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Abstract An existence of change point in a sequence of temporally ordered functional
data demands more attention in its statistical analysis to make a better use of it.
Introducing a dynamic estimator of covariance kernel, we propose a newmethodology
for testing an existence of change in the mean of temporally ordered functional data.
Though a similar estimator is used for the covariance in finite dimension, we introduce
it for the independent and weakly dependent functional data in this context for the first
time. From this viewpoint, the proposed estimator of covariance kernel is more natural
one when the sequence of functional data may possess a change point. We prove that
the proposed test statistics are asymptotically pivotal under the null hypothesis and
consistent under the alternative. It is shown that our testing procedures outperform the
existing ones in terms of power and provide satisfactory results when applied to real
data.

Keywords Change point detection · Functional data analysis · Covariance kernel
1 Introduction

Functional data analysis (FDA) is becoming increasingly popular because of its wide
applicability in various fields of statistics. It is noticed that in some cases the func-
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692 B. Banerjee, S. Mazumder

tional representation of real-life data is more appropriate and appealing over its finite
dimensional representation. In such case, often functional principal component anal-
ysis (FPCA) leads to more accurate inference than the usual principal component
analysis (see Berkes et al. 2009). Ramsay and Silverman (2005) have enriched the
literature with a detailed discussions on several techniques and usefulness of FPCA.
Nonparametric inference of functional data is elaborately discussed by Ferraty and
Vieu (2006). Some recent developments in many more aspects of FDA can be found
in Ferraty (2011) and Bongiorno et al. (2014). Specifically the ANOVA technique in
FDA is described by Zhang (2013). A rigorous mathematical treatment of functional
data analysis is available in Hsing and Eubank (2015). The review articles by Cuevas
(2014) and Goia and Vieu (2016) with the references therein are worth viewing for
accessible references in FDA.

However, inference and especially prediction may alter if there exists an inherent
change in the stochastic structure of the temporally observed functional data. The
change may occur at an unknown point of time within the chronological sequence of
data, but it is always challenging to test whether the change has occurred or not. In
the cases of scalar and vector valued data, a considerable amount of contributions can
be found in the works by Cobb (1978), Inclán and Tiao (1994), Davis et al. (1995),
Antoch et al. (1997), Horváth et al. (1999), Kokoszka and Leipus (2000), Kirch et al.
(2015) and references therein, among many others. In the context of functional data
a change may occur in the mean function or in the covariance kernel of the data or
both. Recently, Berkes et al. (2009) and Aue et al. (2009) have proposed a method
for detecting changes in the mean functions of an observed set of functional data.
Berkes et al. (2009), in their pioneering work in this context, have provided an elegant
test procedure to decide the existence of a significant change in the mean function,
whereas Aue et al. (2009) following the method of Berkes et al. (2009) have dealt
with the detection of the position of the change in the mean function. One may look at
the works by Hörmann and Kokoszka (2010), Aston and Kirch (2012) in the context
of weakly dependent data for the similar problem, whereas the test of independence
for functional data is given by Horváth et al. (2013). In practice, both are important
to judge the existence of significant change in the mean function of the data and to
identify the location of change point in the sequence. For example, while analysing
the temperature of a certain region over a long period of time, it is very important
to environmentalist to identify the time point after which a significant change in the
mean temperature is observed as a possible effect of global warming.

In this paper, we come up with different methodologies to analyse the functional
data subject to a possible change point and propose new statistical tests which are
more powerful than the existing ones, for detecting the presence of a change in the
mean function of the independent as well as the weakly dependent data. We introduce
a new estimator of the covariance kernel of the functional data in the context of
the change point problem. A similar approach to estimate the underlying variance
is available for scalar data (see Fotopoulos and Jandhyala 2010; Bhattacharya 1987;
Gombay and Horváth 1994; Hinkley 1970; Mei 2006; Shao and Zhang 2010). Unlike
the finite dimensional data, functional principal component analysis is used to identify
the eigenfunctions and the corresponding eigenvalues. All convergences are studied
under L2(·, ·) norm in a separable Hilbert space which makes the analysis technically
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Change in mean of functional data 693

more challenging than the finite dimensional cases. Under the null hypothesis, i. e.
with no change in the mean function of the data, the uniform convergence of the newly
proposed estimator of the covariance operator is established for the independent and the
weakly dependent cases.Herewe also show that under the null hypothesis the proposed
test statistics converge in distribution to a functional of the Brownian bridges, as shown
in Berkes et al. (2009) for independent data and as given in Hörmann and Kokoszka
(2010) for weakly dependent data. Moreover, we prove here that the test is consistent
under the alternative hypothesis when the number of the observations becomes large
enough. Besides the consistency of the estimator of the covariance kernel under the
null hypothesis, it also enjoys less asymptotic bias compared to that of the estimator
provided by Berkes et al. (2009), Aue et al. (2009) or Hörmann and Kokoszka (2010)
under the alternative hypothesis. We find the reduction in the asymptotic bias while
estimating the covariance kernels leads to tests for an existence of a change point
in the mean function with better power than the existing methods by Berkes et al.
(2009) and Hörmann and Kokoszka (2010) for independent and weakly dependent
data, respectively. The outcomes of an extensive simulation study reflect the same.
It is also noted that our methods outperform the existing methods in a wide margin
for small samples. Therefore, it is more advantageous to use the proposed methods
in practice for deciding with the presence of significant change in the mean of the
functional data for independent and weakly dependent data as well, especially when
the data size is not big enough.

The organization of the paper is as follows. In Sect. 2, we introduce the required
notation and definitions for introducing the subject. The details of the model and the
null and alternative hypothesises, discussed in the paper, are mentioned in this section.
In Sect. 3, the proposed estimator of the covariance kernel is introduced which is used
for both independent and weakly dependent functional data. In Sect. 4, the uniform
convergence of the estimator of the covariance operator is established under the null
hypothesis for independent observations. In this section we provide the main theorem
about the reduction of bias in estimation of the covariance kernel under the alternative
hypothesis. The testing methodology and the asymptotic properties of test statistic for
independent observations are developed in Sect. 5. Inference with weakly dependent
data in the same context is dealt in Sect. 6. In Sect. 7, simulation results are provided
in great detail for the independent and weakly dependent data separately. Here we
show that our methods substantially improve over the existing methods of Berkes
et al. (2009) and that of Hörmann and Kokoszka (2010) with independent and weakly
dependent data, respectively. In Sect. 8, we show the performance of our test in real
data. Here we analyse the data set used by Berkes et al. (2009) and compared with their
results assuming independence. Moreover, we analyse average global temperature
anomaly data assuming weak dependency. Remarks and conclusion of the work are
given in the Sect. 9. Finally, we provide the required proofs of the results of Sect. 4 in
“Appendix” section.
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694 B. Banerjee, S. Mazumder

