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Abstract Exact conditional goodness-of-fit tests for discrete exponential familymod-
els can be conducted via Monte Carlo estimation of p values by sampling from
the conditional distribution of multiway contingency tables. The two most popular
methods for such sampling are Markov chain Monte Carlo (MCMC) and sequential
importance sampling (SIS). In this work we consider various ways to hybridize the
two schemes and propose one standout strategy as a good general purpose method
for conducting inference. The proposed method runs many parallel chains initialized
at SIS samples across the fiber. When a Markov basis is unavailable, the proposed
scheme uses a lattice basis with intermittent SIS proposals to guarantee irreducibility
and asymptotic unbiasedness. The scheme alleviates many of the challenges faced by
the MCMC and SIS schemes individually while largely retaining their strengths. It
also provides diagnostics that guide and lend credibility to the procedure. Simulations
demonstrate the viability of the approach.
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1 Introduction and background

The analysis of contingency tables is one of the oldest problems in statistics, and an
enormous amount of literature has beendedicated to the topic. It has nowbeenwell over
a century since Pearson introduced his ubiquitous asymptotic χ2 tests (Pearson 1900).
A few decades later, concerns about the applicability of that procedure to situations
with small sample sizes motivated Fisher to discover the exact procedure that now
bears his name, which assesses the simple problem of the independence of the two
variables represented in a 2×2 contingency table (Fisher 1922a, 1934). In this article,
we consider methods with which one might carry out exact conditional inference in
discrete exponential family models on arbitrarily sized tables, a great generalization
of Fisher’s test. These kinds of procedures have applications all over science and are
increasingly warranted in the light of big, small-celled datasets, where they are often
the only tool in the statistician’s toolkit.

Generalizing Fisherian exact conditional inference first to R × C tables, then to
multiway tables, then to more complex models has proven to be a theoretically simple
task that is incredibly challenging in practice. We refer the reader to the excellent
though now somewhat dated review by Agresti (1992). Presented in more precise
language inSect. 2, the basic problem is the computation of a p value that is analytically
intractable in the same way most Bayesian problems are intractable—the distribution
of interest contains an integral (sum) that cannot be computed. As in that setting,
Monte Carlo techniques have been employed to estimate probabilities of interest, here
p values, to an arbitrary degree of accuracy. Unlike most Bayesian problems, however,
in the setting ofmultiway tables the state space is discrete and implicitly defined,which
introduces a number of complications that make the problem unique.

The two-way R × C independence model case was essentially solved in the late
1970’s/mid-1980’s via two quite different strategies: sophisticated methods of exhaus-
tive enumeration (Mehta and Patel 1986; Clarkson et al. 1993) and Monte Carlo
simulation (Boyett 1979; Patefield 1981). These strategies remain standard practice;
for example R’s fisher.test() implements both, with the former as the default
(RCore Team2014). For themore generalmultiway problem, the enumerationmethod
is obviously untenable (in fact it is untenable for most R × C problems), so work in
the area has turned to Monte Carlo strategies.

In this article we consider hybrid versions of the two prevailing strategies used
to conduct exact conditional inference in discrete exponential families, Markov chain
MonteCarlo (MCMC) and sequential importance sampling (SIS), propose one strategy
that stands out among similar variants, and communicate simulation results indicative
of how the method might perform in real-world applications. We also discuss the
apparent limitations of the method.

The outline is as follows. After providing a notational introduction in Sect. 2, we
present a concise review of the MCMC and SIS methods in Sects. 3 and 4. In Sect. 5
we consider various potential hybrid schemes that incorporate SIS samples into the
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MCMC approach and propose one that stands out among the others. In Sect. 6 we
consider the performance of the proposed methods via simulation experiments with
independence and logistic models. We then conclude with a discussion of our findings
and suggestions for the practical use of the method.

2 Basic notation

Let X1, . . . , X p be a collection of discrete random variables with Xk taking values in
Xk = [rk] := {1, 2, . . . , rk}, and define X = [X1 · · · X p]′. The sample space of X is
X = ⊗p

k=1 Xk , which contains r = ∏p
k=1 rk elements. Let

πx = πx1x2···xp = f (x) = P [X = x]

all denote the joint probability of the element x ∈ X . The collection of all r probabil-
ities π is then thought of as a p way array π ∈ R

r1×···×rp or a vector π ∈ R
r , where

some rule is agreed upon as to how to interconvert the two (e.g., lex order). As π can
be viewed either way, we refer to an individual component either as πx or πk , where
k ∈ [r ] is the index associated with x, as convenient.

A discrete multivariate dataset is an independent and identically distributed col-
lection of such random vectors X1, . . . , XN summarized in a contingency table with
elements Tx = ∑N

k=1 1[Xk = x], where 1[·] is the indicator function. Like the πx’s,

the collection of all such Tx’s can be thought of as an array T ∈ N
r1×···×rp
0 , which is

the conventional p way contingency table, or a vector T ∈ N
r
0, which is an elongated

form of it made by vectorization. The set N0 = Z≥0 = {0, 1, 2, . . .} is the collection
of nonnegative integers.

Standard approaches to modeling contingency tables place different models on
T corresponding to different sampling schemes (Bishop et al. 1975; Agresti 2002;
Lehmann and Romano 2005). If the sample size N is not known a priori, it is nat-
ural to assume that each cell of the table is an independent Poisson variate whose
rate depends on the cell: Tx ∼ Pois(λx). The sample size itself then follows a Pois-
son distribution: N ∼ Pois(

∑
x λx); this is the Poisson sampling scheme. If the

sample size N = n is fixed by design, the table follows a multinomial distribution,
[T |N = n] ∼ Multinomr (n,π), whose cell probabilities are determined by the rel-
ative magnitudes of the Poisson rates, πx = λx∑

x λx
; this is the multinomial sampling

scheme. Let Tn denote the collection of all T-sized p way tables with n observations,
Tn = {

t ∈ N
r
0 : 1′

r t = n
}
. Recall that if [T |N = n] ∼ Multinomr (n,π), the table

[T |N = n] has probability mass function

Pπ [T = t|N = n] = n!
t1! · · · tr !π

t1
1 · · · π tr

r for any t ∈ Tn .

In this article we always consider the sample size N = n to be known; so to ease
notation we simply write T for [T |N = n] and implicitly assume the multinomial
sampling scheme.
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In algebraic statistics, discrete exponential family models are defined via a con-
figuration matrix A ∈ N

d×r
0 that is the transpose of a design matrix for a cell-means

ANOVA (Aoki et al. 2012). The matrix serves to compute the sufficient statistics of
the exponential family via the linear map S : N

r → N
d , S(T ) = AT , which we

also sometimes refer to as simply S or the marginals, even though they may not be
marginals in the traditional sense. It is assumed throughout this article that the vector
of ones 1r is in the row space of A; this is referred to in the algebraic statistics lit-
erature as the homogeneity assumption, as it implies the corresponding toric ideal is
homogeneous (Sturmfels 1996).

As an illustrative toy example, a 2 × 2 contingency table would be written

T =
[
T11 T12
T21 T22

]

or T =

⎡

⎢
⎢
⎣

T11
T12
T21
T22

⎤

⎥
⎥
⎦ ,

and the independence model, which is an exponential family with sufficient statistics
equal to the marginal sums T1+, T2+, T+1 and T+2 (a+ index refers to summing over
that index), is defined through the following configuration matrix A in the matrix
equation

AT =

⎡

⎢
⎢
⎣

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

T11
T12
T21
T22

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

T1+
T2+
T+1
T+2

⎤

⎥
⎥
⎦ . (1)

Any discrete exponential familymodel can bewritten in this form for a suitably chosen
A, including log-linear and graphical models, logistic and Poisson regression models,
and models for rank data; see Drton et al. (2009) or Aoki et al. (2012) for more details.
The formulation therefore includes a broad class of very popular models.

