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Abstract The Sibuya distribution arises as the distribution of the waiting time for
the first success in Bernoulli trials, where the probabilities of success are inversely
proportional to the number of a trial. We study a generalization that can be viewed
as the distribution of the excess random variable N − k given N > k, where N has
the Sibuya distribution and k is an integer. We summarize basic facts regarding this
distribution and provide several new results and characterizations, sheddingmore light
on its origin and possible applications. In particular, we emphasize the role Sibuya
distribution plays in the extreme value theory and point out its invariance property
with respect to random thinning operation.

Keywords Discrete Pareto distribution · Distribution theory · Extreme value theory ·
Infinite divisibility · Mixed Poisson process · Power law · Pure death process ·
Records · Yule distribution · Zipf’s law

1 Introduction

Let Xi , i ∈ N0 = {0, 1, 2, . . .}, be a sequence of independent and identically dis-
tributed (IID) continuous random variables. The first Xi , i ∈ N = {1, 2, . . .}, that
exceeds all previous values (including the X0) is called the first record value. Let I j ,
j ∈ N, be the associated sequence of Bernoulli random variables, indicating whether
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or not a particular X j is a record. It follows from the random records theory (see, e.g.,
Rényi 1976) that the variables I j are mutually independent and

P(I j = 1) = 1

1 + j
, j ∈ N.

Accordingly, if N denotes the waiting time for the first record to occur, then

P(N = n) = 1

n(n + 1)
= 1

1 + (n − 1)
− 1

1 + n
, n ∈ N. (1)

The probability distribution given by (1) is a special case with α = 1 and σ = 1 of
discrete Pareto distribution, which in general has the probability mass function (PMF)

P(N = n) =
(

1

1 + n−1
σ

)α

−
(

1

1 + n
σ

)α

, n ∈ N, (2)

and arises by discretization of continuous Pareto type II (Lomax) distribution with
tail parameter α > 0 and scale parameter σ > 0 (Krishna and Singh Pundir 2009;
Buddana and Kozubowski 2014). The distribution given by (1) is also a special case
α = 1 of Yule distribution (Yule 1925), which in general case α > 0 is given by the
PMF

P(N = n) = α�(α + 1)�(n)

�(α + n + 1)
, n ∈ N.

Both Yule and discrete Pareto distributions are heavy tailed, with power law behavior
of their PMFs (and tails),

P(N = n) = O

(
1

nα+1

)
as n → ∞. (3)

Along with the Zipf’s law, whose PMF has the same asymptotics (see, e.g., Zipf
1949 or Johnson et al. 1993), these distributions provide important modeling tools
whenever empirical distributions display power-law tails. Such scaling behavior has
been observed across many fields, including biology, chemistry, computer science,
economics, finance, geosciences, and social science (see, e.g.,Aban et al. 2006;Clauset
and Newman 2009; Gabaix 2009; Newman 2005; Sornette 2006; Stumpf and Porter
2012).

In this paper, we study another generalization of (1), which is directly related to its
interpretation through the record process described above.Namely,wedefine a discrete
variable N to be the waiting time for the first success in a sequence of independent
Bernoulli trials {I j , j ∈ N}, where the probabilities of success are given by

P(I j = 1) = α

ν + j
, ν ≥ 0 and 0 < α < ν + 1.
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A generalized Sibuya distribution 857

We observe that the record times correspond to α = ν = 1. If N is the number of
trials until the first success, then

P(N = n) =
(
1 − α

ν + 1

)
· · ·
(
1 − α

ν + n − 1

)
α

ν + n
, n ∈ N. (4)

It can be shown that, asymptotically, the probabilities (4) are also power laws of the
form (3). Moreover, in the special case ν = 0 and α ∈ (0, 1), we obtain the Sibuya
distribution with the PMF

P(N = n) = α(α − 1) · · · (α − n + 1)

n! (−1)n+1 =
(

α

n

)
(−1)n+1, n ∈ N, (5)

which first appeared in Sibuya (1979) and was later studied in connection with discrete
stable, Linnik, and Mittag-Leffler distributions (see, e.g., Christoph and Schreiber
1998, 2000;Devroye 1993; Pakes 1995; Pillai and Jayakumar 1995; Satheesh andNair
2002). Due to this connection, we name the distribution with the PMF (4) generalized
Sibuya.

The main goal of the paper is to account for basic properties of the generalized
Sibuya distribution (4) and to show how it interrelates with its special case of Sibuya
distribution (5). Additionally, we wish to emphasize the importance of the Sibuya
distribution in distribution theory and provide its new characterization which goes
beyond the class of generalized Sibuya variables. To this end, let us first comment on
the importance of the Sibuya model in the extreme value theory. It is well known that,
for any n ∈ N, the quantity [F(x)]n , where F is a cumulative distribution function
(CDF), is also the CDF corresponding to the random variable

X = max{X1, . . . , Xn} =
n∨
j=1

X j , (6)

where the {X j } are IIDwith theCDF F . For a non-integer exponentα > 0, the quantity
[F(x)]α is also a CDF, although in this case the relation (6) is no longer interpretable.
Similarly, the quantity [S(x)]n , where S(x) = 1− F(x), is the survival function (SF)
corresponding to

Y = min{X1, . . . , Xn} =
n∧
j=1

X j ,

although [S(x)]α , again a valid SF, lacks such an interpretation for fractional α >

0. It turns out that the Sibuya distribution (5) provides a missing link, allowing an
interpretation through stochastic maxima and minima as presented in the following
result.

Proposition 1 Let F be a CDF on R and S be the corresponding survival function,
S(x) = 1 − F(x). Further, let the distribution of X be given by the SF [S(x)]α and
the distribution of Y by the CDF [F(x)]α , where α ∈ (0, 1]. Then X and Y admit the
stochastic representations
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X
d=

Nα∨
j=1

X j and Y
d=

Nα∧
j=1

X j , (7)

where Nα has the Sibuya distribution (5) and is independent of the sequence {X j } of
IID random variables distributed according to the CDF F.

The proof of this result can be found in Kozubowski and Podgórski (2016), where one
canfind additional information on randommaxima andminimawithSibuya distributed
number of terms as well as generalizations to random processes. The argument used
there is based on somewhatmore general properties of themaxima of a randomnumber
of variables. Thus, to show a more explicit argument and for the sake of completeness
we provide a direct proof in “Appendix.”

As we shall see in Sect. 5, one can define a pure jump random process with Sibuya
marginal distributions. The laws of the jumps are related to the generalized Sibuya
distribution. In particular, the size of the first jump of this process has the generalized
Sibuya distribution (4) with ν = 1. Such relations between the Sibuya and general-
ized Sibuya distributions, along with the importance of the former, provide additional
motivation for studying the latter.

Let us finally provide yet another result on the Sibuya distribution, which appears to
be new. It relates to the theory of birth/death Markov processes. Consider a sequence
{Xi }, i ∈ N, of IID random variables having continuous distribution onR+ = (0,∞).
Suppose that at time t = 0, a population consists of a random number N ∈ N of
individuals, whose future lifetimes are given by Xi , i = 1, . . . , N . Then

N (t) =
N∑
i=1

I(t,∞)(Xi ), t ≥ 0, (8)

is a pure death process, describing the number of individuals alive at time t (the quantity
IA is an indicator of the set A). It turns out that if N has the Sibuya distribution (5)
with some α ∈ (0, 1), then, regardless of the choice for the distribution of the {Xi },
the conditional distribution of N (t)|N (t) > 0 is the same as that of N . In other words,
the Sibuya distribution provides a stationary conditional distribution of N (t) for each
t ∈ [0,∞): if it is known that the population is still alive at time t > 0, its size is
described by the same Sibuya distribution. This in fact is a characterization of the
Sibuya distribution, as stated in the following result, which is proven in “Appendix.”

Proposition 2 Let {Xi }, i ∈ N, be a sequence of IID random variables having contin-
uous distribution onR+ = (0,∞), and let N be a random variable onN, independent
of the {Xi }. Then N has a Sibuya distribution (5) with some α ∈ (0, 1) if and only if
for each t ∈ [0,∞) we have the equality in distribution

N
d= N (t)|N (t) > 0, (9)

where N (t) is a pure death process defined by (8).