2 Preliminaries and assumptions

Let Xi (t) for i = 1, . . . , N , be random functions defined over a compact set τ = [0, 1]
belonging to a separable Hilbert space with the inner product 〈x, y〉 = ∫ 1

0 x(t)y(t)dt .
We assume that Xi s are independent. We are interested in testing the equality of the
mean functions of Xi for all i = 1, 2, . . . , N . More precisely, the null hypothesis to
test will be

H0 : E(X1(t)) = E(X2(t)) = · · · = E(XN (t))

against the alternative

H1 : E(X1(t)) = · · · = E(Xk∗(t)) �= E(Xk∗+1(t)) = · · · = E(XN (t)),

for some 1 ≤ k∗ < N . It is important to note that nothing is presumed about any
property of the common mean under the null hypothesis. We deal with the situation
when the data contain at most one change point; however, in case of applications we
elaborate how to implement this method with multiple change points case. In Sect. 8,
we specifically deal with the situation with more than one change points. There the
data can be subdivided into several consecutive parts and within each part the mean
function remains constant but it deviates between different contiguous parts. The
details of the model with single change point are discussed in the Sect. 2.1. Under the
null hypothesis, we express Xi , i = 1, . . . , N , in the following manner.

Xi (t) = μ(t) + Yi (t)

E(Yi (t)) = 0. (1)

The covariance kernel is defined as

c(t, s) = E(Yi (t)Yi (s)) t, s ∈ τ, (2)

where c(t, s) ∈ L2(τ × τ). If E
(∫

Y 2
i (t)dt

)2
is finite then the covariance operator

of Y , which is a positive definite symmetric Hilbert–Schmidt (H-S) operator mapping
from L2(τ ) to itself, will be of the form

C(x) = E[〈Y, x〉Y ] with ||C ||2 =
∫ ∫

c2(t, s)dtds. (3)

The evaluation of C(x) at t , i.e. C(x)(t), is given by

C(x)(t) =
∫

c(t, s)x(s) ds ∀t ∈ τ.
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Change in mean of functional data 695

Moreover, Mercer’s theorem in (Indritz 1963, Chap.4) implies that c(t, s) has the
following spectral decomposition:

c(t, s) =
∞∑

l=1

λlυl(t)υl(s) t, s ∈ τ, (4)

where each real scalar λl and function υl (in L2(τ )) are defined, for t ∈ τ , as

C(υl)(t) = λlυl(t), l = 1, 2 . . . ,

i.e.
∫

c(t, s)υl(s)ds = λlυl(t), l = 1, 2, . . . . (5)

In other words, λl s and υl s are the eigenvalues and the corresponding eigenfunctions,
respectively, of the operator C(·). Since the eigenfunctions of the positive definite
symmetric operator, C(·), form an orthonormal basis of L2(τ ) and the eigenvalues are
positive, Karhunen–Loéve representation of Yi holds good in L2(τ ) and is given by

Yi (t) =
∞∑

l=1

√
λlδi,lυl(t), (6)

where
√

λlδi,l = 〈Yi , υl〉 =
∫
Yi (s)υl(s) is known as lth functional principal com-

ponent score. By construction, the elements of the sequence {δi,l}l are uncorrelated
random variables with zero mean and unit variance and {δi,l}l and {δ j,l}l are indepen-
dent for i �= j . Keeping this in consideration, first we estimate the covariance kernel in
the following section and then develop a newmethodology to test H0. Nowwe specify
the assumptions about the mean function μ and random element Yi , based on which
the asymptotic behaviour of the test statistic can be determined. From here onwards
all integrations are computed over the compact set τ , unless otherwise mentioned.

2.1 Assumptions with independent observations

A1. Yi s, are independent and identically distributed random elements with zeromean.
Moreover, Yi s and μ ∈ L2(τ ). Yi s also satisfy

E ||Yi ||4 = E

(∫
Y 2
i (t)dt

)2

< ∞. (7)

A2. First d+1 largest eigen values are distinct and positive for some for some natural
number d.

A3. Under the alternative, with an existence of single change point the observations,
Xi , i = 1, . . . , N can be represented as follows

Xi (t) =
{

μ1(t) + Yi (t), 1 ≤ i ≤ k∗

μ2(t) + Yi (t), k∗ < i < N ,
(8)
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where Yi , i = 1, . . . , N satisfy the assumption A1, μ j (t), j = 1, 2 are in L2(τ )

and k∗ = [Nθ ], with θ ∈ (0, 1). Therefore, we assume that under the alternative
hypothesis a single change in the mean may occur.

3 Estimation of covariance kernel

To estimate the covariance kernel, let us define the piecewise sample means for two
segments

μ̂k(t) = 1

k

k∑

i=1

Xi (t), (9)

μ̃k(t) = 1

N − k

N∑

i=k+1

Xi (t), (10)

where k = [Nu] with u ∈ (0, 1), implying 1 ≤ k < N . For u = 1 we define

μ̂N (t) = 1

N

N∑

i=1

Xi (t).With the help ofEqs. (9) and (10), the newlyproposed estimator

of the covariance kernel for k = [Nu] and u ∈ (0, 1) is

ĉu(t, s) = 1

N

⎡

⎣
k∑

i=1

(Xi (t) − μ̂k (t)) (Xi (s) − μ̂k (s)) +
N∑

i=k+1

(Xi (t) − μ̃k (t)) (Xi (s) − μ̃k (s))

⎤

⎦ .

(11)

For u = 1, we define ĉ1(t, s) = 1
N

[∑N
i=1 (Xi (t) − μ̂N (t)) (Xi (s) − μ̂N (s))

]
, which

is commonly used as an estimator of the covariance kernel (see Berkes et al. 2009;
Aue et al. 2009; Hörmann and Kokoszka 2010) for independent and weakly dependent
data as well. However, we suggest to use the newly proposed estimator [Eq. (11)] of
the covariance kernel in the context of change point analysis in mean function for both
independent and weakly dependent functional data. The advantages of the proposed
estimator [Eq. (11)] over the existing one are discussed in the subsequent sections.

4 Properties of ĉu(t, s) with independent data

With the newly proposed estimator of the covariance kernel, we obtain themost impor-
tant finding of this paper which is stated in the following theorem.

Theorem 1 Defining cu(t, s) := c(t, s)+θ(1−θ)�(t)�(s) fθ (u), under the assump-
tion A3,

∫ ∫
[̂cu(t, s) − cu(t, s)]2 dtds P−→ 0, as N ↑ ∞,
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Change in mean of functional data 697

where

fθ (u) = max{u, θ} − min{u, θ}
max{u, θ}(1 − min{u, θ}) ∈ [0, 1]

with θ ∈ (0, 1), u ∈ (0, 1] and �(t) = μ1(t) − μ2(t).

