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Abstract In this paper, we investigate a hypothesis testing problem in regular semi-
parametric models using the Hellinger distance approach. Specifically, given a sample
from a semiparametric family of ν-densities of the form { fθ,η : θ ∈ �, η ∈ �}, we
consider the problem of testing a null hypothesis H0 : θ ∈ �0 against an alternative
hypothesis H1 : θ ∈ �1, where η is a nuisance parameter (possibly of infinite dimen-
sional), ν is a σ -finite measure, � is a bounded open subset of Rp, and � is a subset
of some Banach or Hilbert space. We employ the Hellinger distance to construct a test
statistic. The proposed method results in an explicit form of the test statistic. We show
that the proposed test is asymptotically optimal (i.e., locally uniformly most powerful)
and has some desirable robustness properties, such as resistance to deviations from
the postulated model and in the presence of outliers.
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1 Introduction

In this paper, we investigate optimal and robust tests for semiparametric models.
Specifically, let (X ,A, ν) be a σ -finite measure space and f be a density with respect
to (w.r.t.) the measure ν. Suppose that the observations X1, . . . , Xn are independent
and identically distributed (i.i.d) random variables from a distribution with ν-density
belong to the (regular) semiparametric family given by

F = { fθ,η : θ ∈ �, η ∈ �}, (1)

where θ is the parameter of interest and a η is a nuisance parameter, which is possibly
of infinite dimensional. We assume that � is a bounded open subset of Rp and � is a
subset of some Banach space B with a norm ‖·‖B . We consider the problem of testing
a null hypothesis H0 : θ ∈ �0 against an alternative hypothesis H1 : θ ∈ �1, where
�i ⊆ �, i = 0, 1.

Numerous models fall into class (1), and well-known examples include semipara-
metric mixture models (Lindsay 1995; van der Vaart 1996; Murphy and van der Vaart
2000), errors-in-variables models (Bickel and Ritov 1987; Murphy and van der Vaart
1996), regression models (van der Vaart 2000) and Cox model for survival analysis
(Cox 1972). More references, examples and an overview of the main ideas and tech-
niques of semiparametric inference can be found in the monographs of Bickel et al.
(1998), van der Vaart (2000) and Kosorok (2008).

The goal of semiparametric inference is to construct efficient estimators and optimal
test statistics for evaluating semiparametric model parameters. The most common
approach to efficient estimation and optimal testing is based on modifications of the
likelihood approach. Thesemodifications are necessary due to complications resulting
from the presence of an infinite-dimensional nuisance parameter in the model (1).
In general, the presence of this nuisance parameter induces a loss of efficiency. An
estimator/test that remains asymptotically efficient/optimal in these conditions is called
adaptive (Bickel 1982).

One of the most useful methods of constructing test statistics for complicated mod-
els is the likelihood ratio method, mainly because it gives an explicit definition of the
test statistic and an explicit form for the rejection region. It is known that most likeli-
hood based tests in general are asymptotically optimal but not robust against outliers
in the data and for model misspecification (Huber and Ronchetti 2009, Ch. 13). On
the other hand, optimality of test statistics is closely related to efficient estimation;
asymptotically efficient estimators generally yield asymptotically optimal tests and
confidence bands (Pfanzagl and Wefelmeyer 1982). A similar assertion, however, is
not certain about robustness of testing procedures, i.e., a robust test based on a “robust
estimator” may not necessarily be fully robust (Huber and Ronchetti 2009, Ch. 12). It
has been proved that minimum Hellinger distance (MHD) estimators for parametric
models are efficient under the model and have excellent robustness properties (Beran
1977; Simpson 1987; Lindsay 1994). Recently, Wu and Karunamuni (2012, 2015)
have constructed efficient MHD and profile MHD estimators for the semiparametric
family F defined in (1). Thus, their estimators can be employed to construct a test
statistic for testing H0 : θ ∈ �0 against H1 : θ ∈ �1 for the family F , among oth-
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Efficient robust tests 763

ers. However, most MHD estimators are implicitly defined and computation of such
estimators requires an iterative algorithm.

In this paper, we follow a different approach. Our idea is to treat the hypothesis
testing problem as a model selection problem. By implementing a modified version
of the “Hellinger information criterion” (HIC) introduced in Woo and Sriram (2006),
we construct a test statistic for testing H0 : θ ∈ �0 against H1 : θ ∈ �1. That is, we
first form a test statistic using the proposed HIC for the null and local (contiguous)
alternative hypotheses. Then, this approach is modified to obtain a test statistic for
composite alternatives, see Sect. 2 below for specific details. The HIC of Woo and
Sriram (2006, 2007) was defined specifically for mixture models and is motivated
by the classical Akaike-type criterion for model selection and the third approach
of Poland and Shachter (1994, Sec. 4) for model selection involving the Kullback–
Leibler distance. Such a procedure is intuitively reasonable and more appropriate
since a hypothesis testing problem is basically a model selection problem in a broad
sense. Instead of the HIC, other information criteria can also be used, such as the L2
information criterion of Umashanger and Sriram (2009).

Asymptotically, the likelihood ratio technique measures a certain distance between
the maximum likelihood estimators under the null and full hypotheses; see, e.g., van
der Vaart (2000). Advantages of the proposedmethod are clear though for two reasons.
First, it does not require a separate construction of anMHD estimator, which is itself a
formidable task in many semiparametric models. Second, the resulting test statistic is
explicitly defined, a clear preference in applications. The key question then is whether
this method leads to an optimal and robust test statistic for the semiparametric family
F . We investigate this problem in this paper and obtain a very positive result. Specifi-
cally, we construct a test statistic explicitly and show that it is asymptotically optimal
(i.e., locally uniformly most powerful). Moreover, the proposed test statistic has some
desirable robustness properties such as resistance to outliers and model misspecifica-
tion. The asymptotic optimality and robustness combined with an explicit form make
the proposed test statistic appealing in practice. Detailed constructions of the proposed
Hellinger distance test statistic are also exhibited for a symmetric location family and
a scale mixture model, as special cases of (1).

Stather (1981), Simpson (1989) and Basu et al. (2013, 2016) have developed test
procedures based on the Hellinger distance for parametric models. In general, sta-
tistical inference for parametric models based on divergence measures, in which the
Hellinger distance is a special case, see monographs of Pardo (2006) and Basu et al.
(2011). MHD estimators for special cases of the semiparametric models (1) have been
studied in Beran (1978), Wu (2007), Wu and Karunamuni (2009), Karunamuni and
Wu (2009, 2011), Wu et al. (2010) and Tang and Karunamuni (2013). For the general
semiparametric models (1), see Wu and Karunamuni (2012, 2015) for MHD and pro-
fileMHD estimators. However, to the best of our knowledge, Hellinger distance-based
tests for general semiparametric models have not been investigated in the literature
yet.

This paper is organized as follows. Section 2 presents the proposed test statistic
for the semiparametric models (1). The asymptotic properties of the test statistic and
some discussions are given in Sect. 3. Some robustness properties of the test statistic
are discussed in Sect. 4. Detailed constructions of the proposed test statistic for two
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764 J. Wu, R. J. Karunamuni

examples are given in Sect. 5. A Monte Carlo study and some concluding remarks are
given in Sects. 6 and 7, respectively.

