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Abstract The varying coefficient models (VCMs) are extremely important tools in
the statistical literature and are widely used in many subject areas for data modeling
and exploration. In linear VCMs, typically the errors are assumed to be independent.
However, in many situations, especially in spatial or spatiotemporal settings, this is
not a viable assumption. In this article, we consider nonparametric VCMs with a
general dependent error structure which allows for both spatially autoregressive and
spatial moving average models as special cases. We investigate asymptotic proper-
ties of local polynomial estimators of the model components. Specifically, we show
that the estimates of the unknown functions and their derivatives are consistent and
asymptotically normally distributed. We show that the rate of convergence and the
asymptotic covariance matrix depend on the error dependence structure and we derive
the explicit formula for the convergence results.
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1 Introduction

Varying coefficient models (VCMs) have been proven to be very useful statistical tools
for flexible regressionmodeling inmany areas of study. These could be seen as a natural
extension of typical parametric models so that the models are linear in the regressors,
but their coefficients are allowed to vary smoothly over another covariate (Ahmad
et al. 2005). VCMs are also generalizations of nonparametric regression models in
the sense that one can model multiple covariates with corresponding nonparametric
coefficients depending on another covariate.

There is a rich existing literature onVCMs. Fan andZhang (2008) provide a detailed
review of VCMs and their theoretical development. However, most of the existing
literature depends on two assumptions. First, the errors in the regression model are
independent and identically distributed (iid). Second, the response–covariate pairs
are also iid across the sampling units. However, in many applications, we observe
dependent data and our main objective lies in developing regression models which can
be used for prediction purpose. While doing the analysis of dependent data, usually
the strict stationarity assumption on the process is assumed to be true, but in reality
this assumption rarely holds. While working with a Gaussian random field, we can
relax the strict stationarity assumption. In such situations, we only need the mean of
the random field to be constant over the whole region and the covariance function to
depend only on the locations, see Cressie (1993) and Stein (1999) for more details.
Though, in general we cannot relax such an assumption.

To handle the underlying nonstationarity of a time series, Tran et al. (1996) have
considered linear nonparametric regression estimators for fixed design. In contrast to
the usual assumption of iid residuals, they have assumed stationary dependent residu-
als. Moreover, no mixing condition is imposed on the dependence structure. Robinson
(1989) and Cai (2007) study a time-varying coefficient time series model with a time
trend function and serially correlated errors to characterize the nonlinearity, non-
stationarity and trending phenomenon. In Robinson (1989), a Nadaraya–Watson-type
estimator is developed to estimate the time trend and coefficient functions, whereas Cai
(2007) considered a more general local polynomial approach. However, the results are
proved under the assumption that the time points ti = i/n, for i = 1, . . . , n, and hence,
the increasingly intense sampling of data points derives the consistent estimation in
both Robinson (1989) and Cai (2007). Spatially, VCMs have already been considered
before (see, for example, Aykroyd 1998; Aykroyd and Zimeras 1999; Dreesman and
Tutz 2001; Higdon et al. 1997 and Johnson et al. 1991). However, all of these works
have either considered completely parametric structures for the coefficients or the
observations are equally spaced on a regular lattice.

Robinson (2011) considers a general error structure which assumes that the errors
are, up to a random scalar, generated as a linear process of independent innovations that
are independent of the regressors. This formulation enables us to model both lattice
linear autoregressive moving average and spatially autoregressive (SAR) models. As
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VCM model for dependent data 747

in Robinson (2011), this framework also allows us for a form of strong dependence
which is analogous to the long-rangedependent time series.As a special case, one could
consider the situation where the errors are generated on irregularly spaced locations
over the whole region and follow a SAR model as discussed in Arbia (2006), Cliff
and Ord (1981), Kelejian and Prucha (1999), Lee (2002), Robinson (2011), and the
references therein. These models can be thought of as higher-dimensional extensions
of the time series autoregressive models. This class of models allows us to express n
spatial observations as linear transformations of n iid unobservable random variables.
Also, the n × n transformation matrix is usually known apart from finitely many
unknown parameters; see Sect. 2.1 for a detailed discussion on the generality of this
error structure.

