Supplementary Material for the manuscript entitled, ”Efficient and Robust Tests for Semiparametric Models” by Jingjing Wu and Rohana J. Karunamuni.

Here we present detailed proofs of Lemmas 1 to 5 used in the above paper.

Proof of Lemma 1. Note that

\[
\int (\sqrt{\hat{f}(x)} - \sqrt{f(x)})^2 dx \leq 2 \int (\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)})^2 dx + 2 \int (\sqrt{\bar{f}(x)} - \sqrt{f(x)})^2 dx \\
= 2 \int_{B_n} (\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)})^2 dx + 2 \int_{B^n} (\sqrt{\bar{f}(x)} - \sqrt{f(x)})^2 dx \\
+ 2 \int (\sqrt{\bar{f}(x)} - \sqrt{f(x)})^2 dx,
\]

where \(\bar{f}(x) = E[\hat{f}(x)] \). We have

\[
nh \text{Var}(\hat{f}(x)) = nhE(\hat{f}(x) - \bar{f}(x))^2 \leq \int \frac{1}{h}K^2 \frac{(x - y)}{h} f(y) dy \leq \|K\|_\infty \bar{f}(x)
\]

\[
E \int_{B_n} (\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)})^2 dx \leq E \int_{B_n} \frac{(\hat{f}(x) - \bar{f}(x))^2}{\bar{f}(x)} dx \leq 2\|K\|_\infty (nh)^{-1} c_n
\]

\[
E \int_{B^n} (\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)})^2 dx \leq E \int_{B^n} \left| \hat{f}(x) - \bar{f}(x) \right| dx \\
\leq \int_{B^n} \left(\text{Var}(\hat{f}(x)) \right)^{1/2} dx \leq (nh)^{-1/2} \|K\|^{1/2}_\infty \int_{B^n} (\bar{f}(x))^{1/2} dx.
\]

By a Taylor expansion, we obtain

\[
\bar{f}(x) = f(x) + \frac{\mu_2}{2} h^2 f^{(2)}(x) - \frac{1}{2} h^3 \int_0^1 (1 - t)^2 f^{(3)}(x - thu) u^3 K(u) du,
\]

where \(\mu_2 = \int u^2 K(u) du \). Then

\[
\int_{B^n} (\bar{f}(x))^{1/2} dx \leq \int_{B^n} (f(x))^{1/2} dx + (\frac{\mu_2}{2})^{1/2} h^{1/2} \int_{B^n} \left| f^{(2)}(x) \right|^{1/2} dx \\
+ (\frac{1}{2})^{1/2} h^{3/2} \int_{B^n} \left| \int_0^1 (1 - t)^2 f^{(3)}(x - thu) u^3 K(u) du \right|^{1/2} dx.
\]
It is easy to show that $0 \leq \lim_n \int_{B_n^c} \left| \int_0^1 (1 - t)^2 f^{(3)}(x - thu)u^3 K(u)du \right|^{1/2} dx \leq 0$. Therefore, we have

$$\int \left(\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)} \right)^2 dx = O_p((nh)^{-1}c_n + (nh)^{-1/2}C_{n1} + n^{-1/2}h^{1/2}C_{n2}) + o_p(n^{-1/2}h). \quad (54)$$

Define $b(x, h) = \int f(x - hu)K(u)du$. Then the first two derivatives of $b(x, h)$ w.r.t. h are given by

$$\dot{b}(x, h) = -\int f^{(1)}(x - hu)uK(u)du \quad \text{and} \quad \ddot{b}(x, h) = \int f^{(2)}(x - hu)u^2 K(u)du.$$

Note that $b(x, 0) = f(x)$ and $\dot{b}(x, 0) = 0$. The first two derivatives of $s(x, h) = \sqrt{b(x, h)}$ w.r.t. h are

$$\dot{s}(x, h) = \frac{\dot{b}(x, h)}{2\sqrt{b(x, h)}} \quad \text{and} \quad \ddot{s}(x, h) = \frac{\ddot{b}(x, h)}{2\sqrt{b(x, h)}} - \frac{\dot{b}(x, h)^2}{4b(x, h)^{3/2}}.$$

