma alpha-carotene was above themedian value
are classified as group 1 and others belong to group 2. Then for each group the proposed
adaptive hazard rate estimator is used to estimate the hazard rate for the time from
surgery to relapse.
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Fig. 3 Effect of plasma alpha-carotene on hazard rates. Group 1 consists of women with levels of plasma
alpha-carotene larger than the median level for all participants; all other women belong to group 2. The
structure of the figure is identical to Fig. 1

We begin with presenting results for alpha-carotene in Figs. 3 and 4. These
figures are similar to the previously discussed Figs. 1 and 2 for the interven-
tion and control groups. What we see is that participants with larger levels of
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Fig. 4 Effect of plasma alpha-carotene on cumulative hazard. Group 1 consists of women with levels of
plasma alpha-carotene larger than the median level for all participants; all other women belong to group 2.
The structure of the figure is identical to Fig. 2

plasma alpha-carotene concentration enjoy a lesser risk of the cancer recurrence.
A similar conclusion can be made from results for plasma beta-carotene shown in
Figures 8 and 9 of the supplementary materials, where also the interested reader
can find results for the effects of cryptoxanthin and lycopene. Our dietological con-
clusion is that a high level of plasma carotenoids, which reflects the history of
dietary habits and lifestyle, is a positive factor in reducing the risk of the cancer
relapse.

Now let us consider a familiar in the survival analysis literature example of the
death times for Channing House retirement community which is traditionally used
to illustrate Kaplan–Meier estimator, see a discussion in Klein and Moeschberger
(2003). Channing House is a retirement center located in Palo Alto, California, and its
distinctive feature is that all residents of the community are covered by a health care
program with a zero deductible, that is, no additional financial burden to the residents.
The data were collected between the opening of the house in January 1964 and July
1975. In that period of time, 97 men and 365 women passed through the center, and
among them 130 women and 46 men died at Channing House. The resident’s age at
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entry to the community as well as the age at leaving the community or death was
recorded. Note that when a person joined the community, he or she was alive at that
time, and the person’s age at death was at least as great as the age at entry to the
community and thus was left truncated. If the resident was alive when the study ended
or the resident left the community before the study ended, right censoring had occurred.
The difference between the survival hazard rates for male and female residents was the
primary aim of the study, and the known conclusion is that female residents survive
much better thanmale residents. Using the proposed adaptive estimator for the lifetime
of men and women produced estimates exhibited in the left diagram of Figure 14 in
the Supplementary Materials, while the ratio of the two estimates is exhibited in
the right diagram. Both hazard rate estimates, shown in the left diagram, change
relatively slow in the early ages below 960 months, i.e., 80 years old, and then they
rise rapidly. Female residents definitely have an edge in terms of longevity, but the
estimates indicate that with age the difference between male and female ability to
survive at the retirement community vanishes, and furthermore, older male residents
may have a slight edge. The relative hazard rate ofmenwith respect towomen indicates
that the risk of death may be almost twice as large for men than for women for the
age group up to 78 years and with the peak around 76 years. The main conclusion
is that overall female residents better adjust to living in the retirement community.
On the other hand, male residents, who are able to adjust to their new life in the
community, may live as long as female residents. Corresponding confidence bands are
shown in Figure 15. As we see, there is a relatively small interval (about 20 months)
around 930 months where the two confidence bands do not intersect. Further, there
is a larger interval in time (about 200 months) where each estimate is not covered by
confidence band for another estimate. These findings shed a new light on the classical
example.

5 Proofs

Proof of Upper Bounds in Theorems 1 and 2. We need to suggest dealer estimators
that attain lower bounds of the theorems. We begin with the dealer estimator for the
setting of Theorem 1. Recall that

h X∗
(x) = h0(x) +

∞∑

j=0

θ jϕ j (x)I (a ≤ x ≤ a + b),

∞∑

j=1

(π j/b)2αθ2j ≤ bQ. (27)

Further, d is the coefficient of difficulty defined in (11), and note that it is known to
the dealer.