In this article, we study a nonparametric VCM with the previously mentioned gen-
eral error structure which is designed to include various kinds of dependent data.
Our work is a further generalization of Robinson (2011). Robinson (2011) considers
a standard regression setup, whereas in our work we consider a more general VCM
where the response Y not only depends on L regressor variables X1, . . . , XL but it
also depends on another covariate Z modifying the effects of X . We consider a non-
parametric VCMmainly due to the fact that in dependent data analysis, the functional
form is often nonlinear and cannot be described with a specific nonlinear function. In a
spatial context, several works have been done on the nonparametric regression on inte-
ger lattice points (see, Hallin et al. 2004; Tran and Yakowitz 1993, and more recently,
Lu et al. 2014 for spatial quantile regression with varying coefficients). Among all
smoothing techniques, the Nadaraya–Watson method is probably the most standard
one and it has been well documented. However, sometimes it suffers from several
severe drawbacks, such as poor boundary performances, excessive bias and low effi-
ciency. Because of these drawbacks, the local polynomial fittingmethods are generally
preferable (see, Fan and Gijbels 1996). In recent years, the local polynomial methods
have become increasingly popular; see Fan (1992), Fan and Gijbels (1996), Loader
(1999), and Ruppert and Wand (1994) for more details. In this article, we extend this
approach to the context of nonparametric VCM for dependent data by defining an
estimator based on local polynomial regression. Recently, Sun et al. (2014) proposed
a semiparametric spatial dynamic model in order to extend the ordinary SAR models
to accommodate the effects of covariates. Their model incorporates the SAR structure
directly through the responses while keeping the errors iid, whereas in this work we
assume the errors are generated as a linear process in independent innovations that are
independent of the regressors.

Lastly, it is also worth mentioning that throughout the whole article we will only
consider the increasing domain asymptotic framework. In contrast to the ordinary
time series case where observations are usually taken at a regular interval of time
and asymptotics is driven by the unidirectional flow of time, for random processes
observed over space, several different types of spatial sampling designs and asymptotic
structures are relevant for practical applications, for example increasing domain and
infill asymptotic structure (for more detail, see Bandyopadhyay and Lahiri 2010). It
has been noted that the large sample behaviors of many standard inference procedures
under the infill asymptotics are noticeably different from what can be obtained under
the increasing domain asymptotic frameworks; see, for example,Cressie (1993), Lahiri
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748 S. Bandyopadhyay, A. Maity

(1996), Loh (2005), Stein (1999), Ying (1993) and the references therein. As a result,
the case of infill asymptotics is not considered here and we concentrate only on the
increasing domain asymptotic structure.

The rest of the article is organized as follows. In Sect. 2, we introduce the nonpara-
metric VCM under a more general framework and discuss the estimation procedure
for the coefficients. The main asymptotic results are presented in Sect. 3, together with
simulation studies in Sect. 4. Finally, we give outlines of the proofs in Sect. 5. A com-
plete discussion on the regularity conditions and all supporting lemmas used to prove
the main results are relegated to the Supplementary material.

2 Nonparametric varying coefficient model (VCM)

2.1 Model specification

Suppose we are given observations at n locations on L regressor variables X1, . . . , XL

and the response variable Y . Based on this, let us define the following VCM,

Yi = Xi1θ1(Zi ) + · · · + XiLθL(Zi ) + ξi , i = 1, . . . , n, n ≥ 1

= X ′
iθ(Zi ) + ξi ,

where Xi = [Xi1, . . . , XiL ]′ is a L × 1 vector, θ(z) = [θ1(z), . . . , θL(z)]′ is a vector
of unknown functions, Zi is another covariate modifying the effects of Xi and ξi ’s are
the random errors. Note that one can have X1 ≡ 1 if an intercept function is included in
the model. As described in Sect. 1 for the random errors, we assume similar structure
as in Robinson (2011). In particular, let us assume

ξi = σi (Xi , Zi )ei , 1 ≤ i ≤ n,

where for all n ≥ 1, {ei , 1 ≤ i ≤ n} is independent of {(Xi , Zi ), 1 ≤ i ≤ n} and the
first and the second moments of σi (Xi , Zi ) exist. We model the dependence across i
via ei similar to Robinson (2011). Let us assume

ei =
∞∑

j=−∞
αi jε j , (1)

where for each n, the ε j , j ≥ 1 are independent random variables with zero mean and
finite variance, the nonstochastic weights αi j ’s are at least square summable over j ,
where, without loss of generality, we fix

∑∞
j=−∞ α2

i j = 1 for 1 ≤ i ≤ n, n = 1, 2, . . ..