For an observed contingency table to ∈ N
r
0 and a configuration matrix A, the

sufficient statistics for the model defined by A constitute the vector of nonnegative
integers Ato = s = (s1, . . . , sd)′ ∈ N

d
0 , and the fiber Fs of to, the conditional sample

space Fisher called the “isostatistical region” (Fisher 1922b), is

Fs := {
t ∈ N

r
0 : At = s

} ⊂ Tn .

The fiberFs is the collection of all contingency tables of n observations with sufficient
statistics s. From a geometric perspective, the elements of the fiber are nonnegative
integer lattice points in a convex polytope. For most problems of practical interest,
the number of such tables, the size of Fs, is enormous. For example, Diaconis and
Sturmfels (1998) relate that Snee’s hair and eye color dataset in Table 2 in Sect. 6
has an independence model fiber with 1,225,914,276,768,514 elements (Snee 1974).1

Chen et al. (2005a) give an example of a 50× 50 contingency table with {0, 1} entries
with an independence model fiber sized hundreds of orders of magnitude larger.

1 This is the corrected value from that article, which is generally known to have been a typographical error.
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If s is given, the conditional distribution of the table given its marginals is

P [T = t|AT = s] = f (t|s) =
1

t1!···tr !∑
x∈Fs

1
x1!···xr !

for t ∈ Fs, (2)

which is the generalization of the hypergeometric distribution used in Fisher’s exact
test referred to as the hypergeometric distribution on the fiber (Drton et al. 2009, Prop.
1.1.11). Unfortunately, the size of the sum in the denominator is the size of the fiber,
which is in general far too large to evaluate. Thus, (2) is almost always intractable.
However, its un-normalized version

f̃ (t|s) = 1

t1! · · · tr ! for t ∈ Fs, (3)

is quite tractable, especially on the log scale. We refer to log f̃ (t|s) as the un-
normalized log-likelihood (UNLL) of the table t ∈ Fs. Note that tables with higher
probabilities also have higher UNLLs, so while we cannot say in an absolute sense
what the probability of a table t ∈ Fs is, we can determine relative likelihoods among
several tables easily.

In this article we are interested in computing exact conditional goodness-of-fit p
values for significance testing. Although the proper definition of p value has been
disputed (Agresti 1992, Sections 2.1 and 3.1), the formulation we assume here is the
most commonly agreed upon version:

p = P [ f (T |s) ≤ f (to|s)|AT = s] ;

it corresponds to a two-tailed test. We note that it could also be considered from the
vantage point of many other discrepancy measures (Read and Cressie 1988).

One way to view p is as a sum of probabilities in the form of (2) over all tables t
in the fiber satisfying the condition f (t|s) ≤ f (to|s),

p =
∑

t∈Fs
f (t|s)≤ f (to|s)

f (t|s). (4)

However, since f (t|s) is intractable, the sum representation is not very helpful in
practice. It is much more helpful to represent p as the expectation

p = E [1[ f (T |s) ≤ f (to|s)]|AT = s] . (5)

Estimating this expectation has been the main strategy of attack in every Monte Carlo
approach to exact conditional inference. The most obvious way to do it is simply by
using the law of large numbers: drawing samples from (2) and finding the proportion of
tables that satisfy the condition. This is theMCMCapproach. Alternatively, estimating
expectations is the express goal of SIS, and a good deal of success has been achieved
via that route. We discuss these in the next two sections.
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3 Markov chain Monte Carlo (MCMC)

A complete theory of the MCMC approach grows out of the work of Diaconis and
Sturmfels in the early 1990’s, which initiated extensive and enduring investigations
into the use of algebraic methods in statistics (Diaconis and Sturmfels 1998). While
the details grow complicated, the basic goal is simple—sample from (2) and estimate
pwith the proportion of tables with probabilities f (t|s) less than or equal to that of the
observed table, determined using their UNLLs. Using this strategy confidence bounds
on p can be constructed using standard Monte Carlo techniques if the samples are
drawn independently. MCMC is generally useful in these types of situations where
normalizing constants are unknown.

When designing aMCMC to sample from (2), the basic problem is the construction
of a proposal distribution. There are in fact two problems here. The first is constructing
a proposal distribution at all. Since the state space is discrete (unlike most Bayesian
problems), care must be taken to construct a proposal distribution that results in tables
in the fiber all or nearly all the time. The second is constructing a proposal distribu-
tion whose steady-state distribution is the one of interest, namely the hypergeometric
distribution on the fiber. We deal with these problems in turn.

The first problem is resolved with the concept of a Markov move. AMarkov move,
or more simply amove, is a vectorm in the integer kernel ofA, kerZ (A) = kerA∩Z

r .
Such vectors are called moves since one can add them to vectors in Fs to obtain other
vectors in Fs. For example, in the 2 × 2 independence model case

m1 =

⎡

⎢
⎢
⎣

1
−1
−1
1

⎤

⎥
⎥
⎦ and − m1 =

⎡

⎢
⎢
⎣

−1
1
1

−1

⎤

⎥
⎥
⎦ (6)

are moves. Written in array format, these are

m1 = 1 −1
−1 1

and − m1 = −1 1
1 −1

. (7)

Obviously, adding either move to a 2×2 table leaves the marginals unchanged. As the
notation suggests, moves are usually identified up to a factor of ±1. Note that since
the fiber FAt is finite for a given t , the total number of admissible moves is finite. We
call a move m admissible, or more specifically admissible for t , if t + m ∈ Fs for
some t ∈ Fs, otherwise we call it inadmissible.

Any collection of movesM can be used as the proposal distribution for a Markov
chain by randomly selecting a move from M and applying it to the current state to
obtain a proposed state. Moreover, the observed table is in the fiber, which provides
a natural starting point for the chain. This allows us to run the MCMC algorithm
presented in Algorithm 1. It works just like any other MCMC algorithm: a step is
proposed by the random selection of a move and a transition is made based on the
relative likelihoods of the current and proposed states, which do not depend on the
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large sum. It also exhibits the challenges of convergence and efficiency common to
all MCMC samplers; we address these in Sect. 3.3.

Input:
M – a collection of moves in kerZ (A)

t0 – an initial feasible table, e.g., to
N – a desired number of samples from f (t|s) = f (t|Ato)

Output:
N samples t1, . . . , tN from f (t|s), assuming M connects FAto

for i in 1:N do
Sample m fromM and e from {1,−1} (uniformly)
if any(t i−1 + em < 0r ) then

t i ← t i−1
else

Sample u ← Unif(0, 1)

if u <
f̃ (ti−1+em|s)

f̃ (ti−1|s) then
t i ← t i−1 + em

else
t i ← t i−1

end
end

end

Algorithm 1: The basic MCMC algorithm given a collection of movesM. Burn-
in and thinning are omitted for clarity but are discussed in Sect. 6

Using Markov moves to solve the first problem, the second problem reduces to the
determination of a collection of moves M that guarantees the irreducibility of the
Markov chain. Clearly the set of fiber element differences suffices, but this collection
is significantly larger than the fiber itself and so generally far too large to use. What
is wanted is some kind of minimal collection of admissible moves that result in an
irreducible Markov chain. One such collection is a Markov basis. A Markov basis
B = {b1, . . . , bz} for a modelA is a subset of kerZ (A) such that for any table to ∈ N

r
0,

for every pair t1, t2 ∈ Fs = FAto there exists a sequence of moves b(1), . . . , b(K ),
each in B, such that

t2 = t1 +
K∑

k=1

b(k) and t1 +
l∑

k=1

b(k) ≥ 0r

for all l ∈ [K ], where ≥ is considered element-wise. The first condition requires
that t2 is accessible from t1, and the second condition requires nonnegativity of the
intermediate states, i.e., that each of the intermediate steps are realizable contingency
tables in Fs ⊂ Tn .