Thus, we can express

$$\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)} = s(x, h) - s(x, 0) - h\dot{s}(x, 0) = \int_0^1 (1 - t)h^2\ddot{s}(x, th)dt,$$

and by the Cauchy-Schwarz inequality and by Fubini’s theorem then we obtain

$$\int (\sqrt{\hat{f}(x)} - \sqrt{\bar{f}(x)})^2 dx = \int \left(\int_0^1 (1 - t)h^2\ddot{s}(x, th)dt \right)^2 dx \leq h^4 \int_0^1 (1 - t)^2 \int (\ddot{s}(x, th))^2 dx dt.$$

Applications of the Cauchy-Schwarz inequality yield

$$(\dot{b}(x, h))^2 \leq \int \frac{(f^{(1)})^2}{f}(x - hu)u^2 K(u)du \int f(x - hu)K(u)du \leq \left(\int \frac{(f^{(1)})^4}{f^3}(x - hu)u^4 K(u)du \right)^{1/2} \left(\int f(x - hu)K(u)du \right)^{3/2}$$

and

$$(\ddot{b}(x, h))^2 \leq \int \frac{(f^{(2)})^2}{f}(x - hu)u^4 K(u) du \int f(x - hu)K(u) du.$$
The above expressions show that
\[(\hat{s}(x, h))^2 \leq 2\left(\frac{\hat{b}(x, h)}{4b(x, h)}\right)^2 + \frac{(\hat{b}(x, h))^4}{16(b(x, h))^3} \leq \int \psi(x - hu)u^4K(u)du\]

with
\[\psi(x) = \frac{(f^{(2)}(x))^2}{2f(x)} + \frac{(f^{(1)}(x))^4}{8f^3(x)}\]

Consequently, we have by Fubini’s theorem
\[\int (\sqrt{\hat{f}(x)} - \sqrt{f(x)})^2 dx \leq h^4 \int_0^1 (1 - t)^2 \int \psi(x - thu)u^4K(u)dudxdt \leq h^4 \int \psi(x)dx \int u^4K(u)du \int_0^1 (1 - t)^2dt = O(h^4)\]

since \(\psi\) is integrable by assumptions. The proof of (28) is now completed by combining (53), (54) and (55). The proof of (29) is similar. \(\square\)

Proof of Lemma 2. Again writing \(f = f_{\theta, \eta}\), observe that

\[2 \int \hat{s}_{\theta, \eta}(x)\hat{f}^{1/2}(x)dx - \frac{1}{n} \sum_{i=1}^n \hat{s}_{\theta, \eta}(X_i) = \frac{1}{2} \int f^{(1)}(x)\left[\frac{f(x)}{f(\hat{f})} - \frac{(f^{(1/2)}(x)-f^{1/2}(x))^2}{f(x)}\right]dx - \frac{1}{n} \sum_{i=1}^n \frac{f^{(1)}(X_i)}{2f}(X_i) \]

\[= \frac{1}{2} \int f^{(1)}(x)\hat{f}(x)dx - \frac{1}{n} \sum_{i=1}^n \frac{f^{(1)}(X_i)}{f}(X_i) - \frac{1}{2} \int f^{(1)}(x)(\hat{f}^{1/2}(x) - f^{1/2}(x))^2dx \]

\[= \frac{1}{4}I_3 - \frac{1}{2}I_4, \text{ say.}\]