Now let us make the following remark which will allow us to simplify formulas
and use the below obtained results in other proofs. The dealer knows the anchor h0,
and hence, we may formally assume in the following formulas that the anchor is zero
on the interval [a, a + b]. (To make the proof rigorous, one should in all formulas
subtract from the proposed estimator θ̂ j the corresponding j th Fourier coefficient of
the anchor.)
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Set (we just repeat definitions for the reader convenience)

θ̂ j :=
n∑

l=1

�lϕ j (Yl)η
−1
l I (Yl ∈ [a, a + b]), (28)

where

ηl :=
n∑

s=1

I (Ts ≤ Yl ≤ Ys). (29)

Note that ηl ≥ 1 and hence its reciprocal may be used in (28). The proposed dealer
estimator of the hazard (27) is

ȟ(x) := h0(x) +
⎡

⎣
J0∑

j=0

θ̂ jϕ j (x) +
J∑

j=J0+1

(1 − ( j/J )α)θ̂ jϕ j (x)

⎤

⎦ I (x ∈ [a, a + b]),
(30)

where J0 := �n1/(2α+1)/(ln(n))1/5�, J := �n1/(2α+1)[bQ(b/π)2α(α + 1)(2α +
1)/(αd)]1/(2α+1 + 1�.

Let us show that the dealer estimator is efficient and its MISE attains the lower
bound. We begin with establishing several properties of statistic θ̂ j defined in (28).
Set

g(v) := Ph X∗ (T ≤ v ≤ Y ) = p−1FT ∗
(v)G X∗

(v)G Z∗
(v). (31)

Write,

θ̂ j = n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])
g(Yl)

+n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]
g2(Yl)

+n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]2
g2(Yl)ηl/n

. (32)

Now we are evaluating the expectation of θ̂ j by considering 3 terms in (32) in turn.
For expectation of the first term, we can write,

Eh X∗

{

n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])
g(Yl)

}

=
∫ a+b

a
p−1 f X∗

(y)G Z∗
(y)ϕ j (y)FT ∗

(y)g−1(y)dy
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=
∫ a+b

a
h X∗

(y)ϕ j (y)[p−1G X∗
(y)G Z∗

(y)FT ∗
(y)g−1(y)]dy

=
∫ a+b

a
h X∗

(y)ϕ j (y)dy = θ j . (33)

For evaluation of the expectation of the second term in (32), we begin with a
conditional expectation,

Eh X∗ {(g(Yl) − ηl/n)|Yl = y}=Eh X∗

⎧
⎨

⎩
g(y)−n−1

n∑

s 
=l,s=1

I (Ts ≤ y ≤ Ys) − n−1

⎫
⎬

⎭

= g(y) − (n − 1)n−1g(y) − n−1 = n−1(g(y) − 1). (34)

We are using the reciprocal of g(y), hence let us show that

inf
h X∗∈S(α,Q,h0,a,b)

min
y∈[a,a+b] g(y) > 0. (35)

Using Cauchy–Schwarz inequality, we can write,

G X∗
(a + b) = G X∗

(a)e− ∫ a+b
a h X∗

(x)dx ≥ G X∗
(a)e

−
[
b
∫ a+b

a [h X∗
(x)]2dx

]1/2

.

Remember that for hazard rates from the function class S(α, Q, h0, a, b) we have
G X∗

(a) > 0 and suph X∗∈S(α,Q,h X∗
0 ,β,a,b)

∫ a+b
a [h X∗

(x)]2dx < C < ∞. This, together

with (6), verifies (35).
Using (34) and (35) allows us to evaluate expectation of the second term in (32).

Write,

Eh X∗

{

n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]
g2(Yl)

}

= Eh X∗

{

Eh X∗

{

n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]
g2(Yl)

|Yl

}}

= Eh X∗
{

�lϕ j (Yl)I (Yl ∈ [a, a + b])n−1[g(Yl) − 1]
g2(Yl)

}

= n−1
∫ a+b

a
[h X∗

(y)G X∗
(y)G Z∗

(y)FT ∗
(y)p−1]ϕ j (y)g−1(y)(1 − g−1(y))dy

= n−1
∫ a+b

a
[h X∗

(y)(1 − g−1(y))]ϕ j (y)dy =: n−1κ j . (36)
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Using the Parseval identity and (35), we get the following relation for Fourier coeffi-
cients κ j ,

sup
h X∗∈S(α,Q,h0,a,b)

∞∑

j=0

κ2
j = sup

h X∗∈S(α,Q,h0,a,b)

∫ a+b

a
[h X∗

(y)(1−g−1(y))]2dy <C <∞.

