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Abstract We study the standard-bootstrap, the centered-bootstrap, and the empirical-
likelihood bootstrap tests of hypotheses used in conjunction with generalized method
of moments inference in correctly specified and misspecified moment condition mod-
els. We show that, under correct specification, the standard-bootstrap estimator of the
null distribution of the J-test converges in distribution to a random distribution, ver-
ifying its inconsistency, while the centered and the empirical-likelihood bootstrap
estimators are consistent. We provide higher-order expansions of the size distor-
tions of the analytic and the bootstrap tests. We show that the standard-bootstrap
parameter-tests are consistent under misspecification, while the centered-bootstrap
parameter-tests are inconsistent. We propose a general bootstrap methodology which
is highly accurate under correct specification and consistent under misspecification.
In a simulation study, we explore the finite sample behavior of the analytic and the
bootstrap tests for a panel data model and we apply our methodology on a real-world
data set.
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1 Introduction

Hansen (1982) introduced the generalized method of moments (GMM) to fit models
in which the number of parameters is exceeded by the number of moment condi-
tions identifying them. If the moment conditions are correctly specified, then under
regularity conditions, the GMM estimators are consistent and asymptotically nor-
mally distributed, and the limiting null distributions of the (generalized) Wald test,
likelihood-ratio test (LRT), and score test (ST) are chi-squared. We will refer to these
tests collectively as parameter-tests. The limiting null distribution of the J-test of
over-identifying restrictions, a goodness-of-fit test, is also chi-squared.

Monte Carlo experiments have shown that the analytic approximations suggested
by large-sample theory often perform poorly in the GMM context (see the July 1996
special issue, Vol. 16, No. 3 of the Journal of Business and Economic Statistics). Boot-
strap methods (Efron 1979) provide a computationally intensive alternative, and Hahn
(1996) has shown that, for correctly specified models, the standard (nonparametric)-
bootstrap (SB) distributions of GMM estimators are consistent. However, the moment
conditions defining the GMM estimators do not hold in the “bootstrap world”, a fact
which portends difficulties for a naive bootstrap approach to GMM inference. As
a remedy, Hall and Horowitz (1996) suggested the centered-bootstrap (CB), which
centers the moment functions to have mean zero in the bootstrap world. In a similar
vein, Brown and Newey (2002) proposed the empirical-likelihood bootstrap (ELB), in
which resamples are drawn from a weighted empirical distribution, with the weights
chosen in such a way that the model holds in the bootstrap world (see also Qin and
Lawless 1994; Hall and Presnell 1999; Zhang 1999). Andrews (2002) proposed a com-
putationally efficient bootstrap method for GMM estimators and showed higher-order
accuracy of the CB symmetric t-test.

In empirical research, inference about parameters may be carried out in situations
when the moment conditions are misspecified: possibly because the J-test or other
tests of misspecification fails to reject a false null hypothesis; or because the data
analyst fails to test for misspecification at all; or because the data analyst proceeds
with the moment condition model in spite of finding evidence of misspecification
(see, e.g., Imbens and Lancaster 1994). Thus, it is important to study the properties
of GMM inference even when the moment conditions defining those parameters fail
to hold. In a breakthrough paper on this topic, Hall and Inoue (2003) derived the
limiting distributions of GMM estimators and of the null distributions of parameter-
test statistics under misspecification. More recently, Lee (2014) used Hall and Inoue’s
misspecification-robust variance estimator of theGMMestimators and showed higher-
order accuracy of the resulting SB symmetric percentile-t confidence intervals and
t-tests under misspecification.

In this paper, we prove new results on the asymptotic properties of the analytic
and bootstrap tests in correctly specified and misspecified moment condition models.
First, we show that the SB estimator of the null distribution of the J-test converges in

123



Bootstrap inference for misspecified models 607

distribution to a randomchi-squared distribution, showing its inconsistency even under
correct specification, while the CB and the ELB distributions are consistent.We extend
the results developedbyHall andHorowitz (1996) andAndrews (2002) andprove exact
higher-order properties of the size distortions of the parameter-tests and the J-test under
correct specification. In order to maintain both the size and power, we show that some
care is required in constructing the bootstrap test statistics so that they consistently
estimate the null distributions regardless of whether the null hypotheses are true. We
propose an automatic method of selection of the weights of the ELB method which
improves its properties under correct specification and undermisspecification. Second,
we extend the results of Hall and Inoue (2003) and show that under misspecification,
the choice of the weight matrices may change not only the asymptotic covariance
matrix of the GMM estimators, but also the rates of convergence and the limiting null
distributions of the LRT and ST statistics. These results re-emphasize the critical role
of the weight matrices in defining the estimators and the test statistics under possible
model misspecification. Third, we study the asymptotic properties of the bootstrap
tests under misspecification of the moment condition model. We demonstrate that
the SB and the ELB parameter-tests are consistent while the CB parameter-tests are
inconsistent. Here, we also prove that the asymptotic power of the SB J-test is zero
and that the CB J-test is consistent under misspecification. These theoretical results
enable us to propose a general bootstrap methodology which is highly accurate under
correct specification and consistent under misspecification.

We close this section with an outline. In Sect. 2, we review the theory of
GMM under correct specification and misspecification of the moment condition
model. In Sect. 3, we study the consistency and higher-order properties of the
bootstrap tests under correct specification. In Sect. 4, we extend our bootstrap consis-
tency results for misspecified models. In Sect. 5, we propose a general bootstrap
methodology which is highly accurate under correct specification and consistent
under misspecification. In Sect. 6, the theoretical results are tested in a simula-
tion study for a dynamic autoregressive panel data model (Arellano and Bond
1991). We have implemented the proposed methods of inference for autoregressive
dynamic panel data models in the R language (R Core Team 2016) and created
an R package which is available from the authors upon request. In Sect. 7, we
apply the proposed bootstrap methodology to a data set tracking household elec-
tricity usage in a Florida residential area. Regularity conditions are included in an
“Appendix”, and detailed proofs of theoretical results are deferred to a supplementary
appendix.

2 Background and notation

2.1 GMM inference

Let X1:n = {X1, . . . , Xn} be an i.i.d. sample from a distribution P0 on a measurable
space X and let X denote a generic random element with distribution P0. An over-
identified moment condition model assumes that the unknown parameter vector θ0 ∈
Θ ⊂ R

p is the unique solution of a system of equations:
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608 M. Giurcanu, B. Presnell

E
(
g(X, θ0)

) = 0, (1)

where g : X × Θ → R
q is a known moment function and p < q. The model

(1) is said to be misspecified if there does not exist a value of θ for which the
moment conditions E(g(X, θ)) = 0 hold. Let Q̂(θ,W ) = ḡ(θ)T W ḡ(θ), where
ḡ(θ) = n−1 ∑n

i=1 g(Xi , θ) is the sample moment function and W ∈ R
q×q . For a

positive definite weight matrix Ŵ (possibly random), the corresponding GMM esti-
mator is defined as the minimizer over θ ∈ Θ of Q̂(θ, Ŵ ).

Let V (θ) = Var(g(X, θ)) and V0 = V (θ0). Hansen (1982) showed that choosing
Ŵ to be any consistent estimator of V−1

0 minimizes the asymptotic covariance matrix
of the GMM estimator in the Loewner ordering, and in this case, the GMM estimator
is said to be efficient. Generally, one must first estimate θ0 in order to consistently
estimate V0, and Hansen thus proposed the two-step GMM estimator obtained by first
computing a one-step GMM estimator, θ̂O = argminθ∈Θ Q̂(θ, Ŵ ), where Ŵ is an
arbitrary positive definite weight matrix, often taken to be the identity matrix, although
other choices are also possible (see, e.g., case (a) on p. 370 ofHall and Inoue 2003). The
two-step GMM estimator is then defined as θ̂T = argminθ∈Θ Q̂(θ, V̂ (θ̂O)−1), where
V̂ (θ̂O) is a consistent estimator of V0. Here, V̂ (θ) is either the sample covariance
matrix V̂C(θ) = n−1 ∑n

i=1(g(Xi , θ) − ḡ(θ))(g(Xi , θ) − ḡ(θ))T, or its uncentered
variant V̂U(θ) = n−1 ∑n

i=1 g(Xi , θ)g(Xi , θ)T.
Obviously, this process may be iterated to obtain further multi-step GMM estima-

tors, or one may use the continuously-updated GMM estimator (Hansen et al. 1996)
given by θ̂CU = argminθ∈Θ Q̂(θ, V̂ (θ)−1). When the moment conditions are cor-
rectly specified, the results of this paper apply with obvious modifications to any of
these efficient GMM estimators. Under misspecification, however, our results change
according to the specific efficient GMM estimator employed: for example, the results
for θ̂T depend on Ŵ used to define θ̂O and on the choice of V̂ (θ), e.g., V̂C(θ) or V̂U(θ).
For specificity, we focus on the commonly-used two-step estimator, which has the
practical advantage of being relatively easy to calculate. However, similar results can
be proved for other efficient GMM estimators.