2 Test statistic

Throughout we assume that the modelF defined by (1) is identifiable in the sense that
‖ f 1/2θ1,η1

− f 1/2θ2,η2
‖ = 0 implies θ1 = θ2 and η1 = η2, where ‖ · ‖ denotes the L2-norm

and L2(ν) denote the collection of all measurable functions that are square integrable
w.r.t. measure ν, i.e., L2(ν) = { f : ∫ f 2dν < ∞}. We first introduce some properties
of the parametric family Fg = { ft,g : t ∈ �} for each g ∈ �. We assume that Fg

identifiable in the sense that ‖ f 1/2θ1,g
− f 1/2θ2,g

‖ = 0 implies θ1 = θ2. We set st,g = f 1/2t,g
for t ∈ �. If the map t �→ st,g is continuous in L2(ν), then we say Fg is Hellinger
continuous. We say Fg is Hellinger differentiable at an interior point θ of � if the
map t �→ st,g is differentiable at θ : there is a vector ṡθ,g with components in L2(ν)

such that ∥
∥
∥sθ+t,g − sθ,g − t�ṡθ,g

∥
∥
∥ = o(|t |) (2)

as t → 0, where t� is the transpose of vector t ∈ � and |t | = ∑ |ti | denotes the
l1-norm of vector t ∈ R

p. In this case, we call Iθ,g = 4
∫
ṡθ,gṡ�

θ,g dν the information

matrix at θ and �̇θ,g = 2ṡθ,g/sθ,g the score function at θ . Since 2
∫
ṡθ,gsθ,g dν is the

gradient of the constant map t �→ (st,g, st,g) = 1 at θ , ṡθ,g and sθ,g are orthogonal, i.e.,∫
ṡθ,gsθ,g dν = 0. We say Fg is twice Hellinger differentiable at θ if Fg is Hellinger

differentiable in a neighborhood of θ and there is a matrix s̈θ,g with entries in L2(ν)

such that ∥
∥ṡθ+t,g − ṡθ,g − s̈θ,gt

∥
∥ = o(|t |). (3)

We say Fg is Hellinger-regular if Fg is identifiable, Hellinger continuous and twice
Hellinger differentiable at each interior point θ of�with positive definite information
matrix Iθ,g .

Note that the semiparametric family (1) can be written as a union of the parametric
models Fg = { ft,g : t ∈ �}, g ∈ �. For g ∈ �, define

�̇g =
{
h ∈ B : lim

n→∞
∥
∥
∥n1/2(gn − g) − h

∥
∥
∥
B

= 0 for some sequence {gn} ⊆ �
}

.

(4)
For each interior point θ of �, γ and g in � and each sequence tn in � converging to
θ , suppose that there exist bounded linear operators At,g : B �→ L2(ν) satisfying

‖stn ,γ − stn ,g − Atn ,g(γ − g)‖ = o(‖γ − g‖B) (5)

and

sup
h∈K

‖Atn ,gh − Aθ,gh‖2 → 0
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Efficient robust tests 765

for any compact subset K of B. We say the family F is adaptive at (t, g) if

∫
ṡt,g At,gh dν = 0, h ∈ �̇g.

Let H( f, g) = ∥
∥ f 1/2 − g1/2

∥
∥ denote the Hellinger distance between two densities

f and g. Then, H2( f, g) = 2 − 2 < f 1/2, g1/2 >. Suppose X1, . . . , Xn are i.i.d
random variables with common density f, and let f̂ denote a nonparametric density
estimator of f based on X1, . . . , Xn . Then, following the HIC of Woo and Sriram
(2006, 2007), we propose an HIC as follows:

H IC( f, f̂ ) = H2( f, f̂ ) + n−1α(n)m f ,

where α(n) depends only on n andm f is the number of parameters in f . If one wishes
to test H0 : f = f0 against H1 : f = f1, then the difference

H IC( f0, f̂ ) − H IC( f1, f̂ ) (6)

can be used as a test statistic, and H0 is rejected for large values of the preceding
difference. One can also employ the difference H2( f0, f̂ ) − H2( f1, f̂ ) for testing
H0 : f = f0 against H1 : f = f1; see, e.g., Stather (1981) and Basu et al. (2013).

Now suppose that f is a member of the semiparametric familyF defined by (1).We
consider the problem of testing null hypothesis H0 : θ = θ0 against a local alternative
hypothesis of the form H1 : θn = θ0 +βen−1/2 for some known value θ0 ∈ �, where
β > 0 is a fixed number, e denotes the p × 1 unit length Euclidean vector and n
is the sample size. Note that H1 represents a shrinking “contiguous alternative” in a
n−1/2-neighborhood of θ0. Then, the difference (6) now takes the form

∥
∥
∥ f

1/2
θ0,η

− f̂ 1/2
∥
∥
∥
2 −

∥
∥
∥ f

1/2
θn ,η

− f̂ 1/2
∥
∥
∥
2

(7)

with θn = θ0 + βen−1/2. Note that the difference in (7) is equal to

2
∫

(sθn ,η − sθ0,η) f̂
1/2dν. (8)

If the family Fη = { fθ,η : θ ∈ �} is Hellinger-regular, then the map t → st,η is
differentiable with derivative ṡt,η, and thus, the expression in (8) can be written as

2βn−1/2e�
∫

ṡθ0,η f̂
1/2dν + o(n−1/2).

The preceding expression suggests that the use of constant multiples of
∫
ṡθ0,η f̂

1/2dν
as an alternative to the expression (8). Let G denote the space of all densities w.r.t. the
dominating measure ν, and define a functional Tη : G → R

p by
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766 J. Wu, R. J. Karunamuni

Tη(g) = 4
∫

ṡθ0,ηg
1/2dν. (9)

Then, Tη( f̂ ) is equal to 4
∫
ṡθ0,η f̂

1/2dν. Moreover, Tη( f̂ ) does not depend on β and,
therefore, a statistic based on it can be used as a test statistic for testing H0 : θ = θ0
against the composite hypothesis H1 : θ > θ0 for θ close to θ0, provided of course η is
known, θ0 is an interior point of � and � is an open subset of R. This is precisely the
situationwhere the locallymost powerful (LMP) test is implemented (Lehmann 1997).
In application, however, ṡθ0,η must be replaced by an estimator since η is unknown,
and this results in a test statistic of the form

4
∫

ρ̂θ0 f̂
1/2dν, (10)

where ρ̂θ0 is an estimator of ṡθ0,η. We will show that the statistic in (10) and the LMP
test statistic are asymptotically equivalent under some regularity conditions. Thus, the
statistic given by (10) and the LMP statistic share some (asymptotic) optimality prop-
erties. The advantage of the test statistic (10) is that it possesses excellent robustness
properties, which the LMP test statistic generally lacks.

3 Asymptotics

In this section, we establish asymptotic properties and derive the power function of
the proposed test statistic. First we obtain a stochastic expansion of 4

∫
ρ̂θ0 f̂

1/2dν
defined by (10). The proofs of the theorems stated below are given in Appendix. In
what follows, asymptotic results are as n → ∞.

Theorem 1 Assume that the parametric family Fη = { ft,η : t ∈ �} is Hellinger-
regular for each η ∈ �. Let {an} be a sequence of positive numbers such that an =
o(n−1/2) as n → ∞. Suppose that the density estimator f̂ satisfies

∫
(
ŝ − sθ0,η

)2
dν = OP (an) (11)

and ∫
ṡθ0,η ŝ dν = 1

n

n∑

i=1

ṡθ0,η
2sθ0,η

(Xi ) + oP (n−1/2), (12)

where ŝ = f̂ 1/2. Suppose that ρ̂θ0 satisfies

∫
(ρ̂θ0 − ṡθ0,η)

2dν = oP ((nan)
−1) (13)

and ∫
ρ̂θ0sθ0,ηdν = oP (n−1/2). (14)
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Efficient robust tests 767

Then we have

4
∫

ρ̂θ0 ŝ dν = 1

n

n∑

i=1

�̇θ0,η(Xi ) + oP (n−1/2). (15)

The next theorem establishes the asymptotic normality of 4
∫

ρ̂θ0 ŝ dν.

Theorem 2 Assume that the conditions of Theorem 1 hold. Then we have

(i) under H0 (i.e., X1, . . . , Xn are i.i.d. with density fθ0,η)

4n1/2
∫

ρ̂θ0 ŝ dν
D−→ N (0, Iθ0,η);

(ii) under H1 (i.e., X1, . . . , Xn are i.i.d. with density fθn ,η)

n1/2
[

4
∫

ρ̂θ0 ŝ dν − Tη( fθn ,η)

]
D−→ N (0, Iθ0,η),

where Iθ0,η = 4
∫
ṡθ0,η ṡ

�
θ0,η

dν, the information matrix at θ0, and Tη is given by (9).