(37)
Now let us evaluate the expectation of the third term in (32). Several preliminary

calculations are needed. We begin with the following conditional expectation,

Eh X∗
{
(g(Yl) − ηl/n)2|Yl = y

}

= Eh X∗

⎧
⎨

⎩
[n−1

∑

s∈{1,...,n}\{l}
(I (Ts ≤ y ≤ Ys) − g(y))

+ n−1(1 − g(y))]2
}

≤ n−1g(y)(1 − g(y)) + n−2(1 − g(y))2. (38)

The familiar Hoeffding inequality (see Petrov 1975) states that if V1, V2, . . . , Vm

are independent mean zero random variables with bounded ranges, that is, P(Vi ∈
[ai , bi ]) = 1, −∞ < ai < bi < ∞, i = 1, 2, . . . , m then for any ε > 0

P

(
m∑

i=1

Vi ≥ ε

)

≤ e−2ε2/
∑m

i=1(bi −ai )
2
. (39)

Note that for Bernoulli random variables we have bi −ai = 1. Consider some positive
ε such that ε − n−1 > (1/2)ε[(n − 1)/n]1/2. Then using (39) we get

Ph X∗ (|g(Yl) − ηl/n| > ε|Yl = y)

= Ph X∗

⎛

⎝

∣
∣
∣
∣
∣
∣
n−1

∑

s∈{1,...,n}\{l}
[g(y) − I (Ts ≤ y ≤ Ys)] − n−1(1 − g(y))

∣
∣
∣
∣
∣
∣
> ε

⎞

⎠

≤ Ph X∗

⎛

⎝

∣
∣
∣
∣
∣
∣
n−1

n∑

s 
=l,s=1

[g(y) − I (Ts ≤ y ≤ Ys)]
∣
∣
∣
∣
∣
∣
> (ε − n−1(1 − g(y)))

⎞

⎠

≤ 2e−nε2/2. (40)

In its turn, (40) implies the following probability inequality,

n∑

l=1

Ph X∗ ({|g(Yl) − ηl/n| > ε}) ≤ 2ne−nε2/2. (41)

Note that

min
y∈[a,a+b] g(y) ≥ g(a + b)FT ∗

(a)/FT ∗
(a + b) =: g∗ > 0. (42)
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Using this result, we can write down the following chain of relations for events,

{
I (Yl ∈ [a, a + b])

ηl/n
>

2

g∗

}

=
{ηl

n
<

g∗
2

, Yl ∈ [a, a + b]
}

⊂ {g(Yl) − ηl/n > g∗/2, Yl ∈ [a, a + b]} ⊂ {|g(Yl) − ηl/n| > g∗/2},
where g∗ is defined in (42). The last relation and (41) yield

sup
h X∗∈S(α,Q,h0,a,b)

n∑

l=1

Ph X∗
( I (Yl ∈ [a, a + b])

ηl/n
> 2/g∗

)
≤ 2ne−ng2∗/8. (43)

Now we can evaluate the third term in (32). Note that ηl ≥ 1, |G(Xl) − ηl/n| ≤ 1
and thenwith the help of (38) and (43)we canwrite for any h X∗

fromS(α, Q, h0, a, b),

Eh X∗

{∣
∣
∣
∣
∣
n−1

n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]2
g2(Yl)ηl/n

∣
∣
∣
∣
∣

}

≤ C∗
Eh X∗

{

I

(
I (Yl ∈ [a, a + b])

ηl/n
≤ 2

g∗

)

(g(Yl) − ηl/n)2
}

+ C∗nEh X∗
{

I

(
I (Yl ∈ [a, a + b])

ηl/n
>

2

g∗

)}

≤ C∗n−1, (44)

where here and in what follows C∗s are generic and possibly different positive con-
stants that do not depend on considered h X∗

.
Using (33), (36) and (44) in the right side of (32), we get

|Eh X∗ {θ̂ j } − θ j | ≤ C∗n−1. (45)

Let us make the following remark about (45). This inequality is sufficient for our
purposes, but it can be made tighter by considering four terms in (32) where the third
term, similarly to the first two, uses G(Xl) in place of ηl/n. Then we can evaluate the
third term similarly to (37), and expectation of the fourth term will be not larger than
C∗n−3/2. This yields that in (45) a constant C∗ can be replaced by some t j satisfying∑∞

j=0 t2j < ∞. The remark is useful in analysis of higher moments.