Given a smooth function h : Rp → R
r , we consider three classical parameter-

tests for testing the null hypothesis H0 : θ0 ∈ Θ0 against the alternative hypothesis
Ha : θ0 /∈ Θ0,whereΘ0 = {θ ∈ Θ : h(θ) = 0}. Let∇g(x, θ) ∈ R

q×p be the Jacobian
matrix (with respect to θ ) of g(x, θ),G(θ) = E(∇g(X, θ)),G0 = G(θ0), and H(θ) =
∇h(θ) ∈ R

r×p. Hansen (1982) showed that n1/2(θ̂T − θ0)
d−→ N (0, D−1

0 ), where

D(θ,W ) = G(θ)T WG(θ) ∈ R
p×p, D0 = D(θ0, V

−1
0 ), and

d−→ denotes convergence
in distribution. This motivates the Wald test statistic given by

T̂ (V̂ (θ̂T)−1) = nh(θ̂T)T
(
H(θ̂T)D̂(θ̂T, V̂ (θ̂T))−1H(θ̂T)T

)−1
h(θ̂T),

where Ĝ(θ) = n−1 ∑n
i=1 ∇g(Xi , θ) and D̂(θ,W ) = Ĝ(θ)T WĜ(θ). The (general-

ized) likelihood-ratio test (LRT) statistic is

L̂(V̂ (θ̂O)−1) = nQ̂(θ̃T, V̂ (θ̂O)−1) − nQ̂(θ̂T, V̂ (θ̂O)−1),
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Bootstrap inference for misspecified models 609

where θ̃T = argminθ∈Θ0
Q̂(θ, V̂ (θ̂O)−1) is the constrained two-step GMM estimator.

Finally, the score test (ST) statistic is

Ŝ(V̂ (θ̂O)−1) = nĈ(θ̃T, V̂ (θ̂O)−1)T D̂(θ̂T, V̂ (θ̂T))−1Ĉ(θ̃T, V̂ (θ̂O)−1),

where Ĉ(θ,W ) = Ĝ(θ)T W ḡ(θ) ∈ R
p.

2.2 GMM under correct specification

The J-test statistic is given by Ĵ (V̂ (θ̂O)−1) = nQ̂(θ̂T, V̂ (θ̂O)−1). Under correct spec-
ification of the model (1), Hansen (1982) showed that

n1/2(η̂ − η0)
d−→ N (0, Γ0), (2a)

T̂ (V̂ (θ̂T)−1)
d−→
H0

χ2
r , L̂(V̂ (θ̂O)−1)

d−→
H0

χ2
r , Ŝ(V̂ (θ̂O)−1)

d−→
H0

χ2
r , (2b)

Ĵ (V̂ (θ̂O)−1)
d−→ χ2

q−p, (2c)

where η̂ = (θ̂TO , θ̂TT )T ∈ R
2p, η0 = (θT0 , θT0 )T ∈ R

2p,

Γ0 =
(
D(θ0,W0)

−1GT
0 W0V0W0G0D(θ0,W0)

−1 D−1
0

D−1
0 D−1

0

)
, (3)

W0 is the in-probability limit of Ŵ ,
d−→
H0

denotes convergence in distribution under

the null hypothesis of the test, and χ2
k represents the chi-squared distribution with k

degrees of freedom. Results (2b) and (2c) suggest the use of chi-squares as reference
distributions, and we will refer to the resulting test procedures collectively as analytic
chi-squared tests.

Lemma 1 improves on (2b) and (2c), and shows that under additional regularity
conditions, the analytic tests with nominal level α ∈ (0, 1) have size distortions of
exact order O(n−1). Here χ2

r;α denotes the upper α-quantile of χ2
r and =

H0
denotes an

equality under the corresponding null hypothesis of the test. Lemma 1 extends the
result for the two-sided t-test of Andrews (2002, Eq. 2.1, p. 123) and shows that the
same rate holds for all parameter-tests and the J-test.

Lemma 1 Suppose the model (1) and conditions A–F in “Appendix” hold. Then

Pr
(
T̂ (V̂ (θ̂T)

−1) > χ2
r;α

) =
H0

α + n−1a(α) + O(n−2), (4a)

Pr
(
L̂(V̂ (θ̂O)−1) > χ2

r;α
) =
H0

α + n−1b(α) + O(n−2), (4b)

Pr
(
Ŝ(V̂ (θ̂O)−1) > χ2

r;α
) =
H0

α + n−1c(α) + O(n−2), (4c)
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610 M. Giurcanu, B. Presnell

Pr
(
Ĵ (V̂ (θ̂O)−1) > χ2

q−p;α
) = α + n−1d(α) + O(n−2), (4d)

where a(·), b(·), c(·), d(·) �= 0.

2.3 GMM under misspecification

The theory of GMM inference is more complicated under moment misspecification
(Hall and Inoue 2003). Let μ(θ) = E(g(X, θ)) and Q(θ,W ) = μ(θ)T Wμ(θ); the
model (1) is misspecified if there is no θ ∈ Θ for which μ(θ) = 0. Redefine V (θ) to
be the in-probability limit of V̂ (θ), so that V (θ) = Var(g(X, θ)) if V̂ (θ) = V̂C(θ),
whereas V (θ) = Var(g(X, θ)) + μ(θ)μ(θ)T if V̂ (θ) = V̂U(θ). The in-probability
limits of θ̂O and θ̂T are θ1 and θ2, where

θ1 = argminθ∈Θ Q(θ,W0) and θ2 = argminθ∈Θ Q(θ, V (θ1)
−1).

Under regularity conditions, Q(θ,W0) and Q(θ, V (θ1)
−1) are continuously differen-

tiable functions of θ , and thus, θ1 and θ2 satisfy the equations

G(θ1)
T W0μ(θ1) = 0 and G(θ2)

T V (θ1)
−1μ(θ2) = 0. (5)

Because we are focused here on the two-step estimator, we will treat the implied value
θ2 as the target parameter and take H0 : θ2 ∈ Θ0 as the null hypothesis of parameter-
tests. Let μ1 = μ(θ1), μ2 = μ(θ2), V1 = V (θ1), V2 = V (θ2), G1 = G(θ1),
G2 = G(θ2), and H2 = H(θ2). Let further A1 = A(θ1,W0), B = B(θ1, θ2), A2 =
A(θ2, V (θ1)

−1), and C(θ,W ) = G(θ)T Wμ(θ), where A(ζ1,W ) = (∂ jC(ζ1,W ) :
1 ≤ j ≤ p) ∈ R

p×p,

B(ζ1, ζ2) = (−G(ζ2)
T V (ζ1)

−1(∂ j V (ζ1)
)
V (ζ1)

−1μ(ζ2) : 1 ≤ j ≤ p
) ∈ R

p×p,

and ∂ j = ∂/∂ζ1, j is the partial derivative with respect to the j th element of ζ1 =
(ζ1,1, . . . , ζ1,p)

T ∈ R
p. Let

Π =
(

Π11 Π12 Π13 O O O
O O O Π24 Π25 Π26

)
, (6)

where O is a null matrix, Π11 = GT
1 W0, Π12 = (W0μ1)

T ⊗ Ip, Π13 = μT
1 ⊗ GT

1 ,
Π24 = −(V−1

1 μ2)
T ⊗ (GT

2 V
−1
1 ), Π25 = GT

2 V
−1
1 , Π26 = (V−1

1 μ2)
T ⊗ Ip, and

⊗ is the Kronecker product. Let Ξ = ΠΣΠT ∈ R
2p×2p, where Σ is defined at

condition E in “Appendix”. Let further Ξ = (Ξi j : i, j = 1, 2), Ξi j ∈ R
p×p,

Γ = (Γi j : i, j = 1, 2) ∈ R
2p×2p and Γi j ∈ R

p×p, with Γ11 = A−1
1 Ξ11A

−1
1 ,

Γ12 = Γ T
21 = −A−1

1 Ξ11A
−1
1 BT A−1

2 + A−1
1 Ξ12A

−1
2 ,

Γ22 = A−1
2 BA−1

1 Ξ11A
−1
1 BT A−1

2 − A−1
2 Ξ21A

−1
1 BT A−1

2

− A−1
2 BA−1

1 Ξ12A
−1
2 + A−1

2 Ξ22A
−1
2 .
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Bootstrap inference for misspecified models 611

Hall and Inoue (2003, Theorems 2 and 5) showed that, under misspecification,

n1/2(θ̂T − θ2)
d−→ N (0, Γ22), and the limiting null distributions of parameter-tests

are distributions of linear combinations of independent chi-squared variables. Specif-
ically,

T̂ (V̂ (θ̂T)−1)
d−→
H0

r∑

j=1

λW
j U

2
j , (7a)

L̂(V̂ (θ̂O)−1)
d−→
H0

p∑

j=1

λL
j U

2
j , (7b)

Ŝ(V̂ (θ̂O)−1)
d−→
H0

p∑

j=1

λS
jU

2
j , (7c)

where U 2
j ∼ i.i.d.χ2

1 , λ
W
1 , . . . , λW

r are the eigenvalues of

(H2Γ22H
T
2 )1/2(H2(G

T
2 V

−1
2 G2)

−1HT
2 )−1(H2Γ22H

T
2 )1/2,

λL
1 , . . . , λL

p are the eigenvalues of Ω
1/2
2 A2Ω

1/2
2 , Ω2 = Δ2A2Γ22A2Δ2,

Δ2 = A−1
2 HT

2 (H2A
−1
2 HT )−1H2A

−1
2 ,

and λS
1 , . . . , λ

S
p are the eigenvalues of Ω

1/2
2 A2(GT

2 V
−1
2 G2)

−1A2Ω
1/2
2 . Let η0 =

(θT1 , θT2 )T and η̂ = (θ̂TO , θ̂TT )T . Theorem 1 is an extension of Theorems 2 and 5
of Hall and Inoue (2003) and shows the limiting distribution of η̂ and the limiting null
distributions of L̂(V̂ (θ̂T)−1), Ŝ(V̂ (θ̂T)−1), and Ĵ (V̂ (θ̂O)−1) under misspecification.