We also assume that var(εi ) = 1,which implies var(ei ) = 1.Note thatσ 2
i (Xi , Zi ) are

unknown functions and that var(ei ) = 1 implies var(Yi |Xi , Zi ) = var(ξi |Xi , Zi ) =
σ 2
i (Xi , Zi ). Moreover,

E(ei ) = 0, 1 ≤ i ≤ n, (2)

123



VCM model for dependent data 749

and an immediate consequence of (2) is E(ξi |Xi , Zi ) = 0, 1 ≤ i ≤ n. From the
above construction, it can be observed that in this work we permit conditional het-
eroscedasticity. We do not assume that σ 2

i (Xi , Zi ) are constant across i ; thus, we are
also allowing unconditional heteroscedasticity.

This particular structure as given in (1) can include various forms of spatial depen-
dence and heterogeneity in the unobserved errors ξi , which are of interest in different
economic and statistical applications. It is worth mentioning that our formulation
usually does not require

∑∞
j=−∞ αi j < ∞ and hence covers forms of long-range

dependence. This formulation also covers the case of equally spaced time series data
(αi j = α|i− j |) as well as the lattice extension to the model. Condition (1) can also
be thought of as an extension of SAR models in the sense that one can start with the

parametric structure
(
In − ∑�1

k=1 δkWk

)
ξ =

(
In − ∑�2

k=1 δ�1+kW�1+k

)
σε, where

the integers �1, �2 are given, In is the n × n identity matrix, ξ = (ξ1, . . . , ξn)
′
,

ε = (ε1, . . . , εn)
′
, the δ’s are known scalars, σ is an unknown scale factor, and Wk’s

are given n×nweightmatrices satisfying further conditions in order to guarantee iden-
tifiability of the δ’s. For further details about this general framework on the errors, see
Robinson (2011) and Robinson and Thawornkaiwong (2011) which consider similar
structure of ei and give detailed motivation for using this structural form.

For all quantities (Yi , Xi , Zi , ξi , σi , ei , αi j , and, εi ) described above,we allow them
to admit a triangular array structure throughout this work. However, we will suppress
the n subscript to avoid notational complications. As noted in Robinson (2011), the
triangular array framework includes the case when we need to re-label observations
as n increases in lattice data or panel data.

2.2 Estimation

Let us consider the local polynomial estimator of θ(·). Specifically, given z, we assume
the following local expansion holds:

θk(Zi ) ≈ θk(z) +
p∑

j=1

(Zi − z) jθ( j)
k (z)/j !, k = 1, . . . , L ,

where θ
( j)
k (·) denotes the j th derivative of function θk(·) for j = 1, . . . , p.

Suppose that K is a kernel function and h ≡ hn denotes a positive scalar
bandwidth sequence satisfying h + (nh)−1 → 0 as n → ∞. Define G(t) =
[IL , (t/h)IL , . . . , {(t/h)p/p!}IL ]′, where IL is a L × L identity matrix. Given z,
let us also define

γ0(z) =
[
θ1(z), . . . , θL(z), . . . , h pθ

(p)
1 (z), . . . , h pθ

(p)
L (z)

]′
.