Now we are evaluating the mean squared error of θ̂ j . Using (32) we can write,

Eh X∗ {(θ̂ j − θ j )
2} = Eh X∗

{[

n−1
n∑

l=1

(
�lϕ j (Yl)I (Yl ∈ [a, a + b])

g(Yl)
− θ j

)

+ n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]
g2(Yl)

+ n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]2
g2(Yl)ηl/n

]2
⎫
⎬

⎭
.

(46)
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It is convenient to consider the three sums in (46) in turn. For j ≥ 1, using (33)
and trigonometric formula ϕ2

j (y) = b−1 + (2b)−1/2ϕ2 j (y), we get

Eh X∗

⎧
⎨

⎩

[

n−1
n∑

l=1

(
�lϕ j (Yl)I (Yl ∈ [a, a + b])

g(Yl)
− θ j

)]2
⎫
⎬

⎭

= n−1

[

Eh X∗

{(
�lϕ j (Yl)I (Yl ∈ [a, a + b])

g(Yl)

)2
}

− θ2j

]

= n−1
[

b−1
∫ a+b

a
h X∗

(y)g−1(y)dy + ν j − θ2j

]

, (47)

where ν j := (2b)−1/2
∫ a+b

a h X∗
(y)g−1(y)ϕ2 j (y)dy and according to Parseval’s iden-

tity

sup
h X∗∈S(α,Q,h0,a,b)

∞∑

j=1

ν2j ≤ (2b)−1 sup
h X∗∈S(α,Q,h0,a,b)

∫ a+b

a
[h X∗

(y)]2g−2(y)dy < C∗ < ∞. (48)

Before proceeding to the analysis of other two sums, let us establish the following
useful inequality. For any positive integer k

Eh X∗ {[g(Yl) − ηl/n]2k} ≤ Ckn−k, Ck < ∞, (49)

where Ck depends only on k. Let us verify (49). Similarly to (38) we can write

Eh X∗ {[g(Yl) − ηl/n]2k}

= Eh X∗

⎧
⎪⎨

⎪⎩
Eh X∗

⎧
⎪⎨

⎪⎩

⎡

⎣n−1
∑

s∈{1,...,n}\{l}
(I (Ts ≤ Yl ≤ Ys) − g(Yl)) + n−1(1 − g(Yl))

⎤

⎦

2k

|Yl

⎫
⎪⎬

⎪⎭

⎫
⎪⎬

⎪⎭
.

Then (49) follows from two inequalities (see Petrov 1975): (i) For independent and
mean zero random variables V1, . . . , Vm

E

{∣∣
∣
∣
∣
m−1

m∑

i=1

Vi

∣
∣
∣
∣
∣

p}

≤ C∗
pm−p/2−1

m∑

i=1

E{|Vi |p}, p ≥ 2, (50)

where C∗
p is a finite absolute constant depending only on p; (ii) for any two constants

u and v

|u + v|p ≤ 2p−1(|u|p + |v|p), p ≥ 1. (51)
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Now we can continue evaluation of Eh X∗ {(θ̂ j − θ j )
2}. For the second sum in (46),

EhX∗

⎧
⎨

⎩

[

n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl ) − ηl/n]
g2(Yl )

]2
⎫
⎬

⎭

= EhX∗

⎧
⎨

⎩
n−2

n∑

l,k=1

�l�kϕ j (Yl )ϕ j (Yk)I ((Yl , Yk)∈[a, a+b]2)[g(Yl )−ηl/n][g(Yk)−ηk/n]
g2(Yl )g2(Yk)

⎫
⎬

⎭
.

