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Abstract Sliced Latin hypercube designs are popularly adopted for computer exper-
iments with qualitative factors. Previous constructions require the sizes of different
slices to be identical. Here we construct sliced designs with flexible sizes of slices.
Besides achieving desirable one-dimensional uniformity, flexible sliced designs
(FSDs) constructed in this paper accommodate arbitrary sizes for different slices and
cover ordinary sliced Latin hypercube designs as special cases. The sampling prop-
erties of FSDs are derived and a central limit theorem is established. It shows that
any linear combination of the sample means from different models on slices follows
an asymptotic normal distribution. Some simulations compare FSDs with other sliced
designs in collective evaluations of multiple computer models.

Keywords Central limit theorem · Latin hypercube design · Sampling property ·
Sliced design

1 Introduction

A central issue in computer experiments is to estimate the mean of the response of
a computer model. McKay et al. (1979) proposed Latin hypercube designs (LHDs)
which achieve maximum stratification in univariate margins simultaneously. Stein
(1987) showed that a Latin hypercube sample provides a smaller variance for the
sample mean compared with the independently identical distribution sample.
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632 X. Kong et al.

When the experiment contains several batches or multiple computer models based
on similar mathematics (Williams et al. 2009), sliced designs are considered as appro-
priate choices since their different slices can be arranged to different batches ormodels,
respectively. Qian (2012) introduced sliced LHDs (SLHDs) with multislices and uni-
variate stratification, whereas both sliced LHDs and general sliced LHDs require the
sizes of different slices to be identical. Same restrictions on the sample size can be
found in variants of sliced LHDs discussed in Ai et al. (2014), Yin et al. (2014), Ai
et al. (2016), Ba et al. (2015), and Hwang et al. (2016).

Consider the following cases: (i) There exists several different codes with different
accuracies and complexities which can be used as alternative models for the same
problem; (ii) several experiment centers have different limitation of time or budget in
studying the same project. In these two cases, different computational complexities
and different experimental resources lead to different available sample sizes for slices.
The data should be able to be analyzed both separately and together, and the design
should be robust to the failure of some slices.

In this paper, we construct flexible sliced designs which can suit for different slices
of arbitrary sample sizes. The proposed design is robust to the failure of its sub-designs.
We refer to these new designs as FSDs for convenience.When all slices share the same
sample size, FSDs reduce toSLHDs.Detailed sampling properties of FSDs are derived,
which cover the results for SLHDs in Qian (2012). Qian (2012) proved that, compared
with independent LHDs, SLHDs enjoy smaller variance of linear combinations of
the sample mean from different models in each slice. With the same assumption, we
will show that FSDs lead to a further variance reduction. Simulations show that FSDs
provide variance reduction compared with SLHDs in estimating linear combinations
of the means of functions from different slices.

The aforementioned linear combination of the sample mean from different models
in each slice is considered as an important estimator in sliced designs. In this paper,
a central limit theorem is established for FSDs. It shows that any linear combination
of the sample mean with different models on each slice follows an asymptotic normal
distribution. No similar result has been given for sliced designs with multiple models
yet. It covers the related result for sliced LHDs given by He and Qian (2015).

The paper is organized as follows. InSect. 2, a generalmethod for constructingFSDs
is proposed. Section3 derives sampling properties for FSDs and compares FSDs with
other two alternative design schemes. A central limit theorem is established in Sect. 4.
In Sect. 5, some simulations are given to support our theoretical results. Section6
concludes this paper with some discussions. All proofs are given in “Appendix.”

2 Constructing flexible FSDs

Before constructing FSDs, we introduce some commonly used definitions and nota-
tion. Let Zn denote the set {1, . . . , n} for any positive integer n and U (0, 1) be the
uniform distribution on (0, 1). Let Zn ⊕ p denote the set {1 + p, . . . , n + p}. The
least common multiple of k integers ai , i = 1, . . . , k, is denoted by lcm(a1, . . . , ak).
In other words,
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Flexible sliced designs for computer experiments 633

lcm(a1, . . . , ak) = min{ l | l > 0 and is a multiple of ai for any 1 ≤ i ≤ k}.

