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Abstract We propose new smoothed sign and Wilcoxon’s signed rank tests that are
based on kernel estimators of the underlying distribution function of the data. We
discuss the approximations of the p-values and asymptotic properties of these tests.
The new smoothed tests are equivalent to the ordinary sign and Wilcoxon’s tests in
the sense of Pitman’s asymptotic relative efficiency, and the differences between the
ordinary and new tests converge to zero in probability. Under the null hypothesis, the
main terms of the asymptotic expectations and variances of the tests do not depend
on the underlying distribution. Although the smoothed tests are not distribution-free,
making use of the specific kernel enables us to obtain the Edgeworth expansions, being
free of the underlying distribution.
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1 Introduction

Let X1, X2, . . . , Xn be independently and identically distributed (i.i.d.) random vari-
ables with a distribution function F(x − θ), where the associated density function
satisfies f (−x) = f (x) and θ is an unknown location parameter. Here, we consider a
test and the confidence interval of the parameter θ . This setting is called a one-sample
location problem. Numerous nonparametric test statistics have been proposed to test
the null hypothesis H0 : θ = 0 vs. H1 : θ > 0, e.g., the sign test and Wilcoxon’s
signed rank test (see Hájek et al. 1999). These tests are distribution-free and have
discrete distributions. As pointed out by Lehmann and D’abrera (2006) and Brown
et al. (2001), because of the discreteness of the test statistics, the p-values jump in
response to a small change in data values when the sample size n is small or moderate.
Brown et al. (2001) discussed a smoothed version of the sign test and then obtained an
Edgeworth expansion. In particular, they proposed a smoothed median estimator and a
corresponding smoothed sign test. The test was, however, not distribution-free. Their
smoothed sign test has good properties, but its Pitman’s asymptotic relative efficiency
(A.R.E .) did not coincide with that of the ordinary sign test. Furthermore, to use the
Edgeworth expansion, they needed estimators of the unknown parameters.

In this paper, we first consider another smoothed sign test that is based on a kernel
estimator of the distribution function and examine its asymptotic properties. We show
that the difference between the two sign tests converges to zero in probability. In
addition, we obtain an Edgeworth expansion, being free of the underlying distribution.
Next, we propose a smoothedWilcoxon’s signed rank test.We show that the difference
between the two Wilcoxon’s tests converges to zero in probability as well and study
an Edgeworth expansion.

Let us define the indicator function I (A) = 1 (if A occurs), = 0 (if A fails); the
sign test is equivalent to

S = S(X) =
n∑

i=1

I (Xi ≥ 0),

where X = (X1, X2, . . . , Xn)
T . Wilcoxon’s signed rank test is equivalent to the

Mann–Whitney test:

W = W (X) =
∑

1≤i≤ j≤n

I (Xi + X j ≥ 0).

Now, put s = S(x) and w = W (x) for observed values x = (x1, x2, . . . , xn)T . If the
p-value P0(S ≥ s) (P0(W ≥ w)), where P0(·) denotes a probability under the null
hypothesis H0, is small enough, we reject the null hypothesis H0.

Moreover, let us define

Ω|x | = {
x ∈ Rn ‖ |x1| < |x2| < · · · < |xn|

}

and

Ωα =
{
x ∈ Ω|x |

∥∥∥∥
s − E0(S)√

V0(S)
≥ z1−α, or

w − E0(W )√
V0(W )

≥ z1−α

}
,

123



Smoothed nonparametric tests and approximations of p-values 971

Table 1 Number of samples in
which S and W have
comparatively smaller p-values

Sample size n = 10 n = 20 n = 30

z0.90
S 25 69,080 59,092,679

W 82 94,442 87,288,529

W/S 3.28 1.367 1.477

z0.95
S 25 32,705 30,857,108

W 48 47,387 43,957,510

W/S 1.92 1.449 1.425

z0.975
S 5 12,704 14,028,374

W 21 21,267 22,049,240

W/S 4.2 1.674 1.572

where z1−α is the (1 − α)th quantile of the standard normal distribution N (0, 1),
and E0(·) and V0(·) are, respectively, the expectation and variance under H0. The
observed values S(x) and W (x) are invariant under a permutation of x1, . . . , xn , so
it is sufficient to consider the case that |x1| < |x2| < · · · < |xn|; there are 2n times
combinations of sign(xi ) = ±1(i = 1, . . . , n). We count samples in which the exact
p-value of one test is smaller than the p-value of the other test in the tail area Ωα .
Table 1 shows the number of samples in which the p-value of S (W ) is smaller than
that ofW (S) in the tail area. In Table 1, row S indicates a number of samples in which
the p-value of S is smaller than that of W , and row W means the number of samples
in which the p-value of W is smaller than that of S. W/S is the ratio of W and S. For
each sample, there is one tie of p-values.