Proof The proof of the theorem is provided in “Appendix” section. �
Theorem 2 If the null hypothesis is true then supu∈(0,1] ||Ĉu − C || P−→ 0, where the

operators Ĉu and C have the kernels ĉu(t, s) and c(t, s), respectively.

Proof The proof is provided in “Appendix” section. �
Some more interesting observations, which show the greater applicability of the

Theorem 1, are as follows.

Remark 1 It can be easily checked that cu(t, s) is a positive definite, symmetric sat-
isfying

∫ ∫
c2u(t, s) dtds < ∞,

and hence is a covariance kernel.

Remark 2 If u = 1, that is, if commonly used estimator of c(t, s) is used, then it is

readily observable that, under the alternative, ĉ1(t, s)
P−→ c(t, s)+θ(1−θ)�(t)�(s) =

c̃(t, s), say,which is also proved byBerkes et al. (2009).Wenote here thatwhenever H0
is false, ĉ1(t, s) has a constant bias θ(1 − θ)�(t)�(s). Therefore, for any u ∈ (0, 1),
the asymptotic bias of the estimator ĉu(t, s) is less than that of ĉ1(t, s) under the
alternative hypothesis.

Remark 3 If u = θ , that is, when the data are partitioned in true position, then

ĉθ (t, s)
P−→ c(t, s) and in that case asymptotic bias of ĉθ (t, s) is zero, whereas asymp-

totic bias of ĉ1(t, s) remains θ(1 − θ)�(t)�(s).

5 Testing with independent observations

A few more notation and definitions are needed to be introduced here to state the
further results.

Definition 1 The orthonormal functions ω
(u)
l (t) in L2(τ ) corresponding to the real

scalars γ (u)
l

are defined as orthonormal eigenfunctions associated with the eigenvalues
γ (u)
l

of the covariance operator Cu(·) from L2(τ ) to L2(τ ), defined as Cu(x)(t) =∫
cu(t, s)x(s) ds, satisfying the relation

∫
cu(t, s)ω

(u)
l (s) ds = γ (u)

l
ω

(u)
l (t). (12)
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698 B. Banerjee, S. Mazumder

Definition 2 The estimates of the eigenvalues γ (u)
l

and eigenfunction ω
(u)
l (·) are

denoted by λ̂
(u)
l and υ̂

(u)
l (·), satisfying the relation

∫
ĉu(t, s)υ̂

(u)
l (s) ds = λ̂

(u)
l υ̂

(u)
l (t). (13)

With the above two definitions, the following important observations can be noted. It
is immediate from Hörmann and Kokoszka (2010) that under the Assumption A3, for
every 1 ≤ l ≤ d and u ∈ (0, 1], we have

λ̂
(u)
l

P−→ γ (u)
l

and (14)
∫

[υ̂(u)
l (t) − ĥ(u)

l ω
(u)
l (t)]2 dt P−→ 0, (15)

where ĥ(u)
l = sgn〈ω(u)

l (·), υ̂(u)
l (·)〉. The result follows from the Theorem 1 and Lemmas

4.2 and 4.3 of Bosq (2000).

Remark 4 Under the null hypothesis, for all 1 ≤ l ≤ d and u ∈ (0, 1], λ̂
(u)
l

P−→ λl

and υ̂
(u)
l (·) converges to υl in probability, in L2(τ ). Moreover, under the alternative

hypothesis, if u = θ then for all 1 ≤ l ≤ d, λ̂(θ)
l

P−→ λl and υ̂
(θ)
l (.) converges to υl in

probability, in L2(τ ). It, in fact, can be easily seen that

sup
0<u≤1

∫
[υ̂(u)

l (t) − ĥ(u)
l ω

(u)
l (t)]2 dt P−→ 0.

In the direction of the eigenfunctions υ̂
(u)
l (·) corresponding to the largest d eigen-

values λ̂
(u)
l , the non-central scores can be obtained as

η̂i,l(u) =
∫

Xi (t)υ̂
(u)
l (t) dt, i = 1, . . . , N , l = 1, . . . d. (16)

Utilizing the score functions, as defined above, we provide a statistic and its distri-
butional convergence in the following theorem which will be important to know to
construct the test statistic and perform the asymptotic test. First we define the statistic
based on the self-normalized partial sums in d dimensions

RN (u) = 1

N

d∑

l=1

1

λ̂
(u)
l

([Nu]∑

i=1

η̂i,l(u) − u
N∑

i=1

η̂i,l(u)

)2

. (17)

Further denoting B1(·), . . . , Bd(·) the standard independent Brownian bridges, the
following theorem is provided.
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Change in mean of functional data 699

Theorem 3 Let the assumptions A1–A3 hold. Then with the proper embedding of
Skorohod topology in D[0, 1], under the null hypothesis and as N ↑ ∞,

RN (u)
d−→

d∑

l=1

B2
l (u), 0 ≤ u ≤ 1. (18)

Proof The proof follows from the Theorem 1, Eqs. 14 and 15 and the proof of Theorem
6.1 of Horváth and Kokoszka (2012). �

5.1 Test statistic

Finally we define the test statistic HN ,d := ∫ 1
0 RN (u)du which can be computed as:

1

N 2

d∑

l=1

N∑

[Nu]=1

1

λ̂
(u)
l

([Nu]∑

i=1

η̂i,l(u) − u
N∑

i=1

η̂i,l(u)

)2

. (19)

Remark 5 Using Theorem 3, it is immediate to see that HN ,d
d−→ ∫ 1

0

∑d
l=1 B

2
l (u)du

under the null hypothesis, because integral is a continuous functional andU (RN (·)) d−→
U
(∑d

l=1 B
2
l (·)

)
for any continuous functional U : D[0, 1] → R (see Berkes et al.

2009 for further details).

Remark 6 The test statistic, SN :d , proposed by Berkes et al. (2009) can be expressed
in our notation as

SN ,d = 1

N 2

d∑

l=1

1

λ̂
(1)
l

N∑

[Nu]=1

([Nu]∑

i=1

η̂i,l(1) − u
N∑

i=1

η̂i,l(1)

)2

. (20)

In Sect. 7.1.2, we compare the performance of HN ,d with SN :d .

Remark 7 The distribution of
∫ 1
0

∑d
l=1 B

2
l (u)du can be found in Kiefer (1959), and

its (1 − α)th quantile are given in the Table1 of Berkes et al. (2009). We use these
asymptotic critical values for performing the tests, and H0 is rejected at 100(1− α)%
confidence level if the observed value of HN ,d is bigger than the tabulated (1 − α)th
quantile Kd(α) in Berkes et al. (2009).

Now we show that the proposed test is consistent under the alternative hypothesis.