Thus, we can locally approximate θ(Zi ) ≈ G(Zi − z)′γ0(z) and the local polynomial
kernel-based estimate minimizes
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750 S. Bandyopadhyay, A. Maity

n∑

i=1

K {(Zi − z)/h}{Yi − X ′
i G(Zi − z)′γ (z)}2

with respect to γ (z). Equivalently, one solves for γ (z)

0 =
n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi {Yi − X ′
i G(Zi − z)′γ (z)}. (3)

The solution of (3) has the following closed form:

γ̂ (z) =
[

n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi X
′
i G(Zi − z)′

]−1

×
n∑

i=1

K {(Zi − z)/h}G(Zi − z)XiYi .

Clearly, θ̂ (z) is given by the first L elements of γ̂ (z).

3 Main results

In this section, we present the main asymptotic results regarding consistency and
asymptotic normality of the estimated functions. Here, we impose the following con-
ditions on the regression function.

(R1) For every j = 1, . . . , L , θ j (·) has p derivatives.

(R2) For every j = 1, . . . , L , θ
(p)
j (·) satisfies a Lipschitz condition of degree q ∈

(0, 1] in a neighborhood of z.

To maintain brevity, the other regularity conditions required to prove the results are
given in Supplementary Materials (Section A).

Define fi (z) to be the marginal density function of Zi , fi j (z1, z2) to be the density
function of (Zi , Z j ), fi jk(z1, z2, z3) to be the density function of (Zi , Z j , Zk) and
fi jk�(z1, z2, z3, z4) to be the density function of (Zi , Z j , Zk, Z�).
Define, for any s, s1, s2 = 1, . . . , L ,

mi,s1s2(z) = E{Xis1Xis2 |Zi = z} fi (z),
mi j,s1s2(z1, z2) = E{Xis1X js2 |Zi = z1, Z j = z2} fi j (z1, z2),

m∗
i,s(z) = E{σ 2

i (Xi , Zi )X
2
is |Zi = z} fi (z),

m∗
i,s1s2(z) = E{σ 2

i (Xi , Zi )Xis1Xis2 |Zi = z} fi (z),
m∗

i j,s1s2(z1, z2) = E{σi (Xi , Zi )σ j (X j , Z j )Xis1X js2 |Zi = z1, Z j = z2} fi j (z1, z2).

Given z, define the L × L matrix MX (z) such that its ( j, k)th element is given by
MX, jk(z) = n−1 ∑n

i=1 mi, jk(z) for j, k = 1, . . . , L . Also, for a kernel function K (·),
define
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VCM model for dependent data 751

κr =
∫

wr K (w)dw, and (4)

νr =
∫

wr K 2(w)dw. (5)

First, we establish consistency of γ̂ (z).

Theorem 1 Under (R1),(R2), and the assumptions stated in Section A of Supplemen-
tary Materials,

γ̂ (z) − γ0(z) →p 0

for any given z.

The proof is provided in Sect 5.1. Note that the result above not only ensures con-
sistency of the estimates of the unknown functions but also the consistency of their
(scaled) derivatives.

Next we show asymptotic normality of the estimators. From (D7) in Section A of
Supplementary Materials note that we set tn = |n−2 ∑n

i �= j=1 βi j |, and sn = (nh)−1

to define the scaling sequence

cn =
⎧
⎨

⎩

nh if tn/sn → c ∈ [0,∞),

n2
/∣∣∣

∑n
i �= j=1 βi j

∣∣∣ if tn/sn → ∞,

with c being a positive constant or zero. This definition of scaling sequence is also
used in Robinson (2011) in the context of nonparametric regression.

Define

Bn =
[

n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi X
′
i G(Zi − z)′

]−1

×
[

n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi X
′
i {θ(Zi ) − G(Zi − z)′γ0(z)}

]
.

Then, we have the following result.

Theorem 2 Under (R1),(R2), and the assumptions stated in Section A of Supplemen-
tary Materials, for any given z, entry-wise,

c1/2n

(
I−1ΣI−1

)−1/2
(γ̂ (z) − γ0(z) − Bn) →d N (0, I ),

where Bn = O(h p+q) is a bias term for p, q as defined in (R1), (R2), Σ = Ψ if
sn/tn → 0,Λ+ cΨ if tn/sn → c, where c is a positive constant or zero. The matrices

123



752 S. Bandyopadhyay, A. Maity

Ψ and Λ are defined in Section A [see, (A.4)] and I is a L(p+ 1) × L(p+ 1) matrix
given by

I =

⎡

⎢⎢⎢⎢⎢⎣

MX (z) κ1MX (z)/1! . . . κpMX (z)/p!
κ1MX (z)/1! κ2MX (z)/2! . . . κp+1MX (z)/(p + 1)!