Using a Taylor expansion of order four with an integral form of the reminder term, by (30) and Fubini’s theorem, we obtain

\[E \int \frac{f^{(1)}}{f}(x)\hat{f}(x)dx = \int \frac{f^{(1)}}{f}(x)\left\{f(x) + \frac{h^2}{2}f^{(2)}(x) \int u^2K(u)du + \frac{h^4}{24} \int \int_0^1 (1 - t)^3 f^{(4)}(x - thu)u^4K(u)dudt\right\}dx \]

\[= \frac{h^4}{24} \int \frac{f^{(1)}}{f}(x)\left(\int \int_0^1 (1 - t)^3 f^{(4)}(x - thu)u^4K(u)dudt \right)dx \]

\[= O(h^4)\]

where we used the fact that
\[
\lim_{n \to \infty} \int f(x) \left(\int_0^1 (1-t)^3 f^{(4)}(x-thu)K(u)dudt \right) dx
= \int f(x) f^{(4)}(x) dx \left(\int_0^1 (1-t)^3 u^4 K(u) dudt \right).
\]

The last assertion can be verified using the Dominated Convergence theorem (DCT) and Fatou’s lemma; see, e.g., the proof of Lemma 4 below. Furthermore, \(E\left(\frac{1}{n} \sum_{i=1}^{n} \frac{f^{(1)}}{f}(X_i) \right) = 0 \). Thus, using (31) we obtain

\[
|E(I_3)| = O(h^4).
\]

(56)

Again by direct calculation and using the Cauchy-Schwartz inequality and a Taylor expansion, we have

\[
\text{Var}(I_3) \leq \frac{1}{n} \int \left[\int f(x) \left(\frac{1}{h} K(\frac{x-y}{h}) dx - \frac{f(y)}{f} \right)^2 f(y) dy \right] dx
\leq \frac{1}{n} \int \left(\frac{f(y)}{f} (y - uh) - \frac{f(y)}{f} \right)^2 K(u)f(y) dudy
= O(n^{-1}h^2).
\]

(57)

Therefore, from (56) and (57) we obtain \(I_3 = O_P(h^4 + n^{-1/2}h) \). Note that from (29), we have \(I_4 = O_P(h^4 + (nh)^{-1}C_{n4} + (nh)^{-1/2}C_{n3} + n^{-1/2}h^{1/2}) \). This completes the proof. \(\square \)

Proof of Lemma 3. Since \(\hat{\eta}(x) = \frac{1}{2}(\hat{f}(x + \bar{\theta}) + \hat{f}(-x + \bar{\theta}))b_n^2(x) \) is a symmetric analogue of \(\hat{f}(x + \bar{\theta})b_n^2(x) \), it is enough to prove the lemma for \(\hat{f}(x + \bar{\theta})b_n^2(x) \). Thus, in what follows we assume that \(\hat{\eta}(x) = \hat{f}(x + \bar{\theta})b_n^2(x) \). Note that
\[\int (s_{t, \tilde{\theta}}(x) - s_{t, \eta}(x))^2 dx = \int (\hat{\eta}^{1/2}(x) - \eta^{1/2}(x))^2 dx \]

\[= \int (\hat{\eta}^{1/2}(x - \tilde{\theta}) - \eta^{1/2}(x - \tilde{\theta}))^2 dx \]

\[= \int (\hat{f}^{1/2}(x)b_n^2(x - \tilde{\theta}) - \eta^{1/2}(x - \tilde{\theta}))^2 dx \]

\[\leq 4 \int (\hat{f}^{1/2}(x)b_n^2(x - \tilde{\theta}) - \eta^{1/2}(x - \theta)b_n^2(x - \tilde{\theta}))^2 dx + 4 \int (\eta^{1/2}(x - \theta)b_n^2(x - \tilde{\theta}) - \eta^{1/2}(x - \tilde{\theta}))^2 dx \]

\[+ 2 \int (\eta^{1/2}(x - \theta) - \eta^{1/2}(x - \tilde{\theta}))^2 dx \]

\[= 4I_7 + 4I_8 + 2I_9, \text{ say}. \]

From Lemma 1, we have

\[I_7 \leq O_P(h^4 + (nh)^{-1}c_n + (nh)^{-1/2}C_n1 + n^{-1/2}h^{1/2}C_n2 + n^{-1/2}h). \] (58)