While the notion of Markov bases may appear to make the problem more difficult
since a Markov basis must connect every fiber for all sample sizes n, it in fact can
make it tractable. The important discovery of Diaconis and Sturmfels (1998) was that
Markov bases can be identified with well understood structures in toric algebra. While
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the details needlessly digress from our current focus, three facts are helpful; see Drton
et al. (2009) andAoki et al. (2012) formore detailed treatments. First, as a consequence
of the Hilbert basis theorem, Markov bases always exist and are finite. Second, they
are not unique, since adding more moves to B retains the required properties. Third,
they can be computed using the elimination algorithm from computational algebraic
geometry (Cox et al. 1997). Unfortunately, however, this algorithm is known to have
very badworst-case computational complexity, and so in generalMarkov bases cannot
be computed. We revisit this problem in Sect. 3.3.

3.1 Other moves: lattice and other bases

For a particular model A and observed table to, a Markov basis is sufficient but not
necessary for constructing a proposal distribution for a MCMC whose asymptotic
distribution is the hypergeometric distribution on the fiber. A Markov sub-basis is a
collection of moves that satisfies the properties of a Markov basis in this restricted
situation, i.e., it is a collection of moves that connects the fiber of a particular table at
hand (Chen et al. 2006).Markov subbases can be significantly smaller than fullMarkov
bases, but there is no general algorithmknown to compute them that is computationally
easier than computing the full Markov basis. Thus, there is no general strategy known
to compute Markov subbases that is feasible in practice.

Nevertheless, one can run a MCMC with any collection of moves, even collections
that do not form a Markov sub-basis or are not even checked. One simply runs the
risk that (1) the stationary distribution is not the anticipated one and (2) does not
approximate it well. Either of these can be false even when using a collection of
moves that do not form a full Markov basis. Moreover, one is forced to use such a
collection of moves if a Markov basis is unavailable. We call MCMC run with moves
that are known to form a Markov basis MB-MCMC.

In addition toMarkov bases, various other collections ofmoves can be distinguished
by their properties. The first and most obvious choice for a collection of moves is
motivated by the observation that kerZ (A) is the subset of an integer lattice, a collection
of integer vectors of Zr closed under integer linear combinations. It is well known
that lattices admit bases: a lattice basis is a collection of linearly independent vectors
L ⊂ kerZ (A) such that every vector in kerZ (A) can be written as a linear combination
of elements of L. Such a basis contains l = r − rank(A) ≤ r − 1 elements, typically
far fewer than a Markov basis, but they are not unique. Lattice bases can be computed
very quickly using the Smith decomposition of the integer matrix A (Schrijver 1986).
However, there is no guarantee that a lattice basis will form a Markov basis or sub-
basis, and so using only a lattice basis as the collection of moves M runs the risk of
having an asymptotic distribution that is not the hypergeometric distribution on the
fiber and does not approximate it well. We call MCMC run with lattice basis moves
LB-MCMC; we do not demand the moves be linearly independent.

Other common collections of moves exist as well. Such collections typically come
from other areas of mathematics such as graph theory and optimization. Chief among
these are the Gröbner and Graver bases and their variants (Drton et al. 2009; Sturmfels
1996). There is a clear hierarchy of such bases: a Graver basis contains a Gröbner basis
which contains a Markov basis which contains a lattice basis, and their sizes can be
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Table 1 The politics dataset Democrat Republican

Introvert 3 7 10

Extrovert 6 4 10

9 11 20
Marginal totals are in bold

Fig. 1 The fiber graph of the independence model on the politics dataset in Table 1 with ± moves

dramatically different. Since mere Markov bases are sufficiently difficult to compute
as to not be generally applicable in practice, in this article we only consider lattice and
Markov bases.

3.2 The graphical perspective

It is often helpful to consider Markov chains from the perspective of graph theory.
This perspective views the elements of the fiber as vertices of an undirected graph
called a fiber graph with adjoining edges if the move setM contains a move from one
to the other. Explicitly, for a given collection of movesM, two vertices t1 and t2 are
joined by an edge if there is a move m ∈ M such that t1 = t2 + m, often seen as
t1 − t2 ∈ M. For example, Table 1 contains a version of Sheskin’s politics dataset
with variables Personality and Party (Sheskin 2007, p. 622). The independence model
on the table has the configuration matrix in (1); (6)/(7) is a collection of moves; and
the corresponding fiber graph is shown in Fig. 1.
In this case, the + −

− + basic move that has a pair of ±1’s in each ordinate connects the
entire fiber; it is in fact a lattice, Markov, Gröbner and Graver basis. In the larger case
of R × C tables, + −

− + basic moves with the +’s and −’s in strategic locations still
generate the lattice, Markov, Gröbner and Graver bases, but different numbers of them
are needed. For example, the 3× 3 independence model case demands 4, 9, 9, and 15
such moves, respectively.

The situation changes for fibers of different models and different sized tables. A
simple example is the 3 × 3 × 3 table with the no-three-way interaction model. The
lattice basis contains 8 elements, all + −

− + moves, and is shown in Fig. 2. A minimal

Markov basis contains 81 elements that consist of more than simple single + −
− + moves.

The corresponding fiber graphs, when s = [2 · · · 2]′, are shown in Fig. 3. TheGröbner
and Graver bases, not shown, have 110 and 795 elements, about one and six times the
size of the fiber, respectively. As indications of their complexity, many Markov and
Gröbner bases moves have more than one + −

− + configuration in the same move, and
some of the Graver basis moves have ±2’s.
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Fig. 2 Eight moves for the 3 × 3 × 3 no-three-way interaction model constituting a lattice basis for the
corresponding A. Blue +’s are +1 and Red −’s are −1

3.3 Challenges of MCMC schemes

It has already been said that generating a Markov basis is a difficult process. In fact,
it is an NP-hard process, growing with the size of the table and the complexity of the
model. Typically log-linear models that pose problems in other situations (e.g., ones
that do not have closed-form MLEs) also have problematic Markov bases. A standard
example is the no-three-way interaction model, whose minimal Markov bases are
known to grow to be arbitrarily large as the table grows (De Loera and Onn 2005).

As a concrete example of the difficulty of computingMarkov bases, 4ti2’s markov
program (4ti2 team 2008), widely regarded as a state-of-the-art implementation for
computing Markov bases, took nearly 24 hours to compute the Markov basis of the
configurationmatrixAof the no-three-way interactionmodel on a 4×4×4 contingency
table, a 48×64 0–1 matrix, on a 3.4GHz Intel Xeon processor with 32GB of memory.
The resulting basis has a whopping 148,968 elements. The full independence model
on the same sized table takes about a second and contains 1080 elements. By contrast,
the lattice bases (computed with 4ti2’s zbasis program) contain 27 and 54 elements,
respectively, and were computed in a fraction of a second.