Theorem 1 Suppose conditions A–E in “Appendix” hold. Then

n1/2(η̂ − η0)
d−→ N (0, Γ ), (8a)

n−1/2 L̂(V̂ (θ̂T)
−1)

d−→
H0

N (0, σ 2
L), (8b)

n1/2
(
n−1 Ŝ(V̂ (θ̂T)

−1) − ψ2
) d−→

H0
N (0, σ 2

S ), (8c)

n
(
ḡ(θ̂T) − μ(θ2)

)T
V̂ (θ̂T)

−1(ḡ(θ̂T) − μ(θ2)
) d−→

q∑

j=1

λJ
j U

2
j , (8d)

n1/2
(
n−1 Ĵ (V̂ (θ̂O)−1) − Q(θ2, V (θ1)

−1)
) d−→ N (0, σ 2

J ), (8e)

where σ 2
L , ψ2, σ 2

S , λ
J
j , σ

2
J are defined in the proof.

Result (8a) determines the asymptotic covariance matrix of η̂ under misspecification.
Results (8b) and (8c) show that in the case of the LRT and ST tests, the rates of
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612 M. Giurcanu, B. Presnell

convergence depend on whether the test statistics are calculated with V̂ (θ̂O)−1 or
V̂ (θ̂T)−1 [compare (7b) with (8b) and (7c) with (8c)]. Note that the case Ŵ = W0
(constant) is included here by taking the asymptotic covariancematrix of the vectorized
Ŵ to be the null matrix. Using (8d), we can construct an analytic confidence region
for μ2, which may be helpful in identifying the specific moment conditions that have
failed. However, since θ̂T is not a consistent estimator of the true parameter, this
method does not guarantee that we are able to identify the offending set ofmisspecified
moment conditions. Lastly, (8e) describes the asymptotic power of the J-test under a
fixed alternative.

3 Bootstrapping under correct specification

3.1 The standard-bootstrap

Conditional on X1:n , a standard-bootstrap (SB) sample X∗
1:n = {X∗

1, . . . , X
∗
n} satisfies

X∗
1, . . . , X

∗
n ∼ i.i.d.P, where P = n−1 ∑n

i=1 δXi denotes the empirical distribution
of X1:n and δx represents the unit point mass at x ∈ X . Let g∗(x, θ) = g(x, θ)

denote the SB version of g(x, θ); the reason for introducing this notation will become
clear in the next subsection. The bootstrap versions of ḡ(θ), Q̂(θ, Ŵ ), V̂C(θ), V̂U(θ),
and Ĝ(θ) are then defined using the “plug-in principle”, i.e., by replacing g(x, θ)with
g∗(x, θ) and Xi with X∗

i . Specifically, let ḡ
∗(θ) = n−1 ∑n

i=1 g
∗(X∗

i , θ), Q̂∗(θ,W ) =
ḡ∗(θ)T W ḡ∗(θ), V̂ ∗

C (θ) = n−1 ∑n
i=1(g

∗(X∗
i , θ) − ḡ∗(θ))(g∗(X∗

i , θ) − ḡ∗(θ))T ,

V̂ ∗
U(θ) = n−1 ∑n

i=1 g
∗(X∗

i , θ)g∗(X∗
i , θ)T , and Ĝ∗(θ) = ∇ ḡ∗(θ). The bootstrap

version of θ̂O is θ̂∗
O = argminθ∈Θ Q̂∗(θ, Ŵ ∗), where Ŵ ∗ is the bootstrap version

of Ŵ : if Ŵ is nonrandom, then Ŵ ∗ = Ŵ , and otherwise, Ŵ ∗ depends on X∗
1:n ,

P, and g∗ in the same way that Ŵ depends on X1:n , P0, and g. The bootstrap
version of θ̂T is θ̂∗

T = argminθ∈Θ Q̂∗(θ, V̂ ∗(θ̂∗
O)−1), where V̂ ∗(θ) is the bootstrap

version of V̂ (θ), i.e., either V̂ ∗
C (θ) or V̂ ∗

U(θ), according to whether V̂ (θ) = V̂C(θ) or
V̂ (θ) = V̂U(θ).

Let T̂ be a statistical quantity in R
k and let L (T̂ ) denote its distribution. The

bootstrap estimator ofL (T̂ ) is the conditional distribution given X1:n of its bootstrap
version T̂ ∗, denoted by L (T̂ ∗|X1:n). Because it is determined by X1:n , L (T̂ ∗|X1:n)
is a random distribution on R

k , i.e., a random element in the space of distributions
on R

k , denoted by Pk . We equip Pk with any distance that metrizes weak con-
vergence, such as the Prohorov metric or the bounded-Lipschitz metric (see, e.g.,
Dudley 2002, pp. 393–399). We say that the bootstrap is consistent if the distance

between L (T̂ ∗|X1:n) and L (T̂ ) converges in probability to 0. If T̂
d−→ T , then

the bootstrap is consistent if L (T̂ ∗|X1:n) converges in probability to L (T ), and

write L (T̂ ∗|X1:n)
P−→ L (T ). Note that our definition of bootstrap consistency

L (T̂ ∗|X1:n)
P−→ L (T ) is equivalent to the statement thatL (T ∗|X1:n) convergences

weakly toL (T ) in probability; the latter terminology was used by Hahn to prove the
consistency of the standard-bootstrap distribution of GMM estimators under correct
model specification (see Hahn 1996, p. 189).
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Bootstrap inference for misspecified models 613

In order to consistently estimate the null distributions of parameter-tests, their null
hypotheses should hold in the bootstrap world, in which θ̂T plays the role of the true
parameter θ0 (for a detailed discussion on this topic, see Hall and Wilson 1991). The
simplest way to assure this, and the method we use here, is to define the bootstrap
version of h and Θ0 to be h∗(θ) = h(θ)− h(θ̂T) and Θ∗

0 = {θ ∈ Θ : h∗(θ) = 0}. The
bootstrap version of θ̃T is then θ̃∗

T = argminθ∈Θ∗
0
Q̂∗(θ, V̂ ∗(θ̂∗

O)−1), and the bootstrap
parameter-test statistics are given by

T̂ ∗(V̂ ∗(θ̂∗
T)−1) = nh∗(θ̂∗

T)T
(
H(θ̂∗

T)D̂∗(θ̂∗
T, V̂ ∗(θ̂∗

T)−1)−1H(θ̂∗
T)T

)−1
h∗(θ̂∗

T),

L̂∗(V̂ ∗(θ̂∗
O)−1) = nQ̂∗(θ̃∗

T, V̂ ∗(θ̂∗
O)−1) − nQ̂∗(θ̂∗

T, V̂ ∗(θ̂∗
O)−1),

Ŝ∗(V̂ ∗(θ̂∗
O)−1) = nĈ∗(θ̃∗

T, V̂ ∗(θ̂∗
O)−1)T D̂∗(θ̂∗

T, V̂ ∗(θ̂∗
T)−1)−1Ĉ∗(θ̃∗

T, V̂ ∗(θ̂∗
O)−1),

where D̂∗(θ,W ) = Ĝ∗(θ)T WĜ∗(θ) and Ĉ∗(θ,W ) = Ĝ∗(θ)T W ḡ∗(θ). The boot-
strap J-test statistic is Ĵ ∗(V̂ ∗(θ̂∗

O)−1) = nQ̂∗(θ̂∗
T, V̂ ∗(θ̂∗

O)−1). Note that the null
hypothesis of the J-test does not hold in the SB world since ḡ(θ̂T) �= 0.

Let LS(T̂ ∗|X1:n) denote the conditional distribution given X1:n of the SB ver-
sion T̂ ∗ of T̂ ; then, LS(T̂ ∗|X1:n) represents the SB estimator of L (T̂ ). Let η̂∗ =
(θ̂∗T

O , θ̂∗T
T )T be the bootstrap version of η̂. Theorem 2 shows the asymptotic proper-

ties of SB tests under correct specification. Examination of the proof of Theorem 2 (as
well as of Theorems 4 and 6) shows that these results continue to hold (under correct
specification) if the test statistics are calculated using either V̂ ∗(θ̂∗

T)−1 or V̂ ∗(θ̂∗
O)−1.

Result (9a) extends the result of Theorem 1 of Hahn (1996), and we include it here
for reference.

Theorem 2 Suppose the model (1) and conditions A–E in “Appendix” hold. Then

LS
(
n1/2(η̂∗ − η̂)

∣
∣X1:n

) P−→ N (0, Γ0), (9a)

LS
(
T̂ ∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ χ2
r , (9b)

LS
(
L̂∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (9c)

LS
(
Ŝ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (9d)

LS
(
Ĵ ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) d−→ χ2
q−p(U

2), (9e)

where U 2 ∼ χ2
q−p.