123



A generalized Sibuya distribution 859

The rest of the paper is a careful account of the properties of the generalized Sibuya
model. We start with Sect. 2, where we introduce the model and derive its basic char-
acteristics. Various stochastic representations of the model appear in Sect. 3. They are
followed by account of divisibility properties in Sect. 4. In Sect. 5, we define a Sibuya
random process on [0, 1] and study the structure of its sample paths. Statistical issues
are briefly treated in Sect. 6. We conclude with “Appendix,” containing (selected)
proofs and auxiliary results.

2 Definition and basic properties

We begin with the definition of the generalized Sibuya stochastic model.

Definition 1 A random variable N with the PMF (4) is said to have a generalized
Sibuya distribution with parameters α ∈ R+ and ν ≥ 0, denoted by GS1(α, ν). The
two parameters are restricted by the relation 0 < α < ν + 1.

The subscript in the notation indicates that the distribution is supported on the set
N of positive integers. Another version of this distribution, which is defined as the
number of failures before the first success, shall be denoted by GS0(α, ν), i.e., for
M = N − 1:

N ∼ GS1(α, ν) if and only if M ∼ GS0(α, ν). (10)

The properties provided in the sequel shall be stated in terms of either one of the two
distributions and can be easily re-formulated in terms of the other if needed.

2.1 Special cases

Note that at the boundary of the parameter space, where 0 < α = ν+1, the distribution
collapses to a point mass at 1. This exceptional case shall be omitted from most
considerations. The Sibuya distribution (5) arises as a special case of GS1(α, ν) with
α ∈ (0, 1) and ν = 0. This distribution is often described through its probability
generating function (PGF), which, compared with the general case discussed in the
sequel, is of a particularly simple form:

GN (s) =
∞∑
n=1

(
α

n

)
(−1)n+1sn = 1 − (1 − s)α, 0 < s < 1. (11)

In the further special case α = 1/2, we have that GS0(1/2, 0) is a discrete Mittag-
Leffler distribution with the PGF G(s) = [1 + (1 − s)α]−1 (see, e.g., Pillai and
Jayakumar 1995).

We have already noted the special case α = ν = 1 of the GS1(α, ν) distribution,
where the PMF simplifies to (1) and we obtain a particular case of the discrete Pareto
and the Yule distributions. For α = 1 and general ν > 0, the generalized Sibuya PMF
(4) becomes
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P(N = n) =
(
1 − 1

ν + 1

)
· · ·
(
1 − 1

ν + n − 1

)
1

ν + n
= ν

ν + n − 1
− ν

ν + n
,

and we also obtain a case of discrete Pareto distribution (2) with α = 1 and σ = ν.

Remark 1 Let us note that our distribution is different than that studied in Huillet
(2016), who used the name “generalized Sibuya” to denote a three-parameter family
given by the PGF φα,β,λ(s) = (1 − λ(1 − s)α)β . This can be see from the form of
the PGF of our generalization of the Sibuya distribution that is presented in (6) in
Sect. 2.4. The name “positive generalized Sibuya” was also used in Huillet (2012) to
denote a random variable given by the Laplace transform φ(t) = 1−γ log(1+ tδ/γ ).

2.2 Distribution and survival functions

The CDF and the SF of a generalized Sibuya random variable N ∼ GS1(α, ν) are
straightforward to derive. Indeed, the SF for any n ∈ N is given by

P(N > n) = P(I j = 0, j = 1, . . . , n) =
(
1 − α

ν + 1

)
· · ·
(
1 − α

ν + n

)
. (12)

It follows that the SF and the PMF of N ∼ GS1(α, ν) are linked as follows:

P(N = n) = α

n + ν − α
P(N > n), n ∈ N. (13)

We now consider the conditional distribution of N − m given N > m, m ∈ N0 =
N ∪ {0}. Straightforward algebra incorporating the above results shows that

P(N − m = n|N > m)

=
(
1 − α

ν + m + 1

)
· · ·
(
1 − α

ν + m + n − 1

)
α

ν + m + n
, n ∈ N.

The above is recognized as a generalized Sibuya probability as well, with parame-
ters α and ν + m. In particular, if N has Sibuya distribution (5), i.e., ν = 0, then
the corresponding excess N − m conditionally on N > m is generalized Sibuya
GS1(α,m). Thus, the class of generalized Sibuya distributions is closed with respect
to the operation of taking the excess, as summarized in the result below.

Proposition 3 If m ∈ N0 and N ∼ GS1(α, ν), then N−m|N > m ∼ GS1(α, ν+m).

2.3 Moments and tail behavior

As shown in Christoph and Schreiber (2000), the Sibuya probabilities (5) admit the
asymptotic representation

P(N = n) ∼ 1

π
sin(απ)�(1 + α)

1

nα+1 as n → ∞, (14)
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where f (x) ∼ g(x) means that f (x)/g(x) → 1 as x → ∞. Thus, if N ∼ G1(α, 0)
(ordinary Sibuya), where necessarily α ∈ (0, 1), then we have (3). As shown below,
the latter asymptotic relation holds for the generalized Sibuya distribution as well.

Proposition 4 If N ∼ GS1(α, ν), then

P(N = n) ∼ �(ν + 1)

�(ν + 1 − α)

α

nα+1 as n → ∞. (15)

Remark 2 Note that if we set ν = 0 in (15) and use two well-known properties of the
gamma function,

�(α)�(1 − α) = π

sin(απ)
, �(1 + α) = α�(α),

then we recover (14).

In view of the link (13) between the generalized Sibuya survival function and its
probabilities, the above result immediately provides the asymptotics of the tail, stated
below.

Corollary 1 If N ∼ GS1(α, ν), then

P(N > n) ∼ �(ν + 1)

�(ν + 1 − α)

1

nα
as n → ∞. (16)

Because of the power-law asymptotics (16) of its tail, the moments of order α and
above of the generalized Sibuya distribution do not exist.

Corollary 2 Let γ ∈ R+. If N ∼ GS1(α, ν), thenEN γ < ∞ if and only if γ ∈ (0, α).

In particular, the expectation of N ∼ GS1(α, ν) exists whenever α > 1 (so that
necessarily ν > 0), while the variance exists if and only if α > 2 (so that ν > 1).
Perhaps themost convenient way to obtain these, alongwith othermoments, is through
the stochastic representations of Sect. 3. For example, an application of Proposition
7, along with tower property for conditional expectations, leads to

EN δ = E fδ(X), δ ∈ R+, (17)

where N ∼ GS0(α, ν), X is a random variable defined in (27), and fδ(t) =
E{[N (t)]δ}, with {N (t), t ≥ 0} being a standard Poisson process, independent of
X . This is useful mainly for integer values of δ, as fractional moments of Poisson dis-
tribution are not available in close forms. Indeed, we have the following well-known
Touchard polynomial representation for the Poisson raw moments of an integer order:

E{[N (t)]n} =
n∑

i=1

t i
{
n
i

}
, n ∈ N, t ∈ R+, (18)
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where {
n
i

}
= 1

i !
i∑

j=0

(−1)i− j
(
i

j

)
jn (19)

are the Stirling numbers of the second kind (representing the number of ways to
partition a set of n objects into i non-empty subsets). Straightforward calculations,
which take into account relations (17) and (19), lead to the following result.

Proposition 5 Let N ∼ GS0(α, ν) and n ∈ N, where n < α < ν + 1. Then

ENn =
n∑

i=1

ei (α, ν)

{
n
i

}
,

where

ei (α, ν) = �(α − i)�(i + 1)�(i + ν − α + 1)

�(α)�(ν − α + 1)
, i < α.

This above result leads to explicit expressions for the classical moment charac-
teristics of the generalized Sibuya distribution, such as the mean, the variance, the
coefficient of skewness

γN = E

(
N − EN

σN

)3

= EN 3 − 3(EN )(EN 2) + 2(EN )3

(Var N )3/2
, (20)

and (excess) kurtosis

κN = E

(
N − EN

σN

)4

−3 = EN 4 − 4(EN )(EN 3) + 6(EN )2(EN 2) − 3(EN )4

(Var N )2
−3.

(21)
These are summarized in the following result, whose straightforward albeit tedious
derivation shall be omitted.

Corollary 3 Let N ∼ GS0(α, ν). The mean and the variance of N exist whenever
α > 1 and α > 2, respectively, in which case we have

EN = ν − α + 1

α − 1
, Var N = ν − α + 1

(α − 1)2
αν

α − 2
. (22)

Further, the coefficient of skewness (20) exists whenever α > 3, in which case we have

γN =
√

α − 2

α

α + 1

α − 3

(√
ν

1 − α + ν
+
√
1 − α + ν

ν

)
.