When the model exhibits a nice structure, e.g., it is graphical and highly decompos-
able, it is possible to generate Markov bases very quickly by aggregating the bases of
subtables (Dobra and Sullivant 2004; Dobra 2003). Ample literature has been logged
whereMarkov bases have been determined by leveraging symmetries in the underlying
model (Aoki et al. 2012). Moreover, for a given model A the basis need only be com-
puted once, which prompted Kahle and Rauh (2011) to construct an online database
of Markov bases. Nevertheless, it is well-known that the problem of determining a
Markov basis is not, in general, one that can be resolved by additional computational
power.

Apart from irreducibility, the two major problems that MCMC strategies face are
(1) convergence to the hypergeometric distribution on the fiber, called the mixing of
the chain, and (2) the efficiency of the chain. By mixing we mean at what point t∗
in the chain {T t }t are we able to assume that the marginal distribution of T t∗ is the
hypergeometric distribution on the fiber. Answers to this question are provided by the
general theory of finite state space Markov chains but may not be very helpful in this
context since the distribution of interest is not uniform and properties of the chain,
such as the diameter of the graph, are often unknown. By efficiency we mean once
the chain has converged, how many steps need one take before the autocorrelation
tamps down to an acceptable level? In other words, how many steps do we need to
“thin”, discard between iterations, in order for the remaining samples to be reliable for
estimating standard errors and effective sample sizes? In general, there are few known
answers to these problems. We revisit them in a concrete way in Sects. 5 and 6.
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3.4 MCMC enhancements

Various schemes exist in the literature that attempt to enhance the MCMC strategy
described above. In this section we simply mention two such attempts before moving
on. Since they work with everyMCMC, they work with the methods considered in this
article aswell, but since the aim is not to better understand these kinds of enhancements
we do not consider them further in this work.

Recognizing that moves in a basis are typically small, e.g., consisting of±1 entries
in a fiber that may have points that are very distant, one idea is to enlarge them
somehow. Diaconis and Sturmfels (1998) describe a strategy based on the hit and run
algorithm of Bélisle et al. (1993). Given a set of moves M, the idea is to effectively
to make proposals in a two-step process. The first step is to pick a move uniformly at
random from the collection of possible moves; this it the standard proposal step. The
second step is determine the collection of multiples of the move that still result in a
proposal in the fiber, and pick one of these multiples uniformly at random (say) and
propose that multiple of the move. Clearly, this allows the chain to “get random much
more rapidly” (Diaconis and Sturmfels 1998, p. 374).

A similar set of strategies are discussed in Chapter 16 of Aoki et al. (2012), syn-
thesizing previous work by the same authors (Hara et al. 2012). In that discussion it
is suggested that when a Markov basis is unavailable it is reasonable to use random
integer combinations of a lattice basis moves, with the coefficients being drawn from
either a Poisson or a geometric distribution. If the move-multiples do not provide pro-
posals in the fiber, they are simply rejected. They find that both methods seem to work
reasonably well in simulations and offer the suggestion that as the “size” of the table
increases (in a loose sense relating to cell size), increasing the rates of the Poisson or
geometric distributions to achieve bigger moves increases performance.

4 Sequential importance sampling (SIS)

Apart from the MCMCmethods, alternative strategies to estimate p based on sequen-
tial importance sampling (SIS) have been proposed. A sequential importance sampler,
a variant of sequential Monte Carlo (SMC, also called particle filtering), is an impor-
tance sampler for amultivariate distributionwhose proposal distribution is constructed
iteratively via conditional univariate distributions (Liu 2008; Lange 2010). As an
importance sampler, it is designed not to sample from a particular distribution per se,
but rather provide samples that can be used to approximate expectations respective of
a particular distribution. Since p values can be represented as expectations, SIS is a
prime alternative to the MCMC routine previously described.

Like the MCMC approach, the SIS approach relies on a proposal distribution, here
denoted q(t). Suppose q(t) is a proposal distribution with support Q ⊂ N

r
0 that we

can sample from efficiently and that Fs ⊆ Q. Then, for an arbitrary distribution p(t)
and function g(t) on Fs, one can approximate the expectation
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Ep [g(T )] ≈
∑N

i=1 g(t i )
p̃(t i )
q̃(t i )

∑N
i=1

p̃(t i )
q̃(t i )

=
∑N

i=1 wi g(t i )
∑N

i=1 wi

where t1, . . . , tN are N independent and identically distributed (iid) draws from the
distribution q(t), and p̃(t i ) and q̃(t i ) are un-normalized versions of p and q. The
quantities wi := p̃(t i )

q̃(t i )
are referred to as importance weights. The independence of the

samples t1, . . . , tN makes the SIS procedure an example of independent Monte Carlo
(IMC), which is in sharp contrast to MCMC.

As with theMCMC procedure, selection of a proposal distribution is central to SIS.
In SIS, q(t) is constructed as a product of conditional distributions. Specifically, for
k ∈ [r ], define t1:k := [t1 · · · tk]′. The SIS scheme then constructs q(t) as

q(t) = q1(t1)
r∏

k=2

qk(tk |t1:(k−1)), (8)

which simply swaps a multivariate sampler for a series of conditional univariate sam-
plers. The question then becomes: how are the qk’s selected? It is well known that the
efficiency of a proposal distribution for an importance sampling procedures depends
on how closely q(t) resembles |g(t)|p(t) (Lange 2010); however, in practice deter-
mining the marginal distributions qk that result in this distribution is difficult, and it
is more common to design the qk’s to result in a q that targets p.

Chen et al. (2005a), motivated by previous work (Halton 1969; Boyett 1979; Sni-
jders 1991; Booth and Butler 1999; Caffo and Booth 2001, and references therein),
provide a look into how to construct proposal distributions qk for two-way tables. They
considered sampling from the uniform and hypergeometric distributions on the fibers
of two kinds of tables: tables with 0–1 entries and tables with more typical cell sizes.
Their general findings were that 0–1 tables are significantly more difficult to sample
than ordinary tables due to support issues, and that good qk’s are much easier to find
for the uniform distribution than for the hypergeometric distribution. For sampling
from the uniform, for non-0–1 celled tables one can simply use discrete uniform dis-
tributions over the support given by the Fréchet bounds, updating column/row totals
as one iterates through the table. For 0–1 tables, sampling columns at a time from a
conditional-Poisson (CP) proposal distribution works well. Sampling from the hyper-
geometric distribution requires much more attention to detail. Instead of sampling
uniformly over the support given by the Fréchet bounds, Chen et al. (2006) proposed
sampling values from the hypergeometric distribution. It appeared to work well if the
table was not sparse but poorly if it was.

The multiway case, presented in the same work, is significantly more complex.
In particular, the support of the conditional distributions comes into question, and
the interval of integers support provided by the Fréchet bounds, called the sequential
interval property (SIP), was found to only hold when certain algebraic conditions
were met. Worse, the conditions are difficult to check. However, they note that in the
special case of sampling from the uniform distribution on a fiber of a non-0–1 table the
naive approach of sampling from conditional uniform distributions over an interval
of integers given by the solution of a linear program still works remarkably well (i.e.,
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Fig. 4 The SIS approach to
sampling uniformly from Fs for
the politics dataset in Table 1

Fig. 5 Algorithm 2 applied to
the politics dataset. This is Fig. 4
in the notation of Algorithm 2;
the ak ’s are the columns of A in
(1)

is surprisingly efficient), even when the algebraic conditions are not satisfied or not
even checked (Chen et al. 2006, p. 543). This very practical observation is leveraged
by the hybrid schemes presented in Sect. 5 and illustrated in Sect. 6.