Comparing the conclusions of Theorem 2 with (2), we see that the SB consistently
estimates the joint distributionof θ̂O and θ̂T, and the null distributions of parameter-tests
but not that of the J-test. Instead, the SB distribution of the J-test statistic converges
in distribution, as a random element in the space of distributions on R, to a random
non-central chi-squared distribution with q− p degrees of freedom and with a random
noncentrality parameter which itself follows a (central) chi-squared distribution with
q − p degrees of freedom.
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Let ξ̂TS,α , ξ̂LS,α , and ξ̂SS,α denote the upper α-quantiles of the SB distributions of
parameter-test statistics. Then, the SBWald, LRT, and ST reject H0 : θ0 ∈ Θ0 at nom-
inal level α whenever T̂ (V̂ (θ̂T)−1) > ξ̂TS,α , L̂(V̂ (θ̂O)−1) > ξ̂LS,α , and Ŝ(V̂ (θ̂O)−1) >

ξ̂SS,α , respectively. Let ξ̂
J
S,α denote the upper α-quantile of the SB distribution of the J-

test statistic. Then, the SB J-test rejects the hypothesis of correct moment specification
if Ĵ (V̂ (θ̂O)−1) > ξ̂ JS,α . Theorem 2 shows that the SB parameter-tests are consistent
irrespective of whether their null hypotheses are true or not. This provides assurance
that the SB parameter-tests will maintain both the size and power for sufficiently large
sample sizes. On the other hand, (9e) shows that the SB J-test is inconsistent even
under correct specification.

Corollary 1 extends (9e) and shows that the SB J-test has asymptotic size equal to
zero for nominal levels α ≤ 1/2. This provides a more accurate description for the
asymptotic size of the SB J-test (see paragraph 2, Lindsay and Qu 2003, p. 406) and
provides a theoretical explanation for the empirical findings that the SB J-test may
never reject a correctly specified model (see Brown and Newey 2002, p. 510).

Corollary 1 Suppose the model (1) and conditions A–E in “Appendix” hold and that
α ≤ 1/2. Then

Pr
(
Ĵ (V̂ (θ̂O)−1) > ξ̂ JS,α

) → 0. (10)

When the null hypotheses are true, these results can be refined. Specifically, Theorem 3
shows that the SB parameter-tests have size distortions of precise order O(n−2), indi-
cating an asymptotic improvement over their analytic versions [compare (11a)–(11c)
with (4a)–(4c)], and that the size of the SB J-test converges to 0 with the precise rate
n−1. Closer examination of the proof shows that these sharp rates of parameter-tests
continue to hold for any consistent estimator of the asymptotic covariance matrix of θ̂T
even under misspecification; hence, our results extend the higher-order improvements
of the SB two-sided t-test developed by Lee (2014).

Theorem 3 Suppose the model (1) and conditions A–F in “Appendix” hold. Then

Pr
(
T̂ (V̂ (θ̂T)

−1) > ξ̂TS,α
) =
H0

α + O(n−2), (11a)

Pr
(
L̂(V̂ (θ̂O)−1) > ξ̂LS,α

) =
H0

α + O(n−2), (11b)

Pr
(
Ŝ(V̂ (θ̂O)−1) > ξ̂SS,α

) =
H0

α + O(n−2), (11c)

Pr
(
Ĵ (V̂ (θ̂O)−1) > ξ̂ JS,α

) = n−1dS(α) + O(n−2), α ≤ 1/2, (11d)

where dS(·) �= 0.

In the following, we consider the behavior of the SB parameter-tests if the function h
is not centered in the bootstrap world. To this end, consider the following naive SB
parameter-test statistics:

T̂ ◦(V̂ ∗(θ̂∗
T)−1) = nh(θ̂∗

T)T
(
H(θ̂∗

T)D̂∗(θ̂∗
T, V̂ ∗(θ̂∗

T)−1)−1H(θ̂∗
T)T

)−1
h(θ̂∗

T),

L̂◦(V̂ ∗(θ̂∗
O)−1) = nQ̂∗(θ̃◦

T, V̂ ∗(θ̂∗
O)−1) − nQ̂∗(θ̂∗

T, V̂ ∗(θ̂∗
O)−1),

Ŝ◦(V̂ ∗(θ̂∗
O)−1) = nĈ∗(θ̃◦

T, V̂ ∗(θ̂∗
O)−1)T D̂∗(θ̂∗

T, V̂ ∗(θ̂∗
T)−1)−1Ĉ∗(θ̃◦

T, V̂ ∗(θ̂∗
O)−1),
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where θ̃◦
T = argminθ∈Θ0

Q̂∗(θ, V̂ ∗(θ̂∗
O)−1). Corollary 2, whose proof is similar to the

proof of (9e), shows that, had we failed to center h, then these naive SB estimators of
the null distributions of parameter-tests would be inconsistent even under H0.

Corollary 2 Suppose the model (1) and conditions A–E in “Appendix” hold. Then

LS
(
T̂ ◦(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) d−→
H0

χ2
r (U 2), (12a)

LS
(
L̂◦(V̂ ∗(θ̂∗

O)−1)
∣
∣X1:n

) d−→
H0

χ2
r (U 2), (12b)

LS
(
Ŝ◦(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) d−→
H0

χ2
r (U 2), (12c)

where U 2 ∼ χ2
r .

Adirect consequence of Corollary 2 is that these naive SB parameter-tests have asymp-
totic size equal to zero for nominal levels α ≤ 1/2. Using a similar method of proof
as of (9e), it readily follows that these results continue to hold for the naive versions
of the CB and ELB parameter-tests.

3.2 The centered-bootstrap

Let X∗ denote a generic bootstrap observation, i.e., X∗ ∼ P conditional on X1:n . In
the case of the standard-bootstrap,

ES
(
g∗(X∗, θ)

∣∣X1:n
) = n−1

n∑

i=1

g(Xi , θ) = ḡ(θ) �= 0 for all θ ∈ Θ, (13)

and in particular, ES(g∗(X∗, θ̂T)|X1:n) �= 0, where ES(·|X1:n) denotes the (condi-
tional) expectation under the SB method. Thus, the model (1) does not hold in the SB
world, a fact which is reflected in the failure of the SB to consistently estimate the null
distribution of the J-test according to (9e).

The centered-bootstrap (CB) of Hall and Horowitz (1996) replaces g∗ = g with
g∗(x, θ) = g(x, θ) − ḡ(θ̂T), so that EC(g∗(X∗, θ̂T)|X1:n) = 0. Hence, the model (1)
holds in the CB world, with θ̂T playing the role of θ0. Let LC(T̂ ∗|X1:n) denote the
conditional distribution given X1:n of a CB quantity T̂ ∗. Theorem 4 shows that this
modification repairs the inconsistency of the SB J-test [compare (14e) with (9e)].

Theorem 4 Suppose the model (1) and conditions A–E in “Appendix” hold. Then

LC
(
n1/2(η̂∗ − η̂)

∣∣X1:n
) P−→ N (0, Γ0), (14a)

LC
(
T̂ ∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ χ2
r , (14b)

LC
(
L̂∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (14c)

LC
(
Ŝ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (14d)
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LC
(
Ĵ ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
q−p. (14e)

When the null hypotheses are true these results can be refined. Theorem 5 shows
that the size distortions of the CB tests are of precise order O(n−2), indicating an
asymptotic improvement over the analytic tests [compare (15a)–(15d) with (4a)–(4d)].
Here the subscript “C” indicates that the critical values of the tests are estimated using
the CB method. Theorem 5 extends the higher-order result for the CB symmetric
t-test of Andrews (2002, Theorem 2(c)) and shows that the same exact higher-order
improvements continue to hold for the CB parameter-tests and the J-test.

Theorem 5 Suppose the model (1) and conditions A–F in “Appendix” hold. Then

Pr
(
T̂ (V̂ (θ̂T)

−1) > ξ̂TC,α

) =
H0

α + O(n−2), (15a)

Pr
(
L̂(V̂ (θ̂O)−1) > ξ̂LC,α

) =
H0

α + O(n−2), (15b)

Pr
(
Ŝ(V̂ (θ̂O)−1) > ξ̂SC,α

) =
H0

α + O(n−2), (15c)

Pr
(
Ĵ (V̂ (θ̂O)−1) > ξ̂ JC,α

) = α + O(n−2). (15d)

3.3 The empirical-likelihood bootstrap

Brown and Newey (2002) address (13) by leaving g∗ = g unchanged and modifying
instead the conditional distribution of X∗. Specifically, the conditional distribution of
X∗ is taken to be a weighted empirical distribution P

θ̂T
, with the weights chosen to

satisfy EE(g∗(X∗, θ̂T)|X1:n) = 0 while minimizing the (forward) Kullback-Leibler
divergence between P and P

θ̂T
, where EE(·|X1:n) denotes the (conditional) expec-

tation with respect to P
θ̂T
. In other words, P

θ̂T
= ∑n

i=1 ŵiδXi , where the weights
ŵ1, . . . , ŵn > 0 minimize −∑n

i=1 log(ŵi ) subject to

n∑

i=1

ŵi g(Xi , θ̂T) = 0 and
n∑

i=1

ŵi = 1. (16)

Brown and Newey refer to this method as the empirical-likelihood bootstrap (ELB).
The empirical-likelihood weights may fail to exist for a given sample. Specifically,