Remark 1 Table 1 shows that W is preferable if one wants a small p-value and that S
is preferable if one does not want to reject the null hypothesis H0. Thus, a practitioner
could make an arbitrary choice of the test statistics. This problem comes from the
discreteness of the distributions of the test statistics.

On the other hand, it is possible to use an estimator of F(0) as a test statistic. Define
the empirical distribution function by

Fn(x) = 1

n

n∑

i=1

I (Xi ≤ x).

Then, Fn(0) is equivalent to the sign test S, that is,

S = n − nFn(0−).

As usual, a kernel estimator F̃n can be used to get a smooth estimator of the distri-
bution function. It is natural to use F̃n(0) as a smoothed sign test. Let k be a kernel
function that satisfies
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972 Y. Maesono et al.

∫ ∞

−∞
k(u)du = 1,

and write K be the integral of k,

K (t) =
∫ t

−∞
k(u)du.

The kernel estimator of F(x) is defined by

F̃n(x) = 1

n

n∑

i=1

K

(
x − Xi

hn

)
,

where hn is a bandwidth that satisfies hn → 0 and nhn → ∞ (n → ∞). We can use

S̃ = n − nF̃n(0) = n −
n∑

i=1

K

(
− Xi

hn

)

for testing H0 and can regard S̃ as the smoothed sign test. Under H0, the main terms
of the asymptotic expectation and variance of S̃ do not depend on F ; i.e., they are
asymptotically distribution-free. Furthermore, we can obtain an Edgeworth expansion,
being free of F .

We can construct a smoothedWilcoxon’s signed rank test in a similar fashion. Since
the main term of the Mann–Whitney statistic can be regarded as an estimator of the
probability P( X1+X2

2 > 0), we propose the following smoothed test statistic:

W̃ = n(n + 1)

2
−

∑

1≤i≤ j≤n

K

(
− Xi + X j

2hn

)
.

The smoothed test W̃ is not distribution-free. However, under H0, the asymptotic
expectation and variance do not depend on F , and we can obtain the Edgeworth
expansion of W̃ . The resulting Edgeworth expansion does not depend on F if we use
a symmetric fourth-order kernel and bandwidth of hn = o(n−1/4).

Also, we will show that the difference between the standardized S and S̃ and the
difference between the standardized W and W̃ go to zero in probability. Accordingly,
the smoothed test statistics are equivalent in the sense of the first-order asymptotic.

The rest of this paper is organized as follows. In Sect. 2, we discuss the asymptotic
properties of S̃ and W̃ and obtain the Edgeworth expansions with o(n−1) residual
terms. The confidence intervals of θ based on S̃ and W̃ are also discussed. In Sect. 3,
we discuss the selection of the bandwidth and kernel function. In Sect. 4, we study
higher order approximations. Some proofs are given in Appendix (the complete proofs
are found in Maesono et al. (2016)).
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Smoothed nonparametric tests and approximations of p-values 973

2 Asymptotic properties of smoothed tests

We assume that the kernel k is symmetric, i.e., k(−u) = k(u). Using the properties
of the kernel estimator, we can obtain expectations Eθ (S̃), Eθ (W̃ ) and variances
Vθ (S̃), Vθ (W̃ ). Because of the symmetry of the underlying distribution f and the
kernel k, we get

F(−x) = 1 − F(x) and
∫ ∞

−∞
uk(u)du = 0.

Let us define

e1(θ) = Eθ

[
1 − K

(
− X1

hn

)]
.