Finally, the (excess) kurtosis (21) exists whenever α > 4, in which case we have

κN = α − 2

α(α − 3)(α − 4)

(
6(α3 + α2 − 6α − 2) + (α + 5)α(α − 1)2(α − 2)

(ν − α + 1)ν

)
.
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Remark 3 We note that the expectation of generalized Sibuya distribution is straight-
forward, as it does not involve any special functions or infinite series, which is not the
case with discrete Pareto distribution (2), which has the same asymptotics of the tail.
For example, the expectation of N ∼ GS0(α, ν) with ν = 1 and α = 1 + p, where
0 < p < 1, is equal to EN = (1− p)/p and coincides with that of geometric variable
with parameter p.

Remark 4 The mean of N ∼ GS1(α, ν) also exists whenever α > 1, in which case
we have EN = ν/(α − 1). When α > 2, its variance exists as well and coincides with
the expression in (22).

Remark 5 According to the above result, for 2 < α < ν + 1, we have

EN

Var N
= α − 1

ν

α − 2

α
< 1, (23)

so that every generalized Sibuya distribution is over-dispersed (its variance is larger
than the mean). Moreover, the ratio (23) is monotonically decreasing (to zero) as ν →
∞ (so the distribution becomesmore andmore over-dispersed) and it is monotonically
increasing in α (so the distributions becomes less and less over-dispersed as α gets
larger) with the limits of 0 and (ν − 1)/(ν + 1) as α → 2+ and α → (ν + 1)−,
respectively.

Remark 6 The skewness coefficient γN takes on only positive values and is a decreas-
ing function of ν with the limit of 2(α + 1)

√
α − 2/[(α − 3)

√
α] as ν → ∞.

Additionally, it is straightforward to see that this limiting value is a decreasing func-
tion of α on (3,∞) as well, with the limiting value of 2 at infinity. The latter provides
a lower bound for the skewness. On the other hand, γN is not a monotonic function
of α, as can be seen by checking its derivative with respect to α. Further, it can be
shown that when α is close to its lower boundary of 3, then γN is decreasing, while it
is increasing when α is close to its upper boundary of ν + 1, and the limiting values
of γN at these boundaries are both ∞.

Remark 7 The excess kurtosis coefficient κN is a decreasing function of ν with the

limit of 6(α−2)(α3+α2−6α−2)
α(α−3)(α−4) as ν → ∞. Additionally, it is straightforward to see that

this limiting value is increasing to infinity for large α (α > 9).

2.4 The probability generating function

The probability generating function of generalized Sibuya distribution can be obtained
via themixedPoisson representation (30), coupledwith the relation (33).The following
result provides relevant details.

Proposition 6 If N ∼ GS0(α, ν), then the PGF of N is given by

GN (s) = α

ν + 1
(1 − s)αF(ν + 1, α + 1; ν + 2; s), 0 < s < 1, (24)
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where

F(a, b; c; t) =
∞∑
n=0

(a)n (b)n
(c)n

tn

n! , |t | < 1, (25)

is the Gauss hypergeometric function and

(x)n =
{
x(x + 1) · · · (x + n − 1) for n ≥ 1
1 for n = 0

is the (rising) Pochhammer symbol.

Remark 8 If N ∼ GS1(α, ν), then, due to the relation (10), its PGF is given by
(24) multiplied by s. In particular, when ν = 0, we obtain the PGF (11) of Sibuya
distribution with the PMF (5).

Remark 9 In the case when ν = k ∈ N0, we get the explicit form

GN (t) = k!
�(α)�(1 − α + k)

π

sin(πα)

1

s1+k

⎧⎨
⎩

k∑
j=0

s j (−α) j

j ! − (1 − s)α

⎫⎬
⎭ , 0 < s < 1,

(26)

which can be obtained similarly to the general result using the integration formula
3.228.6 on p. 321 of Gradshteyn and Ryzhik 2007. Further, let us note that for integer
values of α, the quantity sin(πα) in the denominator of the right-hand side of (26)
becomes zero. In this case, the expression for the PGF is understood in the limiting
sense. For example, by taking the limit as α → 1 of the right-hand side of (26) with
k = 1, we find that the PGF of GS0(1, 1) distribution is given by

GN (s) = s + (1 − s) log(1 − s)

s
, 0 < s < 1.

Remark 10 When α > 1, the expectation of generalized Sibuya distribution can also
be computed via the relation

EN = d

ds
GN (s)

∣∣∣∣
s=1

.

However, this is not a convenientway of getting themean. For example, for non-integer
values of α > 1 and ν = k ∈ N0, this leads the expression

EN = k!
�(α)�(1 − α + k)

π

sin(πα)

⎧⎨
⎩

k−1∑
j=0

(−α) j+1

j ! − (k + 1)
k∑
j=0

(−α) j

j !

⎫⎬
⎭ ,

which is not immediately seen to coincide with the formula in (22).
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A generalized Sibuya distribution 865

3 Stochastic representations

Below we provide an account of several stochastic representations of generalized
Sibuya random variables, involving a randomly stopped Poisson process, mixtures of
geometric distributions, and a discretization scheme.

3.1 Randomly stopped Poisson process

Consider a random variable

X
d= E

Tα,ν

, (27)

where E and Tα,ν are independent, E is standard exponential, and Tα,ν has a beta
distribution of the second kind, given by the PDF

f (x) = 1

B(α, ν − α + 1)

xα−1

(1 + x)ν+1 , x ∈ R+ (ν ≥ 0, 0 < α < ν + 1), (28)

where
B(a, b) = �(a)�(b)/�(a + b) (29)

stands for the beta function.

Proposition 7 If N ∼ GS0(α, ν), then

N
d= N (X), (30)

where X is given by (27) and is independent of a standard Poisson process {N (t), t >

0}.
Remark 11 Note that, by general results concerning the ratio of two independent
standard gamma variables (see, e.g., Johnson et al. 1994, p. 351), Tα,ν admits the
stochastic representation

Tα,ν
d= Xα

X1−α+ν

, (31)

where the variables on the right-hand side of (31) are independent and Xβ denotes
standard gamma variable with shape parameter β (and unit scale). This shows that
generalized Sibuya distribution is a special case a = 1, b = 1 − α + ν, c = α of
the generalized hyperbolic distribution of type B3 with the PMF (64), defined via the
stochastic representation (30) with

X
d= XaXb

Xc
, (32)

where the three variables on the right-hand side of (32) are independent and have
standard gamma distributions (see, e.g., Sibuya 1979; Sibuya and Shimizu 1981, or
Devroye 1993).
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Remark 12 The result of Proposition 7 in case of (shifted) Sibuya distribution
GS0(α, 0) was noted in Devroye (1993) in connection with the problem of random
variate generation from this distribution. Note that if N ∼ GS1(α, 0), then N does not

admit the representation (30) with any X ; instead, in this case we have N
d= 1+N (X).

Remark 13 It can be easily seen that if N admits the stochastic representation (30),
then the PGF of N must be of the form

GN (s) = EsN = φX (1 − s), s ∈ (0, 1), (33)

where φX (·) is the Laplace transform (LT) of X (see, e.g., Steutel and Harn 2004,
p. 367). This allows for a derivation of one of the functions, GN (·) or φX (·), from
the other one. It can be shown (see the proof of Proposition 6 in “Appendix”) that the
Laplace transform of X defined by (27) is of the form

φX (t) = α

ν + 1
tαF(ν + 1, α + 1; ν + 2; 1 − t), t ∈ R+, (34)

where for t ≥ 2 the Gauss hypergeometric function F is defined through the analytic
extension of its defining series (25). For the case of integer ν = k ∈ N0, we have

φX (t) = k!
�(α)�(1 − α + k)

π

sin(πα)

1

(1 − t)1+k

⎧⎨
⎩

k∑
j=0

(−α) j (1 − t) j

j ! − tα

⎫⎬
⎭ , t ∈ R+.

(35)

The PDF of X can be written as

fX (x) = �(ν + 1)

�(α)�(1 − α + ν)

∫ ∞

0
e−νx tα

(1 + t)ν+1 dt, x ∈ R+ (ν ≥ 0, 0 < α < ν + 1).