Basically we show here that HN ,d
P−→ ∞ under the alternative hypothesis with single

change point. The following theorem assures the claim.
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Theorem 4 Under the assumption A3 and N ↑ ∞,

1

N
HN ,d

P−→
d∑

l=1

∫ 1

0

g2l (u)

γ
(u)
l

du,

where gl(u) = min{θ, u} (1 − max{θ, u}) ∫ �(t)ω(u)
l (t)dt .

Proof The proof follows from the Theorem 1 and the following lemma. �

Lemma 1 Under the assumption A3, sup
0≤u≤1

∣
∣
∣
∣
∣
N−1RN (u) −

d∑

l=1

g2l (u)

γ
(u)
l

∣
∣
∣
∣
∣
= oP (1).

Proof Proof of the lemma follows from the proof of the Theorem 2 of Berkes et al.
(2009). �

Clearly from the Theorem 4 if
∫ 1
0

g2l (u)

γ
(u)
l

du > 0 for some 1 ≤ l ≤ d, then HN ,d
P−→

∞.
Similar to Berkes et al. (2009), the change point θ is estimated by finding the value

of u which maximizes the function RN (u). For uniqueness we define the estimator
formally as

θ̂N = inf{u′ : RN (u′) = sup
0≤u≤1

RN (u)}. (21)

It can be easily shown that (using Lemma 1), under the assumption A3, θ̂N
P−→ θ

provided 〈�,ω
(u)
l (·)〉 �= 0 for all u ∈ (0, 1] (see, for example, the proposition 1 and

its proof of Berkes et al. (2009)).

6 Inference with weakly dependent observations

To construct a testing procedure for detecting change in mean function for weakly
dependent data, we need to introduce the following definition and assumptions. Let
L p
H = L p

H (�,A , P) be the space ofHilbert valued random functions Y with common
probability space (�,A , P) such that (E ||Y ||p)1/p < ∞ for any p > 1. Now we
have the definition from Hörmann and Kokoszka (2010).

Definition 3 A sequence {Yn} ∈ L p
H is called L p −m−approximable if every Yn has

the representation,

Yn = f (εn, εn−1, . . .),

where the εi are i.i.d. elements taking values in a measurable space S, and f is a
measurable function f : S∞ �→ L2

H .Moreover, we assume that if ε′
i is an independent

copy of εi defined on the same probability space, then letting

Y (m)
n = f (εn, εn−1, . . . εn−m+1, ε

′
n−m, ε′

n−m−1, . . .)
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Change in mean of functional data 701

we have
∑∞

m=1(E ||Yn − Y (m)
n ||p)1/p < ∞. For our applications, choosing p = 4

will be sufficient to establish the convergence of the estimated covariance kernel and
operator.

If we assume the followings

A4. Each Xn = μ + Yn is measurable (B[0,1] × A )/BR and
A5. sup

t∈[0,1]
E |X(t)|2 < ∞

then we can define an integral covariance operator W with the kernel w(t, s) =
E(Yi (t),Yi (s)). Using Eqs. (9) and (10) for all u ∈ (0, 1], we get an estimator of
covariance kernel w(t, s) as

ĉu(t, s) = 1

N

⎡

⎣
k∑

i=1

(Xi (t) − μ̂k (t)) (Xi (s) − μ̂k (s)) +
N∑

i=k+1

(Xi (t) − μ̃k (t)) (Xi (s) − μ̃k (s))

⎤

⎦ ,

(22)

for each [Nu] = k similar to the Eq. (11).

6.1 Properties of ĉu(t, s)

In this subsection, we study the properties of ĉu(t, s) for weakly dependent data. We
have the following theorem similar to the Theorem 1.

Theorem 5 When {Yi } is a centred, stationary, ergodic and L4
H − m−approximable

sequence, definingwu(t, s) := w(t, s)+θ(1−θ)�(t)�(s) fθ (u), under the assump-
tion A4,

∫ ∫
[̂cu(t, s) − wu(t, s)]2 dtds P−→ 0, as N ↑ ∞,

where fθ (u) is as defined in Theorem 1 with θ ∈ (0, 1), u ∈ (0, 1] and �(t) =
μ1(t) − μ2(t).

Proof The proof is similar to that of the Theorem 1 following the arguments in Aston
and Kirch (2012) and Rao (1962). �

The consistencies of the eigenelements obtained naturally from the above estimate
of the covariance kernel are ensured by the following theorem.

Theorem 6 Let {Xi } ∈ L4
H be L4−m−approximable sequence. If the null hypothesis

is true then sup
u∈(0,1]

||Ĉu − W || P−→ 0, where the operators Ĉu and W have the kernels

ĉu(t, s) and w(t, s), respectively.

Proof The proof similar to Theorem 2. �
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6.2 Construction of test statistic

Definitions 1 and 2 hold good for the weakly dependent case also, and so the consis-
tency of corresponding estimated eigenelements are ensured. Under the assumption
A2, we denote the estimated non-central score vector for the i th observation by column
vector

ξ̂ i (u) = (ξ̂i,1(u), ξ̂i,2(u), . . . , ξ̂i,d(u))T , with u ∈ (0, 1], (23)

where ξ̂i,l(u) is the score of random function Xi along the direction of the eigenfunction
corresponding to the lth largest estimated eigenvalue of Ĉu . Let us assume thatΣ LR =

∞∑

r=−∞
�r stands for long-run covariance matrix of a d-dimensional multivariate time

series with �r denoting the covariance matrix of lag r ∈ Z. Representing the centred
scores by

ξ̃a:b(u) =
[
ξ̂a(u) − μa:b(ξ̂(u)), ξ̂a+1(u) − μa:b(ξ̂(u)), . . . , ξ̂b(u) − μa:b(ξ̂(u))

]
,

where μa:b(ξ̂(u)) = ∑b
i=a ξ̂ i (u)/(b − a + 1) we define

S[m:n]
q (u) =

⎛

⎝ξ̃m:n(u)ξ̃
T
m:n(u) +

q∑

j=1

�q ( j)
[
ξ̃m:(n− j)(u)ξ̃

T
(m+ j):n(u) + ξ̃ (m+ j):n(u)ξ̃

T
m:(n− j)(u)

]
⎞

⎠ ,

(24)
for 1 ≤ m < n, with some suitable weight function �q( j), where q is so chosen that
q4/N → 0 for large N (see Hörmann and Kokoszka 2010). So we get a consistent
kernel estimate of Σ LR(ξ̂(u)) by

Σ̂ LR(ξ̂(u)) = 1

N

[
S[1:[Nu]]
q (u) + S[1+[Nu]:N]

q (u)
]
, (25)

for each [Nu] = 1, 2, . . . , N . Finally we define the test statistic as

H∗
N ,d = 1

N

∫ 1

0

⎡

⎣
[Nu]∑

i=1

(ξ̂ i (u) − μ1:n(ξ̂(u)))