Using the transformation u = −x/hn , integration by parts, and a Taylor-series expan-
sion, we get

e1(θ) = 1 −
∫ ∞

−∞
K (u) f (−θ − hnu)

1

hn
du

= 1 −
∫ ∞

−∞
k(u)F(−θ − hnu)du

= F(θ) + O(h2n),

which yields

Eθ (S̃) = n
{
F(θ) + O

(
h2n
)}

.

Similarly, we have

Eθ

[
K 2

(
− X1

hn

)]
= F(−θ) + O(hn),

hence,

Vθ (S̃) = n [{1 − F(θ)}F(θ) + O(hn)] .

On the other hand, since W̃ takes the form of the U -statistic, we can use asymptotic
properties of the U -statistic (see Lee 1990). The expectation and variance of W̃ are
given by

Eθ (W̃ ) = n(n+1)
2

{
G(θ) + O

(
h2n
)}

,

Vθ (W̃ ) = n(n + 1)2
{∫∞

−∞ F2(u + 2θ) f (u)du − G2(θ) + O
(
h2n
)}

,
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974 Y. Maesono et al.

where

G(θ) =
∫ ∞

−∞
F(2θ + u) f (u)du

is the distribution function of (X1 + X2)/2.
Direct computations yield the following theorem.

Theorem 1 Let us assume that f ′ exists and is continuous in a neighborhood of −θ ,
and hn = cn−d(c > 0, 1

4 < d < 1
2 ). If

0 < limn→∞ Vθ

[
1 − K

(
− X1

hn

)]
< ∞,

0 < limn→∞ Covθ

[
1 − K

(
− X1+X2

2hn

)
, 1 − K

(
− X1+X3

2hn

)]
< ∞,

and the kernel k is symmetric around zero, then,

lim
n→∞ Eθ

{
S − Eθ (S)√

Vθ (S)
− S̃ − Eθ (S̃)√

Vθ (S̃)

}2

= 0,

lim
n→∞ Eθ

{
W − Eθ (W )√

Vθ (W )
− W̃ − Eθ (W̃ )√

Vθ (W̃ )

}2

= 0.

Since S andW are asymptotically normal, S̃ and W̃ are also asymptotically normal.
Pitman’s A.R.E .s of S̃ and W̃ coincide with S and W , respectively.

For the sign test S, it is difficult to improve the normal approximation because
of the discreteness of the distribution function of S. The standardized sign test S
takes values with jump order n−1/2, so we cannot prove the validity of the formal
Edgeworth expansion. On the other hand, since S̃ is a smoothed statistic and has a
continuous type distribution, we can obtain an Edgeworth expansion and prove its
validity. García-Soidán et al. (1997) discussed the Edgeworth expansion and proved
its validity for the kernel estimators. Huang and Maesono (2014) obtained an explicit
formula when hn = cn−d (c > 0, 1

4 < d < 1
2 ). Bickel et al. (1986) proved the

validity of the Edgeworth expansion of the U -statistic with an o(n−1) residual term.
Since the standardized W and W̃ are asymptotically equivalent, we can obtain the
Edgeworth expansion of W̃ . The resulting Edgeworth approximations do not depend
on the underlying distribution F , if we use the fourth-order kernel, i.e.,

∫
u�k(u)du = 0 (� = 1, 2, 3) and

∫
u4k(u)du 
= 0.

Using the results of García-Soidán et al. (1997) and Huang and Maesono (2014),
we can prove the following theorem.
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Smoothed nonparametric tests and approximations of p-values 975

Theorem 2 Let us assume that the conditions of Theorem 1 hold and the kernel k is
symmetric. If | f ′(x)| ≤ M(M > 0),

∫ |u4k(u)|du < ∞ and the bandwidth satisfies
hn = cn−d (c > 0, 1

4 < d < 1
2 ), then,

P0

⎛

⎝ S̃ − E0(S̃)√
V0(S̃)

≤ y

⎞

⎠ = Φ(y) − 1

24n
(y3 − 3y)φ(y) + o(n−1),

P0

(
W̃ − E0(W̃ )√

V0(W̃ )
≤ y

)
= Φ(y) −

(
7

20
y3 − 21

20
y

)
φ(y) + o(n−1).

The Edgeworth expansions in Theorem 2 do not depend on the underlying distribution
F . However, in order to use the normal approximations or the Edgeworth expan-
sions, we have to obtain approximations of E0(S̃), V0(S̃), E0(W̃ ) and V0(W̃ ). Let us
define

Ai, j =
∫ ∞

−∞
Ki (u)k(u)u jdu.