...
...

. . .
...

κpMX (z)/p! κp+1MX (z)/(p + 1)! . . . κ2pMX (z)/2p!

⎤

⎥⎥⎥⎥⎥⎦
. (6)

Remark 1 It is worth mentioning that if we assume the errors are generated as a
linear process as discussed in Sect. 2.1, then the resulting local polynomial estimator
γ̂ (z) given in Sect. 2.2 is no longer an efficient estimator of γ0(z). In this work to
find the local polynomial estimator, we have considered the least-squared approach
rather than the likelihood based approach of getting an efficient estimator. Indeed,
by incorporating the dependence structure of the errors in the estimation procedure
(perhaps usingweighted local likelihood estimator rather than a simple local likelihood
estimator) may provide more efficiency. This is an important issue from statistical
perspective with our assumed model though a full discussion of an efficient estimator
is beyond the scope of this article.

Remark 2 It is interesting to note that when tn/sn → constant, the convergence rate
in Theorem 2 is (nh)1/2. This is the standard convergence rate of function estimates
in nonparametric VCM literature when the errors are independent. This observation
also matches with the convergence rate obtained in Robinson (2011) in the context of
nonparametric regression.

It is possible to obtain an asymptotic expansion of θ̂ j (z) − θ j (z) with the corre-
sponding expressions of bias terms. For example, let us consider the widely used local
linear estimators, that is, p = 1. Also suppose that instead of assumptions (R1) and
(R2), we impose the condition:

(R’) For every j = 1, . . . , L , θ j (·) has the second partial derivatives and θ
(2)
j (·) is

uniformly bounded by a finite constant.

Then, it can be shown that the first L elements of A2 (see Sect. 5.1) can be written as

A∗
2 = h2b(z) + op(h

2)

for some function b(z). Also, using (10) we see that there exists an N > 0 such that
the first L elements of A1 (see Sect. 5.1) can be written as

A∗
1 = (nh)−1

n∑

i=1

K {(Zi − z)/h}σi (Xi , Zi )G(Zi − z)Xiξ
∗
i + op

(
c−1/2
n

)
,
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VCM model for dependent data 753

where, ξ∗
i = ∑N

j=1 αi jε j . Thus, we have

θ̂ (z) − θ(z) = h2b(z) + (nh)−1M−1
X (z)

n∑

i=1

K {(Zi − z)/h}σi (Xi , Zi )Xiξ
∗
i

+op(h
2) + op

(
c−1/2
n

)
,

where we use the symmetry of the kernel function around 0 (see Assumption (K) in
Section A of Supplementary Materials) to derive κ1 = 0, thus implying I is a block
diagonal matrix.

Based on the asymptotic expansion, it is then possible to obtain an optimal choice
of bandwidth. For example, when tn/sn → constant, then cn = nh. Thus, the mean
square error (MSE) is Op(h4 + (nh)−1). Minimizing this MSE over h gives us
h = Op(n−1/5). However, we note that the optimal bandwidth still would depend
on the typically unknown dependence structure. Bandwidth selection in such spatially
dependent error models is still a challenging open problem and as such is out of the
scope of the current article.

Remark 3 Note that according to our assumptions (H1) and (W2) (see Supplementary
Materials) both sn and tn converge to 0 as n → ∞. Also depending on the relative
growths of sn and tn , we can relate to the short- and long-range dependence of the
underlying process. We get tn/sn → c ∈ [0,∞), i.e., tn decays faster than sn when
ξi has a short-range dependence. On the other hand when ξi is long range dependent,
then tn decays slower than sn implying tn/sn → ∞.