Frompart (i) ofTheorem2, it follows that the sequence Ŵn := 4n1/2 Î−1/2
∫

ρ̂θ0 ŝ dν
converges in distribution to the N (0, Ip) distribution, where Î denotes a consistent
estimator of Iθ0,η and Ip denotes the p-dimensional identity matrix. For univariate θ,

then the null hypothesis H0 would be rejected if Ŵn exceeds zα, and such a test is
asymptotically of level α, where P(Z ≥ zα) = α with Z ∼ N (0, 1) and 0 < α < 1.
For p-variate θ , one can use the test statistic Ŵ T

n Ŵn and rejects H0 if Ŵ T
n Ŵn > χ2

α,p,

where P(χ2
p ≥ χ2

α,p) = α with χ2
p denoting a chi-square random variable with p

degrees of freedom.
The asymptotic quality of a sequence of tests may be judged from the limit of the

sequence of local power functions. The power function of the test statistic Ŵn in the
univariate θ case can be written as

πn(θn) = Pθn

{
Ŵn > zα

}

= Pθn

{

4n1/2 Î−1/2
∫

ρ̂θ0 ŝ dν > zα

}

= Pθn

{

n1/2 Î−1/2
[

4
∫

ρ̂θ0 ŝ dν − Tη( fθn ,η)

]

> zα − n1/2 Î−1/2Tη( fθn ,η)

}

.

(16)

Since Fη is Hellinger-regular, we can write

Tη( fθn ,η) = 4
∫

ṡθ0,ηsθn ,ηdν

= 4
∫

ṡθ0,η
[
sθ0,η + n−1/2βe�ṡθ0,η + �n

]
dν

= n−1/2β Iθ0,ηe + o(n−1/2), (17)
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768 J. Wu, R. J. Karunamuni

where the last equality follows from
∫
ṡθ0,ηsθ0,η dν = 0 and

∣
∣
∫
ṡθ0,η�ndν

∣
∣ ≤

∥
∥ṡθ0,η

∥
∥ ‖�n‖ = o(n−1/2) by the Cauchy–Schwarz inequality. Then, since Î → Iθ0,η

in probability as n → ∞, we obtain from (16) and (17) that

πn(θn) → 1 − �
(
zα − β I 1/2θ0,η

)
, (18)

where � denotes the cumulative distribution function of N (0, 1) distribution.
When η is known, the LMP test statistic (n Î )−1/2∑ �̇θ0,η(Xi ) in the univariate

case has the same asymptotic power function as the right-hand side of (18) for testing
H0 : θ = θ0 against H1 : θn = θ0+βn−1/2,where �̇θ0,η denotes the score function for
θ0; see, e.g., Lehmann (1999). Thus, the LMP statistic and the proposed test statistic
Ŵn are asymptotically equally efficient. It is known that the LMP test is asymptotically
(locally) optimal if η is known, i.e., the LMP test is asymptotically (locally) uniformly
most powerful. In this sense, Ŵn is adaptive since Ŵn operates under the assumption
that η is unknown. The concept of adaptivity is generally reserved for estimators
in semiparametric families. It means that one can estimate the parameter θ as well
asymptotically not knowing the nuisance parameter η as knowing η (Bickel 1982). Due
to the fact that η is unknown in the present setup, the LMP test statistic is not available
in practice. Nevertheless, tests based on the likelihood ratio and profile likelihood
ratio statistics have been developed in this context that are asymptotically optimal in
the “semiparametric sense,” see Murphy and van der Vaart (1996, 1997, 2000) and
Banerjee (2000, 2005), among others.

Using a Monte Carlo study, we will show that the statistic Ŵn performs better
than the likelihood ratio test statistic in the presence of outliers. Theoretically, we
will also observe that the statistic Ŵn is not affected when the chosen model is only
approximately correct; this would be the case, for example, if a few observations are
not consistent with the chosen model. In other words, Ŵn would be robust against
deviations from the postulated model as well as in the presence of outliers, which the
likelihood ratio and LMP test statistics generally lack. Thus, Ŵn would be an attractive
alternative to the likelihood ratio andLMP test statistics in practicewhen the postulated
model may not be totally correct and when the outliers seem to be present in the data.

As Lehmann (1999), van der Vaart (2000) and others have argued, it is enough to
consider an alternative hypothesis in a small neighborhood of the null hypothesis since
any reasonable test can discriminate well between the null hypothesis and a “distant”
alternative, particularly if the number of observations is large. In other words, interest
tends to focus on distinguishing the hypothetical value θ0 fromnearby values of θ when
dealing with large samples. If the true value is some distance from θ0, a large sample
will typically reveal this so strikingly that a formal testmay be unnecessary.A good test
proves itself having power in discriminating “close” alternatives. Thus, such a local
optimality property is of considerable importance (Lehmann 1999). Furthermore, it is
well known in the literature that tomake an informative comparison between sequences
of tests, one should study the performance of tests in problems that becomes harder as
more observations become available. One way of making a testing problem harder is
to choose null and alternative hypotheses closer to each other. See Chapter 14 of van
der Vaart (2000) for more discussions on above points.
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It is appropriate to make a few comments here about the estimators ŝ and ρ̂θ0

used in Theorems 1 and 2 above. For ŝ, one can employ an estimator based on the
empirical density and a kernel-type density estimator in the discrete and continuous
cases, respectively. For ρ̂θ0 , two types of estimators can be constructed: “plug-in”-
and “direct”-type estimators. In the former case, we first obtain an estimate of the
nuisance parameter η from the data and then plug it into the expression of ṡθ0,η. In the
latter case, one must obtain an estimator directly by examining the expression of ṡθ0,η.
Recall that if η is known, then ṡθ0,η is typically just the usual parametric score function

�̇θ,η for θ times 1
2 f 1/2θ,η . Thus, the problem reduces to estimation of the score function

�̇θ,η and the (discrete or continuous) density fθ,η. There are a number of methods
available in the literature for estimation of the the score function directly; see, e.g.,
Bickel et al. (1998) and van der Vaart (2000). Alternatively, one can employ readily
available nonparametric density estimation techniques to construct an estimator of
ṡθ0,η as a ratio estimator in the continuous case.

Wenowdiscuss the assumptions and conclusionsmade inTheorem1. In some sense,
conclusion (15) obtained on the test statistic, 4

∫
ρ̂θ0 ŝ dν, is similar to the “asymptotic

linearity” condition generally assumed on estimators. Asymptotic linearity is satisfied
by many estimators in parametric and semiparametric contexts; see, e.g., Bickel et al.
(1998) and van der Vaart (2000). Conditions (11)–(14) give sufficient conditions for
conclusion (15). Conditions (11) and (13) give required rates of the mean square errors
(MSEs) of the estimators ŝ and ρ̂θ0 ; (13) might be harder to verify compared to (11)
since ρ̂θ0 estimates a ratio, ṡθ0,η. Condition (12) is not hard to verify in practice for
smoothed estimators ŝ, especially those estimators based on kernel density estima-
tors; see Sect. 5 for more details. In fact, condition (12) can be further simplified, see
Remark 3 below. Finally, condition (14) is the “no-bias” condition. This condition is
similar to no-bias conditions used in themaximum likelihood estimation for semipara-
metric models, see van der Vaart (1996) and van der Vaart (2000, Chapter 25). Since∫
ṡθ0,ηsθ0,ηdν = 0, the condition

∫
ρ̂θ0sθ0,ηdν = oP (n−1/2) means that the “bias” of

the estimator ρ̂θ0 , due to estimating the quantity ṡθ0,η, converges to zero slightly faster
than n−1/2. Such a condition comes out naturally in the proof.