Let |D| denote the sample size of a design D. A randomized Latin hypercube with
n runs and m factors is an n × m matrix in which each column is an independent
permutation on Zn . An LHD of N runs constructed in McKay et al. (1979) is denoted
by LHD(N ). SLHDswith n N -run slices, denoted by SLHD(N , n), is a design scheme
whose each slice is statistically equivalent to an ordinary LHD(N ) and combined
design is an LHD(N × n). For details of the SLHD(N , n), we refer to Qian (2012).

Consider an experiment containing
∑k

i=1 ni batches among which ni batches have
an sample size of Ni . Without loss of generality, Ni1 �= Ni2 for any i1 �= i2. There are
totally

∑k
i=1 ni batches and

∑k
i=1 Ni ni runs. To make it clear, consider an experiment

with three batches for which the first two design |D1,1| = |D1,2| = 6 and the third
slice |D2,1| = 4. SLHDs are unavailable since the sizes of three slices are not same.
To deal this situation, we provide three alternative schemes:

(i) ILs which contain
∑k

i=1 ni independent LHD of given sample sizes,
(ii) ISs which contain independent SLHD(Ni , ni ) for i = 1, . . . , k,
(iii) FSDs generated in this paper.

Now we introduce the construction of FSDs. Given integers k, n1, . . . , nk , and
N1, . . . , Nk , let l = lcm(N1n1, . . . , Nknk) and n = ∑k

i=1 ni . The design matrix of an
m-dimensional FSD containing ni slices of Ni runs, for i = 1, . . . , k, is constructed
through following steps.
Step 1Let M = (mi,h)k×l be a k×l matrix whose hth column is a random permutation
of Zk ⊕ (h − 1)k.
Step 2 For i = 1, . . . , k and q = 1, . . . , Ni ni , draw a(i)

q from the discrete uniform
distribution on {mi,(q−1)λi +1, mi,(q−1)λi +2, . . . , mi,qλi } where λi = l

Ni ni
. Let M (i) =

(m(i)
j,u)ni ×Ni be an ni × Ni matrix whose uth column is a random permutation of

{a(i)
(u−1)ni +1, . . . , a(i)

uni }. Randomly permute the Ni elements of each row of M (i), the

resulting matrix is still denoted by M (i).
Step 3 For i = 1, . . . , k, j = 1, . . . , ni and u = 1, . . . , Ni , let

di, j,u,1 = (kl)−1
(

m(i)
j,u − εi, j,u

)
, (1)

where εi, j,u’s are independent random variables following U (0, 1).
Step 4 Repeat last three steps to generate di, j,u,2, . . . , di, j,u,m . For i = 1, . . . , k,
j = 1, . . . , ni , let Di, j = (di, j,u,v)Ni ×m denote an Ni × m matrix where u =
1, . . . , Ni and v = 1, . . . , m. Sequentially define Di = (DT

i,1, . . . , DT
i,ni

)T and

D = (DT
1 , . . . , DT

k )T .
When k = n1 = 1, this algorithm gives the construction ordinary N1-run LHDs.

When k = 1, this construction is equivalent to that of SLHD(N1, n1). For details of the
construction of LHDs and SLHDs, we refer to McKay et al. (1979) and Qian (2012),
respectively. The whole design D contains Di, j ’s as n slices with arbitrary sample
sizes. The FSD constructed above is denoted by FSD(N1 × n1 + · · · + Nk × nk). To
distinguish Di ’s from Di, j ’s, we call them sub-designs and slices, respectively.

123



634 X. Kong et al.

Fig. 1 Three plots of the distribution of design points in D1,1, D1,1 ∪ D1,2, and D1,1 ∪ D1,2 ∪ D2,1,
respectively, in Example 1

Nowwe provide an example to illustrate the construction. Note that each dimension
of the design is generated independently through the same processes, we only construct
one-dimensional FSDs for illustration.