In this work we use SIS for sampling uniformly from the fiber exclusively, and
not for estimating expectations directly. In particular, the type of Monte Carlo that
we use and refer to loosely as SIS is a rejection sampler that uses a SIS-like proposal
q(t) that factors according to (8) and uses discrete uniform qk’s. The basic idea of
the procedure is simple: iterate through the cells of the table populating them with
uniformly sampled integers in the range of feasible integers as determined by a linear
program and check the resulting table to see if it is in the fiber; if it is not discard it
and run it again. This is illustrated with the 2× 2 politics dataset in Figs. 4 and 5. We
provide the process in algorithmic notation in Algorithm 2.

Algorithm 2 is actually slightly over-simplified to ease the exposition. It can be
corrected and improved by making a few relatively minor modifications. For example,
it is possible that a partial completion of the table cannot yield a total completion, and
there are conditions that can be checked to make sure it can be completed. In practice,
however, as with many other Monte Carlo algorithms it is a good deal easier to simply
run the algorithm and monitor its progress.

5 Hybrid schemes

In this section we discuss hybrid MCMC/SIS schemes that seek to leverage the
strengths of both methods while minimizing their weaknesses. All schemes incor-
porate SIS into the MCMC paradigm, because ultimately we want to sample from the
hypergeometric distribution on the fiber and doing so appears easier withMCMC than
SIS. The outline is as follows: In Sect. 5.1,we list the key advantages and disadvantages
of both strategies in order to frame the discussion. In Sect. 5.2, we describe various
points atwhichSIS canbe inserted into theMCMCprocess to generate hybrid schemes.
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Input:
A – the model configuration matrix
s – the sufficient statistics; s = Ato for the exact inference problems

Output:
1 sample t approximately uniform over Fs

Initialize:
t ← 0r
srem ← s

for k in 1:(r-1) do
Compute bounds l and u for the support of qk as rounded up and down solutions to the linear
program

[l, u] = min / max
Xk

x1

where
Xk =

{
x ∈ R

r−k+1
≥0 : Ak:r x = srem

}

and Ak:r is the submatrix of A of columns k to r
Sample tk uniformly from {l, l + 1, . . . , u}
srem ← srem − tkak

end
tr ← srem

(1) /a(1)r , where (1) denotes the first nonzero element
If At �= s, repeat the entire process.

Algorithm 2: The basic SIS algorithm to sample one table roughly uniformly
from Fs. Multiple samples are obtained by running the algorithm many times,
which can be done in a distributed computing framework

In Sect. 5.3, we introduce a particular combination of those components well-suited
for general use in the kinds of exact inference problems described in Sects. 1 and 2.

5.1 Advantages and disadvantages of MCMC and SIS

To see where each strategy excels and falters, it is helpful to summarize aspects of
each:

1. MCMC
(a) Advantages :

– Speed. The algorithm uses simple calculations.
– Correctness. Once converged, the algorithm generates samples from the
hypergeometric distribution on the fiber (2), the distribution of interest for
exact inference.

(b) Disadvantages :
– Prohibitive pre-computations. Constructing an irreducible chain by com-
puting a Markov basis is computationally infeasible in many practical
cases. LB-MCMC does not have this problem, but runs risks mentioned
in Sect. 3.

– Mixing. The chain maymix slowly, so that convergence to the steady-state
distribution may require a large number of steps.
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– Inefficiency. After convergence to the steady-state distribution, the auto-
correlation in the series of samples can be very large, requiring expensive
thinning.

– Serial computations. The MCMC algorithm is sequential in nature, and
thus cannot leverage added computing capacity.

2. SIS
(a) Advantages :

– Independent Monte Carlo (IMC). The samples are independent by con-
struction.

– Pre-computation free.
– Parallelizability. The simultaneous computation of many tables can be
distributed across multiple computing units.

(b) Disadvantages :
– Incorrectness. Using uniform conditional distributions qk , SIS samples
from the uniform distribution on the fiber, not the hypergeometric distribu-
tion in (2). In principle it can be adapted to the hypergeometric distribution,
but the conditional distributions become complex and as of it yet does not
perform as well in that setting.

– Expensive run-time computations. Several increasingly simple linear pro-
grams must be solved to sample a single table, so tons of linear programs
must be solved to sample many tables.

Notice that the paradigms are effectively opposite in their strengths and weaknesses.
In summary, both procedures are conceptually simple but have key complex details.

For MCMC, these are (1) the construction of the moves for an irreducible chain, (2)
monitoring convergence, and (3) checking sampling efficiency. For SIS, they are (1)
computing the support of the conditional distribution of a cell given previously sampled
cells and (2) constructing a proposal distribution on that support. The choice to sample
from conditional uniform distributions qk , resulting in the uniform distribution on the
fiber Fs via rejection, alleviates the challenge of the latter entirely; this is the strategy
we take for all of the methods described below.

5.2 Hybrid schemes

We now explore different hybrid schemes and their advantages and disadvantages.

1. SIS Initialized MCMCs. The tremendous computational advantage provided by
parallel computing with SIS suggests efforts to parallelize the MCMC. A natural
way to do so is to run several chains in parallel. It is well-known in Bayesian
computing that running multiple chains initialized at different places in the state
space can be advantageous (Lunn et al. 2012). One advantage is computational:
the chains can be run in parallel in a distributed computing framework at very little
extra cost. Another is diagnostic: the many chains can be analyzed with trace plots
or even hypothesis tests to assess mixing (Gelman and Rubin 1992); trace plots are
described in Sect. 6. One can envision two extremes when using SIS to initialize
MCMCs at various points in the fiber. In what follows, letC be the desired number
of chains.
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(a) All SIS initializations. Generate I = C SIS tables and initialize one chain at
each table.
Advantages : Chains initialized at different locations on the fiber
– can be used to assess mixing.
– can be used to assess irreducibility.
– via SIS are independent of one another.
– leverage distributed computing capacity.

Disadvantages :
– Since they are uniformly sampled from the fiber, many SIS tables will be
regions of low hypergeometric probability. If the null hypothesis is true,
to is likely to be in the high probability region of f (t|s), and so using SIS
initializations is likely to increase mixing times.

(b) Best SIS initialization.Generate I SIS tables and initializeC chains at the table
with the highest hypergeometric probability (SIS or observed), determined by
UNLLs.
Advantages :
– The chains mix faster because they start closer to the high probability
regions of the hypergeometric distribution on the fiber.

– Many chains leverage distributed computing capacity.
Disadvantages : Chains initialized at the same location
– are less useful in assessing mixing than those initialized at different loca-
tions.

– cannot be used to assess irreducibility.
– are more dependent than those initialized at different locations.

2. SIS Moves. SIS can be used to generate in the proposal process to generate moves
or augment the move setM. This can be done in two ways:
(a) Static SISmoves. SIS can be used to pre-compute an arbitrary number ofmoves

by generating two SIS tables and differencing them. We call these static SIS
moves. The collection of static SIS moves generated by M pairs of SIS tables
we denote SM .
Advantages :
– As M increases, the fiber will be connected almost surely since the fiber
is finite.

– No additional run-time computations over those of Algorithm 1.
Disadvantages :
– Static SIS moves are typically very large and only admissible for a small
collection of points in the fiber, dramatically diminishing efficiency.

(b) Dynamic SIS moves. Instead of pre-computing a collection of moves for the
MCMC, SIS generated tables can be proposed instead of move-based propos-
als from M. We call such moves dynamic SIS moves. While technically the
move is the implicitly defined difference between the current state and the SIS
generated table, we often use the term for the proposed table as well.
Advantages :
– Dynamic SIS moves are always admissible and consequently have much
higher acceptance rates than static SIS moves.
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– Using dynamic SIS moves results in irreducible chains, regardless ofM.
This is a consequence of the SIS sampling procedure placing nonzero
probability on every outcome.