Relations (33–35) lead to the PGF of generalized Sibuya distributionGS0(α, ν), given
in Proposition 6. In case of (shifted) Sibuya distribution GS0(α, 0), the function (35)
reduces to

φX (t) = 1 − tα

1 − t
, t ∈ R+,

which can also be recovered from the PGF of N ∼ GS0(α, 0) via φX (t) = GN (1− t).
However, if N ∼ GS1(α, 0) with the PGF (11), then GN (1 − t) does not lead to a
valid Laplace transform, as noted by Satheesh and Nair (2002).

3.2 Randomly mixed geometric variable

Our second representation shows that a generalized Sibuya distribution can be thought
of as a mixed geometric distribution. The result below, which follows from the theory
of generalized hypergeometric distributions of type B3 (see, e.g, Sibuya 1979; Sibuya
and Shimizu 1981), can be proven directly from the representation (30) and standard
conditioning arguments.
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Proposition 8 Let Y have a beta distribution with parameters α and β = 1− α + ν,
where ν ≥ 0 and 0 < α < ν + 1. Further, assume that, conditionally on Y = p, N
has a geometric distribution with parameter p, i.e.,

P(N = n|Y = p) = p(1 − p)n, n ∈ N0.

Then, unconditionally, N ∼ GS0(α, ν).

Remark 14 The GS1(α, ν) version of generalized Sibuya distribution is also mixed
geometric with the same stochastic probability of success, but with a shifted-by-one
version of the geometric variable.

3.3 Discretization scheme

A generalized Sibuya variable arises also by a discretization scheme of the form N =
[W ], where a discrete counterpart of a continuously distributed W is the integer part
of W . A discrete counterpart of exponential distribution in this scheme is a geometric
variable, while discretization of continuous Pareto II (Lomax distribution) leads to
discrete Pareto distribution (see, e.g., Buddana and Kozubowski 2014).

Proposition 9 If W is a mixed exponential variable of the form

W
d= E

Vα,ν

,

where E and Vα,ν are independent, E is standard exponential, and Vα,ν has the PDF

g(x) = �(ν + 1)e−νx

�(α)�(1 − α + ν)
(ex − 1)α−1, x ∈ R+ (ν ≥ 0, 0 < α < ν + 1), (36)

then N = [W ] ∼ GS0(α, ν).

4 Divisibility properties

4.1 Infinite divisibility

Recall that a random variable X (and its distribution) is infinitely divisible (ID) if for
each n ∈ N it can be decomposed into the sum

X
d= Xn,1 + · · · + Xn,n (37)

of IID random variables {Xn, j } (1 ≤ j ≤ n). Further, an integer-valued random vari-
able X supported onN0 is discrete infinitely divisible if it is ID and the variables {Xn, j }
in (37) are integer-valued and supported on N0 as well. It is well known that (shifted)
Sibuya distribution GS0(α, 0) is discrete ID (see, e.g., Christoph and Schreiber 2000),
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868 T. J. Kozubowski, K. Podgórski

implying that Sibuya distribution GS1(α, 0) is ID (but not discrete ID). Similar prop-
erties hold for generalized Sibuya distribution and follow from their representations
as mixtures of geometric distributions, as the latter are ID (see, e.g., Steutel and Harn
2004, Theorem 7.8, p. 381). The following result summarizes these facts.

Proposition 10 If N ∼ GS0(α, ν), then the distribution of N is discrete ID (and thus
ID). Further, the distribution of N + 1 ∼ GS1(α, ν) is ID (but not discrete ID).

This property allows us to build a continuous-time discrete-value stochastic pro-
cesses based on the generalized Sibuya distribution. In particular, we can define a Lévy
motion {N (t), t > 0}, a processwith stationary, independent increments, where N (1)
is GS0(α, ν) with PGF G given by (24), and, for each t > 0, the PGF of N (t) is Gt .

4.2 Self-decomposability

A discrete-valued random variable N supported on N0 is discrete self-decomposable
(DSD) if for each c ∈ (0, 1) it can be decomposed as

N
d= c 
 N + Nc, (38)

where the variable Nc is also discrete-valued and supported onN0, and is independent
of c 
 N (see, e.g., Steutel and Harn 1979). The dot product c 
 N is the discrete
multiplication (also known as thinning), defined as

c 
 N
d=

N∑
j=1

I j , c ∈ (0, 1), (39)

where the {I j } are IID Bernoulli variables with parameter c, independent of N . In
terms of the PGFs, the condition (38) can be stated as

GN (s) = GN (1 − c + cs)Gc(s), s ∈ (0, 1), (40)

where GN is the PGF of N , GN (1 − c + cs) is the PGF of the dot product (39),
and Gc is the PGF of Nc. It was shown by Christoph and Schreiber (2000) that the
(shifted) Sibuya distribution GS0(α, 0) is DSD for each α ∈ (0, 1). The following
result provides an extension to the generalized Sibuya case.

Proposition 11 If N ∼ GS0(α, ν), then the distribution of N is discrete self-
decomposable.

Remark 15 Let us note that if N ∼ GS1(α, ν) then N is not DSD, since P(N = 0) =
0. In particular, Sibuya distribution (5) is not DSD. However, for c ∈ (0, 1), the scaled
Sibuya variable

N (c) d= c 
 N , (41)
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where N ∼ GS1(α, 0), may be DSD, depending on the value of c. Indeed, as shown
in Christoph and Schreiber (2000), the variable (41) is DSD if and only if

0 < c ≤
(
1 − α

1 + α

)1/α

.

Moreover in the same work, it is also shown that N (c) is (discrete) infinitely divisible
if and only if 0 < c ≤ (1 − α)1/α .

4.3 Invariance properties

In this section, we present an important new characterization of the Sibuya distri-
bution, which is connected with the thinning operation (39) and (partially) explains
the characterization of this distribution stated in Proposition 2. Let N have Sibuya
distribution GS1(α, 0), given by the PMF (5). As observed by several authors (see,
e.g., Christoph and Schreiber 2000), the probability distribution corresponding to the
scaled Sibuya variable N (c), defined by (41), is a mixture of a point mass at zero (with
probability 1 − cα) and the original distribution of N (with probability cα). In other
words, we can write

c 
 N
d= I (c) · N , c ∈ (0, 1), (42)

where I (c) is a Bernoulli random variable with parameter pc = cα , independent of N .
A natural question is whether the property (42) is unique to Sibuya distribution, that
is whether there is any other variable N supported on N for which we have (42) with
some pc ∈ (0, 1). As shown below, there is no such distribution other than the Sibuya
distribution.

Proposition 12 If a random variable N supported on N satisfies the relation (42),
where I (c) is a Bernoulli random variable with some parameter pc ∈ (0, 1), indepen-
dent of N , then N must have Sibuya distribution GS1(α, 0) and pc = cα .

Observe that whenever we have (42), then for n ∈ N

P(c
N = n|c
N > 0) = P(I (c) · N = n)

P(I (c) · N > 0)
= P(I (c) = 1)P(N = n)

1 − P(I (c) = 0)
= P(N = n),

(43)
so that

c 
 N |c 
 N > 0
d= N , c ∈ (0, 1). (44)

In other words, the distribution of the thinned random variable c
 N , conditioned on
being positive, is the same as that of N , regardless of the thinning parameter c ∈ (0, 1).
Note that, for c ∈ (0, 1) and any integer-valued variable N supported on N0, we have
P(c
 N = 0) = GN (1− c) = 1−P(c
 N > 0). Thus, if an integer-valued variable
N supported on N satisfies (44), then it also satisfies (42) with

pc = P(I (c) = 1) = 1 − GN (1 − c), c ∈ (0, 1).
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Thus, in view of Proposition 12, the only distributions that are stable with respect to
the operation of thinning, in the sense of (44), are Sibuya distributions.

Corollary 4 Within the class of all probability distributions supported on N, the sta-
bility property (44) is unique to Sibuya distributions GS1(α, 0), defined by the PMF
(5).

Let us relate these properties to the characterization of the Sibuya distribution
given in Proposition 2. Consider again the pure death process (8), connected with the
population of N individuals, whose lifetimes {X j } are IID with the common CDF F .
In terms of the operation of thinning, we have

N (t)
d= c(t) 
 N , (45)

where c(t) = P(X j > t) = 1 − F(t) is a function on R+ with the range coinciding
with the interval (0, 1). In view of this, the condition (9) is essentially a restatement of
(44), which, according to Corollary 4, is known to characterize the Sibuya distribution.