By direct calculation,

\[I_8 = \int (1 - b_n^2(x - \tilde{\theta}))^2 \eta(x - \theta) dx \]

\[\leq 2 \int (1 - b_n^2(x - \theta))^2 \eta(x - \theta) dx + 2 \int (b_n^2(x - \theta) - b_n^2(x - \tilde{\theta}))^2 \eta(x - \theta) dx \]

\[\leq 2 \int_{c_n \leq |x - \theta| \leq c_n + 1} (1 - b_n^2(x - \theta))^2 \eta(x - \theta) dx + 4(\theta - \tilde{\theta})^2 \int (b_n^{(1)}(x - \theta^*))^2 \eta(x - \theta) dx \]

\[\leq C_n5 + O_P(n^{-1}), \]

(59)

last equality follows from the facts that \(\tilde{\theta} \) is \(\sqrt{n} \)-consistent, \(b_n^{(1)} \) is bounded and \(\int_{c_n \leq |x - \theta| \leq c_n + 1} (1 - b_n^2(x - \theta))^2 \eta(x - \theta) dx \leq \int_{c_n \leq |x - \theta|} \eta(x - \theta) dx \), where \(\theta^* \) is a value between \(\theta \) and \(\tilde{\theta} \). Again using
a Taylor expansion,

\[I_9 = \frac{1}{2}(\theta - \tilde{\theta})^2 \int (\eta^{(1)}(x - \theta^*))^2 (\eta(x - \theta^*))^{-1} dx \]

\[= \frac{1}{2}(\theta - \tilde{\theta})^2 \int (\eta^{(1)}(x))^2 (\eta(x))^{-1} dx \]

\[= O_P(n^{-1}) \quad (60) \]

by (32) and the \(\sqrt{n} \)-consistent property of \(\tilde{\theta} \), where again \(\tilde{\theta}^* \) is a value between \(\tilde{\theta} \) and \(\theta \). Now (33) follows from (58), (59) and (60). This completes the proof.

\[\square \]

Proof of Lemma 4. As in the proof of Lemma 3, we assume that \(\hat{\eta}(x) = \hat{f}(x + \tilde{\theta}) b_n^2(x) \).

Denote \(\hat{g}_n(x) = \sqrt{\hat{\eta}(x - \tilde{\theta})} \), \(g_n(x) = \sqrt{f(x)} b_n(x - \theta) \) and \(g(x) = \sqrt{\eta(x)} \). Then by Minkowaski inequality we have

\[
\int (\hat{s}_{t,\tilde{\eta}} - \hat{s}_{t,n})^2 dx \leq 2 \int (\hat{g}_n^{(1)}(x) - g_n^{(1)}(x))^2 dx + 4 \int (g_n^{(1)}(x) - g^{(1)}(x - \theta))^2 dx \\
+ 4 \int (g^{(1)}(x - \theta) - g^{(1)}(x - \tilde{\theta}))^2 dx \\
= 2I_{10} + 4I_{11} + 4I_{12}, \text{ say.} \quad (61)
\]

From (34) and a Taylor expansion, it follows that

\[
I_{12} = (\theta - \tilde{\theta})^2 \int (g^{(2)}(x))^2 dx = O_P(n^{-1}). \quad (62)
\]