– Only one SIS table need be generated, as opposed to two for static SIS
moves.

Disadvantages :
– Additional run-time computations are required.
– SIS proposals, being roughly uniformly distributed on the fiber, are often
far from the mass of the hypergeometric distribution and therefore have
high rejection rates, reducing efficiency.

5.3 The proposed scheme

Both of the insertion points of SIS into MCMC, at the initial stage and at the pro-
posal, have advantages and disadvantages. We presented both cases in extremes: for
initializing, start all chains at different SIS tables or all chains at the best one; for
moving, propose a move fromM∪SM every time or a dynamic SIS move every time.
However, the most sensible general purpose strategy makes compromises between
these extremes.

Technically detailed in Algorithm 3, we propose the following scheme. To initialize
the chain, generate I SIS tables and initialize C/K chains at the K tables with the
highest UNLL values, where K is some small percentage of I , e.g., 10%. This allows
us to run chains initialized at different, perhaps disconnected, components of the
fiber, which enables convergence diagnostics while not paying for it too much in
terms of mixing. To move the chain, if a Markov basis is available, use it with no
SIS embelishments unless mixing appears problematic (e.g., the fiber is very large
and the trace plots do not stabilize or blend). If a Markov basis is not known, use a
lattice basis with intermittent dynamic SIS moves. That is, at each step, propose a
dynamic SIS move with some probability α and a move from M with probability
1 − α.

Algorithm 3 strikes a good compromise between the strengths and weaknesses
of each of the hybridization mechanisms to provide a good general purpose algo-
rithm, especially when a Markov basis is not available. In particular, it has the
following advantages: (1) The resulting estimator of p is asymptotically unbiased
even in the event a Markov (sub-)basis is not available, because it uses dynamic
SIS moves; (2) it leverages additional computing capacity; and (3) it enables the
user to diagnose poor mixing. We consider these from a practical vantage point in
Sect. 6.

6 Simulation examples

In this section we perform some concrete simulations to develop an intuition for the
various hybrid strategies in Sect. 5. We begin with a simple 4 × 4 independence
model example, where the Markov basis is well known, and introduce criteria with
which to judge simulations. We then proceed to exact inference in logistic regression,
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Input:
A – the model configuration matrix
The observed table to
N = 10, 000 – a desired number of samples from f (t|s) = f (t|Ato)
C = N/P – the desired number of chains (P is the number of processing units available)
α = .01 – the probability of proposing a dynamic SIS move
I = 100 – the number of SIS tables generated for initialization
β = .05 – the proportion of top UNLL SIS tables to use for initialization

Output:
N samples t1, . . . , tN from f (t|s)

M ← lattice basis for A, unless a Markov (sub-)basis is known
Generate C SIS tables c1, . . . , cC according to Algorithm 2
Compute UNLLs log f̃ (ck ) for k ∈ [C] and log f̃ (to)
foreach chain do

for i in 1:N/C do
Sample u ← Unif(0, 1)
if u < α then

Sample v via SIS according to Algorithm 2
Sample u ← Unif(0, 1)
if u < f̃ (v|s)/ f̃ (t i−1|s) then

t i ← v

else
t i ← t i−1

end
else

Sample m fromM and e from {1,−1} (uniformly)
Set v ← t i−1 + em
if any(v < 0r ) then

t i ← t i−1
else

Sample u ← Unif(0, 1)
if u < f̃ (v|s)/ f̃ (t i−1|s) then

t i ← v

else
t i ← t i−1

end
end

end
end

end

Algorithm 3:The proposed hybrid scheme given a collection ofmoves not known
to. Burn-in and thinning are omitted for clarity but are discussed in Sect. 6

which is also studied in Aoki et al. (2012) and where Markov bases are known to be
difficult to compute. All the simulations were done in R using the algstat package,
which implements the MCMC and SIS sampling procedures in C++ using R’s Rcpp
package (Kahle et al. 2015; Eddelbuettel and François 2011; Eddelbuettel 2013); code
is available upon request to the authors. The linear programming software used for
the SIS samples was R’s lpSolve package (Berkelaar et al. 2015). Markov and lattice
bases are computed through algstat using 4ti2’s markov and zbasis programs
(4ti2 team 2008).
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Table 2 Snee’s hair and eye
color dataset (Snee 1974)

Black Brown Red Blond

Brown 68 119 26 7

Blue 20 84 17 94

Hazel 15 54 14 10

Green 5 29 14 16
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Fig. 6 A single simulated MCMC chain using lattice and Markov basis moves

6.1 Independence model

To get a better feel for how we will use simulations to compare strategies, we begin
by studying a simple dataset, Snee’s hair and eye color in dataset in Table 2, with the
4 × 4 independence model. The lattice and Markov bases of the configuration matrix
of the model, A ∈ {0, 1}8×16, are well known but distinct. The lattice basis contains
nine + −

− + moves, while the Markov basis contains 36 such moves. The fiber, referred

to in Sect. 2, has over 1015 elements.
Assessing the quality of different MCMC strategies via simulation can be difficult

because they are stochastic processes. Nevertheless looking at trace plots is a standard
useful technique. A trace plot of a MCMC is simply a line graph illustrating some
feature of a sampled instance of the chain against the step count. In Bayesian statis-
tics, the feature plotted is typically the sampled value itself, representing a marginal
sample from a joint posterior distribution. In Fig. 6 we plot the UNLLs of the tables
sampled in the chain against the step count. These chains have no burn-in (discarded
initial samples) and no thinning (discarded iterations); they are precisely as described
in Algorithm 1. We run the chains for a small number of iterations for illustration
purposes.

Comparing the trace plots of a single MCMC run using both methods, as in Fig. 6,
is not enough to assess how the methods perform in general, even for a single dataset
and model. To make a more valid comparison, we run several chains and superimpose
the trace plots. In practice, convergence of a single chain is declared when the plots
level off and look like a “fat hairy caterpillar” (Lunn et al. 2012, p. 73). When running
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Fig. 7 (Left) 25 LB and MB-MCMCs initialized at the observed table, communicating a sense of the vari-
ability andmixing times of the chains. TheMB-MCMCsappear tomixmore quickly. (Right)Cross-sectional
95% intervals of the distribution of LB and MB-MCMCs based on 1000 simulations each, confirming the
findings from the left graphic

multiple chains, convergence is declared when the chains localize to the same general
region of space, thus the term “mixing”. Figure 7 (left) illustrates this, with theMarkov
basis appearing to have converged after about 1,000 iterations and the lattice basis
converging a little later. Thus, a burn-in of a about 1,000 would be reasonable for
MB-MCMC and somewhat more for LB-MCMC. To ease the visual, we can make
ribbon plots that show cross-sectional percentile-based intervals of the distribution for
each of the steps; it is illustrated in Fig. 7 (right).

We can run the chains for longer to be more convinced of convergence, but Fig. 7
already suffices to communicate the message that while the lattice and Markov bases
work very similarly, the Markov basis MCMC mixes slightly faster than the lattice
basis. Of course, this is practically immaterial, since the entire simulation is so fast
that Fig. 7, which included thousands of chains run in sequence, can be computed in
less than 10 seconds on a standard laptop.