(52)

To continue the evaluation, we are considering the conditional expectation of a par-
ticular factor in (52). For any pair (x, y) ∈ [a, a + b]2 and k 
= l, we can write

Eh X∗ {[g(Yl) − ηl/n][g(Yk) − ηk/n]|Yl = x, Yk = y}

= Eh X∗

⎧
⎨

⎩

⎡

⎣n−1
∑

s∈{1,...,n}\{k,l}
(I (Ts ≤ x ≤ Ys) − g(x)) + n−1(1 + I (y ≥ x) − 2g(x))

⎤

⎦

×
⎡

⎣n−1
∑

s∈{1,...,n}\{k,l}
(I (Ts ≤ y ≤ Ys) − g(y)) + n−1(1 + I (x ≥ y) − 2g(y))

⎤

⎦

⎫
⎬

⎭

= n−2(1 + I (y ≥ x) − 2g(x))(1 + I (x ≥ y) − 2g(y))

+(n − 2)n−2[Eh X∗ {I (T ≤ x ≤ Y )I (T ≤ y ≤ Y )} − g(x)g(y)]. (53)

The last expectation in (53) can be simplified via using the following equality,

Eh X∗ {I (T ≤ x ≤ Y )I (T ≤ y ≤ Y )} = Ph X∗ (Y ≥ max(x, y), T ≤ min(x, y))

= p−1GY (max(x, y))FT ∗
(min(x, y)).

Using this equality in (53) and then the obtained result in (52), we get with the help
of (49)

∣
∣
∣
∣
∣
∣
Eh X∗

⎧
⎨

⎩

[

n−1
n∑

l=1

�lϕ j (Yl)I (Yl ∈ [a, a + b])[g(Yl) − ηl/n]
g2(Yl)

]2
⎫
⎬

⎭

∣
∣
∣
∣
∣
∣

≤ C∗n−2 + n − 2

n4

n∑

l=1

∑

k∈{1,...,n}\{l}
Eh X∗

{
�l�kϕ j (Yl)ϕ j (Yk)I ((Yl , Yk) ∈ [a, a+b]2)

g2(Yl)g2(Yk)

×[p−1GY (max(Yl , Yk))FT ∗
(min(Yl , Yk)) − g(Yl)g(Yk)]

}

= C∗n−2 + (n − 1)(n − 2)

n3 Eh X∗
{
�1�2ϕ j (Y1)ϕ j (Y2)I ((Y1, Y2) ∈ [a, a + b]2)

123



912 S. Efromovich, J. Chu

× p−1G X∗
(max(Y1, Y2))G Z∗

(max(Y1, Y2))FT ∗
(min(Y1, Y2)) − g(Y1)g(Y2)

g2(Y1)g2(Y2)

}

≤ C∗n−1[b′
j + n−1], sup

h X∗∈S(α,Q,a,b)

∞∑

j=0

[b′
j ]2 < C∗ < ∞. (54)

In the last line

b′
j := Eh X∗

{
�1�2ϕ j (Y1)ϕ j (Y2)I ((Y1, Y2) ∈ [a, a + b]2)

×[p−1G X∗
(max(Y1, Y2))G

Z∗
(max(Y1, Y2))FT ∗

(min(Y1, Y2))

−g(Y1)g(Y2)]g−2(Y1)g
−2(Y2)

}
,

note that b′
j are particular Fourier coefficients of the tensor product cosine basis

ϕi (x)ϕ j (y) on [a, a + b]2, and therefore, according to the Bessel inequality and (35)
we have

∑∞
j=0(b

′
j )
2 ≤ C∗[∫ a+b

a [h X∗
(y)]2dy]1/2, and this verifies the last inequal-

ity in (54). Finally, inequality (49) allows us to conclude that the expectation of the
squared third term in (46) is at most C∗n−2. Combining the obtained results in (46),
together with the Cauchy inequality (c1 + c2)2 ≤ (1+ γ )c21 + (1+ γ −1)c22, which is
valid for any γ > 0, we conclude that

Eh X∗ {(θ̂ j − θ j )
2} =

[

b−1
∫ a+b

a
h X∗

(y)g−1(y)dy

]

n−1(1 + o∗
j (1) + o∗

n(1))

=: d∗n−1(1 + o∗
j (1) + o∗

n(1)), (55)

where o∗
j (1) and o∗

n(1) are bounded and vanish (as j and n increase) uniformly over

h X∗ ∈ S(α, Q, h0, a, b). Note that d∗ = d(1 + o∗
n(1)) where d is defined in (11).

Nowwe are establishing another general result. We are exploring the mean squared
error of the shrinkage estimator λ j θ̂ j of θ j where λ j ∈ [0, 1].