Remark 1 If ρ̂θ0 = ṡθ0,η̂ for some estimator η̂ of η, then condition (14) reduces to∫
ṡθ0,η̂sθ0,ηdν = oP (n−1/2). If the model F is adaptive at (t, g), then one can write

−
∫

ṡθ0,η̂sθ0,ηdν =
∫

ṡθ0,η̂(sθ0,η̂ − sθ0,η)dν

=
∫

ṡθ0,η(sθ0,η̂ − sθ0,η − Aθ0,η(η̂ − η))dν + op(n
−1/2)

+
∫

(ṡθ0,η̂ − ṡθ0,η)(sθ0,η̂ − sθ0,η)dν. (19)

From (5) it follows that

sup
t∈�,|t−θ |≤Ca1/2n

‖st,η̂ − st,η − At,η(η̂ − η)‖ = o(‖η̂ − η‖B).
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770 J. Wu, R. J. Karunamuni

Thus, if ‖η̂ − η‖B = OP (n−1/2) then using the Cauchy–Schwarz inequality the first
term of (19) is of order oP (n−1/2). The second term of (19) is of order oP (n−1/2)

from (13) and if
∫
(sθ0,η̂ − sθ0,η)

2 = OP (an). In cases in which nuisance parameter
η is not estimable at

√
n-rate then the Taylor expansion must be carried out into its

second-order term. Then, it may be sufficient to have ‖η̂−η‖B = oP (n−1/4), provided
the first term of (19) is bounded by ‖η̂ − η‖2B .

Remark 2 Suppose ρ̂θ0 = ṡθ0,η̂ for some estimator η̂ of η. Then, condition (14) holds
if ‖ṡθ0,η‖ < ∞ and ‖sθ0,η̂ − sθ0,η‖ = oP (n−1/2). To see this clearly, note that
∫
ṡθ0,η̂sθ0,η̂dν = 1

2
∂

∂θ0

∫
fθ0,η̂dν = 0 and then by the Cauchy–Schwarz inequality and

(13),

∣
∣
∣
∣

∫
ṡθ0,η̂sθ0,ηdν

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
ṡθ0,η̂(sθ0,η̂ − sθ0,η)dν

∣
∣
∣
∣

≤ ‖ṡθ0,η̂‖ · ‖sθ0,η̂ − sθ0,η‖
≤ (‖ṡθ0,η‖ + ‖ṡθ0,η̂ − ṡθ0,η‖

) ‖sθ0,η̂ − sθ0,η‖
= oP (n−1/2).

Remark 3 Sufficient conditions for (12) are given by

√
n

[∫
ṡθ0,η
sθ0,η

f̂ dν − 1

n

n∑

i=1

ṡθ0,η
sθ0,η

(Xi )

]

= oP (1), (20)

√
n
∫ |ṡθ0,η|

sθ0,η

(
f̂ 1/2 − f 1/2θ0,η

)2
dν = oP (1). (21)

To see this more clearly, apply the algebraic identity

b1/2 − a1/2 = (b − a)/
(
2a1/2

)
−
(
b1/2 − a1/2

)2
/2a1/2

for b ≥ 0 and a > 0. Since
∫
ṡθ0,ηsθ0,ηdν = 0, then using (20) and (21) we obtain

√
n
∫

ṡθ0,η ŝ dν = √
n
∫

ṡθ0,η(ŝ − sθ0,η) dν

= √
n
∫

ṡθ0,η
2sθ0,η

( f̂ − fθ0,η) dν − n1/2
∫

ṡθ0,η
2sθ0,η

(
f̂ 1/2 − f 1/2θ0,η

)2
dν

= √
n
∫

ṡθ0,η
2sθ0,η

( f̂ − fθ0,η) dν + Rn

= √
n
∫

ṡθ0,η
2sθ0,η

f̂ dν + Rn

= √
n
1

n

n∑

i=1

ṡθ0,η
2sθ0,η

(Xi ) + oP (1) + Rn,

with |Rn| ≤ √
n
∫ |ṡθ0,η|

sθ0,η
( f̂ 1/2 − f 1/2θ0,η

)2 dν = oP (1), and hence (12) holds.
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4 Robustness properties

To see the robustness properties of our test statistic, we define a functional T based
on (7) as

T ( f ) =
∥
∥
∥ f

1/2
θ0,η

− f 1/2
∥
∥
∥
2 −

∥
∥
∥ f

1/2
θn ,η

− f 1/2
∥
∥
∥
2 = 2

∫
(sθn ,η − sθ0,η) f

1/2dν.

If Fη is Hellinger-regular, we further consider the functional Tη defined in (9):

Tη( f ) = 4
∫

ṡθ0,η f
1/2dν.

For densities f and g, using the Cauchy–Schwarz inequality and noting that
∫
(g1/2 −

f 1/2)2dν ≤ ∫ |g − f |dν = ‖g − f ‖1, we have

|Tη(g) − Tη( f )| ≤ 4‖ṡθ0,η‖ · ‖g1/2 − f 1/2‖ ≤ 4‖ṡθ0,η‖(‖g − f ‖1)1/2. (22)

Suppose ṡθ0,η ∈ L2, then we see from (22) that |Tη(g) − Tη( f )| → 0 whenever
‖g− f ‖1 → 0. This shows that small distortions away from f do not affect the value
of Tη very much. In other words, the test statistic 4

∫
ρ̂θ0 f̂

1/2dν defined by (10) will
not be much affected by small departures from the true model.

To see how small distortions away from η ∈ � affect the value of our test statistic,
we define a functional T̃ : � → R

p as

T̃ (g) = 4
∫

ṡθ0,g f
1/2dν.

Suppose that there exist bounded linear operators A∗
θ,g : B �→ L2(ν) such that for

each interior point θ of � and γ , g ∈ �, we have

‖ṡθ,γ − ṡθ,g − A∗
θ,g(γ − g)‖ = o(‖γ − g‖B).

Again using the Cauchy–Schwarz inequality, we obtain

|T̃ (γ ) − T̃ (g)| ≤ 4‖ṡθ0,γ − ṡθ0,g‖ ≤ 4‖A∗
θ0,g‖ · ‖γ − g‖B + o(‖γ − g‖B). (23)

We see from (23) that small distortions away from g do not affect the value of the
functional T̃ very much. Since

∣
∣
∣
∣4
∫

ϕ f 1/2dν − 4
∫

ṡθ0,η f
1/2dν

∣
∣
∣
∣ ≤ 4

∫ ∣
∣ϕ − ṡθ0,η

∣
∣ f 1/2dν ≤ 4‖ϕ − ṡθ0,η‖,

we see that small distortions away from ṡθ0,η also do not affect the value of the test
statistic very much.
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5 Examples

In this section, we consider two examples of the semiparametric models (1), namely a
symmetric location model and a scale mixture model. In each case, we will construct
the proposed test statistic 4

∫
ρ̂θ0 ŝ dν defined by (10). Further, we will also show that

the conditions of Theorem 3.1 can be verified for suitable estimators ρ̂θ0 and ŝ = f̂ 1/2.

5.1 Symmetric location model

Assume that the random variables X1, . . . , Xn are i.i.d from a member of the semi-
parametric family defined by

F = { fθ,η(x) = η(x − θ) : θ ∈ �, η ∈ �},

where η is unknown and is assumed belongs to the class

� =
{

η : η > 0,
∫

η(x)dx = 1, η(−x) = η(x), η is absolutely continuous a.e.

with
∫

(η(1)(x))2

η(x)
dx < ∞

}

. (24)

Further, assume that � is a bounded open interval of R. For instance, one can set
� = (−M, M) for some large positive number M . We will assume that Fη = { fθ,η :
θ ∈ �} is Hellinger-regular for each η ∈ �. Let f̂ (x) denote a kernel density estimator
based on X1, . . . , Xn :

f̂ (x) = 1

nhn

n∑

i=1

K

(
x − Xi

hn

)

, (25)

where kernel K is a nonvanishing bounded density, symmetric about zero, twice con-
tinuously differentiable and satisfies

∫
ui K (u)du < ∞ for i = 2, 4, and bandwidth

sequence {hn} satisfies hn > 0 and hn → 0 as n → ∞. For convenience, we assume
that hn is not random.However, in practice, hn may be chosen by a data-drivenmethod,
such as the cross-validation method.