4 Simulation study

In this section, we perform a small simulation study to validate our theoretical findings.
To this end, we generate data from the following model,

Yi = θ1(Zi ) + Xiθ2(Zi ) + ei , i = 1, . . . , n,

where Zi and Xi ’s are independently generated from Uni f orm(0, 1) and N (0, 1)
distributions, respectively, and ei = (εi−2 + εi−1 + . . . + εi+2)/5 with ε j ∼
N (0, 1),−∞ ≤ j ≤ ∞. We further set θ1(z) = cos(π z) and θ2(z) = sin(π z).
Three different choices of sample sizes n = 100, 250 and 1000 are considered, and
we generate 1000 data sets for each case.

We perform local linear (p = 1) estimation using the Epanechnikov kernel K (z) =
(3/4)(1 − z2)I (|z| ≤ 1) with bandwidth hn = sd(Z1, · · · , Zn)n−1/5. Thus for each

data set, we obtain γ̂ (z) =
[
θ̂1(z), θ̂2(z), hn θ̂

(1)
1 (z), hn θ̂

(1)
2 (z)

]T
. We perform such

estimation on a grid of 11 equally spaced points between 0.1 and 0.9.
Results from the simulation study are displayed in Fig. 1. The first column presents

the bar graphs of the mean squared error (MSE) of the four estimated components of
γ̂ (z) for different sample sizes. It is evident that as sample size increases, the MSE
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Fig. 1 Results from the simulation study based on 1000 simulated data sets. The first column displays the

mean squared errors of θ̂1, θ̂2, hn θ̂
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1 and hn θ̂
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2 for different sample sizes. The second column displays

QQ-plots for n = 1000 of estimates of θ̂1, θ̂2, θ̂
(1)
1 and θ̂
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becomes smaller. This is expected since our theoretical result shows that the estimators
converge in probability to the true value for all z.

To assess asymptotic normality of the estimators, we create QQ-plots of the esti-
mated functions θ̂1(z), θ̂2(z), θ̂

(1)
1 (z) and θ̂

(1)
2 (z) at z = 0.26, 0.42 and 0.66 (values

were randomly chosen) with respect to normal quantiles (second column of Fig. 1)
for n = 1000. It is clear that the distributions of both estimated functions and their
first-order derivatives are indeed close to normal.

It is worth mentioning that we considered a few other choices of the bandwidth
with varying C > 0 where hn = Cn−1/5 and the results were quite similar. Therefore,
to maintain brevity we refrain from reporting those results in the main article.

5 Proof of Theorems

5.1 Proof of Theorem 1

We write

γ̂ (z) − γ0(z) = A−1
3 (A1 + A2),

where

A1 = (nh)−1
n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xiξi ,

A2 = (nh)−1
n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi X
′
i {θ(Zi ) − G(Zi − z)′γ0(z)},

A3 = (nh)−1
n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi X
′
i G(Zi − z)′.

To prove consistency, we will show that entry-wise, A3 − I →p 0, A1 →p 0 and
A2 →p 0, where I is a L(p + 1) × L(p + 1) matrix defined in (6).

Starting with A3, define for r, j, k ≥ 0,

Br jk = (nh)−1
n∑

i=1

K {(Zi − z)/h}(Zi − z)r Xi j Xik/h
rr !.

Note that the structure of a typical term in A3 is given by Br jk for appropriate r, j, k ≥
0. Therefore, entry-wise, the result

A3 − I = (nh)−1
n∑

i=1

K {(Zi − z)/h}G(Zi − z)Xi X
′
i G(Zi − z)′ − I →p 0 (7)

follows by a direct application of Lemma 1 in Section B of Supplementary Materials.
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756 S. Bandyopadhyay, A. Maity

Next for r, j ≥ 1, let us define a typical term of A1 as

Cr = (nh)−1(r !)−1
n∑

i=1

K {(Zi − z)/h}{(Zi − z)/h}r Xi jξi

for appropriate values of r . Now we observe that

E(C2
r ) = (nh)−2(r !)−2

n∑

i=1

E[h−2r E(X2
i j |Zi )K 2{(Zi − z)/h}(Zi − z)2r ξ2i ]

+ (nh)−2(r !)−2
n∑

i �=k=1

×E
[
h−2r E(Xi j Xk j |Zi , Zk)K {(Zi − z)/h}K {(Zk − z)/h}

×(Zi − z)r (Zk − z)r ξi ξk
]
.