Example 1 Consider generating a one-dimensional FSD(6× 2+ 4× 1). In this case,
N1=6, n1 = 2, N2 = 4, n2=1, k = 2, l = 12, λ1 = 1 and λ2 = 3. Generate a 2 × 12
matrix M as

(
1 3 6 8 9 12 14 15 17 20 21 23
2 4 5 7 10 11 13 16 18 19 22 24

)

.

Then we have (a(1)
1 , . . . , a(1)

12 ) = (1, 3, 6, 8, 9, 12, 14, 15, 17, 20, 21, 23) and gen-
erate M (1) as (

23 14 6 20 1 12
8 17 3 15 21 9

)

.

Randomly generate (a(2)
1 , . . . , a(2)

4 ) = (4, 10, 18, 24) and M (2) = (18, 24, 10, 4).
By substituting M (1) and M (2) into construction (1), we generate D1,1 = (0.926,
0.555,0.213, 0.801,0.012,0.471)T , D1,2 = (0.299, 0.678, 0.093, 0.613, 0.864,
0.354)T , and D2,1 = (0.748, 0.998, 0.413, 0.146)T .

The design points generated in Example 1 are depicted in Fig. 1 to provide a visual
approach to the design.

3 Sampling properties of FSDs

This section establishes a theoretical framework of the sampling properties for FSDs
and compares FSDs with other two alternative design schemes. To provide some
intuition of the space-filling properties of FSDs, we revisit Example 1 and Fig. 1.
It can be easily seen that D1,1 is an LHD(6), D1,1 and D1,2 are two slices of an
SLHD(6,2), and the totally combined design D1,1 ∪ D1,2 ∪ D2,1 has no two points
falling in the same small interval of length 1/24. Now we discuss these space-filling
properties theoretically.

Actually, an SLHD(N1, n1) is statistically equivalent to an FSD(N1 × n1). Thus,
SLHDs constructed in Qian (2012) are special cases of FSDs and the general theories
of FSDs cover He and Qian’s (2015) related results.
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Flexible sliced designs for computer experiments 635

Proposition 1 For the FSD(N1 × n1 + · · · + Nk × nk) constructed by our proposed
algorithm, we have

(i) slice Di, j is statistically equivalent to an ordinary LHD(Ni ),
(ii) sub-design Di = ∪ni

j=1Di, j is statistically equivalent to an SLHD(Ni , ni ).

Proposition 1 reveals that a sub-design Di of Ni ni runs has the same statistical
properties with an SLHD(Ni , ni ) proposed by Qian (2012). Next proposition gives
the joint distribution of two design points from two different sub-designs Di1 and Di2
where i1 �= i2. For 0 ≤ r1, r2 ≤ 1 and a positive integer p, define δp(r1, r2) = 1 if
�pr1� = �pr2� and δp(r1, r2) = 0 if �pr1� �= �pr2�.
Proposition 2 For the FSD(N1 × n1 + · · · + Nk × nk) constructed by our proposed
algorithm, each point in D follows the uniform distribution on [0, 1]m. Let Xi1 =
(xi1,1, . . . , xi1,m) ∈ Di1 and Xi2 = (xi2,1, . . . , xi2,m) ∈ Di2 denote two design points,
we have the joint density function of Xi1 and Xi2 as

(
k

k − 1

)m m∏

b=1

[
k − 1

k
+ 1

k
δl(xi1,b, xi2,b) − δkl(xi1,b, xi2,b)

]

, (2)

where i1 �= i2, Xi1 = (xi1,1, . . . , xi1,m) and Xi2 = (xi2,1, . . . , xi2,m).

Proposition 2 gives only the joint distribution of two points from different sub-
designs. For the joint distribution of two point from the same sub-design, we refer to
Lemma 1 in Qian (2012) for details since the sub-design Di is statistically equivalent
to an SLHD(Ni , ni ) generated in Qian (2012).