Another area of interest is the efficiency of the sampler. AMCMC sampler is said to
be efficient if the autocorrelation between its samples is low and inefficient if it is high.
High autocorrelation is bad for a MCMC because (1) it suggests that the sampler may
not be fully exploring the support of the probability distribution, and consequently
may be providing un-representative samples from the distribution that can lead to
biased estimates of its functionals like p and (2) the samples, being correlated, cannot
be used with the simple central limit theorem formula to obtain standard errors of
estimated functionals. Poor efficiency can often be diagnosed from trace plots as the
kind of “snaking” seen in Fig. 6 that makes it look nearly continuous. After diagnosed,
it is alleviated by thinning, a post-processing technique used on MCMCs intended to
reduce the autocorrelation of chains by retaining multiples k of the step index t , e.g.,
the 100th, 200th, 300th, samples and so on. In practice the value of k is determined
by simply re-checking diagnostic plots for indications of autocorrelation.

The more robust diagnostic strategy for inefficiency in a MCMC sampler is auto-
correlation (function) plots, also called ACF plots, borrowed from time series analysis
(Lunn et al. 2012). These plots visually communicate the autocorrelation of a time
series at several lag values. Figure 8 (left) shows the combined ACF plots of the LB-
andMB-MCMC chains as determined by averaging the autocorrelations at various lag
values across 1000 simulated chains with 1500 iterations each. It indicates that both
chains exhibit significant autocorrelation and are thus quite inefficient, likely due to the
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Fig. 8 (Left) Average autocorrelations across 1000 simulated chains with 1500 iterations indicating very
strong autocorrelation and therefore inefficient chains. (Right) Average autocorrelations across 1000 sim-
ulated chains with 1500 iterations and 100 step thinning indicating that the MB-MCMC is more efficient
than the LB-MCMC

fact that neither basis contains large moves. Thinning by 100 (keeping only indexmul-
tiples of 100) yields Fig. 8 (right), which illustrates that, in addition to mixing faster,
the MB-MCMC is also more efficient than the LB-MCMC. In further simulations (not
shown), the MB-MCMC was found to require a thinning of roughly 250 samples to
eliminate autocorrelation, whereas the LB-MCMC required a thinning of about 750.

What about SIS initializations? Such initializations are beneficial because samples
fromdifferent chains are fully independent by construction, so if samples are generated
by taking the last values of each of the chains, no thinning is required. Figure 9 shows
100 LB-MCMC chains initialized at 100 SIS tables. Notice the dramatic difference
the initial table makes in terms of mixing: depending on the initial table, mixing can be
achieved almost instantly, eliminating the need for a burn-in, or delayed substantially,
requiring a much larger burn-in. The LB- and MB-MCMC chains from Fig. 6 are
included for visual reference.

This illustrates the trade off between using all SIS initialized chains and mixing
time described in Sect. 5. The higher the UNLL of the initial value of the chain, the
less the mixing time. This suggests that if one were to initialize chains not at every
SIS table, but only at those with the highest UNLLs as the proposed method does, one
might do better. For example, if one wants 100 samples, one might sample 100 SIS
tables, evaluate theUNLL of each, and initialize 20 chains at each of the top five tables;
this is illustrated in Fig. 10. Since the burn-in is typically longer than the thinning,
the last values of each of the 20 chains starting at the same initial values can likely be
considered independent; the last values of different chains from different initial points
are independent by construction. Moreover, a Gelman-Rubin test comparing within-
chain variability to between-chain variability could be used to test for convergence
(Gelman and Rubin 1992; Brooks and Gelman 1998).

6.2 Logistic regression

Logistic regression is one of the most widely used tools in the applied statistician’s
toolbox. In order to specify a logistic regression in terms of a configuration matrix,
it helps to first introduce Poisson regression. It is a straightforward exercise to show
that the sufficient statistics for the coefficients of a univariate Poisson regression with
a discrete covariate with J equally spaced levels is given by the configuration matrix
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Fig. 9 100 LB-MCMC chains initialized at random SIS tables. The LB- and MB-MCMC chains near the
top of the graphic indicate they mix quickly. Relative to the rest of the tables in the fiber, the observed
table’s probability is quite high, but its p value is still essentially 0 because while the fiber is large, the
hypergeometric distribution on it is quite concentrated

−1820

−1800

−1780

−1760

−1740

0 500 1000 1500
Step Number

U
N

LL

Fig. 10 Trace plots of chains initialized at the five top UNLL SIS tables out of 100 samples. The red points
represent the SIS initial tables

A =
[
1 1 · · · 1
1 2 · · · J

]

.

The configuration matrix of the logistic regression of a binary variable Y onto a
variable X with J equally spaced levels is provided by the Lawrence lifting of the
Poisson regression configuration matrix A. The Lawrence lifting of a configuration
matrix A is defined

Λ(A) :=
[

A 0d×r

Ir×r Ir×r

]

,

where the dimensions of the identity and zero matrices are given by the subscripts.
The Lawrence lifting serves to constrain the total number of observations at each level
(e.g., 20 out of 100). If A is the configuration matrix of a Poisson regression with J
covariate levels,Λ(A) is the configuration matrix of the logistic regression (Hara et al.
2012). The kth Lawrence lifting of A is
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Table 3 The “big” logistic dataset with n = 100 observations at each design point

1 2 3 4 5 6 7 8 9 10

0 96 91 92 84 89 85 88 83 85 79

1 4 9 8 16 11 15 12 17 15 21

nx 100 100 100 100 100 100 100 100 100 100
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Fig. 11 The probabilities used to generate the logistic regression data in Tables 3 and 4 with the logistic
model they were designed to mimic

Λk(A) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

A
A

. . .

A
I I I I I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

where there are k A matrices and the blanks are filled in by zero matrices. The kth
Lawrence lifting of a Poisson regression configuration matrix corresponds to a logistic
regression with (k + 1) response levels.

It is well known that computing the Markov basis of Lawrence liftings is hard;
however, their lattice bases are trivial to compute (Chen et al. 2005b; Hara et al. 2010,
2012). In this section we consider logistic regression with two datasets, both with
J = 10 levels but with different designs yielding different sized cells and fibers.
J = 10 is near the cusp of computability of the Markov basis of Λ(A). When J = 10
the Markov basis has 1,830 elements, and it grows rapidly from there—at J = 16 it
has about 125,000 elements (Hara et al. 2012). Thus, the model is representative of
situations where a Markov basis would not be available. By contrast, the lattice basis
of the model consists of only 8 moves.

The first dataset we will consider is the “big” table in Table 3; in it n = 100 obser-
vations are seen at each design point. Its fiber, computed with LattE through algstat,
contains 75,565,950,866 tables (Baldoni et al. 2014). The “small” table samples fewer
observations at larger design values as might be the case in a dose-response clinical
trial; its fiber has 810 tables. Both datasets were sampled using a logistic model with
β0 = −2.5 and β1 = .1 subject to some noise. These probabilities are shown in
Fig. 11. Thus, they are both designed to mimic logistic behavior well but not exactly
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Table 4 The “small” logistic
dataset with shrinking numbers
observations at higher design
points as might be expected in
dose-response clinical trials

1 2 3 4 5 6 7 8 9 10

0 19 20 15 8 10 8 5 5 4 2

1 1 0 0 2 0 0 3 0 1 1

nx 20 20 15 10 10 8 8 5 5 3
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−3320

−3310

−3300

−3290

0 500 1000 1500
Step Number

U
N

LL

−166

−164

−162

−160

0 500 1000 1500
Step Number

U
N

LL

Fig. 12 20 LB-MCMC chains started at each of the top 5 UNLL SIS tables out of 100 sampled for Table 3
(left) and Table 4 (right). The colored chains are the LB- and MB-MCMC chains started at the observed
table with the same color scheme as Fig. 7

(i.e., they exhibit more than simple sampling error). It is known that the lattice basis
does not connect the fiber of the small table.