Again by Minkowaski inequality,

\[
I_{11} \leq 4 \int (\hat{s}^{(1)}(x) - s^{(1)}(x))^2 b_n^2(x - \theta) dx + 4 \int (s^{(1)}(x))^2 (1 - b_n(x - \theta))^2 dx \\
+ 4 \int (s(x) - s(x))^2 (b_n^{(1)}(x - \theta))^2 dx + 4 \int (s(x))^2 (b_n^{(1)}(x - \theta))^2 dx \\
= 4I_{13} + 4I_{14} + 4I_{15} + 4I_{16}, \text{ say,} \quad (63)
\]
where \(s(x) = \sqrt{f(x)} \) and \(\bar{s}(x) = \sqrt{\bar{f}(x)} \). Clearly,

\[
I_{16} = \int \eta(x - \theta) (b_n^{(1)}(x - \theta))^2 \, dx \\
= \int_{|x| \geq c_n + 1} \eta(x) \, dx \\
\leq C_{n5}
\]

and

\[
I_{15} \leq \int (\sqrt{f(x)} - \sqrt{\bar{f}(x)})^2 \, dx = O(h^4),
\]

by (55). Similarly, by the definition of \(b_n(x) \) we obtain

\[
I_{14} = \int_{c_n \leq |x - \theta| \leq c_n + 1} (s^{(1)}(x))^2 (1 - b_n(x - \theta))^2 \, dx \\
\leq \int_{c_n \leq |x - \theta|} (s^{(1)}(x))^2 \, dx \\
= C_{n6}.
\]

To study \(I_{13} \), write

\[
\bar{s}^{(1)}(x) - s^{(1)}(x) = \frac{1}{s(x)} (\bar{f}^{(1)}(x) - f^{(1)}(x)) - \frac{\bar{f}^{(1)}(x)}{f(x)} \left[\frac{1}{s(x)} (\bar{s}(x) - s(x))^2 + (\bar{s}(x) - s(x)) \right],
\]

then by Minkowski inequality one obtains

\[
I_{13} \leq 2 \int \frac{1}{f(x)} (\bar{f}^{(1)}(x) - f^{(1)}(x))^2 b_n^2(x - \theta) \, dx + 4 \int (\frac{\bar{f}^{(1)}(x)}{f(x)})^2 \frac{1}{f(x)} (\bar{s}(x) - s(x))^4 b_n^2(x - \theta) \, dx \\
+ 4 \int (\frac{\bar{f}^{(1)}(x)}{f(x)})^2 (\bar{s}(x) - s(x))^2 b_n^2(x - \theta) \, dx \\
= 2I_{16} + 4I_{17} + 4I_{18}, \text{ say.}
\]

Using the proof of Lemma 1, we have

\[
\int (\frac{\bar{f}^{(1)}(x)}{f(x)})^2 (\bar{s}(x) - s(x))^2 \, dx \leq h^4 \int (\frac{\bar{f}^{(1)}(x)}{f(x)})^2 \int \int_0^1 (1 - t)^2 \psi(x - thu) u^4 K(u) \, du \, dt \, dx.
\]

By the DCT, one obtains
\[
\int_0^1 \int_0^1 (1-t)^2 \psi(x-thu)u^4 K(u)dudt \rightarrow \psi(x) \int_0^1 (1-t)^2 u^4 K(u)dudt,
\]
as \(n \rightarrow \infty\), and hence, by Fatou’s lemma, it follows that

\[
\int \int_0^1 (1-t)^2 \psi(x-thu)u^4 K(u)dudt dx \leq \lim_{n \rightarrow \infty} \int \int_0^1 (1-t)^2 \psi(x-thu)u^4 K(u)dudt dx.
\]

since \(\bar{f}^{(1)}/f \rightarrow f^{(1)}/f\) as \(n \rightarrow \infty\) for each \(x\). On the other hand,

\[
\lim_{n \rightarrow \infty} \int \int_0^1 (\bar{f}^{(1)}/f)^2 \psi(x-thu)u^4 K(u)dudt dx \leq \int \int_0^1 (f^{(1)}/f)^2 \psi(x-thu)u^4 K(u)dudt dx.
\]

From the relations (68) and (69), we now obtain

\[
\lim_{n \rightarrow \infty} \int \int_0^1 (\bar{f}^{(1)}/f)^2 \psi(x-thu)u^4 K(u)dudt dx = \int \int_0^1 (f^{(1)}/f)^2 \psi(x-thu)u^4 K(u)dudt dx,
\]

and thus from (68) we have

\[
I_{18} \leq \int (\bar{f}^{(1)}/f)^2 (\bar{s}(x) - s(x))^2 dx = O(h^4) + o(h^4).
\]