We have the following higher order approximations of the expectations and variances
under the null hypothesis H0.

Theorem 3 Let us assume that the kernel is symmetric, and let M1, M2 and M3 be
positive constants. If exactly one of the following conditions holds: (a) | f (5)(x)| ≤ M1
and hn = o(n−1/4), (b) | f (4)(x)| ≤ M2 and hn = o(n−3/10), (c) | f (3)(x)| ≤ M3 and
hn = o(n−1/3), then,

E0(S̃) = n
2 + o(n−1/2),

V0(S̃) = n
4 − 2nhn f (0)A1,1 − nh3n

3 f ′′(0)A1,3 + o(1),

E0(W̃ ) = n(n+1)
4 + o(n1/2), (1)

V0(W̃ ) = n2(2n+3)
24 − 4n3h2n A0,2

∫∞
−∞{ f (x)}3dx + o(n2). (2)

Remark 2 In order to get the above approximations, we used a Taylor-series expansion
of the integral. We can divide up the integral at discrete points, so we do not need to
worry about the differentiability of the density function at finite number of points.

3 Selection of bandwidth and kernel function

We discuss the selection of the bandwidth and the kernel function. Azzalini (1981)
recommended a bandwidth of cn−1/3 for the estimation of the distribution function.
Actually, we compared several bandwidths in simulation studies and found that the
approximations were not goodwhen the convergence rate of the bandwidth was slower
than n−1/3. When the convergence rate of the bandwidth was faster than n−1/3, the
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976 Y. Maesono et al.

Table 2 p-value
approximations of smoothed
sign S̃ with ke,2 and ke,4
(hn = n−1/3)

α = 0.05 n = 10 n = 20 n = 30

ke,2 N(0,1) 0.03437 0.03803 0.03834

ke,4 N(0,1) 0.05224 0.05397 0.05374

ke,2 Logis. 0.04038 0.04256 0.04293

ke,4 Logis. 0.05382 0.05395 0.05347

ke,2 D.exp 0.02603 0.03062 0.03193

ke,4 D.exp 0.04272 0.04468 0.04797

approximations were similar to the case of n−1/3. Thus, hereafter, we will use the
bandwidth hn = n−1/3. Epanechnikov (1969) showed the optimality of

ke,2(u) = 3

4
(1 − u2)I (|u| ≤ 1)

as a kernel for the estimation of the density function (ke,2 is a second-order kernel).
We observed from several simulation studies that the second-order kernels (A0,1 =
0, A0,2 
= 0) do not give good approximations of the p-values. We compare normal
approximations of S̃ based on ke,2(u) and a modified fourth-order kernel

ke,4(u) = 15

8

(
1 − 7

3
u2
)
ke,2(u)

with the bandwidth hn = n−1/3. We simulated the following probabilities from
100,000 random samples from normal, logistic, and double exponential distributions:

P0

(
S̃ − n/2√

n/4
≥ z1−α

)
.

Table 2 shows that the fourth-order kernel gives good approximations. Note that
in the table, the normal distribution is denoted as N (0, 1), the logistic distribution
as Logis., and the double exponential distribution as D.Exp. We performed similar
simulations using a Gaussian kernel and obtained similar results. The choice of kernel
function does not affect the approximations of the p-values, but the order degree
of the kernel is important, as expected. Although the fourth-order kernels loose the
monotonicity of the distribution functions of S̃ and W̃ , they loose monotonicity at
most 3% points of x when n = 10.

Remark 3 If we use the normal approximations of the standardized S̃ and W̃ , A1,1
affects the approximations. We recommend the fourth-order kernel because the value
of A1,1 with the fourth-order kernel is much smaller than that of the second-order one.