We now show a plug-in-type estimator of the statistic 4
∫

ρ̂θ0 ŝ dν by constructing
an estimator for the nuisance parameter η. First, let θ̃ = θ̃ (X1, . . . , Xn) denote a
preliminary location estimator of θ possessing the property that n1/2(θ̃ −θ) = OP (1);
that is, θ̃ is a

√
n-consistent estimator of θ . Location estimators that satisfy this property

can be easily found; see, e.g., Bickel et al. (1998). Since η(x) = f (x + θ), intuitively
we can construct an estimator of η by f̂ (x + θ̃ ), where f̂ is given by (25). Following
an idea of Beran (1978), we define a symmetric truncated version

η̂(x) = 1

2

[
f̂ (x + θ̃ ) + f̂ (−x + θ̃ )

]
b2n(x) (26)
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as our estimator of η, where bn is given by

bn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if |x | ≤ cn
b(x − cn) if cn ≤ x ≤ cn + 1
b(x + cn) if − cn − 1 ≤ x ≤ −cn

0 otherwise,

(27)

where function b(.) has range [0, 1], is symmetric about zero with b(0) = 1, vanishes
outside [−1, 1], and is twice absolutely continuous with derivatives b(i) (i = 1, 2)
bounded on the real line, and {cn} is a sequence of positive numbers such that cn → ∞
as n → ∞. It is easy to show that η̂ is a consistent estimator of η. Furthermore,
η̂(x) = η̂(−x) and η̂(1)(−x) = −η̂(1)(x), where η̂(1) denotes the first derivative of
η̂. The statistic 4

∫
ρ̂θ0 ŝ dν now takes the form 4

∫
ṡθ0,η̂ ŝ dx, where ŝ = f̂ 1/2 with f̂

given by (25). Moreover, note that,

2
∫

ρ̂θ0sθ0,ηdx = 2
∫

ṡθ0,η̂sθ0,ηdx = −
∫

η̂(1)(x − θ0)√
η̂(x − θ0)

√
η(x − θ0)dx

= −
∫

η̂(1)(x)
√

η̂(x)

√
η(x)dx

= 0,

since η̂ and η are symmetric and η̂(1) is antisymmetric about 0. Thus, the no-bias
condition (14) is trivially satisfied in this case.

As in previous sections, denote ḟt,η(·) = ∂
∂t ft,η(·) = ∂

∂t η(· − t), st,η(·) =
f 1/2t,η (·) = η1/2(· − t), ṡt,η(·) = ∂

∂t st,η(·) = ∂
∂t η

1/2(· − t) and s̈t,η(·) = ∂2

∂t2
st,η(·) =

∂2

∂t2
η1/2(· − t). For notational convenience, we will denote fθ,η and hn by f

and h, respectively, in what follows. Let Bn = {x ∈ R : |x − θ | ≤ cn} and

wn(x) = sup
t∈�,|t−θ |≤Ca1/2n

∣
∣η(1)(x−t)

∣
∣√

η(x−t)
for any constant C > 0 and a sequence of

positive numbers {an} such that an = o(n−1/2) as n → ∞. We also denote f̄ (x) =
E[ f̂ (x)] = ∫

f (x − hu)K (u) du, Cn1 = ∫
Bc
n
f 1/2(x)dx , Cn2 = ∫

Bc
n
| f (2)(x)|1/2dx ,

Cn3 = ∫
Bc
n

∣
∣
∣ f

(1)

f

∣
∣
∣ (x) f 1/2(x)dx , Cn4 = ∫

Bn

∣
∣
∣ f

(1)

f

∣
∣
∣ (x)dx , Cn5 = ∫

Bc
n
f (x)dx and

Cn6 = ∫
Bc
n

( f (1))2

4 f (x)dx .

To prove Theorem 1 for the statistic 4
∫

ρ̂θ0 ŝdx under above specifications, we
now state four lemmas. The proofs of these lemmas follow from routine algebra and,
therefore, are relegated to supplementary material.

Lemma 1 Let f̂ be defined by (25). Suppose the density f has absolutely continuous

derivatives f (i), i = 1, 2, and
∫

ψ(x)dx < ∞, where ψ(x) = ( f (2))2

2 f (x)+ ( f (1))4

8 f 3
(x).
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Then

∫ [
f̂ 1/2(x) − f 1/2(x)

]2
dx = OP

(
h4 + cn(nh)−1 + Cn1(nh)−1/2

+Cn2(nh
−1)−1/2 + n−1/2h

)
. (28)

Further, if
∫ | f (1)

f |(x)ψ(x)dx < ∞ then

∫ ∣
∣
∣
∣
∣
f (1)

f

∣
∣
∣
∣
∣
(x)

[
f̂ (x) − f (x)

]2
dx = OP

(
h4 + Cn4(nh)−1

+Cn3(nh)−1/2 + (nh−1)−1/2
)

. (29)

Lemma 2 Assume that the conditions of Lemma 1 hold. Further assume that f (4)

exists and is bounded, and f (i), i = 1, 2, 4, satisfy following conditions:

∫ ∞

−∞
f −1(x) f (1)(x) f (2)(x) dx = 0, (30)

∫ ∞

−∞
f −1(x)

∣
∣
∣ f (1) f (4)

∣
∣
∣ (x) dx < ∞,

∫ ∞

−∞
f (x)

(
f (1)

f

)2

(x) dx < ∞. (31)

Then, we have

∫ ∞

−∞
ṡθ,η(x) f̂

1/2(x)dx = 1

n

n∑

i=1

ṡθ,η

sθ,η

(Xi ) + OP

(
h4 + Cn4(nh)−1

+Cn3(nh)−1/2 + (nh−1)−1/2
)

.

Lemma 3 Assume that the conditions of Lemma1hold. Further assume thatη satisfies

∫
η−1(x)

(
η(1)

)2
(x) dx < ∞. (32)

Then, with η̂ defined by (26), we have

∫
[
st,η̂(x) − st,η(x)

]2
dx = OP

(
h4 + cn(nh)−1 + Cn1(nh)−1/2 + Cn2(nh

−1)−1/2

+n−1/2h + Cn5 + n−1
)

. (33)
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Lemma 4 Let f̂ be defined by (25)with kernel K further satisfying K (1)/K bounded.
Assume that the conditions of Lemma 1 hold. Assume also that f (2) and f (3) exist and
are bounded, and that η satisfies

∫
(g(2))2(x) dx < ∞, (34)

where g = η1/2. Further suppose that ψ(x) = ( f (2))2

2 f (x) + ( f (1)(x))4

8 f 3(x)
is bounded,

∫ (
f (1)

f

)2

(x)ψ(x)dx < ∞, (35)

∫ (
f (1) f (2)

f 3/2

)2

(x)dx < ∞, (36)

and ∫
f −1(x)( f (3))2(x)dx < ∞. (37)

Then, we have
∫
[
ṡt,η̂(x) − ṡt,η(x)

]2
dx = OP

(
h4 + cn(nh

3)−1 + Cn5 + Cn6 + n−1
)

. (38)

Theorem 3 Assume that the conditions in Lemmas 1 to 4 hold at θ = θ0. Further
assume that the bandwidth h = hn in (25) is of the form h = O(n−1/5). Suppose
that the sequence {cn} satisfies the conditions cn = o(n1/10), Cn1 = o(n−3/10),
Cn2 = o(n−1/10), Cn3n−2/5 = o(n−1/2), Cn4n−4/5 = o(n−1/2), Cn5 = o(n−2/5) and
Cn6 = o(n−2/5). Then the conclusion of Theorem 1 holds.

The proof of Theorem 3 follows from Lemmas 1 to 4. For the normal location
family, i.e., fθ,η(x) = η(x − θ) with η(x) = (2π)−1/2e−x2/2, −∞ < x < ∞, it is
easy to show that there exists a sequence {an} satisfying the conditions of Theorem 3
when one chooses Bn = {x ∈ R : |x − θ | ≤ cn} with cn = (2 log n)1/2 and bounded
�. For the double-exponential family, i.e., fθ,η(x) = η(x − θ) with η(x) = 2−1e−|x |,
−∞ < x < ∞, the choices of cn = log n and bounded � would be appropriate
to verify the conditions in Theorem 3. In fact, the sequence {an} used in Theorem 3
has the form {n−7/10} in both cases with the preceding choices of cn . Furthermore,
conditions (31) to (32) and (34) to (37) are easily satisfied for both of these families.