The first term of the sum is

(nh)−1(r !)−2
∫

K 2(w)w2r n−1
n∑

i=1

m∗
i, j (wh + z)dw → 0 (8)

by (5) and assumptions (H1) and (D5) (see Supplementary Materials). Similarly, the
second term is

n−2(r !)−2
∫ n∑

i �=k=1

βikm
∗
ik, j j (w1h + z, w2h + z)K (w1)K (w2)w

r
1w

r
2dw1dw2 → 0,

(9)

where the last limit follows from the assumption that n−2 ∑
i �= j βi j → 0 as in (8) of

Supplementary Materials. Hence combining (8) and (9), we get E(C2
r ) → 0. Since

Cr represents a typical element in the vector A1, it is implied that E(||A1||2) → 0.
Therefore, A1 →p 0, entry-wise.

For the remaining term A2, note that for a typical entry Dr j of A2 for appropriate
values of r, j , we have for some Z∗

i ∈ [Zi , z],

E |Dr j |

= h p(r !)−1E

∣∣∣∣∣(nh)−1
n∑

i=1

K {(Zi − z)/h}{(Zi − z)/h}r+p Xi j

×
L∑

k=1

Xik{θ(p)
k (Z∗

i ) − θ
(p)
k (z)}

∣∣∣∣∣

≤ h p(r !)−1(nh)−1
n∑

i=1

L∑

k=1

E
∣∣K {(Zi − z)/h}{(Zi − z)/h}r+pE(|Xi j Xik ||Zi )

∣∣
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× sup
|u|≤h

|θ(p)
k (z + u) − θ

(p)
k (z)|

≤ h p+q(r !)−1n−1
n∑

i=1

L∑

k=1

∫
|K {w}{w}r |E(|Xi j Xik ||Zi =wz+h) fi (wh+z)dw,

= O(h p+q) → 0,

where the last line follows from Assumption (R2). Therefore, A2 →p 0 entry-wise,
and hence, the proof is completed. 
�

5.2 Proof of Theorem 2

The main steps to prove Theorem 2 is as follows. We note that c1/2n (γ̂ (z) − γ0(z) −
Bn) = A−1

3 c1/2n A1, where A1 and A3 are defined in Sect. 5.1 and Bn = A−1
3 A2. Thus,

the result follows if we prove Bn = O(h p+q) and asymptotic normality of c1/2n A1.
To prove the later result, we use a central limit theorem for martingale differences. In
fact, the error structure used in this article is needed to apply such a limit theorem. It
is important to see that generally the martingale difference assumptions of time series
models are hard to extend as there is nonatural ordering to our data.However,we follow
the same triangular array setting for observed data as in Robinson (2011) (Section 6,
items 8 and 9) which ensures the martingale differences in higher dimensions to be
well defined.

We start by investigating Bn . Using similar argument as in Sect. 5.1, we can easily
prove A2 = Op(h p+q). Combined with the result A3 − I →p 0 (see (7)), it readily
follows that Bn = O(h p+q).

To prove asymptotic normality of c1/2n A1, we adopt techniques similar to that of
Robinson (2011). As in Lemma 9 of Robinson (2011), we note that there exists a
sequence N = Nn , increasing with n such that

A1 =
N∑

j=1

Wjε j + op(c
−1/2
n ), (10)

where

Wj = (nh)−1
n∑

i=1

K {(Zi − z)/h}σi (Xi , Zi )G(Zi − z)Xiαi j . (11)

Asymptotic normality of c1/2n A1 →d N (0,Σ) follows from Lemma 5, together
with Lemmas 2 and 3 (hence, cn(T−Σ) →p 0), and consequently, Theorem 2 follows

from noting that A3 − I p→ 0 from (7). 
�
Acknowledgements The authors are extremely grateful to the Associate Editor and two anonymous ref-
erees whose suggestions greatly improved the results and presentation of the article.
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