Since the distributions of S̃ and W̃ depend on F , we compared the significance
probabilities of S̃ and W̃ in simulations. We used the kernel ke,4 and bandwidth hn =
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Smoothed nonparametric tests and approximations of p-values 977

Table 3 Number of samples in
which S and W have
comparatively smaller p-values
(ke,4, hn = n−1/3)

Sample size n = 10 n = 20 n = 30

z0.90

S̃ 5658 5978 6142

W̃ 7263 7066 7050

W̃/S̃ 1.284 1.182 1.148

z0.95

S̃ 2921 3017 3164

W̃ 3407 3616 3515

W̃/S̃ 1.166 1.199 1.111

z0.975

S̃ 1133 1440 1599

W̃ 1628 1785 1780

W̃/S̃ 1.437 1.240 1.113

Table 4 Closeness of p-values of S & S̃, and W & W̃ (ke,4, hn = n−1/3)

α = 0.05 n = 10 n = 20 n = 30 n = 10 n = 20 n = 30

S N(0,1) 0.05474 0.05867 0.04950 D.exp 0.05446 0.05617 0.04947

S̃ N(0,1) 0.04981 0.05358 0.04548 D.exp 0.04434 0.04915 0.04187

W N(0,1) 0.05271 0.04797 0.05092 D.exp 0.05271 0.04942 0.04998

W̃ N(0,1) 0.05226 0.04864 0.05046 D.exp 0.05117 0.04879 0.04962

n−1/3. We estimated the significance probabilities in the tail area �̃α from 100,000
random samples from a normal distribution:

Ω̃α =
{
x ∈ Rn

∥∥∥∥∥
s̃(x) − E0(S̃)√

V0(S̃)
≥ z1−α, or

w̃(x) − E0(W̃ )√
V0(W̃ )

≥ z1−α

}
.

For the simulated sample x ∈ Rn , we calculated the p-values based on the normal
approximation. In Table 3, S̃ means that the p-values of S̃ are smaller than that of W̃ ,
etc. Comparing Tables 1 and 3, we can see that the differences between the p-values
of S̃ and W̃ are smaller than those of S and W .

Next we checked how close the ordinary and smoothed tests are to each other when
the sample size n is small. Since S has a discrete distribution, we chose a nearest
value α′ to 0.05, i.e., P(S ≥ sα′) = α′ ≈ 0.05. After that, we simulated the p-values

P(S ≥ sα′) and P(S̃ ≥ n
2 +

√
n
2 z1−α′) from 100,000 repetitions for underlying normal

(N (0, 1)) and double exponential (D.exp) distributions.
Table 4 shows that the difference between the smoothed and ordinary sign tests are

small, so we can regard S̃ as a smoothing statistic of S. We got similar results for W̃
and W .
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4 Higher order approximation

We discuss higher order approximations based on Edgeworth expansions. If the condi-
tions of A1,1 = 0 and A1,3 = 0 hold, we can use the Edgeworth expansion of S̃. If the
kernel is fourth-order symmetric, A0,2 = 0 and we can use the Edgeworth expansion
of W̃ . The conditions of A1,1 = 0 and A1,3 = 0 seem restrictive, but we can still
construct the desired kernel. Let us define

k∗(u) =
(
1

4
(
√
105 − 3) + 1

2
(5 − √

105)|u|
)
I (|u| ≤ 1),

which is fourth-order symmetric with A1,1 = 0. This kernel k∗ may take a negative
value, and hence, F̃n(x) is not monotone as a function of x . However, our main
purpose is to test the null hypothesis H0 and to construct the confidence interval;
that means we do not need to worry about it. As mentioned above, F̃n(x) looses
monotonicity atmost 3%of its points around the originwhenn = 10. For the smoothed
Wilcoxon’s rank test, we need only assume that the kernel k is fourth-order symmetric.
While it is theoretically possible to construct a polynomial-type kernel that satisfies
A1,1 = A1,3 = 0, it is rather complicated to do so, and it takes a couple of pages
to write out the full form. Thus, we will only consider the kernel k∗ here. It may be
possible to construct another type of kernel that satisfies A1,1 = 0 and A1,3 = 0. We
postpone this endeavor to a future work.