Since \((\bar{s}(x) - s(x))^2 \leq (\sqrt{\bar{f}(x)} - \sqrt{f(x)})^2\), a similar argument show that

\[
I_{17} \leq O(h^4) + o(h^4),
\]

provided \(f^{(2)}\) is bounded and (36) hold. Similarly, we can show that

\[
I_{16} \leq O(h^4) + o(h^4),
\]
when \(f^{(3)} \) is bounded and (37) hold. From Lemma 3 of Beran (1978), we also have
\[
I_{10} = \int (\hat{g}_n^{(1)}(x) - g_n^{(1)}(x))^2 dx = O_P((nh^3)^{-1}c_n). \tag{74}
\]

The proof of (38) is now completed by combining (61) to (74).

\[\square\]

Proof of Lemma 5. By (40) and (42), we obtain
\[
\int (\hat{p}_n(x) - \hat{s}_{t,\eta}(x))^2 dx
\]
\[
= \int_{\gamma_n \leq |x-t| \leq \alpha_n} (\hat{p}_n(x) - \hat{s}_{t,\eta}(x))^2 dx + \int_{|x-t| < \gamma_n} \hat{s}_{t,\eta}^2(x)dx + \int_{|x-t| > \alpha_n} \hat{s}_{t,\eta}^2(x)dx \tag{75}
\]
\[
= \frac{1}{4} \int_{\gamma_n}^{\alpha_n} \left(\frac{\hat{g}_n^{(1)}(s)}{\hat{g}_n^{1/2}(s)} - \frac{g^{(1)}(s)}{g^{1/2}(s)} \right)^2 ds + \frac{1}{4} \int_{0}^{\gamma_n} \left[\frac{g^{(1)}(s)}{g(s)} \right]^2 ds + \frac{1}{4} \int_{\alpha_n}^{+\infty} \left[\frac{g^{(1)}(s)}{g(s)} \right]^2 ds.
\]

Let \(\tilde{g}_n(s) = E\hat{g}_n(s) \). Obviously
\[
\int_{\gamma_n}^{\alpha_n} \left(\frac{\hat{g}_n^{(1)}(s)}{\hat{g}_n^{1/2}(s)} - \frac{g^{(1)}(s)}{g^{1/2}(s)} \right)^2 ds \leq 2 \int_{\gamma_n}^{\alpha_n} \left(\frac{\hat{g}_n^{(1)}(s)}{\hat{g}_n^{1/2}(s)} - \frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n^{1/2}(s)} \right)^2 ds + 2 \int_{\gamma_n}^{\alpha_n} \left(\frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n^{1/2}(s)} - \frac{g^{(1)}(s)}{g^{1/2}(s)} \right)^2 ds. \tag{76}
\]

By the arguments similar to those used in the proof of Lemma 3 of Beran (1978) and noting that \(\inf_{s \in [\gamma_n, +\infty)} |\beta_1(s)\delta_0(s) - \beta_0(s)\delta_1(s)| \geq \gamma_0 \), we deduce that
\[
\int_{\gamma_n}^{\alpha_n} \left(\frac{\hat{g}_n^{(1)}(s)}{\hat{g}_n^{1/2}(s)} - \frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n^{1/2}(s)} \right)^2 ds = O_p((nh^3)^{-1}\alpha_n). \tag{77}
\]