(16) requires that the interior of the convex hull of {g(X1, θ̂T), . . . , g(Xn, θ̂T)} contains
0 ∈ R

q . Divergences other than the forward Kullback–Leibler divergence can be used
in specifying the weights (Hall and Presnell 1999), but all require that 0 ∈ R

q be
contained in the interior of the convex hull of {g(X1, θ̂T), . . . , g(Xn, θ̂T)}. There is
no guidance in the ELB literature on how to choose the weights if they fail to exist.
More importantly, even when the weights do exist, their large sample behavior under
misspecification is difficult or even impossible to describe. Thismotivates us to propose
an automatic method of selection of the weights which improves the properties of the
ELB under both correct specification and misspecification.
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To this end, let �̂(θ̂T) denote the empirical-likelihood-ratio test statistic for testing
H0 : μ(θ0) = 0 against Ha : μ(θ0) �= 0 (Owen 1990; Qin and Lawless 1994). If the
weights exist, then �̂(θ̂T) = −2

∑n
i=1 log(nŵi ), and if the weights fail to exist, set

�̂(θ̂T) = ∞. Under correct specification, then �̂(θ̂T)
d−→ χ2

q−p. Let (αn) be a sequence
of nominal levels such that αn → 0 and log(αn)/n → 0 as n → ∞, and set

ŵi = n−1 if �̂(θ̂T) > χ2
q−p;αn , 1 ≤ i ≤ n. (17)

Thus, if there is (strong) evidence against the moment condition model such that
�̂(θ̂T) > χ2

q−p;αn , then the ELB weights are set equal to the uniform weights, and in

this situation, the ELB and the SB methods are equivalent. Let ξ̂ JE,α denote the upper

α-quantile of LE( Ĵ ∗(V̂ ∗(θ̂∗
O)−1)|X1:n), where LE(T̂ ∗|X1:n) denotes the conditional

distribution of an ELBquantity T̂ ∗. Since �̂(θ̂T) > χ2
q−p;αn constitutes strong evidence

against the model, we define the ELB J-test to reject H0 if

Ĵ (θ̂T) > ξ̂ JE,α or �̂(θ̂T) > χ2
q−p;αn . (18)

Using the following result about the quantiles of chi-squared distributions (see Inglot
and Ledwina 2006, p. 586)

0 < lim inf
n→∞

χ2
q−p;αn

− log(αn)
< lim sup

n→∞
χ2
q−p;αn

− log(αn)
< ∞, (19)

then Pr(�̂(θ̂T) > χ2
q−p;αn ) → 0 under correct specification. Since the weights exist

with probability tending to one (according to Lemma C.2), the results of the present
section are not affected by this choice.

Theorem 6 shows that the ELB parameter-tests are consistent and that the ELB
repairs the inconsistency of the SB J-test under correct specification.

Theorem 6 Suppose the model (1) and conditions A–E in “Appendix” hold, αn → 0,
and log(αn)/n → 0. Then

LE
(
n1/2(η̂∗ − η̂)

∣∣X1:n
) P−→ N (0, Γ0), (20a)

LE
(
T̂ ∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ χ2
r , (20b)

LE
(
L̂∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (20c)

LE
(
Ŝ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (20d)

LE
(
Ĵ ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
q−p. (20e)

Theorem 7 shows that, under additional regularity conditions, the ELB, like the CB,
reduces the size distortions of the tests to the order O(n−2). The subscript “E” indicates
that the critical values of the tests are estimated using the ELB method. Brown and
Newey (2002, Eq. 9) showed that the size distortions of the ELB symmetric t-test
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and J-test are of order o(n−1). Theorem 7 shows a sharper rate; specifically, the size
distortions of the ELB parameter-tests and the J-test are of exact order O(n−2).

Theorem 7 Suppose the model (1) and conditions A–F hold, αn = exp(−nβ) with
β ∈ (0, 1), and log E(exp(t T f (X, θ0))) < ∞ for t in a neighborhood of 0 ∈ R

k .
Then

Pr
(
T̂ (V̂ (θ̂T)

−1) > ξ̂TE,α

) =
H0

α + O(n−2), (21a)

Pr
(
L̂(V̂ (θ̂O)−1) > ξ̂LE,α

) =
H0

α + O(n−2), (21b)

Pr
(
Ŝ(V̂ (θ̂O)−1) > ξ̂SE,α

) =
H0

α + O(n−2), (21c)

Pr
(
Ĵ (V̂ (θ̂O)−1) > ξ̂ JE,α

) = α + O(n−2). (21d)

4 Bootstrapping under misspecification

4.1 The standard-bootstrap

Under moment misspecification, the SB versions of θ1 and θ2 are θ̂O and θ̂T, respec-
tively. Theorem 8 shows the asymptotic properties of the SB under misspecification.

Theorem 8 Suppose conditions A–E in “Appendix” hold. Then

LS
(
n1/2(η̂∗ − η̂)

∣∣X1:n
) P−→ N (0, Γ ), (22a)

LS
(
T̂ ∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ L
( r∑

j=1

λW
j U

2
j

)
, (22b)

LS
(
L̂∗(V̂ ∗(θ̂∗

O)−1)
∣
∣X1:n

) P−→ L
( p∑

j=1

λL
j U

2
j

)
, (22c)

LS
(
n−1/2 L̂∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ N (0, σ 2
L), (22d)

LS
(
Ŝ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ L
( p∑

j=1

λS
jU

2
j

)
, (22e)

LS
(
n−1/2(Ŝ∗(V̂ ∗(θ̂∗

T )−1) − Ŝ(V̂ (θ̂T)
−1)

)∣∣X1:n
) P−→ N (0, σ 2

S ), (22f)

LS
(
n(ḡ∗(θ̂∗

T ) − ḡ(θ̂T))
T V̂ ∗(θ̂∗

T )−1(ḡ∗(θ̂∗
T ) − ḡ(θ̂T))

∣∣X1:n
) P−→ L

( q∑

j=1

λJ
j U

2
j

)
,

(22g)

LS
(
n−1/2( Ĵ ∗(V̂ ∗(θ̂∗

O)−1) − Ĵ (V̂ (θ̂O)−1))
∣
∣X1:n

) P−→ N (0, σ 2
J ). (22h)

Result (22a) shows that the SB estimator of the joint distribution of θ̂O and θ̂T is
consistent [compare (22a) with (8a)]. Equations (22b)–(22f) show that the SB esti-
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mators of the null distributions of parameter-tests are consistent irrespective of the
weight matrix used in the definition of the test statistics [compare (22b)–(22f) with
(7a)–(7c) and (8b)–(8c)]. An immediate consequence of these results is that, if the
model is misspecified, then the asymptotic sizes of the SB parameter-tests are equal
to their nominal levels. Using (22g), we can construct a consistent SB confidence
region for μ2, which, similarly to its analytic version, it may be helpful in identi-
fying the specific moment conditions that have failed. The result (22h) shows that,
under misspecification,LS( Ĵ ∗(V̂ ∗(θ̂∗

O)−1)|X1:n) is approximately a normal distribu-
tion centered at Ĵ (V̂ (θ̂O)−1). Since the upper α-quantile of a normal distribution is
greater than (or equal to) its mean for α ≤ 1/2, then

Pr
(
Ĵ (V̂ (θ̂O)−1) > ξ̂ JS,α

) → 0 for α ≤ 1/2. (23)

Hence, the power of theSB J-test converges to 0 for nominal levelsα ≤ 1/2.Therefore,
(10) and (23) together imply that the asymptotic size and power of the SB J-test are
equal to zero for nominal levels α ≤ 1/2.

4.2 The centered-bootstrap

Since the moment condition model is constrained to hold in the CB world irrespective
of whether or not it holds in the population, the CB versions of θ1 and θ2 are both
equal to θ̂T. Let η̂c = (θ̂TT , θ̂TT )T ∈ R

2p, A3 = GT
2 W0G2, A4 = GT

2 V
−1
2 G2, and

Γ2 =
(
A−1
3 GT

2 W0V2W0G2A
−1
3 A−1

4
A−1
4 A−1

4

)
.

Theorem 9 shows the asymptotic properties of the CB under misspecification.

Theorem 9 Suppose conditions A–E in “Appendix” hold. Then

LC
(
n1/2(η̂∗ − η̂c)

∣∣X1:n
) P−→ N (0, Γ2), (24a)

LC
(
T̂ ∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ χ2
r , (24b)

LC
(
L̂∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (24c)

LC
(
L̂∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ χ2
r , (24d)

LC
(
Ŝ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
r , (24e)

LC
(
Ŝ∗(V̂ ∗(θ̂∗

T )−1)
∣∣X1:n

) P−→ χ2
r , (24f)

LC
(
Ĵ ∗(V̂ ∗(θ̂∗

O)−1)
∣∣X1:n

) P−→ χ2
q−p. (24g)

Result (24a) shows that the CB estimator of the joint distribution of θ̂O and θ̂T is
inconsistent [compare (24a) with (8a)]. Results (24b)–(24f) show that the CB estima-
tors of the null distributions of parameter-tests are inconsistent [compare (24b)–(24f)
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with (7a)–(7c) and (8b)–(8c)]. Result (24g) shows that the CB estimator of the null
distribution of the J-test is consistent under Ha ; indeed, under misspecification, the
null hypothesis of the J-test is false, and thus, the CB J-test is consistent.