5 A Sibuya random process on [0, 1]
The Sibuya distribution with parameter α less than one arises as the marginal distri-
bution of the Sibuya random process that we define as follows. Consider a sequence
of IID uniform random variables Un , n ∈ N, and set

N (t) = min{n ∈ N : nUn ≤ t}, t ∈ [0, 1], (46)

with the convention that the minimum over an empty set is infinity, so that N (0) = ∞.
Since for each n ∈ N we have P(nUn ≤ t) = t/n, the variable N (t) has the Sibuya
distribution GS1(α, 0) given by the PMF (5) with α = t .

This process can be conveniently described through the classical concept of records.
Let x = {xn}, n ∈ N, be a sequence of positive numbers and consider the pairs

(ki , ri ) = (ki (x), ri (x)), i ∈ N,

where the ki is the time (index) at which the i th record occurs among the {xi }, while
ri = xki is the size of that record. Here, a value that is smaller than all the previous
values sets a new record, and x1 is also considered to be a record, so that k1 = 1 and
r1 = x1. Further, assume that x1 ≤ 1, so that all the {ri } are less than one (while the
{xi } are not required to be such). Moreover, let δi = ri−1 − ri (with r0 = 1) represent
the differences between successive record values and let τi = ki − ki−1 (with k0 = 0)
be the inter-arrival times between successive records. Under this notation, define

Nx(t) = 1 +
∞∑
i=1

τi+1 I(t,1](ri ), t ∈ [0, 1],

where, as before, IA is an indicator function of the set A.
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A generalized Sibuya distribution 871

Clearly, the N (t) defined by (46) is the same as the Nx(t) above if we take x =
{nUn}.We see that, looking from right to left, the randomprocess N (t) initially “starts”
with the value of one at t = 1 and then jumps up at every record value ri , with the size
of the jump being τi+1. Further, by the definition of the process, the values of N (t) are
constant on the intervals [rn, rn−1), and N (rn) = kn . The following result provides
basic properties of the Sibuya random process {N (t), t ∈ [0, 1]} discussed above.

Proposition 13 For each t ∈ [0, 1], the marginal distribution N (t) is Sibuya given
by (5) with α = t . Further, N (t) is a right-continuous, pure jump, and non-increasing
random process. Moreover, for any δ ∈ (0, 1), the number of jumps is finite on the
interval [δ, 1] and infinite on the interval [0, δ].

Remark 16 One application of the Sibuya process is a construction of an extremal
process on [0, 1] (and beyond) via Proposition 1, as discussed in Kozubowski and
Podgórski (2016). For example, if {Xn} is a sequence of IID random variables with
the common CDF F and we let

Y (t) =
N (t)∧
n=1

Xn, t ∈ [0, 1],

where N (t) is the Sibuya process defined above, independent of the {Xn}, then the
CDF of Y (t) is given by Ft for each t ∈ [0, 1]. This extends the notion of an extreme
value of n IID random variables to fractional values of n.

We now look at the sample path structure of the Sibuya process. For convenience,we
will look at a time-reversed process S(t) = N (1− t), as it is more natural to follow the
evolution of the sample paths from left to right. In Figure 1, we schematically present
a part of a sample path of S(t).

By Proposition 13, S(t) is a pure jump process whose sample paths (which start at
S(0) = 1 almost surely) are continuous from the left and non-decreasing. We already
know from the above construction that the jumps of this process and the waiting
times between them are closely related to record inter-arrival times and record sizes
connected with a random sequence {nUn}. Here, the locations of the jumps occur at
an increasing sequence {Ti }, where Ti = 1 − Ri and the Ri is the location of the i th
jump of the process N (t) (counted from right to left). Our first result describes the
joint distribution of the locations of the jumps.

Proposition 14 Let S(t) = N (1 − t), t ∈ [0, 1], where {N (u), u ∈ [0, 1]} is a
Sibuya process defined by (46), and let {�n} be the successive arrival times of a
standard Poisson process. Then for each n ∈ N we have

(T1, . . . , Tn)
d= (H(�1), . . . , H(�n)), (47)

where 0 < T1 < · · · < Tn < 1 are the (random) locations of the first n jumps of S(t)
and H is the CDF of standard exponential distribution.
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A generalized Sibuya distribution 873

Remark 17 It follows that the location of the first jump of the process S(t) has a
standard uniform distribution, while for n ≥ 2, the joint distribution of the locations
of its first n jumps is given by the PDF (see the proof of Proposition 14 in “Appendix”)

g(t1, . . . , tn) = 1

(1 − t1)(1 − t2) · · · (1 − tn−1)
, 0 < t1 < · · · < tn < 1. (48)

An equivalent description of this is through the conditional distributions: for each n ∈
N, the conditional distribution of Tn given the n−1 values 0 < t1 < · · · < tn−1 < 1 of
the previous jump locations has a uniform distribution on the interval (tn−1, 1). This
distribution is known as random division of the unit interval.

Remark 18 It follows that if the time has not been reversed, the jumps of the Sibuya
process (46), when viewed from right to left, occur at the points exp(−�n), n ∈ N.
Moreover, if the time line is stretched to (0,∞) via logarithmic transformation t →
− log(1− t), the locations of the jumps of S(t)will coincide with those of the standard
Poisson process.

Our final result, concerning the joint conditional distribution of the jump sizes and
their locations, shades light on the probabilistic structure of the time-reversed Sibuya
process. Using the above notation connected with the record process, we shall look
at the evolution of the sequence of random points (Ti , Ki ), i ∈ N, where Ki is the
time of the i th record connected with the sequence {nUn}. As illustrated in Figure 1,
S(t) is a pure jump process started at S(0) = 1, with the first jump occurring at the
random location T1. Regarding the first random point (T1, K1), we have K1 = 1 and,
by Proposition 14, the variable T1 is standard uniform. We now consider the second
pair (T2, K2), conditioned on the event B1 = {T1 = t1, K1 = 1}, and consider the
joint distribution of (T2, J2), where J2 = K2 − K1 is the size of the jump of S(t) at
t = t1. By the construction of the process S(t), for t1 < t < 1 we have

P(T2 > t, J2 = n|B1) = P(2U2 > 1 − t1, . . . , nUn > 1 − t1, (n + 1)Un+1 < 1 − t)),

so that

P(T2 > t, J2 = n|B1) = p(r1, 1, n)
1 − t

1 − t1
, (49)

where r1 = 1 − t1 and

p(r, k, n) =
(
1 − r

ν + 1

)
· · ·
(
1 − r

ν + n − 1

)
r

ν + n
, n ∈ N,

represents the probability P(S = n) with S ∼ GS1(r, ν). In view of (49) and the fact
that the fraction on the right-hand side in (49) is the probability P(T2 > t |T1 = t1),
we conclude that, conditioned on B1, the variables T2 and J2 are independent, with
the latter having the generalized Sibuya distribution GS1(1 − t1, 1). These calcula-
tions extend in a straightforward way beyond the second pair (T2, J2), leading to the
following result.
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874 T. J. Kozubowski, K. Podgórski

Proposition 15 In the above setting, conditioned on Bn = {T1 = t1, . . . , Tn =
tn, K1 = k1, . . . Kn = kn}, the variables Tn+1 and Jn+1 are independent, with Tn+1
having uniform distribution on (tn, 1) and with Jn+1 ∼ GS1(1 − tn, kn).

According to the above result, the conditional distributions of the jumps of the
time-reversed Sibuya process S(t) have generalized Sibuya distributions.

6 Estimation

Although a comprehensive discussion of parameter estimation for the generalized
Sibuya distributions is beyond the scope of this work, we still provide several basic
results connected with the two common estimation methods: the method of moments
and the maximum likelihood method. In doing so, we shall use an alternative param-
eterization of the generalized Sibuya distribution, where instead of α > 0 and ν ≥ 0
we have

β = 1

ν + 1
∈ [0, 1] and θ = α

ν + 1
∈ (0, 1].

Here, we have the following special boundary cases: θ = 1 corresponds to the point
mass at 1, β = 0 corresponds to geometric distribution with parameter θ , and β = 1
yields the original Sibuya distribution. Note that we exclude the case θ = 0, which
does not correspond to a valid probability distribution. In the following two sections,
the parameter estimation is based on a random sample X1, . . . , Xn from a generalized
Sibuya distribution supported on the set of positive integers N, which in the above
parameterization is denoted by GS1(β, θ). The results easily extend to the case of the
shifted distribution GS0(β, θ) via the relation (10).