By direct calculations,
\[
\frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n^{1/2}(s)} - \frac{g^{(1)}(s)}{g^{1/2}(s)} = \frac{\tilde{g}_n^{(1)}(s) - g^{(1)}(s)}{\tilde{g}_n^{1/2}(s)} - \frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n^{1/2}(s)} \left[\frac{1}{g^{1/2}(s)}(\hat{g}_n^{1/2}(s) - g^{1/2}(s))^2 + (\hat{g}_n^{1/2}(s) - g^{1/2}(s))^2 \right].
\]
Let \(\beta(s) = \beta_1(s)\delta_0(s) - \beta_0(s)\delta_1(s) \). Then by a Taylor expansion, we have

\[
\tilde{g}_n^{(1)}(s) = \frac{1}{h^2\beta(s)} \int_0^{+\infty} \left[\beta_0(s)K'(\frac{s-y}{h}) - \delta_0(s)K(\frac{s-y}{h}) \right] g(y) dy \\
= \frac{1}{h\beta(s)} \int_{-\infty}^{s/h} [\beta_0(s)K'(u) - \delta_0(s)K(u)] g(s-hu) du \\
= g^{(1)}(x) + \frac{h}{\beta(s)} \int_{-\infty}^{s/h} u^2 [\beta_0(s)K'(u) - \delta_0(s)K(u)] \int_0^1 (1 - \tau)g^{(2)}(s - \tau hu) d\tau du.
\]

Then under the assumptions of Lemma 5, using a proof similar to that of (70) and noting that
\(0 \leq \beta_0(s) \leq \int_{-\infty}^{+\infty} K(s) ds = 1 \) and \(0 \leq \delta_0(s) < +\infty \), we obtain

\[
\int_{\gamma_n} \frac{[\tilde{g}_n^{(1)}(s) - g^{(1)}(s)]^2}{g(s)} ds = O(h^2). \tag{78}
\]

Since
\[
|\tilde{g}_n^{(1)}(s)| \leq \frac{\beta_0(s) \sup_s |K'(s)/K(s)| + \delta_0(s)}{h\gamma_0} \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{s-Y_i}{h}\right)
\]
and \(\beta_0(s) \geq 1/2 \), it follows that \(\sup_{s \in [\gamma_n, +\infty)} \left| \frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n(s)} \right| \leq \frac{M_1}{h} \) for some positive constant \(M_1 \). Using a Taylor expansion, we have

\[
\tilde{g}_n(s) = \frac{1}{h\beta_0(s)} \int_0^{+\infty} K(\frac{s-y}{h}) g(y) dy \\
= g(s) - \frac{h\beta_1(s)}{\beta_0(s)} g^{(1)}(s) + \frac{h^2}{\beta_0(s)} \int_{-\infty}^{s/h} u^2 K(u) \int_0^1 (1 - \tau)g^{(2)}(s - \tau hu) d\tau du.
\]

Therefore, under the assumptions of Lemma 5, we obtain that

\[
\int_{\gamma_n}^{\alpha_n} \left(\frac{\tilde{g}_n^{(1)}(s)}{\tilde{g}_n(s)} \right)^2 \frac{1}{g(s)} \left(\tilde{g}_n^{1/2}(s) - g^{1/2}(s) \right)^4 ds \leq \frac{M_2}{h^2} \int_{\gamma_n}^{\alpha_n} \frac{1}{g(s)} (\tilde{g}_n(s) - g(s))^2 ds = O(h^2), \tag{79}
\]

where \(M_2 \) is a positive constant. Similarly

\[
\int_{\gamma_n}^{\alpha_n} (\tilde{g}_n^{1/2}(s) - g^{1/2}(s))^2 ds \leq \int_{\gamma_n}^{\alpha_n} \frac{1}{g(s)} (\tilde{g}_n(s) - g(s))^2 ds = O(h^4). \tag{80}
\]
Combining (79) and (80), we conclude that

\[
\int_{\gamma_n}^{\alpha_n} \left(\frac{\tilde{g}_n^{(1)}(s)}{g_n^{1/2}(s)} - \frac{g^{(1)}(s)}{g^{1/2}(s)} \right)^2 ds = O(h^2). \tag{81}
\]

Now (43) follows from (74)-(76) and (81), and the proof of Lemma 5 is complete.