⎤

⎦

T

Σ̂
−1
LR(ξ̂(u))

⎡

⎣
[Nu]∑

i=1

(ξ̂ i (u) − μ1:n(ξ̂(u)))

⎤

⎦ du. (26)

Following in Hörmann and Kokoszka (2010) and (Chap. 14, Horváth and Kokoszka

2012) we get that under the null hypothesis H∗
N ,d

d−→
∫ 1

0

∑d

l=1
B2
l (u)du, where

Bl(u)s are independent stranded Brownian bridges on [0, 1] for l = 1 . . . d. The
consistency of the proposed test statistic H∗

N :d can be ensured from Theorem 3.2 by
Aston and Kirch (2012) and following the Lemma 1 of this article. In Sect. 7.2, we
compare the performance of H∗

N ,d and TN ,d , the proposed test statistic by Hörmann
and Kokoszka (2010). TN ,d can be expressed with our notation as
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TN ,d = 1

N

∫ 1

0

[[Nu]∑

i=1

(ξ̂ i (1) − μ1:n(ξ̂(1)))

]T

Σ̂
−1
LR(ξ̂(1))

[[Nu]∑

i=1

(ξ̂ i (1) − μ1:n(ξ̂(1)))

]

du. (27)

7 Simulation studies

7.1 Simulation in independent set-up

In this section, we report a summary of the extensive simulation studies that we have
conducted for moderate and large sample sizes. As proposed in Sect. 3, we reject the
null hypothesis when the observed value of HN ,d exceeds the corresponding critical
value Kd(α). The critical values are available inTable1 ofBerkes et al. (2009).Without
loss of generality, initial mean function is considered to be zero. For the first set of
simulation studies, the samples are generated from the standard Brownian motion
(BM) over the interval [0, 1] and a drift of amount t and sin(t) are considered after
the presumed locations of change point. The same is done for the standard Brownian
bridge over [0, 1] and the mean shift after the change point is considered to be a
quadratic function 0.8t (1 − t). To generate a sample from each of such Gaussian
processes 1000 equidistant grid points are used. 750 B-spline basis functions are used
to convert the grid data to functional data. As noted by Berkes et al. (2009) and Aue
et al. (2009) we also observe that the power of the test decreases as we increase the
number of principal components d.

First 3(=d) eigenfunctions, which are sufficient to explain at least 85% of variation
for each u ∈ (0, 1], are used to execute the testing procedures. We choose in particular
85% of the total variation so that the simulation findings can be compared with Berkes
et al. (2009).

For a pre-decided sample size and a specific change point, the entire process is
replicated 10000 times to assess the power of the test. The considered sample sizes
(N ) are 50, 100, 150, 200, 300, 500. For any particular sample size, different possible
locations of change points (k∗) are chosen, to cover a wide range, which are summa-
rized in Table1 and Figs. 1, 2. For all practical purposes, we use the complete data
together for computing the estimated covariance kernel when k = 1 or k = N − 1,
otherwise as proposed in Eq. (11).

7.1.1 Small sample bias correction

For small sample size (less than or equals to 100, say) we observe some fluctuations
in the empirical size of the proposed test based on HN ,d . To overcome this instability,
we propose a bias correction which helps us to get empirical size reasonably close to
0.05. Under the null, it is easy to observe that

E [̂cu(t, s)] =
(

1 − 2

N

)

c(t, s). (28)
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Table 1 Power comparison of two tests with test statistics SN ,d and HN ,d for different k∗

N = 100, d = 3 BM, BM +t BM, BM + sin(t) BB,BB +0.8(1 − t)t

k∗ SN ,d HN ,d SN ,d HN ,d SN ,d HN ,d

0 4.6† 5.5 4.6† 5.5 4.6† 5.0

15 36.3 39.9 30.9 35.4 11.2 12.9

20 57.3 62.0 44.6 49.5 15.3 16.5

25 72.0 75.6 61.2 64.7 19.5 21.3

35 92.9 94.2 80.1 83.4 28.0 31.8

50 94.9† 95.8 88.0† 90.1 34.7 37.4

65 91.0 92.9 81.5 83.7 31.1 33.9

75 74.3 78.1 59.0 64.4 21.9 23.8

80 58.8 64.3 46.1 50.2 13.7 16.1

85 36.4 40.1 27.8 33.0 12.9 14.1

† The values are reported from the tables provided by Berkes et al. (2009, Table4)
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Fig. 1 Power comparison of HN ,d and SN ,d for N = 50 and d = 3 with �(t) = t

So we suggest to multiply the correction factor with (1 − 2/N )−1 with ĉu(t, s) to
obtain the satisfactory results. Indeed for the large sample the effect of the correction
factor vanishes automatically and it hardy matters whether we use it or not.

7.1.2 Simulation findings

In all of the cases, we find that the power curves for the proposed test based on HN ,d

strictly dominates that of the SN ,d proposed by Berkes et al. (2009). For large sample
(200 and above, say), the two power curves get very close to each other. But for small
sample, we observe a remarkable gap between these two. In particular, we provide the
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Fig. 2 Power comparison of HN ,d and SN ,d for N = 50 and d = 3 with �(t) = sin(t)

details of power for N = 100 and d = 3 at different point of change points starting
from 15 to 85 in the Table1. We add two different functions, namely t , sin t with the
mean of the Brownian motion on [0, 1] and add 0.8t (1 − t) with the mean of the
standard Brownian bridge. The Fig. 1 and the Fig. 2 show the powers of two methods
for sample size 50(=N ) at different points of changes, with themean shift t and sin t to
the standardBrownianmotion. It can be clearly observed that even for the small sample
size ourmethod is outperforming themethod of Berkes et al. (2009) with amuch larger
difference. We also have done simulations for the shift functions, e. g. t2,

√
t , exp(t),

cos(t), being added to the mean of Brownian motion and Brownian bridge, and in all
cases similar results are obtained. This finding is quite intuitive because both tests are
asymptotic tests (converging to the same asymptotic distribution) and the bias in the
newly proposed estimator of the covariance kernel under the alternative is smaller than
that in the usual estimator of the covariance kernel used elsewhere. This satisfies the
desirable quality of a better asymptotic test. We also observe quite good performance
of the test statistic when the location of change point is ≤ N/4 and ≥ 3N/4.