6.1 Method of moments

We assume that α > 2 or, equivalently θ > 2β, so that the first two moments are
well defined, and we let M1 = X̄n = 1

n

∑n
i=1 Xi and M2 = 1

n

∑n
i=1 X

2
i be the first

two sample moments. To derive the method of moment estimators (MMEs) of the two
parameters we set the first two moments of the GS1(β, θ) distribution (computation
of which is aided by Proposition 3) equal to the sample moments {Mi }, which results
in the following system of two equations in two unknowns:

M1 = β − 1

β − θ
,

M2 = (β − 1) (2 β + θ − 2)

2 β2 − 3β θ + θ2
.

(50)

Solving the first equation for β produces

β = M1θ − 1

M1 − 1
, (51)
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and subsequent substitution of the above into the second equation in (50) leads to the
following equation for the parameter θ :

θ [M2 − 2M2
1 + M1 + M1(M2 − M1)] = 2(M2 − M2

1 ). (52)

It is not hard to see the equation (52) admits a unique solution in the open interval
(0, 1) if the following key condition holds:

M2 − 2M2
1 + M1 > 0. (53)

Further, the solution is an explicit one, and, along with (51), leads to the following
MMEs of the two parameters:

β̂n = M2 − 2M2
1 + M1

M2 − 2M2
1 + M1 + M1(M2 − M1)

, θ̂n = 2(M2 − M2
1 )

M2 − 2M2
1 + M1 + M1(M2 − M1)

.

(54)

The following result summarizes this discussion.

Proposition 16 Let X1, . . . , Xn be a random sample from a GS1(β, θ) distribution
with θ > 2β, and let M1 and M2 be the first and the second sample moments based
on the {Xi }, respectively. Then, if the inequality (53) is fulfilled, the moment equations
(50) admit a unique solution, leading to the MMEs (54).

Remark 19 When the sample size increases to infinity, then, by law of large numbers,
the left-hand side in (53) converges to

EN 2 − 2(EN )2 + EN = 2β(1 − β)(1 − θ)

(θ − β)2(θ − 2β)
,

which is larger than 0 when the true parameters are in the interior of the parameter
space. Thus, in this case, for large samples the condition (53) is expected to hold.
Additionally, let us observe that the MMEs (54) always satisfy the relation 0 < 2β̂n <

θ̂n < 1, which is consistent with the assumed existence of the second moment.

Remark 20 In the original parametrization, the MMEs of α and ν also exists and are
unique when the condition (53) holds, in which case we have

α̂n = 2(M2 − M2
1 )

M2 − 2M2
1 + M1

, ν̂n = M1(M2 − M1)

M2 − 2M2
1 + M1

.

In order to derive the asymptotic behavior of the estimates, they need to be defined
regardless of whether or not condition (53) is fulfilled. First, observe that if the quantity
on the left-hand side of (53) is zero, then β̂n in (54) becomes zero as well, in which
case, according to (51) (as well as (54)), the other estimate becomes 1/M1, so that the
MMEs are the pair

β̂n = 0, θ̂n = 1

M1
. (55)
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While in the case of negative value of the expression on the left-hand side of (53)
there are no admissible solutions of method of moments equations (50), it is natural to
define theMMEs as in (55) in this case as well. In this setup, the asymptotic properties
of the MMEs follow from standard (multivariate) delta method, leading to the result
below.

Proposition 17 Let X1, . . . , Xn be a random sample from a GS1(β, θ) distribution
with θ > 2β, and let M1 and M2 be the first and the second sample moments based on
the {Xi }, respectively. Then, theMMEs, defined by (54) if the inequality (53) is fulfilled
and by (55) when it is not, are consistent and, whenever the true parameters satisfy
the condition 0 < 4β < θ < 1, asymptotically normal, in which case

√
n[(β̂n, θ̂n) −

(β, θ)] converges in distribution to a bivariate normal distribution with the (vector)
mean zero and the covariance matrix

�MME = θ (β − θ)2 (1 − 2 β)

24 β3 − 26β2 θ + 9β θ2 − θ3

[
w11 w12
w12 w22

]
,

where
w11 =

(
2 β2−3β+1

) (
6β2 θ−4β2−4β θ2+3β θ+θ3−θ2

)
(1−2 β) (1−θ)

,

w12 = 6β2 θ − 8β2 − 4β θ2 + 4β θ + θ3 − θ2,

w22 =
(
θ2−3 θ+2

) (
12 β3−8β2 θ−12 β2+2 β θ2+6β θ−θ2

)
(1−2 β) (1−β)

.

6.2 Maximum likelihood

Assume that there are r ≥ 1 distinct values

1 ≤ j1 < j2 < · · · < jr < ∞

among the {X j }, where ji appearswith the frequency ni ≥ 1 and n1+n2+· · ·+nr = n.
Then, the likelihood function is of the form

L = L(β, θ) =
r∏

i=1

p
n j
ji

(β, θ),

where

pn(β, θ) = P(X = n)

= (1 − θ)

(
1 − θ

1 + β

)
· · ·
(
1 − θ

1 + (n − 2)β

)
θ

1 + (n − 1)β
, n ∈ N.

(56)

Observe that L is a rational function in its arguments (a polynomial in θ and a rational
function in β), which extends continuously to [0, 1]2 with the value of zero at the
boundary θ = 0 and is nonzero otherwise. Consequently, it has a global maximum
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value over its domain, and, due to its differentiability, both partial derivatives (in θ and
in β) at the point where the maximum is reached must be zero as long as the point is in
the open set (0, 1)2. Since the behavior on the boundary of the domain is also explicit,
we conclude that, while the maximum likelihood estimators (MLEs) are generally not
available in closed forms, they can be obtained by fairly standard numerical search,
utilizing the explicit form of the first and the second derivatives.

We conclude this section by commenting on the asymptotic optimality properties
of theMLEs. For this, we shall assume that the true parameter (β0, θ0) is in the interior
of [0, 1]2. Due to the infinite differentiability of the likelihood (β, θ) �→ pn(β, θ) in
the interior of its domain, one can easily check that the standard conditions for the
asymptotic efficiency of the MLEs satisfied (see, e.g., Lehman 1983, Theorem 4.1, p.
429), leading to the following result.

Theorem 1 Let
(
β̂MLE , θ̂MLE

)
be the MLEs of (β0, θ0) based on a random sample

from the generalized Sibuya distribution GS1(β0, θ0), where (β0, θ0) ∈ (0, 1)2. Then,

√
n
[(

β̂MLE , θ̂MLE
)− (β0, θ0)

]

converges in distribution to a bivariate normal distribution with the (vector) mean
zero and the covariance matrix [I(β0, θ0)]−1, where

I(β0, θ0) =

⎡
⎢⎢⎣

θ−2
0 +

∞∑
n=1

an(β0, θ0)pn(β0, θ0)
∞∑
n=1

bn(β0, θ0)pn(β0, θ0)

∞∑
n=1

bn(β0, θ0)pn(β0, θ0)
∞∑
n=1

cn(β0, θ0)pn(β0, θ0)

⎤
⎥⎥⎦

is the Fisher information matrix, with pn(β, θ) as in (56) and

an(β, θ) =
n−2∑
k=0

1

(1 + kβ − θ)2
,

bn(β, θ) = −
n−2∑
k=0

k

(1 + kβ − θ)2
,

cn(β, θ) =
n−2∑
k=0

k2
(

1

(1 + kβ − θ)2
− 1

(1 + kβ)2

)
.
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7 Appendix

Proof of Proposition 1. For the variables X and Y in (7), we have

SX (x) = P(X > x) = 1 − E(P(X ≤ x |Nα)) = 1 − E

(
FNα (x)

)
= 1 − GNα (F(x)),

FY (y) = P(Y ≤ y) = 1 − E(P(Y > y|Nα)) = 1 − E

(
SNα (y)

)
= 1 − GNα (S(y)),

where GNα is the PGF given in (11). Thus,

SX (x) = (1 − F(x))α = Sα(x),

FY (y) = (1 − S(x))α = Fα(x),

as required. �


Proof of Proposition 2. Suppose that, for some α ∈ (0, 1), N has Sibuya distribution
GS1(α, 0), given by the PMF (5). Then, for each t ∈ R+, the value of the process N (t)
defined by (8) admits the stochastic representation (45), where c(t) = P(X j > t).
Since for Sibuya distributed N we have (42) with c = c(t), which, in turn, implies
(43), N (t) satisfies (9), as desired.