5.2 Scale mixture model

Let φ denote a probability density that is symmetric about zero and consider the
mixture model

fθ,η(x) =
∫ ∞

0

1

z
φ

(
x − θ

z

)

dη(z), −∞ < x < ∞. (39)
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We will also assume that the parameter space � is a bounded open interval of R.
Further assume that the class Fη = { fθ,η : θ ∈ �} is Hellinger-regular and that
the information matrix Iθ,η is finite for each η. Then, the mixture density fθ,η is
symmetric about θ, and θ can be estimated asymptotically efficiently with a fully
adaptive estimator (Bickel 1982; van der Vaart 1996). For simplicity, it is assumed
that the unknown mixing distribution η (nuisance parameter) is supported on a fixed
interval [m, M] ⊂ (0,∞). Here we are interested in showing that the conditions of
Theorems 1 can be verified for a suitable estimator ρ̂θ0 of ṡθ0,η.

Suppose that X1, . . . , Xn is a randomsample from (39). Thenby symmetry, for fixed
θ, the variables Yi = |Xi − θ | are sampled from the density g(s) = 2ϕ(s)I {s ≥ 0},
where ϕ(s) = ∫∞

0
1
z φ( sz )dη(z). We will use the Yi ’s to construct an estimator ρ̂θ0 .

From the fact that φ is symmetric about zero, we have fθ,η(x) = 1
2g(|x − θ |). By

straightforward calculations, we obtain

ṡt,η(x) = g(1)(|x − t |)sign(x − t)

23/2g1/2(|x − t |) , (40)

where g(1) is the first derivative of g. Define

ĝn(s) = 1

nhnβ0(s)

n∑

i=1

K

(
s − Yi
hn

)

, (41)

as the boundary kernel estimator of the density g(s), where the kernel K and the
bandwidth hn are defined as in (25) and β0(s) = ∫ s/h

−∞ K (u)du. Furthermore, define

ĝ(1)
n (s) = 1

nh2n

n∑

i=1

β0(s)K (1)
(
s−Yi
hn

)
− δ0(s)K

(
s−Yi
hn

)

β1(s)δ0(s) − β0(s)δ1(s)

as the boundary kernel estimator of g(1)(s), whereβ1(s) = ∫ s/h
−∞ uK (u)du and δk(s) =

∫ s/h
−∞ ukK (1)(u)du for k = 0, 1. We now define

ρ̂t (x) = ĝ(1)
n (|x − t |)sign(x − t)

23/2 ĝ1/2n (|x − t |)
I{γn≤|x−t |≤αn} (42)

as our proposed estimator of ρt,η = ṡt,η, where αn → +∞ and γn → 0 as n → ∞.
Then ρ̂θ0(x), with Yi = |Xi − θ0|, is the estimator of ṡθ0,η.

Observe that the no-bias condition (14) is trivially satisfied for ρ̂t defined by (42),
since

∫
ρ̂t st,ηdx = 0 for any t ∈ int(�), due to the fact that ρ̂t and st,η are antisym-

metric and symmetric, respectively, about 0.

Denote Cn7 = ∫ +∞
αn

(g(1))2

4g (s)ds and Cn8 = ∫ γn
0

(g(1))2

4g (s)ds. To prove Theorem 1

for the statistic 4
∫

ρ̂θ0 ŝ dx under the scale mixture model (39), we first state a lemma,
and its proof is again given in supplementary material.
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Lemma 5 Suppose that the ratio K (1)(s)/K (s) is bounded and
∫ +∞
γn

β2
1 (s)ds =

O(h2), infs∈[γn ,+∞) |β1(s)δ0(s) − β0(s)δ1(s)| ≥ γ0 for some positive constant γ0.

Assume that [g(1)(x)]2
g(x) is bounded and

∫ +∞
0

[g(2)(x)]2
g(x) dx < ∞. Then we have

∫
(ρ̂t (x) − ṡt,η(x))

2dx = OP

(
(nh3)−1αn + h2n + Cn7 + Cn8

)
. (43)

Theorem 4 Assume that the conditions in Lemmas 1, 2 and 5 hold at θ = θ0. Further
assume that the bandwidths hn in (25) and (41) are of the form hn = O(n−1/5). Sup-
pose that the sequences {cn}, {αn} and {γn} satisfy the conditions cn = o(n1/10),
αn = o(n1/10), Cn1 = o(n−3/10), Cn2 = o(n−1/10), n−2/5Cn3 = o(n−1/2),
n−4/5Cn4 = o(n−1/2), Cn7 = o(n−2/5) and Cn8 = o(n−2/5). Then Theorem 1 holds.

The proof of Theorem 4 follows from Lemmas 1, 2 and 5. For φ(s) =
(2π)−1/2e−s2/2 in (39), it is easy to show that the conditions of Theorem 4 are satisfied
with K (s) = 2−1e−|s|, cn = c0 log n for some positive constant c0, αn = α0 log n for
some positive constant α0 and γn = h log(h−1). In fact, since

∫ +∞
−∞ uK (u)du = 0, we

have β1(s) = − ∫ +∞
s/h uK (u)du. For φ(s) = (2π)−1/2e−s2/2 and γn = h log(h−1),

by simple calculation, we obtain

∫ +∞

γn

β2
1 (s)ds = h

16

[

2
(
1 + γn

h

)2 + 2
(
1 + γn

h

)
+ 1

]

e− 2γn
h = O(h2)

and

inf
s∈[γn ,+∞)

|β1(s)δ0(s) − β0(s)δ1(s)| = inf
s∈[γn ,+∞)

(
1 − e− γn

h − γn

2h
e− 2γn

h

)
→ 1.

The other conditions of Theorem 4 can easily be verified using routine algebra.

6 Monte Carlo studies

In this section, we examine the finite sample performance of the test statistic given by
(10). Specifically, we present numerical studies of the test statistic for the symmetric
location model described in Sect. 5.1.

Suppose X1, . . . , Xn are i.i.d from fθ,η(x) = η(x − θ) with η belonging to the
class � defined by (24). Without loss of generality, we test the true value θ0 = 0, i.e.,
H0 : θ = 0 against H1 : θn = βn−1/2 for some β > 0. In this simulation study, we
take η to be the standard normal distribution.

As discussed in Sect. 5.1, the statistic of (10) reduces to

4
∫

ρ̂θ0 f̂
1/2dx = 4

∫
ṡθ0,η̂ f̂

1/2dx = −2
∫

η̂(1)

η̂1/2
(x − θ0) f̂

1/2(x)dx

= −2
∫

η̂(1)

η̂1/2
(x) f̂ 1/2(x + θ0)dx,
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where f̂ and η̂ are defined by (25) and (26), respectively. By Theorem 2, under H0,

this statistic has asymptotic variance n−1 Iθ0,η = 4n−1
∫
ṡ2θ0,ηdx = n−1

∫ (η(1))2

η
(x −

θ0)dx,which can be estimated by n−1
∫ ( f̂ (1))2

f̂
(x)dx or n−1

∫ (η̂(1))2

η̂
(x)dx . As a result,

under H0,

T1 = −2n1/2
[∫

( f̂ (1))2

f̂
(x)dx

]−1/2 ∫
η̂(1)

η̂1/2
(x) f̂ 1/2(x + θ0)dx (44)

and

T2 = −2n1/2
[∫

(η̂(1))2

η̂
(x)dx

]−1/2 ∫
η̂(1)

η̂1/2
(x) f̂ 1/2(x + θ0)dx (45)

follow approximately the standard normal distribution when the sample size n is large.
Thus, we would reject H0 if T1 > 1.645 (or T2 > 1.645) when, for example, α = 0.05
is used as the significance level.