Lehmann (1966) introduced the concept of negatively quadrant dependent variables.
Two random variables τ1 and τ2 are negatively quadrant dependent if P(τ1 ≤ v1, τ2 ≤
v2) ≤ P(τ1 ≤ v1)P(τ2 ≤ v2) for any v1 and v2. Proposition 3 shows that any two
points from different sub-designs of an FSD are negatively quadrant dependent.

Proposition 3 For the FSD(N1 × n1 + · · · + Nk × nk) constructed by our proposed
algorithm, given that Xi1 = (Xi1,1, . . . , Xi1,m) ∈ Di1 and Xi2 = (Xi2,1, . . . , Xi2,m) ∈
Di2 where i1 �= i2, we have that Xi1,b and Xi2,b are negatively quadrant dependent
for any b ∈ Zm.

With assumption on the monotonicity of f (i, j)’s, it is known that negatively
quadrant-dependent variables have a negative covariance (Lehmann 1966). This prop-
erty is often used in variance comparison among different designs as in Theorem 1
from Qian (2012). We are now ready to compare FSDs with other two design schemes
introduced in Sect. 2.

Consider an ensemble experiment using n similar computer models { f (1,1), . . . ,

f (1,n1), f (2,1), . . . , f (2,n2), . . . , f (k,1), . . . , f (k,nk )}, where n = ∑k
i=1 ni . Slice Di, j

is arranged to f (i, j). The inputs of thesemodels follow the uniformmeasure on [0, 1]m .
For 1 ≤ i ≤ k and 1 ≤ j ≤ ni , define

μi, j = E{ f (i, j)(X)} and η =
k∑

i=1

ni∑

j=1

λi, jμi, j ,

123



636 X. Kong et al.

where λi, j ’s are nonnegative real numbers and X is uniformly distributed on [0, 1]m .
We now move on to the estimation of μi, j ’s and η through FSDs. Throughout, x =
(x1, x2, . . . , xm) and f (i, j)(x)’s are continuous on [0, 1]m . Let dx−u = ∏

b∈Zm\u dxb

for any u ⊆ Zm . Decompose f (i, j)’s as

f (i, j)(x) =
∑

∅⊆u⊆Zm

f (i, j)
u (x),

where f (i, j)
∅ (x) = μi, j and f (i, j)

u (x) is the u-factor interaction of f (i, j) defined
recursively by

f (i, j)
u (x) =

∫

[0,1]m−|u|

[

f (i, j)(x) −
∑

v⊂u

f (i, j)
v (x)

]

dx−u .

If only main effects are considered, f (i, j) can be decomposed as

f (i, j)(x) = μi, j +
m∑

b=1

f (i, j)
b (xb) + ri, j (x), (3)

where ri, j (x) is the residual containing all multivariate interactions of f (i, j). The
unbiased estimators of μi, j and η are

μ̂i, j = 1

Ni

∑

x∈Di, j

f (i, j)(x) and η̂ =
k∑

i=1

ni∑

j=1

λi, j μ̂i, j ,

respectively. It should be mentioned that these estimators are also unbiased in for IL
and IS. This can be verified immediately from the sampling properties of IL and IS
given in McKay et al. (1979) and Qian (2012). Theorem 1 compares the variance of
these estimators from the three alternative schemes mentioned in Sect. 2.

Theorem 1 For 1 ≤ i ≤ k and 1 ≤ j ≤ ni , the three alternative schemes share the
same variance of μ̂i, j ’s, i.e.,

VarFSD(μ̂i, j ) = VarIS(μ̂i, j ) = VarIL(μ̂i, j ).

Suppose that f (i, j)’s are all increasing (or all decreasing) in each argument xb of x.
For the variance of η̂, we have

VarFSD(η̂) ≤ VarIS(η̂) ≤ VarIL(η̂).