7.2 Simulation in dependent set-up

We consider functional autoregressive process {Xi } of order one according to the
assumption A4, where Yi = �(Yi−1)+εi . Here εi s are independent Brownian bridges
on [0, 1]. Under the alternative hypothesis, we assume

Xi (t) =
{

μ1(t) + Yi (t), 1 ≤ i ≤ k∗

μ2(t) + Yi (t), k∗ < i < N ,
(29)
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Table 2 Comparing H∗
N (d) and

TN (d) for AR(1) process
N = 200,BB,BB + 0.8t (1 − t), q = 4, d = 3

k∗ 0 25 50 75 100

TN (d) 3.7† 11.2 49.5 76.9 83.1

H∗
N (d) 6.2 21.8 67.2 89.1 92.1

† The value is reported from the
tables provided by Hörmann and
Kokoszka (2010)

Table 3 Comparing H∗
N (d) and TN (d) for AR(1) process with �(t) = t

N = 100,BM,BM + t, q = 3, d = 3

k∗ 0 15 20 25 35 50 65 75 80 85

TN (d) 2.1† 25.6 50.6 75.1 97.4 98.7 96.5 81.1 52.5 27.4

H∗
N (d) 5.6 66.1 88.4 97.7 99.9 99.9 99.7 97.3 88.7 67.5

† The value is reported from the tables provided by (Horváth and Kokoszka 2012 Chap. 16)

where �(t) = μ2(t) − μ1(t) = 0.8t (1 − t), whereas kernel of � is ψ(t, s) =
ϕ · (2 − (2t − 1)2 − (2s − 1)2) and the constant ϕ is so chosen that ||�|| = 0.6.
Uniform 1000 grids in [0, 1] are used to generate the data, and 750 B-spline basis
functions are used to convert the data into functional observations. We use the test
statistic H∗

N (d) as the proposed test statistic with q = 4 for 200(=N ) sample size
and

�q( j) =
{
1 − | j |/(1 + q) if | j | ≤ q

0 otherwise.
(30)

Here we adopt the formula q ≈ 1.1447(aN )1/3 where a = 4||�||2
(1+||�||)4 from Hörmann

and Kokoszka (2010). With 10000 iteration we have empirical level 6.2% considering
the cut-off value 1.0031 form Berkes et al. (2009) for d = 3 explaining 85% of the
total variation. With repeated simulations, we found that this empirical level is stable
and very close to the nominal level 5%.We compare the performance of proposed test
statistic H∗

N ,d and TN ,d , the suggested one by Hörmann and Kokoszka (2010) and the
powers are reported in Table2 for different values of k∗.

We also conduct another set of simulation with sample size N = 100. As defined
above we continue with AR(1) model but εi s being independent Brownian motions
on [0, 1] and with Gaussian kernel ψ(t, s) = φ exp{(t2 + s2)/2}. for the operator
�. The constant φ is so chosen that ||�|| = 0.5. We perform two simulation stud-
ies one with �(t) = t and another with �(t) = sin(t). The corresponding power
comparisons are provided in Tables3 and4, respectively. In both of the cases, 1000
uniform grids are considered on [0, 1] and 750 B-spline basis functions are used to
get smooth functions. In all of the above simulations, we find that the proposed H∗

N ,d
out performs TN ,d in terms of the power. The constants ϕ and φ are chosen to match
the specification of Horváth and Kokoszka (2012) in Chap.16, for the comparison
purpose.
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Table 4 Comparing H∗
N (d) and TN (d) for AR(1) process with �(t) = sin(t)

N = 100, BM, BM + sin(t), q = 3, d = 3

k∗ 0 15 20 25 35 50 65 75 80 85

TN (d) 2.1† 18.6 40.7 62.1 88.9 97.4 91.6 60.9 42.4 22.2

H∗
N (d) 5.6 52.2 79.1 91.8 98.8 99.9 99.2 91.6 80.0 53.3

† The value is reported from the tables provided by (Horváth and Kokoszka 2012, Chap. 16)

8 Real data analysis

8.1 Independent set-up

The findings of real data analysis to show the performance of proposed test are demon-
strated in this section. Two temperature data have been analysed. One data consist
of average daily temperatures of central England for 228years, from 1780 to 2007.
The data have been taken from the website of the British Atmospheric Data Centre.
The other data, taken from Carbon Dioxide Information Analysis Center, consist of
monthly global average anomaly of the temperatures from 1850 to 2012. Thus, these
two data sets can be viewed as 228 curves with 365 measurements on each curve and
163 curves with 12 measurements on each curve, respectively. These two data sets are
converted to functional data using 12 B-spline basis functions and 8 B-spline basis
functions, respectively. Now we discuss the performance of the test statistics on these
two temperature data sets individually.

To use the proposed test statistic, developed in the Sect. 5, for temperature data of
the central England we assume independence of the data and use first 8(=d) eigen-
functions explaining about 85% of the total variability. Given the test indicates a
change, the change point is estimated by calculating θ̂N as described in the Lemma 1.
Thereafter dividing the data set into two parts, the procedure is repeated for each part
until the test fails to reject the null hypothesis. The outcome of our method when used
on these data is provided in Table5. It can be seen that the change points detected by
our method and by the method of Berkes et al. (2009) are very much adjacent. Both
of the methods have detected 1850 and 1926 as possible change points. In case of
other years of change point, it is observed that the timings are very close, for example
our method has detected a change in 1810, whereas Berkes et al. (2009) has detected
a change in 1808 and in the recent years our method has detected a change in 1989
and Berkes et al. (2009) has detected 1993 as a possible change point. Overall, it is
important to note that both of these methods have detected four change points in the
given data. We have plotted the mean function for each of the different segments in
the Fig. 3, which clearly shows an upward trend in the mean temperature over the said
periods. The mean curves of different time segments are very similar to that of Berkes
et al. (2009) which make sure the little observed difference in change points among
two methods in this particular real data are not major. Table5 also shows the p values
corresponding to the observed value of the statistic for both of the methods. From the
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Table 5 Comparisons of the performance of SN ,d and HN ,d for UK temperature data

Performance of S†N ,d Performance of HN ,d

Year Observed Obtained Estimated Year Observed Obtained Estimated
Segment SN ,d p value Change point Segment HN ,d p value Change point

1780–2007 8.020593 0.00000 1926 1780–2007 9.820036 0.00000 1926

1780–1925 3.252796 0.00088 1808 1780–1926 3.764348 0.00011 1850

1808–1925 2.351132 0.02322 1850 1780–1850 2.403308 0.01900 1810

1926–2007 2.311151 0.02643 1993 1927–2007 2.649414 0.00797 1989

† The values are reported from the tables provided by Berkes et al. (2009, Table4)

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Time

M
ea

n 
fu

nc
tio

ns
 (

de
gr

ee
 C

)

1780−1810
1811−1850
1851−1926
1927−1988
1989−2007

Fig. 3 Segment wise mean functions of central England temperature data

Table 6 Change points for average anomaly global temperature data

Performance of HN ,d

Year segment Observed H∗
N ,d Obtained p value Estimated change point

1850–2012 5.964259 0.00000 1928

1939–2012 4.913237 0.00000 1979

1980–2012 4.184527 0.00000 1996

p values, it is noted that the p values of proposed test are much smaller than the p
values of the existing method showing the greater power of our test.