Write,

Eh X∗ {(λ j θ̂ j − θ j )
2}

= λ2jEh X∗ {(θ̂ j − θ j )
2} + (1 − λ j )

2θ2j − 2(1 − λ j )λ jEh X∗ {θ̂ j − θ j }θ j . (56)

Using (45) and (55) we continue (56) and conclude that

Eh X∗ {(λ j θ̂ j − θ j )
2} =

[
λ2j n

−1d∗ + (1 − λ j )
2θ2j

]
+ n−1ρ j (h

X∗
, n, λ j ), (57)

where |ρ j (h X∗
, n, λ j )| ≤ C∗[λ2j (o∗

j (1) + o∗
n(1)) + |θ j |].

For a positive integer J ∗, introduce the following linear estimator of h X∗
(x) for

x ∈ [a, a + b],
h̄(x, {λ j }) :=

J∗
∑

j=0

λ j θ̂ jϕ j (x). (58)
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Using (57) and the Parseval identity, we can evaluate the MISE of the linear esti-
mator (58),

Eh X∗
{∫ a+b

a
(h̄(x, {λ j }) − h X∗

(x))2dx

}

=
J∗
∑

j=0

[
n−1d∗λ2j + (1 − λ j )

2θ2j

]
+
∑

j>J∗
θ2j + n−1

J∗
∑

j=0

ρ j (h
X∗

, n, λ j )

≤
J∗
∑

j=0

[
n−1d∗λ2j + (1 − λ j )

2θ2j

]
+
∑

j>J∗
θ2j

+
⎡

⎣o∗
n(1)n−1

J∗
∑

j=0

λ2j + C∗n−1 I

⎛

⎝
J∗
∑

j=0

λ2j < ln ln(n)

⎞

⎠

⎤

⎦ , (59)

where o∗
n(1) → 0 as n → ∞ uniformly over hazard rates h X∗

from the local Sobolev
class. The indicator in (59) is used to make the inequality valid for the case when
∑J∗

j=0 λ2j does not increase to infinity as n increases. The latter is not the case for the
dealer estimator, but the general inequality (59) holds for all cases and this will allow
us to use it later for any sequence λ j .

Now it is a quick calculation to establish the upper bound for the dealer estimator
ȟ defined in (30). Note that the dealer estimator is linear, and then using (27) and (59)
we can write,

Eh X∗
{∫ a+b

a
(ȟ(x) − h(x))2dx

}

=
J0∑

j=0

[n−1d∗] +
J∑

j=J0+1

[n−1d∗(1 − ( j/J )α)2 + ( j/J )2αθ2j ]

+
∑

j>J

θ2j + o∗
n(1)n−2α/(2α+1. (60)

Now, plug in expressions for J0 and J , recall that d∗ = d(1 + o∗
n(1)), and then

a straightforward algebra implies that for the considered {θ j } the right side of (60)
coincides with the lower bound (7). The upper bound of Theorem 1 is verified.

Now we are establishing that the lower bound (18) of Theorem 2 is attainable by a
dealer estimator. We begin with the result of Efromovich (2001). Set

α′ =
{

α if α is even,
α − 1 if α is odd.

(61)

Lemma 1 Let a function q(x) be α-times differentiable on [a, a + b] and
∫ a+b

a
[q(α)(x)]2dx < ∞. Then there exists a unique polynomial–cosine expansion
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914 S. Efromovich, J. Chu

q(x) =
α′
∑

i=1

ci xi +
∞∑

j=0

v jϕ j (x), x ∈ [a, a + b], (62)

where the coefficients ci are defined from the relations for the polynomial term p(x) :=
∑α′

i=1 ci xi ,
p(r)(a) = q(r)(a), p(r)(a + b) = q(r)(a + b), (63)

that hold for all positive and odd r < α. In (62) it is understood that for α = 1 (and
correspondingly α′ = 0) the term

∑0
i=1 ci xi = 0. Moreover,

∞∑

j=1

(π j/b)2αv2j =
∫ a+b

a
[q(α)(x)]2dx − (1 − α + α′)[α′!cα′ ]2. (64)