For comparison purposes,wewill also give simulation results for the likelihood ratio
test statistic in this case. Note that for this symmetric location model, with probability
one, the midpoint of any pair of distinct Xi ’s yields the maximum likelihood estimator
(MLE). As a result, the likelihood ratio test statistic is 2 log 4, i.e., a constant. In other
words, the likelihood ratio test statistic gives us no guidance in testing the parameter
θ . To avoid this problem, we used a modified version with a plug-in density estimator
of η. With location parameter θ , an estimate of fθ,η(x) is

f̃θ (x) = 1

2

[
f̂ (x) + f̂ (2θ − x)

]
,

where f̂ is given by (25). Then, the “plug-in” likelihood ratio test statistic is

Tlrt = 2

[

sup
θ∈R

n∑

i=1

log f̃θ (Xi ) −
n∑

i=1

log f̃0(Xi )

]

. (46)

When η is the standard normal distribution, the likelihood ratio test statistic is equal
to

Tlrt0 = 2

[

sup
θ∈R

n∑

i=1

log η(Xi − θ) −
n∑

i=1

log η(Xi )

]

= 2

[
n∑

i=1

log η(Xi − X̄) −
n∑

i=1

log η(Xi )

]

, (47)

where X̄ is the sample mean. The statistic Tlrt0 is considered here solely for com-
parison purposes, and note that it is not available in practice, as η is unknown in
the semiparametric setup. We reject H0 when Tlrt > χ2

1,0.05 (or Tlrt0 > χ2
1,0.05) if

α = 0.05.
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For the statistics T1 and T2 defined by (44) and (45), the estimator η̂ is chosen as
the one defined by (26) with b(x) = [ 12 + 1

2 cos(πx)]I[−1,1] and cn = log n, which
satisfy the conditions on b(x) and cn discussed in Sect. 5.1. Here I[−1,1] denotes the
indicator function over the interval [−1, 1]. Even though one can employ η̂ defined by
(26) as an estimator of η, the truncation term bn used in (26) has been introduced there
solely for technical purposes, and as we will observe later that η̂ works equally well
even without the truncation term bn . For the preliminary location estimator θ̃ in (26),
we used the sample median. For the kernel estimator f̂ defined in (25), we employed
the logistic kernel K (x) = (ex + e−x +2)−1 and bandwidth hn = 0.5Snn−1/5, where
Sn = Sn(X1, . . . , Xn) is a robust scale statistic (generally estimate the scale parameter
of the distribution).Herewe take Sn = (.674)−1median{|Xi−θ̃ |}. Note that this choice
of K satisfies the conditions of Lemma 4. For comparison, we also give results when
the quartic kernel function K (x) = 15

16 (1 − x2)2 I[−1,1](x) is used, for which K (1)/K
is not bounded, so it does not satisfy the conditions of Lemma 4. We have taken
N = 10000 repetitions and different sample sizes n = 50, 100, 250, 500, 1000 in our
simulation. Tests were carried out with a normal approximation and the significance
level α = 0.05. The calculated empirical type I errors are presented in Table 1. By
definition, Tlrt0 does not depend on the choice of kernel function.

In Table 1, we observe that when the proposed logistic kernel is used, all empirical
values of the probability of type I error for both T1 and T2 are very close to 0.05,
while T1 performs slightly better than T2 and both are much better than Tlrt . When the
quartic kernel is used, T1 tends to give smaller probability of type I error than 0.05,
while both T2 and Tlrt give much higher probability of type I error than the level 0.05.
This demonstrates that the logistic and quartic kernels perform quite differently, with
the former generally showing a chance of much closer values to 0.05 for the type I
error, regardless of whether T1, T2 or Tlrt is considered. Note that the logistic kernel is
the recommended one here, whereas the quartic kernel does not satisfy the conditions
of Lemma 4. The results for the quartic kernel are given here for comparison purposes
only. The kernel density estimator f̂ given by (25) performs equally well with or
without the truncation term bn . We also observe that Tlrt0 performs consistently best
over different sample sizes with probability of type I error being close to 0.05 over T1,
T2 and Tlrt . Note again that Tlrt0 is considered here solely for comparison purposes,
and it is not available in practice.

Empirical powers of T1 and T2 were also calculated and compared to those of Tlrt
and Tlrt0 based on N = 10000 repetitions and the significance level α = 0.05.We also
considered several values for β, namely β = 1, 2, 4, 10. For the reasons discussed
above, we only report here the results for the logistic kernel estimator without the
truncation term, and the results are similar when truncation is applied. Simulation
results for the empirical powers of the statistics under study are given in Table 2. In
Table 2, we observe that the power increases first and then stabilizes when the sample
size increases. It even decreases slightly for some test statistics considered. For a
fixed sample size, the power should increase when the β value increases, intuitively
speaking. This is the case for all the test statistics considered.

To investigate if the proposed test statistics T1 and T2 have retained any robustness
properties that are generally exhibit in MHD estimation/testing context, we examined
their behavior in the presence of outliers. In particular, we looked at how outliers affect
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the chance of making type I error. In general, the presence of an outlier in the same
direction as the alternative hypothesis would increase the chance ofmaking type I error
and the power simultaneously, no matter which test statistic is considered. Therefore,
we are more concerned about the probability of type I error rather than the power of
a test statistic.

After drawing data Xi ’s from the standard normal distribution with a sample size of
n = 50, we contaminated it by replacing the last one or two observations by one or two
outliers of the same value. Any integer between −15 and 15 is considered an outlier.
Simulation results for the type I error probability of T1, T2, Tlrt and Tlrt0 are plotted
in Fig. 1 with (a) for contaminated data with one outlier, and (b) for contaminated
data with two outliers of the same value. Again the logistic kernel and without the
truncation was implemented for T1 and T2.

When compare (a) and (b) in Fig. 1, we observe a similar behavior for the three
statistics T1, T2 and Tlrt , while Tlrt0 performs somewhat differently for the two cases.
When the outlier value is beyond the range of the interval [−5, 5], the chances of
making type I error for T1, T2 and Tlrt are almost constants around 0.05, 0.06 and
0.07, respectively. When the outlier value is within the range of [−5, 5], the chance
of making type I error for Tlrt is quite stable, while those for T1 and T2 fluctuate
somewhat but still within the range of the interval [0.01, 0.1]. On the other hand,
Tlrt0 exhibits a completely different pattern for the probability of type I error; it is
approximately symmetric about zero and increases dramatically in both directions
and reaches one when two outliers are present. These observations indicates that T1,
T2 and Tlrt possess some good robustness properties, while Tlrt0 appears to be lacking
in this aspect. In general, kernel estimators place higher weight over the range where
the data are condensed. As a result, T1, T2 and Tlrt essentially treat outlier values
as outliers and ignore them, and this may be the reason why they are robust against
outliers, whereas, evenwithmore information used (i.e., normality is assumed known),
Tlrt0 treats the presence of outlier observations as an evidence of wrong hypothesized
parameter value and shows incorrectly a very high probability of type I error. This
indicates that it is not robust against outliers.

We also investigated how the proposed test statistic performswhen the percentage of
contamination increases. For this purpose, we deliberately contaminated the sample of
size n = 50 with a percentage of p outliers from a normal distribution N (m, 0.52). We
considered several p values: p = 4%, 10%, 20%, 30%, i.e., 2, 5, 10 and 15 outliers,
respectively; and varying m values ranging from -15 to 15. In other words, the data
are from a two-component normal mixture, and one component is the contamination
data with varying contamination rate p and varying mean m. Simulation results are
displayed in Fig. 2. In Fig. 2, the x- and y-axes represent the mean of the normal
contamination component and the probability of rejecting H0, respectively. Note that
the y-axis of Fig. 2 is labeled as “Probability of Rejecting H0.” This is because when
p is large, such as 20%, it is hard to distinguish if those 20% of data are outliers from
other populations or they are just part of the population of our interest. Thus, it is not
quite appropriate to conclude that rejecting H0 means making a type I error. In Fig. 2,
we observe again that the performance of T1 and T2 are quite similar, with T1 having a
little less chance of rejecting H0 than T2 . When the contamination data are on the left
side of the correct data, there is no indication that H1 (positive θ ) is correct, and thus,
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Fig. 1 Probability of type I error for T1 (solid), T2 (dashed), Tlrt (dot dashed) and Tlrt0 (dotted). a One
outlier. b Two outliers

T1 and T2 show a very little chance of rejecting H0. When the contamination data are
close and on the immediate right side of the correct data, then T1 and T2 treat them
as correct data, which make the population mean positive, and as a result, T1 and T2
reject H0 with high probability. When the contamination data keep moving to the right
we observe the following: if p is small then T1 and T2 treat them as outliers and are
less likely to reject H0, and if p is large then T1 and T2 are not treating them as outliers
completely, which results in a moderate chance of rejecting H0. On the other hand,
Tlrt0 treats the contamination data as non-outliers whenever they are close to zero and
thus rejects H0 with high probability. Furthermore, it treats them as outliers whenever
they are away from zero and thus is less likely to reject H0. The performance of Tlrt0
is very different from others: When the contamination data are not close to zero, Tlrt0
has a very high probability, even close to one, of rejecting H0.