If the equation

V0(S̃) = n

4
+ o(1)

holds, we can use the Edgeworth expansion of S̃ for testing H0 and constructing a
confidence interval without making any estimators. We can get an approximation of
the α-quantile (P0(S̃ ≤ s̃α) = α + o(n−1)), i.e.,

s̃α = n

2
+

√
n

2
zα + 1

48
√
n

(
z3α − 3zα

)
. (3)

For the significance level 0 < α < 1, if the observed value s̃ satisfies s̃ ≥ s̃1−α , we
reject the null hypothesis H0. Since the distribution function of Xi − θ is F(x), we
can construct the confidence interval of θ by using Eq. (3). For the observed value
x = (x1, . . . , xn), let us define

s̃(θ |x) = n −
n∑

i=1

K

(
θ − xi
hn

)
,

θ̂U = argmin
θ

{
s̃(θ |x) ≤ s̃α/2

}
,

and

θ̂L = argmax
θ

{
s̃1−α/2 ≤ s̃(θ |x)

}
,
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Smoothed nonparametric tests and approximations of p-values 979

Table 5 Comparison of normal approximation and Edgeworth expansion with the kernel A1,1 = 0
(k∗, hn = n−1/3(log n)−1)

s̃ n = 30 A1,1 = 0 s̃ n = 30 A1,1 = 0

z0.99 True Edge. Nor. z0.95 True Edge. Nor.

N(0,1) 0.00842 0.01021 0.01 N(0,1) 0.05013 0.04993 0.05

Logis. 0.00937 0.01021 0.01 Logis. 0.0491 0.04993 0.05

D. exp. 0.00908 0.01021 0.01 D.Exp. 0.04903 0.04993 0.05

s̃ n=100 A1,1 = 0 s̃ n=100 A1,1 = 0

z0.99 True Edge. normal z0.95 True Edge. Nor.

N(0,1) 0.00962 0.01006 0.01 N(0,1) 0.04903 0.04998 0.05

Logis. 0.00954 0.01006 0.01 Logis. 0.04892 0.04998 0.05

D. exp. 0.0099 0.01006 0.01 D.Exp. 0.04937 0.04998 0.05

where 0 < α < 1. The 1 − α confidence interval is given by θ̂L ≤ θ ≤ θ̂U .
Similarly, if the observed value w̃ satisfies w̃ ≥ w̃1−α , we reject the null hypothesis

H0, where

w̃α = n(n + 1)

4
+ n

√
2n + 3

2
√
6

{
zα + 1

n

(
7

20
z3α − 21

20
zα

)}
. (4)

Using w̃α in (4), we can construct the confidence interval of θ . For the observed value
x = (x1, . . . , xn), let us define

w̃(θ |x) = n(n + 1)

2
−

∑

1≤i≤ j≤n

K

(
2θ − xi − x j

2hn

)
,

θ̂∗
U = argmin

θ

{
w̃(θ |x) ≤ w̃α/2

}

and

θ̂∗
L = argmax

θ

{
w̃1−α/2 ≤ w̃(θ |x)

}
.

Thus, we have the 1 − α confidence interval θ̂∗
L ≤ θ ≤ θ̂∗

U .
Table 5 compares the simple normal approximation andEdgeworth expansion using

the kernel k∗ and the bandwidth hn = n−1/3(log n)−1. Since we do not know exact

distributions of the smoothed sign test S̃, we estimated the values P(
S̃−E0(S̃)√

V0(S̃)
≥ z1−α)

from 100,000 replications of the data and denote them as “True” in the table. “Edge.”
and “Nor.” denote the Edgeworth and simple normal approximations, respectively. The
underlying distributions are normal, logistic, and double exponential ones. The double
exponential distribution is not differentiable at the origin (zero), but as mentioned in
Remark 2, we don’t have to worry about that.
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Table 6 Coverage probabilities
of S, S̃, W and W̃
(k∗, hn = n−1/3(log n)−1)

n = 10, 90% s(θ |x) s̃(θ |x) w(θ |x) w̃(θ |x)

N(0,1) 0.9760 0.8910 0.9145 0.8910

Logis. 0.9788 0.8990 0.9158 0.8970

D.exp 0.9806 0.8938 0.9189 0.9024

n = 20, 90% s(θ |x) s̃(θ |x) w(θ |x) w̃(θ |x)

N(0,1) 0.9610 0.8921 0.9035 0.8982

Logis. 0.9610 0.8922 0.9026 0.8971

D.exp 0.9589 0.8966 0.9055 0.8984

Remark 4 If we use a symmetric fourth-order kernel, which satisfies A1,1 = 0, the
n−1/2 term of the Edgeworth expansion is zero, and hence, the simple normal approx-
imation means that the residual term is already o(n−1/2). Comparing the n−1/2 terms,
we can see that the effect of the n−1 term is small; thus, the Edgeworth expansion with
the o(n−1) residual term is comparable to the simple normal approximation when the
sample size n is small. When the sample size is large, the Edgeworth approximation
is better.