Next, assume that N (t) satisfies equation (9). Thus, for each t ∈ R+, we have

P(N (t) = n) = P(N = n)P(N (t) > 0), n ∈ N. (57)

Using standard conditioning argument, write

P(N (t) = n) =
∞∑
k=1

P(N (t) = n|N = k)P(N = k), n ∈ N0.

Noting that for k < n we have P(N (t) = n|N = k) = 0 while for k ≥ n the variable
N (t) = n|N = k is binomial with parameters k and p = 1 − F(t), where F is the
common CDF of the X j ’s, we conclude that

P(N (t) = n) =
∞∑
k=n

(
k

n

)
[1 − F(t)]n[F(t)]k−n

P(N = k), n ∈ N, t ∈ R+. (58)

For n = 0, we have

P(N (t) = 0) =
∞∑
k=1

[F(t)]kP(N = k), t ∈ R+. (59)
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We now write s = F(t) ∈ (0, 1) and pn = P(N = n) and substitute (58) and (59)
into (57), which results in the following equation

(1 − s)n
∞∑
k=n

(
k

n

)
sk−n pk = pn

(
1 −

∞∑
k=1

sk pk

)
, n ∈ N, s ∈ (0, 1). (60)

Further, by expanding the term (1 − s)n into a power series in s and changing the
index of the summation on the left-hand side of (60) to j = k − n, we conclude that

{
n∑

k=0

(
n

k

)
(−1)ksk

}
·
⎧⎨
⎩

∞∑
j=0

(
j + n

n

)
p j+ns

j

⎫⎬
⎭= pn−

∞∑
j=1

p j pns
j , n∈N, s∈(0, 1).

(61)
Using standard result for power series, stating that the coefficients ck of the product

∞∑
k=0

cks
k =

{ ∞∑
i=0

ai s
i

}
·
⎧⎨
⎩

∞∑
j=0

b j s
j

⎫⎬
⎭ (62)

are given by

ck =
k∑

i=0

aibk−i ,

following some algebra, we conclude the left-hand side of (61) is of the form (62) with

ck =
k∑
j=0

(
n

j

)(
k − j + n

n

)
pk− j+n(−1) j , 0 ≤ k ≤ n, n ∈ N.

Thus, in view of the above, coupled with (61), and by the uniqueness of the power
series, we conclude that

k∑
j=0

(
n

j

)(
k − j + n

n

)
pk− j+n(−1) j = −pk pn, 1 ≤ k ≤ n, n ∈ N. (63)

In particular, for k = 1, relation (63) reduces to

(n + 1)pn+1 − npn = −p1 pn, n ∈ N,

leading to

pn+1 = (n − p1)pn
n + 1

, n ∈ N.

It now follows by induction that the {pn} coincide with Sibuya probabilities (5), where
α = p1 = P(N = 1). This concludes the proof. �


123



880 T. J. Kozubowski, K. Podgórski

Proof of Proposition 4. Since, in view of (13), the results of Proposition 4 and Corol-
lary 1 are equivalent, it is enough to establish (16). First, by incorporating the
well-known property of the gamma function,

�(η + k) = �(η)η(η + 1) · · · (η + k − 1), η ∈ R+, k ∈ N,

the generalized Sibuya SF (12) can be written as

P(N > n) = 1

nα

�(ν + 1 − α + n)

�(n)nν+1−α

�(n)nν+1

�(n + ν + 1)

�(ν + 1)

�(ν + 1 − α)
.

Next, since for any γ > 0, we have the asymptotic representation of the Gamma
function (see, e.g., Gradshteyn and Ryzhik 2007, formula 8.328.2, p. 895)

�(γ + n)

�(n)nγ
→ 1 as n → ∞,

the right-hand side of (7) divided by the right-hand side of (16) converges to 1 with
n → ∞, as desired. �


Proof of Proposition 5. By Proposition 7, we have the equality in distribution N
d=

N (X), where {N (t), t > 0} is a standard Poisson process independent of X
d=

X1Xν−α+1/Xα , where all the three variables on the right-hand side are indepen-
dent and gamma distributed with scale one and the shape parameters indicated by
the subindex. The result now follows from (17), the representation (18) for the
integer-order moments of N (t), and and the well-knownmoment formulas for gamma
distribution, which produce

E(X δ) = �(α − δ)�(δ + 1)�(δ + ν − α + 1)

�(α)�(ν − α + 1)
, δ < α.

�

Proof of Proposition 6. By Proposition 7, the PGF of N is given by (33), where φX (·)
is the LT of the variable X defined in (27). To prove the result, it is enough to show
that the LT of X is given by (34). To establish the latter, we condition on Tα,ν when
computing the LT of X , leading to

φX (t) =
∫ ∞

0
Ee−t E/x f (x)dx,

where f (x) is given in (28) and E is standard exponential with the LT

Ee−t E = 1

1 + t
, t ∈ R+.

123



A generalized Sibuya distribution 881

Thus,

φX (t) = 1

B(α, ν − α + 1)

∫ ∞

0

xα

(t + x)(1 + x)ν+1 dx,

where B(a, b) is the beta function (29). The result now follows by the integration
formula 3.227.1 p. 320 of Gradshteyn and Ryzhik (2007). �

Proof of Proposition 7. It is known (see, e.g., Devroye 1993) that the generalized
hypergeometric distribution of type B3, given in (30) with X as in (32), is of the form

P(N = n) = �(a + c)�(b + c)�(a + n)�(b + n)

�(a)�(b)�(c)�(a + b + c + n)n! , n ∈ N0. (64)

Setting a = 1, b = 1− α + ν, and c = α in (64) produces the GS0(α, ν) distribution.
�


Proof of Proposition 9. We proceed by showing that the PMF of the variable [W ]
coincides with that of the GS0(α, ν) distribution. First, using standard conditioning
argument, write

P([W ] = n) =
∫ ∞

0
P([E/x] = n)g(x)dx, n ∈ N0, (65)

where E has the standard exponential distribution and g is the PDF of Vα,ν , given by
(36). Since

P([E/x] = n) = P(nx ≤ E < (n + 1)x) = e−nx − e−(n+1)x ,

the probability (65) takes on the form

P([W ] = n) = �(ν + 1)

�(α)�(1 − α + ν)
{Iν+n(α) − Iν+n+1(α)} ,

where

Iν(α) =
∫ ∞

0
e−νx (ex − 1)α−1dx, ν ≥ 0, 0 < α < ν + 1.

Noting that the function g(·) in (36) is a genuinePDF for each ν ≥ 0 and0 < α < ν+1,
we conclude that

Iν(α) = �(α)�(1 − α + ν)

�(ν + 1)
, ν ≥ 0, 0 < α < ν + 1. (66)

A substitution of (66) into (7), followed by some algebra, produces the GS0(α, ν)

distribution. This concludes the proof. �
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Proof of Proposition 11. To prove the result, we shall use the following sufficient
condition for this property to hold (Bondesson 1992, p. 28): A strictly decreasing
PMF {pn}, n ∈ N0, is DSD if

max
0≤n≤ j

pn+1

pn
≤ j + 2

j + 1

p j+1 − p j+2

p j − p j+1
, j ∈ N0. (67)

First, we shall show that generalized Sibuya PMF is strictly decreasing in n. To see
this, note that the ratio

pn+1

pn
= P(N = n + 1)

P(N = n)
= ν + n + 1 − α

ν + n + 2
, n ∈ N0, (68)

is strictly increasing in n ∈ N0. Indeed, the derivative of the function

g(x) = ν + 1 − α + x

ν + 2 + x
, x ∈ R+,

is positive for all x ∈ R+, which can be checked by straightforward algebra. Since the
ratio (68) converges to 1 as n → ∞, we conclude that pn+1/pn < 1 for all n ∈ N0,
showing the monotonicity of the sequence {pn}, n ∈ N0. This also shows that the
maximum on the left-hand side of (67) is attained for n = j , so that the condition (67)
becomes

p j+1

p j
≤ j + 2

j + 1

p j+1 − p j+2

p j − p j+1
, j ∈ N0. (69)

After some algebra, condition (69) can be restated as

( j + 1)

(
1 − p j+1

p j

)
≤ ( j + 2)

(
1 − p j+2

p j+1

)
, j ∈ N0. (70)

Since

( j + 1)

(
1 − p j+1

p j

)
= ( j + 1)(1 + α)

ν + 1 + ( j + 1)
, j ∈ N0,

and the function

h(x) = x(1 + α)

ν + 1 + x
= 1 + α

1 + ν+1
x

is non-decreasing in x ∈ R+, we obtain (70). This concludes the proof. �

Proof of Proposition 12. According to the remarks following the statement of Propo-
sition 12, condition (42) implies (44), which, in view of (45), is equivalent to (9). The
result now follows from Proposition 2. �

Proof of Proposition 14. For n = 1, the statement is trivial. To prove the result for
general n ∈ N, it is enough to show the following fact:
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(A) For each n ≥ 2, the conditional distribution of Tn given the n − 1 values 0 <

t1 < · · · < tn−1 < 1 of the previous jump locations has a uniform distribution on the
interval (tn−1, 1).