4.3 The empirical-likelihood bootstrap

The ELB versions of θ1 and θ2 are θ̂O and θ̂T, respectively. By (19), it readily follows
that Pr(�̂(θ̂T) > χ2

q−p;αn ) → 1 under misspecification, and thus, the ELB and the SB
methods are equivalent with probability tending to one. By Theorem 8, the ELB joint
distribution of θ̂O and θ̂T and of the parameter-test statistics are consistent. Theorem 8
also implies that the ELB J-test statistic is inconsistent in this case. However, by (18)
and (19), the power of theELB J-test tends to 1; this is an improvement compared to the
SB J-test whose power tends to 0 according to (23). By imposing additional constraints
on the first- and second-order moments of the weighted empirical distribution, one
may develop a modified version of the ELB, which, under mild additional conditions,
provides a consistent estimator of the null distribution of the J-test. However, in
practice, the weights may fail to exist, and thus, although theoretically interesting,
this ELB version may not be feasible/useful.

5 Summary of theoretical results

Higher-order expansions of the sizes of the analytic and the bootstrap tests show that,
if the model is correctly specified, then the size distortions of the bootstrap parameter-
tests are of smaller order than those of the analytic chi-squared tests. On the other hand,
the SB distribution of the J-test statistic is inconsistent, while the CB and the ELB
J-tests are consistent. Under misspecification, the SB and the ELB parameter-tests
are consistent while the corresponding CB parameter-tests are inconsistent. Lastly,
the CB distribution of the J-test is consistent, while the corresponding SB and ELB
distributions are inconsistent.

These results, summarized in Table 1, enable us to propose an approach which
improves accuracy over the analytic chi-squared tests under correct specificationwhile
achieving consistency under misspecification. If misspecification is suspected, we first

Table 1 Summary of theoretical results

Test SB CB ELB

Wald ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

LRT ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

ST ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

J-test ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✗

The first mark indicates whether the bootstrap estimators of the null distributions of the tests are consistent
under correct specification. The second mark indicates whether the size distortions of the bootstrap tests
are of smaller order than of the analytic tests under correct specification. The third mark indicates whether
the bootstrap estimators of the null distributions of the tests are consistent under misspecification
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perform the CB or the ELB J-test. If the CB (or the ELB) J-test does not reject the
model, then we proceed under the assumption that the model is correctly specified,
and in this case, we can use either the SB, or the CB, or the ELB to test hypotheses and
to construct bootstrap confidence regions for θ0. If the CB (or the ELB) J-test rejects
the moment condition model, then we use either the SB or the ELB to test statements
and to construct confidence regions for the target parameter under misspecification
θ2. It is important to note, however, that in this situation, the evidence suggests that θ2
is not a solution of the original moment conditions and, indeed, that no such solution
exists. As a result, the parameter itself does not carry the same practical interpretation
that it might have had the moment conditions to hold.

6 Empirical results

6.1 A dynamic panel data model

In this section, we present the results of an extensive simulation study of the finite
sample performance of the analytic and the bootstrapGMM tests for a dynamic autore-
gressive panel data model with individual effects (see, e.g., Arellano and Bond 1991;
Blundell and Bond 1998; Hsiao 2003)

Xi, j+p − ηi = θ1(Xi, j+p−1 − ηi ) + · · · + θp(Xi, j − ηi ) + εi, j+p, (25)

where Xi, j is the response of the i th unit at time j , with 1 ≤ i ≤ n and 1 ≤ j ≤ m− p,
θ1, . . . , θp are the autoregressive parameters, η1, . . . , ηn are the individual (random)
effects, with ηi ∼ i.i.d.(0, σ 2

η ), and εi, j are the random errors, with εi, j ∼ i.i.d.(0, σ 2
ε ).

We rewrite (25) in an equivalent form as follows

Xi, j+p = θ1Xi, j+p−1 + · · · + θp Xi, j + (1 − θ1 − · · · − θp)ηi + εi, j+p. (26)

Assume that for each i , {Xi, j : 1 ≤ j ≤ m} is a causal sequence, i.e., the current
values Xi, j are independent of the future errors {εi,k : k ≥ j + 1}. Applying the
lag-one difference operator Δ to the both sides of (26), we obtain

E
(
Xi,k(ΔXi,l − θ1ΔXi,l−1 − · · · − θpΔXi,l−p)

) = 0, (27)

for all 1 ≤ i ≤ n, where ΔXi, j = Xi, j − Xi, j−1, 1 ≤ k ≤ m − 2 and p + 2 ≤ l ≤ m,
with k ≤ l − 2. These moment conditions have been proposed by Arellano and Bond
(1991). Blundell and Bond (1998) augmented (27) with moment conditions obtained
by substituting ΔXi,l−2 for Xi,k in (27).

By aggregating the moment functions corresponding to each given lag (l − k)
between the instrument Xi,k and the vector of differences (ΔXi,l , . . . , ΔXi,l−p), we
obtain m − 2 moment conditions. Specifically, let g(x, θ) : Rm ×Θ �→ R

m−2, where
g(x, θ) = (g j (x, θ) : 1 ≤ j ≤ m − 2)T and θ = (θ1, . . . , θp)

T ∈ R
p, with
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gk(x, θ) = 1

m − p − 1

m−2∑

l=p

xl−k+1(Δxl+2 − θ1Δxl+1 − · · · − θpΔxl−p+2) (28a)

for 1 ≤ k ≤ p, and

gk(x, θ) = 1

m − k − 1

m−k−1∑

l=1

Xl(Δxl+k+1 − θ1Δxl+k − · · · − θpΔxl+k−p+1)

(28b)

for p+ 1 ≤ k ≤ m − 2. Preliminary simulation results show that the GMM estimator
defined by the moment conditions (28) performs similarly to the GMM estimators
proposed by Arellano and Bond (1991) and Blundell and Bond (1998) implemented
in the R package plm (Croissant and Millo 2008, p. 21–24) for smaller panels (e.g.,
n = 100 and m = 10) and has improved finite sample properties for larger panels
(e.g., n = 100 and m = 50).

6.2 Simulation results

Computations were done in the R language (R Core Team 2016), and the R package
emplik (Zhou 2015) was used to calculate the ELB weights. We have implemented
the analytic and the bootstrap GMM inference for dynamic autoregressive panel data
models in an R package which is available from the authors upon request. Simulations
were run on the HiPerGator, a cluster of servers hosted by the High-Performance
Computing Center at University of Florida.

In the first simulation study, we generate the samples from the panel data model

Xi, j+1 = θ1Xi, j + (1 − θ1)ηi + εi, j+1, (29)

where θ1 = ν and ν belongs to a grid of 101 equally spaced values in [−0.50, 0.50].
The random effects ηi and the errors εi, j are generated as i.i.d. ∼ N (0, 1). For each
value of ν on the grid, we generate S = 1000 samples from the model (29) with
θ1 = ν, and for each simulated sample, B = 999 bootstrap samples are used to
approximate the critical values of the bootstrap tests. In the simulation study and data
analysis, we set the nominal levels αn = n−3/2 for the ELB method (given by (17)).
For sample sizes n ≥ 50, we have n−3/2 ≤ 0.003, and thus, this modification has
essentially no practical effect on the size of the tests under correct specification. The
null hypothesis of parameter-tests is H0 : θ1 = 0, with nominal level α = 0.05. The
empirical rejection rates of the tests are calculated as the proportion of samples for
which the null hypothesis is rejected.

In the second simulation study, we generate the samples from the panel model

Xi, j+2 = θ1Xi, j+1 + θ2Xi, j + (1 − θ1 − θ2)ηi + εi, j+2, (30)
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Fig. 1 Empirical rejection rates of the analytic (Chi), the SB, the CB, and the ELBWald and J -tests under
correct specification of the dynamic panel data model (29). The number of units is n = 50, 100, 200, the
number of time points is m = 10, the number of simulated samples is S = 1000, and the number of
bootstrap samples is B = 999. The null hypothesis of the Wald test is H0 : θ1 = 0, where θ1 = ν

where θ1 = −0.10, θ2 = ν(ν − 0.10), and ν belongs to a grid of 101 equally spaced
values in [−0.50, 0.50]. In this case, we incorrectly fit the panel data model given by
(29). Let θ

(2)
1 denote the target parameter corresponding to θ1, where recall that the

target parameter corresponding to θ1 is defined as the limiting value of its θ̂T. The null
hypothesis of parameter-tests is set as H0 : θ

(2)
1 = θ

(2)
1 , so that their null hypotheses

are true for all values of ν.
Figure 1 shows the empirical rejection rates of the analytic and the bootstrap tests

under correct specification of the panel data model (29) plotted against the values of
ν. The rejection rates of the LRT and ST are similar to the Wald test and are thus
not included here. The rejection rates of the Wald test are simulation estimates of its
size when ν = 0 and of its power when ν �= 0. Since (29) is correctly specified for
all values of ν, the rejection rates of the J-test are simulation estimates of its size.
Figure 2 shows the empirical rejection rates of the analytic and the bootstrap tests for
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Fig. 2 Empirical rejection rates of the analytic (Chi), the SB, the CB, and the ELB Wald and J -tests
under misspecification of the dynamic panel data model (30). The number of units is n = 50, 100, 200,
the number of time points is m = 10, the number of simulated samples is S = 1000, and the number of

bootstrap samples is B = 999. The null hypothesis of the Wald test is H0 : θ
(2)
1 = θ

(2)
1 , where θ

(2)
1 is the

implied value of θ1

the misspecified model (30) plotted against the values of ν. Since H0 : θ
(2)
1 = θ

(2)
1 is

true for all values of ν, the rejection rates of the Wald test are simulation estimates of
its size. The model (30) is correctly specified for ν = 0 and ν = 0.10 and misspecified
for all other values of ν; thus, the rejection rates of the J-test are simulation estimates
of its size when ν = 0 and ν = 0.10, and of its power otherwise. Table 2 shows
the rejection rates of the analytic and the bootstrap tests under correct specification
(model (29) with ν = 0) and under misspecification (model (30) with ν = −0.50).

