Supplementary Material for the manuscript entitled, ” Efficient and Robust Tests
for Semiparametric Models” by Jingjing Wu and Rohana J. Karunamuni.

Here we present detailed proofs of Lemmas 1 to 5 used in the above paper.

Proof of Lemma 1. Note that
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where f(z) = E[f(z)]. We have
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By a Taylor expansion, we obtain
f(z) = f(z)+ M2h2 - —h3// (1—t)*f¥ (2 — thu)u’ K (u)dtdu,
where p1o = [ w?K(u)du. Then
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It is easy to show that 0 < lim,, [, ‘f fol(l —1)2fO) (@ — thu)u’ K (u)dudt|  dx < 0. Therefore,

we have

/ (\/ f(x) — \/f(x))Q dx = Op((nh)tc, + (nh)_1/2C’n1 + n_1/2h1/2C’n2) + op(n_l/Qh). (54)

Define b(z, h) = [ f(z — hu)K (u) du. Then the first two derivatives of b(z, h) w.r.t. h are given
by
b(z,h) = /f (z — hu)u K (u)du and b(zx, h) /f (x — hu)u*K (u) du.

Note that b(z,0) = f(z) and b(z,0) = 0. The first two derivatives of s(z, h) = \/b(z, h) w.r.t.

h are

and §(z,h) = bz, h) (b, h))?
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Thus, we can express

\/ f(@) =/ f(x) = s(x,h) — s(x,0) — hs(x,0) = /0 (1 —t)h*5(x, th) dt,

and by the Cauchy-Schwarz inequality and by Fubini’s theorem then we obtain
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Applications of the Cauchy-Schwarz inequality yield
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The above expressions show that

with

Consequently, we have by Fubini’s theorem
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since 1) is integrable by assumptions. The proof of (28) is now completed by combining (53),
(54) and (55). The proof of (29) is similar. O

Proof of Lemma 2. Again writing f = fy,, observe that
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Using a Taylor expansion of order four with an integral form of the reminder term, by (30) and

Fubini’s theorem, we obtain
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where we used the fact that
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The last assertion can be verified using the Dominated Convergence theorem (DCT) and Fatou’s
lemma; see, e.g., the proof of Lemma 4 below. Furthermore, E(L " | %(Xl)) = 0. Thus,

using (31) we obtain

|E(I3)] = O(h*). (56)

Again by direct calculation and using the Cauchy-Schwartz inequality and a Taylor expansion,

we have
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Therefore, from (56) and (57) we obtain I3 = Op(h* +n~1/2h). Note that from (29), we have

= Op(h* + (nh)"'Cphy + (nh)~Y2Cps +n~1/2h1/2). This completes the proof. O

Proof of Lemma 3. Since 7(x) = %(f(x +0) 4 f(—x + 0))b2(z) is a symmetric analogue of
f(x + 0)b2(x), it is enough to prove the lemma for f(z + 6)b2(x). Thus, in what follows we

assume that 7(z) = f(x + 0)b%(z). Note that
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= 4[7 + 4]8 + 2[9, say.
From Lemma 1, we have
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By direct calculation,
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last equality follows from the facts that 6 is\/n-consistent, bV is bounded and fcn <o <ent1 (1—

V2 (x —0))’n(x —0)de < Jo<to_g (@ — 0)dz, where 6" is a value between ¢ and 0. Again using



a Taylor expansion,

L= 50-07 [0 6200 - ) da
= 5007 [6O@) ) s (60)
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by (32) and the y/n-consistent property of 0, where again 0* is a value between # and 6. Now
(33) follows from (58), (59) and (60). This completes the proof. O

Proof of Lemma 4. As in the proof of Lemma 3, we assume that 7j(z) = f(x + 0)b2 ().

Denote §,(2) = 1/7(z — 0), gn(2) = \/f(x)bp(x — 0) and g(z) = \/n(z). Then by Minkowaski

inequality we have
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= 2[10+4In+4[12, say.

From (34) and a Taylor expansion, it follows that
Ly = (9—5)2/(9(2)(56))26156 = Op(n). (62)

Again by Minkowaski inequality,
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where s(z) = /f(x) and 5(z) = v/ f(z). Clearly,
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by (55). Similarly, by the definition of b, (z) we obtain

Ly = / (s (@))*(1 = bu(x — 0))°dz
en<|z—0|<cp+1

< (s (x))dx (66)
en<la—0)
— Cnﬁ.
To study I3, write
_ £(1)
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then by Minkowaski inequality one obtains
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Using the proof of Lemma 1, we have
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By the DCT, one obtains
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as n — 0o, and hence, by Fatou’s lemma, it follows that
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since fM/f — f1/f as n — oo for each z. On the other hand,
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From the relations (68) and (69), we now obtain

A1) (o 1
nhg)lo (— (>))2//0 (1 —t)*)(z — thu)u* K (u)dudtdz
(z)

@
_ / (f;l()m) 12(z) / /0 (1 — 12t K () ductdr,

and thus from (68) we have
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Since (5(z) — s(z))* < (V f(z) - \/f(x))2, a similar argument show that
Liy < O(h") + o(h"),
provided f® is bounded and (36) hold. Similarly, we can show that
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when f® is bounded and (37) hold. From Lemma 3 of Beran (1978), we also have

Lo — / (6 () — V()2 de
= Op((nh*) e,

The proof of (38) is now completed by combining (61) to (74).

Proof of Lemma 5. By (40) and (42), we obtain
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By the arguments similar to those used in the proof of Lemma 3 of Beran (1978) and noting

that infscpy, +o0)|B1(5)d0(s) — Bo(5)d1(s)| > Yo, we deduce that
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By direct calculations,
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Let B(s) = B1(s)do(s) — Bo(s)d1(s). Then by a Taylor expansion, we have
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Then under the assumptions of Lemma 5, using a proof similar to that of (70) and noting that

0 < fBo(s) < f_Jr;o K(s)ds =1 and 0 < §y(s) < 400, we obtain
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and fo(s) > 1/2, it follows that supycp,, | o |§§(:L;(§)| < 2 for some positive constant M;. Using

a Taylor expansion, we have
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Therefore, under the assumptions of Lemma 5, we obtain that
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Combining (79) and (80), we conclude that

an  ~(1) s (g ) )
[ G - s = ov)

Now (43) follows from (74)-(76) and (81), and the proof of Lemma 5 is complete.
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