7 Concluding remarks

Hellinger distance-basedmethods have been appliedwith great success in the literature
in a variety of inference problems, especially in estimation problems of parametric and
semiparametric models. There is very little research available on testing of hypothe-
ses problems with the use of Hellinger distance (Basu et al. 2016). In fact, there is no
reported work we are aware of on testing of hypotheses in semiparametric models with
Hellinger distance methods. This paper is an attempt to fill in this gap in the literature.

123



784 J. Wu, R. J. Karunamuni

-15 -10 -5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m

P
ro

ba
bi

lit
y 

of
 R

ej
ec

tin
g 

H
o

-15 -10 -5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
P

ro
ba

bi
lit

y 
of

 R
ej

ec
tin

g 
H

o

-15 -10 -5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m

P
ro

ba
bi

lit
y 

of
 R

ej
ec

tin
g 

H
o

-15 -10 -5 0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m

P
ro

ba
bi

lit
y 

of
 R

ej
ec

tin
g 

H
o

(a) (b)

(c) (d)

Fig. 2 Probability of type I error for T1 (solid), T2 (dashed), Tlrt (dotdashed) and Tlrt0 (dotted) with
different contamination rate p. a p = 4%, b p = 10%, c p = 20% and d p = 30%

Treating the testing problem as a model selection problem, we have constructed a test
statistic for regular semiparametric models. The proposed test statistic has an explicit
expression. Furthermore, it possesses desirable properties such as asymptotic nor-
mality under both null and alternative hypotheses and asymptotic optimality (locally
uniformly most powerful). We have also observed that the proposed test statistic has
some desirable robustness properties such as resistance to outliers andmodelmisspeci-
fication. Optimality combined with excellent robustness properties make the proposed
testing procedure appealing in practical applications.

Although we have concentrated on the continuous data case in the development of
the proposed test statistic, it is easy to modify the test statistic for the discrete case.
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If we have a sample from a discrete distribution, then we use the empirical density
as our density estimator f̂ in the test statistic 4

∫
ρ̂θ0 f̂

1/2dν, where f̂ is now given
by

f̂ (x) = n−1
n∑

i=1

I {Xi = x}, x = 0, 1, 2, . . . ,

where I {·} is the indicator function. In this case, the test statistic 4
∫

ρ̂θ0 f̂
1/2dν with

ρ̂θ0 = ṡθ0,η̂ is a simple modification of the classical optimal test statistic. The opti-
mality and robustness of the statistic are almost clear upon inspection of the form of
this modification.

The proposed testing method may be applied to various applications. In partic-
ular, the proposed approach can be used to test the parameters in the two-sample
semiparametric density ratio model examined inWu et al. (2010) andWu and Karuna-
muni (2009). This type of statistical model naturally arises in case-control studies and
logistic discriminant analyses. After a delicate reparametrization, this semiparamet-
ric model is equivalent to a prospective logistic regression model, which is widely
used in health-related applications and in analysis of case-control studies. Further-
more, with appropriate modifications, the proposed testing procedure can also be
studied for testing the parameters in dose-response studies models (see Karunamuni
et al. 2015, and the references therein). In a typical dose-response studies model, at
a given dose x, one assumes that the response Y is a Bernoulli random variable with
probability of “success” being g(x), i.e., Pr(Y = 1|x) = g(x). The statistical prob-
lem concerns the estimation of “effective dose” levels defined as EDp = g−1(p)
with 0 < p < 1, where g−1(·) is the inverse function of g(·). Note that EDp

can be interpreted as the dose at which the probability of response is p. For exam-
ple, if p = 0.5 then ED0.5 is the dose that produces a desired effect in half of the
test population. Pharmacology studies typically focus on estimating ED0.5, whereas
in toxicology studies the main interest is estimating EDp for smaller values of
p. The importance of estimating extreme percentage points, such as ED0.90 and
ED0.95, is also well known. It is commonly assumed a parametric model for the
dose–response curve: gθ (x) = F(zT θ), where θ = (α, β)T are unknown parame-
ters, z(x) = (1, x)T , and F is some known cumulative distribution function, also
known as the link function. Then, the data {Y1, . . . , Yn} follow a semiparametric
Bernoulli model: fθ,η(y) = Pr(Y = y) = (pθ,η)

y(1 − pθ,η)
1−y, y = 0, 1, where

pθ,η = ∫
gθ (x)dη(x) with η(.) being an unknown distribution of the X ’s. Hence, the

basic problem reduces to estimation/testing of unknown parameter vector θ = (α, β)T

based on a sample {Y1, . . . , Yn}. These results will be discussed in a separate arti-
cle.
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Appendix

Proof of Theorem 1 Write

∫
ρ̂θ0 ŝ dν =

∫
(ρ̂θ0 − ṡθ0,η)ŝ dν +

∫
ṡθ0,η ŝ dν

=
∫

(ρ̂θ0 − ṡθ0,η)(ŝ − sθ0,η)dν +
∫

(ρ̂θ0 − ṡθ0,η)sθ0,ηdν +
∫

ṡθ0,η ŝ dν

= I1 + I2 + I3. (48)

Since Fη is Hellinger-regular, we have
∫
ṡt,ηst,ηdv = 0 for t ∈ �. Using this result

together with (14), we obtain

I2 =
∫

(ρ̂θ0 − ṡθ0,η)sθ0,ηdν

= oP (n−1/2). (49)

From (12), we also have

I3 =
∫

ṡθ0,η ŝ dν

= 1

n

n∑

i=1

ṡθ0,η
2sθ0,η

(Xi ) + oP (n−1/2)

= 1

4n

n∑

i=1

�̇θ0,η(Xi ) + oP (n−1/2). (50)

Finally, from the Cauchy–Schwarz inequality, (11) and (13) it follows that

|I1| ≤
∫ ∣
∣ρ̂θ0 − ṡθ0,η

∣
∣
∣
∣ŝ − sθ0,η

∣
∣ dν

≤ ∥
∥ρ̂θ0 − ṡθ0,η

∥
∥
∥
∥ŝ − sθ0,η

∥
∥

= oP ((nan)
−1/2)OP (a1/2n )

= oP (n−1/2). (51)

The proof of (15) is now completed by combining (48) to (51). ��
Proof of Theorem 2 Part (i) follows from (15) and the central limit theorem, since
E �̇θ0,η(Xi ) = 0 and Var(�̇θ0,η(Xi )) = Iθ0,η. Let Pθ,η denotes the probability dis-
tribution of the density fθ,η, where fθ,η belongs to the family (1). By Le Cam’s
first lemma, the sequences of joint probability measures {Pn

θ0,η
} (the n-fold product

of Pθ0,η) and {Pn
θ0+βn−1/2,η

} of the null and alternative hypotheses, respectively, are
contiguous; see, e.g., Proposition 2.1.3 of Bickel et al. (1998, p. 395). Consequently,
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the statement of (15) continues to hold when X1, . . . , Xn are i.i.d with density fθn ,η.
Furthermore, since Fη is Hellinger-regular we have

f 1/2θn ,η
− f 1/2θ0,η

= sθn ,η − sθ0,η

= 1

2
n−1/2β ṡθ0,η + Rn, (52)

where ‖Rn‖2 = o(n−1/2) from (2). Part (ii) now follows from (15) and (52). ��
The proofs of Lemmas 1 to 5 are given in supplementary material.
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