Indeed, if (A) is true, the PDF of the joint distribution of (T1, . . . , Tn) is easily seen
to be given by (48). This, in turn, is the joint PDF of the random vector on the right-
hand side of (47). To see this, consider a random vector (�1, . . . , �n) of successive
arrivals of standard Poisson process, so that �i = W1 + · · · + Wi , i = 1 . . . n, where
the {Wi } are IID standard exponential variables. Routine calculations show that the
PDF of (�1, . . . , �n) is of the form

r(x1, . . . , xn) = e−xn , 0 < x1 < x2 < · · · < xn .

Consider a one-to-one transformation Ti = H(�i ), i = 1, . . . , n, where H(x) =
1− e−x is the common CDF of the Wi ’s, with the inverse of H−1(t) = − log(1− t).
Since the Jacobian of the inverse transformation is the product

J = 1

(1 − t1) · · · · · (1 − tn)
,

the PDF of (T1, . . . , Tn) becomes

g(t1, . . . , tn) = r(H−1(t1), . . . , H
−1(tn)) · |J | = elog(1−tn) 1

(1 − t1) · · · · · (1 − tn)
,

which produces (48).
To establish the claim (A) above, we start with n = 2, and consider the conditional

probability P(T2 > t |T1 = t1) for t1 < t < 1. Using the law of total probability, we
obtain

P(T2 > t |T1 = t1) =
∞∑
k=2

P(R2 < 1 − t, K2 = k|R1 = r1),

where (Ki , Ri ) are the random pairs of record times and their sizes (with Ri = 1−Ti ),
connected with the sequence {nUn} (as described in Sect. 5). Note that the probability
under the above sum can be written in terms of the {Un} as

P(R2<1−t, K2=k|R1=r1)=P(2U2>r1, . . . , (k−1)Uk−1>r1, kUk <1−t),

or, equivalently, as

P(R2 < 1 − t, K2 = k|R1 = r1) = p(r1, k)
1 − t

r1
,

where

p(r1, k) =
(
1 − r1

2

)
· · ·
(
1 − r1

k − 1

)
r1
k

, k ≥ 2.
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When compared with (4), p(r1, k) is recognized as the PMF of S ∼ GS0(r1, 1) and
consequently,

P(T2 > t |T1 = t1) = 1 − t

r1

∞∑
k=2

p(r1, k) = 1 − t

1 − t1
.

Since the quantity on the right-hand side above is the survival function of the uniform
distribution on the interval (t1, 1), the result holds for n = 2. The proof in the case
n > 2 is similar.

Under the same notation and using again the law of total probability, we have

P(Tn > t |An−1)

=
∞∑

k=n−1

∞∑
m=1

P(Tn > t, Kn = k + m|Kn−1 = k)P(Kn−1 = k), tn−1 < t < 1,

where An−1 denotes the condition T1 = t1, . . . , Tn−1 = tn−1. Similarly as before, the
conditional probabilities under the double sum above can be expressed as

P(Tn > t, Kn = k + m|Kn−1 = k) = p(rn−1, k,m)
1 − t

rn−1
,

where

p(rn−1, k,m) =
(
1 − rn−1

k + 1

)
· · ·
(
1 − rn−1

k + m − 1

)
rn−1

k + m
, m ∈ N,

is recognized as the probability P(S = m) with S ∼ GS1(r1, k). Since these prob-
abilities sum up to one across the values of m ∈ N0, and so do the probabilities
P(Kn−1 = k) across the values of k ≥ n − 1, we obtain

P(Tn > t |An−1) = 1 − t

rn−1

∞∑
k=n−1

P(Kn−1 = k)
∞∑

m=1

p(rn−1, k,m)

= 1 − t

1 − tn−1
, tn−1 < t < 1.

Since the quantity on the right-hand side above is the survival function of the uniform
distribution on the interval (tn−1, 1), the result follows. �

Proof of Proposition 17. Write the estimators as

(β̂n, θ̂n) = H(M1, M2) = (H1(M1, M2), H2(M1, M2)), (71)

where

H1(y1, y2) = y2 − 2y21 + y1
y2 − 2y21 + y1 + y1(y2 − y1)

,
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H2(y1, y2) = 2(y2 − y21 )

y2 − 2y21 + y1 + y1(y2 − y1)

whenever y2 − 2y21 + y1 > 0, while otherwise, H1(y1, y2) = 0, H2(y1, y2) = 1/y1
(with y1, y2 ≥ 1). To prove consistency, apply law of large numbers to the sequence
Zi = (Xi , X2

i )
′ and conclude that the sample mean Zn = (M1, M2)

′ converges in
distribution to the population mean mZ = E(Zi ) = (μ1, μ2)

′, where

μ1 = 1 − β

θ − β
, μ2 = 1 − β

θ − β

2(1 − β) − θ

θ − 2β

are the first two moments of GS1(β, θ) distribution (and are well defined when θ >

2β). Since the function H is continuous at mZ , by continuous mapping theorem, the
sequence (71) converges in distribution to H(mZ ) = (β, θ). The last equality follows
straightforward, albeit tedious, algebra. This proves the estimators are consistent.

Next, we establish their asymptotic normality. Assuming the fourth moment of the
{Xi } is finite (θ > 4β), by the classical multivariate central limit theorem, we have

the convergence in distribution
√
n(Zn −mZ )

d→ N(0, �), where the right-hand side
denotes the bivariate normal distribution with mean vector zero and covariance matrix

� =
[

Var(Xi ) Cov(Xi , X2
i )

Cov(Xi , X2
i ) Var(X2

i )

]
.

A straightforward calculation, facilitated by Propositions 5 and 3, along with basic
properties of expectation, shows that

Var(Xi ) = θ (1 − β) (1 − θ)

(β − θ)2 (θ − 2 β)
,

Cov(Xi , X
2
i ) = θ (1 − β) (1 − θ) (4 − 5β − θ)

(β − θ)2 (2 β − θ) (3β − θ)
,

Var(X2
i ) = θ (1 − β) (1 − θ) (2 − 2 β − θ)

(
32 β2 − 13β θ − 22 β − θ2 + 10 θ

)
(β − θ)2 (2 β − θ)2 (3β − θ) (4 β − θ)

.

Thus, since the function H is differentiable atmZ , standard multivariate delta method
leads to the conclusion that, as n → ∞, the variables

√
n(H(Zn) − H(mZ )) = √

n[(β̂n, θ̂n)
′ − (θ, β)′]

converge in distribution to a bivariate normal vector with mean vector zero and covari-
ance matrix �MME = D�D′, where

D =
[

∂Hi

∂y j

∣∣∣∣
(y1,y2)=mZ

]2
i, j=1

=
[
d11 d12
d21 d22

]
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is the matrix of partial derivatives of the vector-valued function H evaluated at mZ . A
routine, rather lengthy calculation yields

d11 = (β − θ)
(
8β2 − 4β θ − 6β − θ2 + 4 θ

)
2 (1 − θ)

,

d22 = − (β − θ) (2 β − θ)2

2 (1 − β)
,

d21 = − (β − θ)
(−8β2 + 4β θ + 8β + θ2 − 6 θ

)
2 (1 − β)

,

d12 = − (β − θ) (2 β − θ)2

2 (1 − θ)
.

Finally, straightforward matrix multiplication produces the asymptotic covariance
matrix �MME . �
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