The results of the simulation study follow the theoretical results fairly closely.
Specifically, the analytic chi-squared tests have empirical sizes above the nominal
levels, with sizes nearly double the nominal level even for fairly large sample sizes
(n = 100). The CB and the ELB tests do a better job of maintaining the nominal levels
when the model is correctly specified, while the SB tests tend to have rejection rates
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Table 2 Empirical rejection rates of the analytic (Chi), the SB, the CB, and the ELB Wald, LRT, ST,
and J -test at nominal level α = 0.05, under correct specification (model (29) with ν = 0) and under
misspecification (model (30) with ν = −0.50)

Test n Correct specification Misspecification

Chi SB CB ELB Chi SB CB ELB

Wald 50 0.16 0.02 0.04 0.03 0.21 0.02 0.08 0.04

100 0.08 0.04 0.04 0.05 0.20 0.04 0.12 0.05

200 0.07 0.04 0.04 0.04 0.16 0.05 0.13 0.04

LRT 50 0.16 0.02 0.04 0.03 0.23 0.03 0.08 0.04

100 0.08 0.04 0.04 0.04 0.22 0.04 0.14 0.05

200 0.07 0.04 0.04 0.04 0.18 0.05 0.15 0.05

ST 50 0.16 0.02 0.04 0.03 0.25 0.03 0.09 0.04

100 0.08 0.04 0.04 0.04 0.25 0.04 0.17 0.05

200 0.07 0.04 0.05 0.04 0.20 0.05 0.17 0.05

J 50 0.13 0.00 0.02 0.03 0.72 0.00 0.35 0.48

100 0.10 0.00 0.04 0.03 0.95 0.00 0.88 0.74

200 0.07 0.00 0.05 0.04 1.00 0.00 1.00 0.97

The number of units is n = 50, 100, 200, the number of time points is m = 10, the number of simulated
samples is S = 1000, and the number of bootstrap samples is B = 999. The null hypothesis of parameter-

tests under correct model specification is H0 : θ1 = 0 and under misspecification is H0 : θ
(2)
1 = θ

(2)
1 ,

where θ
(2)
1 is the implied value of θ1

below the nominal level, and extremely so in the case of the SB J-test, which never
rejected the null hypothesis. Conversely, the CB parameter-tests have empirical sizes
above the nominal level under misspecification, while the SB and the ELB parameter-
tests maintain the nominal level quite well. The power of the SB J-test is 0, the CB
and the ELB J-tests maintain the nominal level fairly closely, and while having similar
power for n = 50 and n = 100, the CB J-test has better power for n = 200.

7 Electricity data

The data considered here comprise of the monthly average electricity usage (measured
in KWh) for 254 households in a residential area in the state of Florida over 12 months
from January 2011 to December 2011. The response variable Yi, j is the monthly
average electricity usageof the i th household inmonth j , 1 ≤ i ≤ 254 and1 ≤ j ≤ 12.
To remove the overall trend, we center the data by subtracting the monthly average
electricity usage from each observation; that is, let Xi, j = Yi, j − (1/254)

∑254
k=1 Yk, j .

We fit the dynamic panel data model (29) to the data {Xi, j }, with n = 254 units and
m = 12 time points.

We first test for the goodness-of-fit of the model. The J-test statistic is 66.866, and
the p-values of the analytic, the SB, the CB, and the ELB J-tests are 0.000, 0.853,
0.001, and 0.000, respectively. Since both the CB and the ELB J-tests strongly reject
the moment condition model, there is statistical evidence that the dynamic panel data
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Table 3 Equal-tailed and symmetric analytic (Norm), SB, CB, and ELB lower and upper confidence limits

of θ
(2)
1 at 95% nominal confidence level

Equal-tailed CI Symmetric CI

Norm SB CB ELB SB CB ELB

Lower 0.795 0.768 0.754 0.769 0.712 0.754 0.710

Upper 0.851 0.956 0.892 0.956 0.935 0.893 0.936

model ismisspecified.Next, let us suppose thatwe continue inference in spite of finding
evidence of misspecification of the model. Let θ(2)

1 denote the target of inference (the
implied value of θ1). Using our bootstrap GMM methodology, we could use either
the SB or the ELB methods to test statements and to construct confidence intervals
about θ

(2)
1 . The Wald, the LRT, and the ST statistics for testing the null hypothesis

H0 : θ
(2)
1 = 0 are 757.11, 671.50, and 595.56, respectively, and the p-values of the

analytic and the bootstrap parameter-tests are all equal to 0.000.Thus, there is statistical
evidence that θ

(2)
1 �= 0. Table 3 shows the 95% analytic (Norm), SB, CB, and ELB

equal-tailed and symmetric confidence limits for θ
(2)
1 . Note that the SB and the ELB

confidence intervals are similar, as expected, and while the CB confidence intervals
are approximately 30% shorter, they do not maintain the nominal level (according to
Theorem 9).

Appendix: Regularity conditions

Let Ψ̂ (ζ ) : R
2p �→ R

2p be given by Ψ̂ (ζ ) = (Ĉ(ζ1, Ŵ )T , Ĉ(ζ2, V̂ (ζ1)
−1)T )T ,

where ζ = (ζ T
1 , ζ T

2 )T ∈ R
2p. We assume the following regularity conditions:

A. Θ ⊂ R
p is compact, θ1 and θ2 are unique minimizers and interior points of Θ ,

i.e., Q(θ1,W0) < Q(ζ1,W0) for all ζ1 �= θ1 and Q(θ2, V
−1
1 ) < Q(ζ2, V

−1
1 ) for

all ζ2 �= θ2.
B. g(x, ζ1) is measurable in x for each ζ1 ∈ Θ and twice continuously differen-

tiable in ζ1 for P0-almost all x ∈ X . There exists a measurable function κ(x)
with E(κ(X)4) < ∞ such that ‖g(x, ζ1)‖ ≤ κ(x) and ‖∂ki1...ik g(x, ζ1)‖ ≤ κ(x)
for P0-almost all x ∈ X and k = 1, 2, where ‖·‖ is the Euclidean norm and
∂ki1...ik

g(x, ζ1) = ∂kg(x, ζ1)/∂ζ1,i1 . . . ∂ζ1,ik .
C. V1, V2, A1, and A2 are non-singular, and rank(G1) = rank(G2) = p. The function

h : Rp → R
r is continuously differentiable, with rank(H2) = r ≤ p.

D. Ŵ
P−→ W0 and Ŵ ∗ P−→ W0, where W0 is nonrandom, symmetric, and positive

definite.
E. The following asymptotic results hold:

n1/2
(
ψ̂(η0) − ψ(η0)

) d−→ N (0,Σ), (31a)

LS
(
n1/2(ψ̂∗(η̂) − ψ̂(η̂))

∣∣X1:n
) P−→ N (0,Σ), (31b)
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where η0 = (θT1 , θT2 )T ,

ψ(η0) =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

μ(θ1)

vec(G(θ1)
T )

vec(W0)

vec(V (θ1))

μ(θ2)

vec(G(θ2)
T )

⎞

⎟⎟⎟⎟⎟
⎟
⎠

, ψ̂(η0) =

⎛

⎜⎜⎜⎜⎜
⎜
⎝

ḡ(θ1)
vec(Ĝ(θ1)

T )

vec(Ŵ )

vec(V̂ (θ1))

ḡ(θ2)
vec(Ĝ(θ2)

T )

⎞

⎟⎟⎟⎟⎟
⎟
⎠

,

ψ̂∗(η̂) =

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

ḡ∗(θ̂O)

vec(Ĝ∗(θ̂O)T )

vec(Ŵ ∗)
vec(V̂ ∗(θ̂O))

ḡ∗(θ̂T)

vec(Ĝ∗(θ̂T)T )

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

.