Finally,we simulated the coverageprobabilities basedon S, S̃,W , and W̃ , bymaking
100,000 repetitions. We used the intervals θ̂L ≤ θ ≤ θ̂U and θ̂∗

L ≤ θ ≤ θ̂∗
U , where

the kernel k∗ and hn = n−1/3(log n)−1. For S and W , we constructed conservative
confidence intervals whose coverage probabilities are equal to or greater than 1 − α

when the sample size is small. Table 6 shows that the coverage probabilities of the
smoothed statistics are less conservative.

Remark 5 If the sample size n is large enough, the higher order approximation works
well. In that case, we recommend the Edgeworth expansion with the pair (k∗, hn =
n−1/3(log n)−1). If the sample size is moderate, the normal approximation based on
the pair (ke,4, hn = n−1/3) works well. In that case, we recommend the fourth-order
kernel and bandwidth n−1/3.

Acknowledgements The authors would like to thank the editor and two anonymous referees for their
careful reading and valuable comments, which helped us to improve the manuscript significantly. The
authors gratefully acknowledge JSPS KAKENHI Grant Nos. JP15K11995 and JP16H02790.

5 Appendix

Appendix gives brief proofs of Theorems 1 and 3. The complete proofs are found in
Maesono et al. (2016).

Proof of Theorem 1 For the ordinary sign test S, we have

Vθ (S) = nF(θ)[1 − F(θ)].
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Then, it is sufficient to show that

Eθ

[{S − F(θ)} {S̃ − Eθ (S̃)
}] = n {F(θ)[1 − F(θ)] + O(hn)}.

Since S and S̃ are sums of i.i.d. random variables, we have

Eθ

[{S − Eθ (S)} {S̃ − Eθ (S̃)
}]

= nEθ

[
{I (X1 ≥ 0) − Eθ (I (X1 ≥ 0))}

{
1 − K

(
− X1

hn

)
− e1(θ)

}]
.

Using the transformation u = x/hn , integration by parts, and a Taylor expansion, we
get

∫ ∞

−∞
I (x ≥ 0)

[
1 − K

(
− x

hn

)]
f (x − θ)dx = F(θ) + O(hn).

Since Eθ (I (x ≥ 0)) = F(θ) and Eθ (1 − K ) = F(θ) + O(h2n), we have

Eθ

[{S − Eθ (S)} {S̃ − Eθ (S̃)
}] = n{F(θ) − [F(θ)]2 + O(hn)}.

Thus, we get the desired result. 
�
Similarly, we can show that the difference between W and W̃ goes to zero.

Proof of Theorem 3 Assuming that the density f is differentiable, we have

1

n
E0(S̃) = 1 −

∫ ∞

−∞
K

(
− x

hn

)
f (x)dx = 1 −

∫ ∞

−∞
k(u)F(−hnu)du

= 1 − F(0) + hn f (0)A0,1 − h2n
2

f ′(0)A0,2 + h3n
6

f ′′(0)A0,3

−h4n
24

f (3)(0)A0,4 + h5n
120

f (4)(0)A0,5 + O(h6n).

Similarly, we can show that

E0

{
K 2

(
− X1

hn

)}
= F(0) − 2hn f (0)A1,1 + h2n f ′(0)A1,2 − h3n

3
f ′′(0)A1,3 + O(h4n)

and

1

n
V0(S̃) = F(0){1 − F(0)} − 2hn f (0)A1,1 + h2n f

′(0){A1,2 − F(0)A0,2}

−h3n
3

f ′′(0){A1,3 − F(0)A0,3} + O(h4n).
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Note that k(−u) = k(u)yields A0,1 = A0,3 = A0,5 = 0. Furthermore, since f (−x) =
f (x), we get

f ′(0) = 0, f ′′(−x) = f ′′(x), f (3)(−x) = − f (3)(x), and f (3)(0) = 0.

We can derive equations (1) and (2) in a similar manner (see Maesono et al. 2016).

�
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