8.2 Weakly dependent set-up

In this section, we apply the methodology developed in Sect. 6 for weakly dependent
data to the monthly average anomaly of the global temperature data of 163years. Here
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Fig. 4 Segment wise mean functions of average anomaly of global temperature data

first 2 (=d) eigenfunctions are used which explains at least about 85% variability of
the total variation for each u ∈ (0, 1]. For estimating long-run covariance, see Eq. (25),
we choose q = 3 following the method suggested by Hörmann and Kokoszka (2010).
For detecting segment wise changes, we apply the same procedure as done in previous
data set. Table6 shows the outcomes of the test. The functional data representation of
the complete data and segment wise mean functions are shown in Fig. 4 which reflects
the prominent changes around the mentioned period of years. From the analysis of this
data set, we clearly observe that the global temperature is changing (more specifically
increasing) significantly over the period of time.

9 Discussions and conclusions

In this paper, we have proposed a new test for testing the existence of a change point
in a given sequence of independent as well as weakly dependent functional data. It is
shown that the proposed test enjoys many desirable properties of a test, namely it is
proven that the null distribution of test is asymptomatically pivotal (a functional of the
sum of squares of Brownian bridges), and proposed test is consistent as the sample
sizes increases to infinity. While developing the test statistic, we have proposed an
alternative estimator of the covariance kernel,which is a consistent estimator of the true
covariance kernel under the null hypothesis for both the independent and the dependent
data. Moreover, it has a lesser bias than the existing usual estimate of the covariance
kernel under the alternative hypothesis. In fact, it is successfully shown that even under
the alternative hypothesis, if the data are divided at the true point of change, then our
estimator has zero asymptotic bias, whereas the existing estimate of the covariance
kernel, mostly used in the literature of change point analysis in functional data, has a
constant asymptotic bias. We have demonstrated that the smaller bias in the proposed
covariance estimator leads to improved power of the tests detecting the presence of
change point in a given sequence of functional data through the extensive simulation
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studies. Especially when the data size is not very big, then our method outperforms the
existing onewith a greatmargin.We applied ourmethod in two real data for illustration
purpose. First data set is the central England temperature which is also used in Berkes
et al. (2009), and the other one is the global temperature data. For the first data, we
have assumed independent set-up so that the outcomes could be compared with that of
Berkes et al. (2009). It is observed that the findings of both the methods are very close.
Importantly both the methods suggest four changes in the mean of the central England
temperature. The second data, global monthly temperature anomaly data from 1850 to
2012, are analysed assuming weakly dependent set-up. It is found that there exist three
change points around 1928, 1979 and 1996, which clearly shows that in the last three
decades the temperature has changed significantly over the past. We strongly believe
that the analysis of global temperature in terms of finding change points will help the
scientists working on the global temperature. In nutshell, we evince that the proposed
method has asymptotic null pivotal distribution with greater power than the existing
method for testing the presence of change in a sequence of independent and weakly
dependent functional data. So the proposed methodologies can be used in practice
with more confidence. We conclude our paper with remarks on multiple change points
in next paragraph.

Remarks on multiple change points: There are possibilities of multiple change
points in practice, andwe have provided anworking idea for detectingmultiple change
points segment wise in real data following Berkes et al. (2009). However, the proof
of convergence of the estimator of the covariance kernel will be technically very
challenging and that will obfuscate the main idea of the paper (see also Berkes et al.
2009). For example, it is assume that there are two change points in the sequence
and then we can split the data in three parts as X1, . . . , Xk1 ; Xk1+1, . . . , Xk2 and
Xk2+1, . . . , XN , choosing 0 < u < v ≤ 1, where [Nu] = k1 and [Nv] = k2.
Then we can estimate the covariance kernel in a similar fashion. After computing the
scores along the direction of the estimated principle eigen functions, we can get the
test statistic using CUSUM process as done in this paper. A similar approach can be
found for the finite dimensional data in the paper by Shao and Zhang (2010). Another
alternative approach can be suggested. Assuming sample size N = 2K is even, we can
define Zi = Y2i − Y2i−1 for i = 1, 2, . . . K . Now we can estimate estimate the twice
of the covariance kernel, i.e. 2c(t, s) using {Z1, Z2, . . . ZK } as a whole following the
approach of Berkes et al. (2009). Then the estimation of the covariance kernel and
its eigenelements is trivial. But the advantage of this method is for single or multiple
change points, depending on its odd or even locations, the estimator of the covariance
kernel will be unbiased or asymptomatically unbiased. On the other hand, reduction of
sample size will reduce the rate of convergence of the corresponding estimators. Rest
of the testing process can be similar to that of Berkes et al. (2009). Our experience
supports that the suggested method works well for univariate independent Gaussian
sequence.
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from the Hadley Centre for Climate Prediction and Research (2007), and monthly global average anomaly
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insightful comments and suggestions which helped to make a significant improvement of the manuscript.
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Appendix

Proof of the Theorem 1

Define μ̂k(t) = 1
k

∑k
i=1 Xi (t) and μ̃k(t) = 1

N−k

∑N
i=k+1 Xi (t) for some k = [Nu]

and k∗ = [Nθ ] to express the estimated covariance kernel as

ĉu(t, s) = 1

N

⎡

⎣
k∑

i=1

{Xi (t) − μ̂k (t)}{Xi (s) − μ̂k (s)} +
N∑

i=k+1

{Xi (t) − μ̃k (t)}{Xi (s) − μ̃k (s)}
⎤

⎦ .

It immediately gives

ĉu(t, s) = 1

N

N∑

i=1

{Xi (t) − μ̂N (t)}{Xi (s) − μ̂N (s)} − k

N
{μ̂k (t) − μ̂N (t)}{μ̂k (s) − μ̂N (s)}

− k

N
{μ̃k (t) − μ̂N (t)}{μ̃k (s) − μ̂N (s)}.

For k ≤ k∗, note that

μ̂k(t) = Ŷ k(t) + μ1(t), where Ŷ k(t) = 1

k

k∑

i=1

Yi (t),

μ̃k(t) = Ỹ k(t) + μ2(t) +
(
k∗ − k

N − k

)

�(t), where Ỹ k(t) = 1

k

N∑

i=k+1

Yi (t),

and

μ̂N (t) = Ŷ N (t) +
(
k∗

N

)

μ1(t) +
(
N − k∗

N

)

μ2(t).