F. There exists a measurable map f : Rd × Θ → R
k such that the random variables

Z1, . . . , Zn are i.i.d. in Rk , where Zi = f (Xi , θ0), q < k, E(Zi ) = 0, Var(Zi ) =
Ik , and

T̂ (V̂ (θ̂T)−1) = Ẑ T (
Υ0 + n−1/2Υ1(Ẑ ⊗ Ik) + n−1Υ2(Ẑ ⊗ Ik2)(Ẑ ⊗ Ik)

+ n−3/2Υ3(Ẑ ⊗ Ik3)(Ẑ ⊗ Ik2)(Ẑ ⊗ Ik)
)
Ẑ + OP (n−2),

(32)

Υ j ∈ R
k×k j

, 0 ≤ j ≤ 3, Υ0 ∈ R
k×k is idempotent of rank r , Z̄ = n−1 ∑n

i=1 Zi ,
and Ẑ = n1/2 Z̄ . We assume that an Edgeworth expansion of Fn(x) = Pr(Ẑ ≤ x)
holds, i.e.,

Fn(x) =
∫

(−∞,x)

(
1+ n−1/2 p1(z) + n−1 p2(z) + n−3/2 p3(z)

)
φ(z) dz + O(n−2),

where φ(z) is the density of N (0, Ik) and p j (z) are odd/even polynomials of z for
odd/even 1 ≤ j ≤ 3, i.e., p j (z) = (−1) j p j (−z). We further assume that

T̂ ∗(V̂ ∗(θ̂∗
T)−1) = Ẑ∗T (

Υ̂0 + n−1/2Υ̂1(Ẑ
∗ ⊗ Ik) + n−1Υ̂2(Ẑ

∗ ⊗ Ik2)(Ẑ
∗ ⊗ Ik)

+n−3/2Υ̂3(Ẑ
∗ ⊗ Ik3)(Ẑ

∗ ⊗ Ik2)(Ẑ
∗ ⊗ Ik)

)
Ẑ∗ + OP (n−2),

(33)

where Ẑ∗ = n1/2(Z̄∗ − Z̄), Υ̂ j are the sample versions of Υ j , and a (conditional)
Edgeworth expansion of F̂(x) = Pr(Ẑ∗ ≤ x |X1:n) holds, i.e.,

F̂(x) =
∫

(−∞,x)

(
1+ n−1/2 p̂1(z)+ n−1 p̂2(z)+ n−3/2 p̂3(z)

)
φ(z) dz + OP (n−2),
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where p̂ j (z) are the sample versions of p j (z). Similar expansions hold for the
LRT and the ST statistics. In the case of the J-test statistic, assume that

Ĵ (V̂ (θ̂T)−1) = Ẑ T (
Φ0 + n−1/2Φ1(Ẑ ⊗ Ik) + n−1Φ2(Ẑ ⊗ Ik2)(Ẑ ⊗ Ik)

+ n−3/2Φ3(Ẑ ⊗ Ik3)(Ẑ ⊗ Ik2)(Ẑ ⊗ Ik)
)
Ẑ + OP (n−2),

(34)

where Φ j ∈ R
k×k j

, 0 ≤ j ≤ 3, and Φ0 ∈ R
k×k is idempotent of rank q − p. We

further assume that

Ĵ ∗(V̂ ∗(θ̂∗
T)−1) = (Ẑ∗ + Ẑ)T

(
Φ̂0 + n−1/2Φ̂1(Ẑ

∗ ⊗ Ik)

+n−1Φ̂2(Ẑ
∗ ⊗ Ik2)(Ẑ

∗ ⊗ Ik)

+ n−3/2Φ̂3(Ẑ
∗ ⊗ Ik3)(Ẑ

∗ ⊗ Ik2)(Ẑ
∗ ⊗ Ik)

)
(Ẑ∗ + Ẑ)

+OP (n−2), (35)

where Φ̂ j are the sample versions of Φ j .

Remark 1 Conditions A–D are standard regularity conditions for identification of η0
and consistency of η̂. Note that condition E is similar to condition (12) of Hall and
Inoue (2003). The main difference between the two regularity conditions consists of
that Hall and Inoue studied the asymptotic properties of efficient GMM estimators
which are defined in terms of one weight matrix. In our case, the two-step GMM
estimator is defined in terms of two weight matrices; specifically, the pilot weight
matrix Ŵ , which is used to compute θ̂O, and V̂ (θ̂O), which is used to calculate θ̂T.
Note further that if Ŵ = W0, then (31a) holds by the central limit theorem and (31b)
holds by the central limit theorem for the bootstrap (see, e.g., Van der Vaart 1998,
Theorem 23.4).

Remark 2 If g(x, θ) is six times continuously differentiable (in θ ) for P0-almost all
x ∈ X and h(θ) is five times continuously differentiable, then (32) holds. To this end,
Taylor expansion of Ψ̂ (η̂) about η yields

Ψ̂ (η̂) = Ψ̂ (η0)+
2p∑

i=1

∂i Ψ̂ (η0)(η̂i − η0,i )+(1/2)
2p∑

i, j=1

∂2i j Ψ̂ (η0)(η̂i −η0,i )(η̂ j − η0, j )

+(1/6)
2p∑

i, j,k=1

∂3i jkΨ̂ (η0)(η̂i − η0,i )(η̂ j − η0, j )(η̂k − η0,k)

+(1/24)
2p∑

i, j,k,l=1

∂4i jkl Ψ̂ (η0)(η̂i − η0,i )(η̂ j − η0, j )(η̂k − η0,k)(η̂l − η0,l)

+OP (n−5/2),
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where η0 = (η0,1, . . . , η0,2p)
T ∈ R

2p. Hence

0 = Ψ̂ (η0) + ∇Ψ̂ (η0)(η̂ − η0) + (1/2)∇2Ψ̂ (η0)
(
(η̂ − η0) ⊗ I2p

)
(η̂ − η0)

+(1/6)∇3Ψ̂ (η0)
(
(η̂ − η0) ⊗ I(2p)2

)(
(η̂ − η0) ⊗ I2p

)
(η̂ − η0)

+(1/24)∇4Ψ̂ (η0)
(
(η̂ − η0) ⊗ I(2p)3

)(
(η̂ − η0) ⊗ I(2p)2

)

(
(η̂ − η0) ⊗ I2p

)
(η̂ − η0) + OP (n−5/2), (36)

where ∇Ψ̂ (η0) = (∂i Ψ̂ (η0) : 1 ≤ i ≤ 2p) ∈ R
2p×2p, ∇2Ψ̂ (η0) = (∂i∇Ψ̂ (η0) : 1 ≤

i ≤ 2p) ∈ R
2p×(2p)2 , ∇3Ψ̂ (η0) = (∂i∇2Ψ̂ (η0) : 1 ≤ i ≤ 2p) ∈ R

2p×(2p)3 , and
∇4Ψ̂ (η0) = (∂i∇3Ψ̂ (η0) : 1 ≤ i ≤ 2p) ∈ R

2p×(2p)4 .
Let

η̂ = η0 + n−1/2â + n−1b̂ + n−3/2ĉ + n−2d̂ + OP (n−5/2) (37)

be an asymptotic expansion of η̂ about η0, where â = b̂ = ĉ = d̂ = OP (1). Replacing
η̂ − η0 given by (37) in (36), we obtain the following expressions for â, b̂, ĉ, and d̂:

â = −n1/2∇Ψ̂ (η0)
−1Ψ̂ (η0),

b̂ = −(1/2)∇Ψ̂ (η0)
−1∇2Ψ̂ (η0)(â ⊗ I2p)â,

ĉ = −∇Ψ̂ (η0)
−1{(1/2)∇2Ψ̂ (η0)

(
(â ⊗ I2p)b̂ + (b̂ ⊗ I2p)â

)

+ (1/6)∇3Ψ̂ (η0)(â ⊗ I(2p)2)(â ⊗ I2p)â
}
,

d̂ = −∇Ψ̂ (η0)
−1{(1/2)∇2Ψ̂ (η0)

(
(â ⊗ I2p)ĉ + (b̂ ⊗ I2p)b̂ + (ĉ ⊗ I2p)â

)

+ (1/6)∇3Ψ̂ (η0)
(
(â ⊗ I(2p)2)(b̂ ⊗ I2p)â + (â ⊗ I(2p)2)(â ⊗ I2p)b̂

+ (b̂ ⊗ I(2p)2)(â ⊗ I2p)â
)

+ (1/24)∇4Ψ̂ (η0)(â ⊗ I(2p)3)(â ⊗ I(2p)2)(â ⊗ I2p)â
}
.

Next, write T̂ (V̂ (θ̂T)−1) = nϕ̂(η̂), where ϕ̂(ζ ) : R2p → R is defined as

ϕ̂(ζ ) = h(ζ2)
T (

H(ζ2)D̂(ζ2, V̂ (ζ2)
−1)−1H(ζ2)

T )−1
h(ζ2),

with ζ = (ζ T
1 , ζ T

2 )T ∈ R
2p. Taylor expansion of ϕ̂(η̂) about η0 yields

ϕ̂(η̂) = ϕ̂(η0) + ∇ϕ̂(η0)(η̂ − η0) + (1/2)∇2ϕ̂(η0)
(
(η̂ − η0) ⊗ I2p

)
(η̂ − η0)

+ (1/6)∇3ϕ̂(η0)
(
(η̂ − η0) ⊗ I(2p)2

)(
(η̂ − η0) ⊗ I2p

)
(η̂ − η0)

+ (1/24)∇4ϕ̂(η0)
(
(η̂ − η0) ⊗ I(2p)3

)(
(η̂ − η0) ⊗ I(2p)2

)

× (
(η̂ − η0) ⊗ I2p

)
(η̂ − η0) + OP (n−5/2).

Since ϕ̂(η0) = 0 and ∇ϕ̂(η0) = 0, by substituting η̂ given by (37), then the
higher-order expansion (32) holds. The analytic and conditional Edgeworth expan-
sions hold under additional finite moment and the Cramer condition lim sup||t ||→∞
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|E(exp(i t T Z))| < 1 For more details, see Theorem 2 of Bhattacharya and Ghosh
(1978) and Theorem 5.1 of Hall (1992).
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