Relation (62) explains the underlying idea of the proposed estimator. Coeffi-
cients v j are no longer Fourier coefficients, but they still belong to ellipsoid (64).
As a result, if we can estimate coefficients ci in (62), then we have a path for
using the previous solution for finding an efficient dealer estimator. To follow this
methodology, we need to introduce a new notation. It is convenient to rewrite (62)
via orthonormal Legendre polynomials. Denote the Legendre polynomial basis on
[a, a + b] by {Li (x), i = 0, 1, . . .} where L0(x) = 1 and Li (x) = (xi −
∑i−1

s=0〈xi , Ls〉Ls(x))‖xi −∑i−1
s=0〈xi , Ls〉Ls(x)‖−1.Here 〈 f, g〉 = ∫ a+b

a f (x)g(x)dx
and ‖ f ‖ = √〈 f, f 〉 denote the inner product and norm in L2([a, a+b]), respectively.
Also set J ′ = �n1/(2α+1) ln(n)� and rewrite (62) as

q(x) =
α′
∑

j=1

βi Li (x)+
∞∑

j=0

v jϕ j (x) =
J ′
∑

j=0

κ jϕ j (x)+
α′
∑

i=1

βJ ′i L J ′i (x)+
∑

j>J ′
κJ ′ jϕ j (x),

(65)
where κ j = 〈q, ϕ j 〉, βJ ′i = 〈q, L J ′i 〉, and

L J ′i (x) = [Li (x) −
J ′
∑

j=0

〈Li , ϕ j 〉ϕ j (x) −
i−1∑

s=1

〈Li , L J ′s〉L J ′s(x)]/NJ ′i

is the (1 + J ′ + i)th element of an orthonormal system obtained by applying Gram–
Schmidt orthogonalization procedure to the functions {ϕ0, . . . , ϕJ , L1, . . . , Lα′ };
NJ ′i = ‖Li (x) − ∑J

j=0〈Li , ϕ j 〉ϕ j (x) − ∑i−1
s=1〈Li , L J ′s〉L J ′s(x)‖; κJ ′ j = κ j −

〈∑α′
i=1 βJ ′i L J ′i (x), ϕ j 〉, j > J ′.
Now, similarly to (28), we can estimate Fourier coefficients βJ ′i by

β̂J ′i :=
n∑

l=1

�l L J ′i (Yl)η
−1
l I (Yl ∈ [a, a + b]), (66)
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coefficients θ j by

θ̃ j :=
n∑

l=1

ϕ j (Yl)η
−1
l I (Yl ∈ [a, a + b]), (67)

and coefficients βi by

β̃i =
⎡

⎣β̃J ′i −
α′
∑

r=i+1

β̃r 〈Lr , L J ′i 〉
⎤

⎦ /NJ ′i , i = α′, α′ − 1, . . . , 1. (68)

Then the proposed dealer estimator of the hazard (comparewith the dealer estimator
(30) and note that the same sequences J0 and J are used) is

ȟ :=
α′
∑

i=1

β̃i Li (x) +
J0∑

j=0

θ̃ jϕ j (x) +
J∑

j=J0+1

(1 − ( j/J )α)θ̃ jϕ j (x). (69)

To establish that this dealer estimator isminimax,wemake several steps. First, let us
note that estimators (66) and (67) are sample mean estimators of Fourier coefficients,
and hence (45), as well as (55) for θ̃ j , are applied here. Second, a direct calculation
shows that 〈Ll , L J ′i 〉 = O(1)[J ′]−3 for ı ≥ i . This allows us to write,

Eh X∗ {(β̃i−βi )
2}≤C∗[J ′]−2α+3=C∗n−(2α+3)/(2α+1)[ln(n)]−2α+3 for i = 1, . . . , α′.

(70)
Third, we note that

α′
∑

i=1

β̃i Li (x) +
J ′
∑

j=0

θ̃ jϕ j (x) =
J ′
∑

j=0

κ̃ jϕ j (x) +
m′
∑

i=1

β̃i (Li (x) −
J ′
∑

j=0

〈Li , ϕ j 〉ϕ j (x)).

Now we can use the above-presented general proof of the upper bound for the
dealer estimator (30). Following that proof and using established properties of Fourier
estimates, we verify that the MISE of the dealer estimator (69) attains the lower bound
of Theorem 2. ��
Acknowledgements The research is supported byNSFGrant DMS-1513461. Suggestions of the reviewers
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