Now observe that

μ̂k(t) − μ̂N (t) = Ŷ k(t) − Ŷ N (t) +
(

1 − k∗

N

)

�(t)

and

μ̃k(t) − μ̂N (t) = Ỹ k(t) − Ŷ N (t) − k(N − k∗)
(N − k)N

�(t)
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to get the following deductions,

ĉu(t, s) = 1

N

N∑

i=1

{Xi (t) − μ̂N (t)}{Xi (s) − μ̂N (s)} − �(t)�(s)

(
N − k∗

N

)2 ( k

N − k

)

− k

N

{
Ŷ k(t)−Ŷ N (t)

} {
Ŷ k(s)−Ŷ N (s)

}
−
(

1 − k

N

){
Ỹ k(t)−Ŷ N (t)

} {
Ỹ k(s)−Ŷ N (s)

}

− k

N

(

1 − k∗

N

)[{
Ŷ k(t) − Ỹ k(t)

}
�(s) +

{
Ŷ k(s) − Ỹ k(s)

}
�(t)

]
.

Again

ĉ1(t, s) = 1

N

N∑

i=1

{Xi (t) − μ̂N (t)} {Xi (s) − μ̂N (s)}

= 1

N

N∑

i=1

{
Yi (t) − Ŷ N (t)

} {
Yi (s) − Ŷ N (s)

}
+ k∗

N

(

1 − k∗

N

)

�(t)�(s)

+k∗

N

(

1 − k∗

N

)[{
Ŷ k(t) − Ỹ k(t)

}
�(s) +

{
Ŷ k(s) − Ỹ k(s)

}
�(t)

]

gives

ĉu(t, s) = 1

N

N∑

i=1

{
Yi (t) − Ŷ N (t)

} {
Yi (s) − Ŷ N (s)

}
+ k∗

N

(

1 − k∗

N

)[

1 − (N − k∗)k
(N − k)k∗

]

�(t)�(s)

+
(

1 − k∗

N

)

�(s)

[
k∗

N

{
Ŷ k∗ (t) − Ỹ k∗ (t)

}
− k

N

{
Ŷ k(t) − Ỹ k(t)

}]

+
(

1 − k∗

N

)

�(t)

[
k∗

N

{
Ŷ k∗ (s) − Ỹ k∗ (s)

}
− k

N

{
Ŷ k(s) − Ỹ k(s)

}]

− k

N

(

1 − k

N

){
Ŷ k(t) − Ỹ k(t)

} {
Ŷ k(s) − Ỹ k(s)

}

≡ 1

N

N∑

i=1

{
Yi (t) − Ŷ N (t)

} {
Yi (s) − Ŷ N (s)

}
+ θ(1 − θ)�(t)�(s) fθ (u)

+r1(t, s) + r2(t, s) + r3(t, s), say. (31)

Using the law of large numbers for independent and identically distributed Hilbert-
space-valued random variables (see for example Theorem 2.4 of Bosq 2000), we
obtain

∫ ∫
r21 (t, s)dtds

P−→ 0 and
∫ ∫

r22 (t, s)dtds
P−→ 0 as N → ∞.

At the same time using Theorem 5.1 of Horváth and Kokoszka (2012) we get

N 2
∫ ∫

r23 (t, s)dtds
d−→

(∫
�2(t)dt

)2

,
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where {�(t) : t ∈ τ } is a Gaussian process with E(�(t)) = 0 and E(�(t)�(s)) =
c(t, s), which in turn implies that

∫ ∫
r23 (t, s)dtds

P−→ 0 as N → ∞.

These help to conclude that

∫ ∫
[̂cu(t, s) − cu(t, s)]2dtds P−→ 0 as N → ∞.

The similar proof holds when k > k∗. It is easy to see that under the null hypothesis

ĉu(t, s)
P−→ c(t, s) ∀u ∈ (0, 1] as N → ∞.

�

Proof of Theorem 2

Under the H0 for k = [Nu]

ĉu(t, s) = 1

N

N∑

i=1

{
Yi (t) − Ŷ N (t)

} {
Yi (s) − Ŷ N (s)

}

− k

N

(

1 − k

N

){
Ŷ k(t) − Ỹ k(t)

} {
Ŷ k(s) − Ỹ k(s)

}
. (32)

It is enough to show that NE sup
u∈(0,1]

||Ĉu − C ||2 is bounded with a quantity which is

does not involve N . Note that

NE sup
u∈(0,1]

||Ĉu − C || ≤ 2NE
∫ ∫

×
[
1

N

N∑

i=1

{
Yi (t) − Ŷ N (t)

} {
Yi (s) − Ŷ N (s)

}
− c(t, s)

]2

dtds

+ 2NE max
1≤k≤N

∫ ∫ [(
k

N

)(

1− k

N

){
Ŷ k(t)−Ỹ k(t)

} {
Ŷ k(s)−Ỹ k(s)

}]2
dtds.

(33)

The first term is free from k and is ensured to be bounded by Hörmann and Kokoszka
(2010) and the proof will be complete if we can show the the second term is bounded
too. Now consider,

NE max
1≤k≤N

∫ ∫ [(
k

N

)(

1 − k

N

){
Ŷ k(t) − Ỹ k(t)

} {
Ŷ k(s) − Ỹ k(s)

}]2
dtds
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= 1

N
E max

1≤k≤N

(∫
k(N − k)

N

(
Ŷ k(t) − Ỹ k(t)

)2
dt

)2

= 1

N
E max

1≤k≤N

⎛

⎝
∫

k(N − k)

N

(
N∑

i=1

Yi (t)ζi

)2

dt

⎞

⎠

2

,

where ζi =
(
1

k

)

1{i≤k} +
( −1

N − k

)

1{i>k}

= 1

N
E max

1≤k≤N

⎛

⎝
∫

k(N − k)

N

⎛

⎝
N∑

i=1

N∑

j=1

Yi (t)Y j (t)ζiζ j

⎞

⎠ dt

⎞

⎠

2

≤ 1

N
E max

1≤k≤N

⎛

⎝k(N − k)

N

⎛

⎝
N∑

i=1

N∑

j=1

||Yi ||||Y j ||ζiζ j
⎞

⎠

⎞

⎠

2

= 1

N
E max

1≤k≤N

(
ζ ′�Yζ

ζ ′ζ

)2

, where ζ ′ = (ζ1, ζ2, . . . ζN ) with ζ ′ζ = N

k(N − k)

≤ 1

N
E

(

sup
β �=0

β ′�Yβ

β ′β

)2

, where β ∈ R
N

≤ 1

N
E (trace(�Y))2 ,

where �Y is a non-negative definite matrix with ((�Y))i j = ||Yi ||||Y j ||

≤ lim sup
N↑∞

1

N
E

(
N∑

i=1

||Yi ||2
)2

< ∞,

the last inequality follows from Hörmann and Kokoszka (2010).

This completes the proof. �
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