The proposed method in Algorithm 3 (without dynamic SIS moves as they were
unnecessary) is used for exact inference for both assuming a Markov basis is not
known. Specifically, we used LB-MCMC initialized at the top 5 UNLL SIS tables (out
of 100) with 20 chains at each. Trace plots are shown in Fig. 12. The SIS tables are
generated in a matter of seconds on a standard laptop parallelized across the cores, and
the chains, also run in parallel, are run with no burn-in and no thinning. Convergence
for the big dataset is clear in Fig. 12 (left); it is confirmed by running a MB-MCMC
(which is possible here) for hundreds of millions of iterations. It is less clear for the
small dataset in Fig. 12 (right), which has a very small fiber, but the fact that the
chains are all in the same general locale is suggestive of convergence. Moreover, no
intermittent jumping is observed from dynamic SIS moves. The autocorrelation is
clearly strong in both graphics; however, values sampled from the ends of the chains
are likely sufficiently independent as to be considered as such.

Taking the last values of the 100 total chains in both situations, we find p ≈ .63
for the “big” table and p ≈ .06 for the “small” table. The correct values, based on
MB-MCMC with a million burn-in iterations, 250 thinning with clean ACF plots,
and 10,000 samples was .5784 and .1307, respectively. Thus, the routines provide
reasonable numbers up to Monte Carlo error in both cases.

Obviously, the 100 samples from the hypergeometric distribution on the fibers
would be increased for real-world scenarios, the current simulation is more of a proof-
of-concept for illustration purposes. The implementation used to sample the SIS tables
was not optimized, but sampling 100 tables in both situations took only a few seconds,
which seems to be a small price to pay relative to running the chains for longer. Thus,
using LB-MCMC run in parallel at top-ranked SIS inits performed very well for both
of the logistic regression scenarios; adding dynamic SIS proposals rarely at random
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intervals would slightly decrease efficiency but add desirable theoretical guarantees
in the limiting distribution. As previously noted, we recommend this strategy in real-
world scenarios with a lot at stake.

7 Discussion

In this article we have introduced and illustrated novel hybrid schemes for exact condi-
tional inference in discrete exponential families that combine many of the advantages
of both existingMonte Carlo frameworks. The scheme leverages SIS for its paralleliz-
ability and independent samples and MCMC for distribution correctness and run-time
speed. The resulting whole is greater than the sum of its parts: the resulting scheme can
be used to diagnose convergence and reducibility problems of the MCMCs without
having to worry excessively about the proposal distributions of either method, and it
provides desirable asymptotic properties. On two examples, one relatively simple and
one significantly more complicated, the method performed very well.

What about in general? For the most part, we expect the method to work well in
situations where Markov bases are not available. Intuitively speaking, for many con-
tingency tables and models if a LB-MCMC fiber graph is disconnected it is likely that
it is composed of at most a few large disconnected components, perhaps only one,
and many small isolated components on the periphery, as in Fig. 3. If this is the case,
as long as the hypergeometric distribution is concentrated on the interior of a single
connected component, the SIS initialized LB-MCMC procedure will likely work very
well for estimating p and diagnostic plots can be used to assuage any convergence
concerns, discarding samples of chains that are found to not be on the focal compo-
nent. Intermittent dynamic SIS proposals can be added in suspect situations. If the
distribution is concentrated on a small number of components of non-negligible prob-
ability, which could be identified using the diagnostics, one could augment the lattice
basis with specially designed difference moves to connect the relevant components or
perhaps even using the very rare SIS proposals described in Sect. 5. Thus, the method
appears to be sufficiently flexible to address a broad array of situations.

That being said,Algorithm3 is not a panacea: running aMCMCwithout a connected
state space always runs the risk of error. We would expect the method to fail if the cells
are extremely small, the table is sparse, or themodel/table combination is complicated.
In fact, any one of these three may threaten the routine with spectacular failure. In
these kinds of circumstances, the lattice basis simply does not have the diversity of
moves to create even a remotely connected fiber. Dynamic SIS moves can alleviate
the situation, but may be sufficiently inefficient as to be practically useless. Such
situations appear to elude every known method, and heuristics would have to be used
if an estimate is demanded. If a Markov basis is available SIS initialized MB-MCMC
would seem always preferable to SIS initialized LB-MCMC. However, interestingly,
this is not always the case: we have observed on more than one occasion MB-MCMC
chains much less efficient than LB-MCMC chains. We believe this is because in those
situations the lattice basis connected the fiber graph at hand while the Markov basis,
which would apply broadly to any dataset, contained a bounty of rarely useful moves
and not needed. Consequently, if MB-MCMC performance is poor, a LB-MCMC
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provides a reasonable alternative, or even up-weighting the selection probabilities of
the lattice basis moves in the Markov basis at the time of proposal.

Apart from the theory, a major factor determining the practical efficiency of the
routine is its implementation. The current implementation uses R’s algstat package,
which has custom C++MCMC and SIS implementations that are very fast. However,
the connection within the latter to R’s lpSolve package for the linear programs is not
currently not optimized (it has to run back through R), and consequently any concrete
time benchmarkings comparing the SIS initialized MCMC scheme to simply running
a MCMC longer would not make for a valid comparison. It suffices here to make two
points. First, the top-SIS hybrid routine is very fast, even when not optimized. All the
simulations in this work put together can be done in less than a minute parallelized
across the cores of a standard four-core laptop (not counting hyperthreading). Second,
when MB-MCMC is not available, SIS initialized LB-MCMC is clearly a far superior
strategy to standard LB-MCMC because of the added insight gained from running
several chains initialized at disparate points in the fiber. In the future, providing algstat
with access to a fast linear program solver at a very low level, preferably one tailored
to the kinds of problems encountered in discrete multivariate analysis, would make the
routine even faster. From there, one can imagine distributing the computations across
the thousands of cores of a graphical processing unit (GPU). This step would really
leverage the distributed computing framework to its fullest extent and would likely
speed up the process by orders of magnitude.

Even after nearly two decades of intense research in the algebraic statistics com-
munity, questions concerning both the theory and practice of Monte Carlo schemes
for exact conditional inference abound. On the theory side, questions exist for both
SIS and MCMC procedures. For SIS, one might ask if there are better ways to try to
obtain samples from the hypergeometric distribution on the fiber – explicit conditional
distributions and the like. Caffo and Booth provided insight into this problem via a
MCMC within SIS scheme and even provided an implementation (Caffo and Booth
2001; Caffo 2013). It would be interesting to see a comparison between the methods
proposed here and those strategies. For MCMC, additional work into the computa-
tion of Markov subbases, collections of moves that connect specific fibers as opposed
to any fiber for a particular model would also be helpful (Chen et al. 2006). On the
application side, all these methods need practical implementations to become more
mainstream. Preferably, such implementations would be general purpose, allowing for
exact inference in a range of popular models such as log-linear models (perhaps even
with graphical specification), logistic and Poisson regressions, and rank data models.

The hybrid schemes suggested in this article inherit these questions and poses
others: can we characterize the mixing behavior of the schemes?; when using the top
UNLL chains, what proportion should be used?; withwhat probability should dynamic
SIS moves be proposed?; and what is the best way to implement adaptive strategies
that abandon bad chains and focus on good ones? We eagerly anticipate further work
in this area.

In closing, it should be noted that the methods described and the lessons learned
in this article are not limited to conditional inference. Many routines of interest on
fibers—for example optimization or enumeration—can also be approached with SIS
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initialized MCMCs. It would be interesting to see strategies like these applied in those
contexts.
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