Note that λi, j ’s are nonnegative real numbers, Theorem 1 also compares the vari-
ance of μ̂i = ∑

j λi, j μ̂i, j (i = 1, . . . , k) for the three design schemes by setting λr, j

(r �= i) to 0 as a special case of η̂.
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Flexible sliced designs for computer experiments 637

4 Central limit Theorem for FSDs

Before giving the central limit theorem for FSDs, we introduce the definition of
Lipschitz continuous. A function f is called Lipschitz continuous if there exists a
constant c such that for any two points x1 and x2 in [0, 1]m , it always holds that
| f (x1)− f (x2)| ≤ c ‖ x1 − x2 ‖, where ‖ x1 − x2 ‖ represents the Euclidean distance
between x1 and x2. In this section, we establish a central limit theorem for FSDs. The
asymptotic distribution of η̂ helps in providing confidence intervals.

Owen (1992) introduced the central limit theorem of LHDs. Compared with inde-
pendent LHDs, different slices in FSDs have complex joint distributions. Thus, it is
hard to establish a central limit theorem for elaborate space-filling designs. The fol-
lowing theorem gives the asymptotic distribution of η̂ for FSDswhich covers Theorem
8 in He and Qian (2015).

Theorem 2 Assume that (i) f (i, j)’s are Lipschitz continuous, and (ii) k, n1, . . . , nk

are fixed and Ni1/Ni2 is bounded as (N1, . . . , Nk) → ∞ for any i1 �= i2. For the
FSD(N1 × n1 + · · · + Nk × nk) constructed by our proposed algorithm, we have

(η̂ − η)/

⎛

⎝
∫

[0,1]m

k∑

i=1

ni∑

j=1

λ2i, j

Ni
r2i, j (x)dx

⎞

⎠

1/2

→ N (0, 1)

as (N1, . . . , Nk) → ∞.

Note that the SLHD(N1, n1) constructed in Qian (2012) is statistically equivalent
to FSD(N1 ×n1). Theorem 2 covers the central limit theorem for SLHDs in Theorem
8 in He and Qian (2015).

5 Simulations

In this section, we present three examples to illustrate the advantages of FSDs by
comparing FSDs with two alternative schemes ILs and ISs. For convenience, ILs and
ISs containing ni slices of Ni runs for i = 1, . . . , k are denoted by IL(N1×n1+· · ·+
Nk × nk) and IS(N1 × n1 + · · · + Nk × nk), respectively. We will not compare these
three alternative space-filling designs with IID sampling since even ILs outperform
IID sampling.

Example 2 Consider the five-dimensional function in Drew and Homem-de Mello
(2005):

f (x) = log(x1x2x3x4x5)

to act as a computer code whose input x follows a uniform distribution on [0, 1]5. Two
6-run slices and one 4-run slice are available. Suppose f (1,1) = f (1,2) = f (2,1) = f ,
λ1,1 = λ1,2 = 0.3 and λ2,1 = 0.4. Figure1 presents the MSE (mean squared error)
and distribution of η̂ over the 105 replicates for ILs, ISs and FSDs, respectively. The
distribution of η̂ is comparedwith a normal distribution of the samemean and variance.
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Figure2 shows that FSDs provide variance reduction compared with ISs and fit the
asymptotic normal distribution well. Figure2 also reveals another interesting advan-
tage of FSDs in this problem. However, the log function tends to −∞ as x → 0.
Consider one-dimensional projection of these schemes. FSDs drop only one point in
[0, 24−1], while other two schemes may contain more than one point in this interval.
Thus, ISs and ILs are likely to give a heavy left tail distribution for the estimator
compared with FSDs.

When a sophisticated integration problem is studied bymultiple machines or places
as batches, some of these batches may fail or encounter delay. In this case, FSDs
generated in this paper provides a robust way to allocate computing resources. In the
following example, we randomly drop one slice from the whole design to show the
robustness of FSDs.

Example 3 Consider the experiment in Example 2. In each simulation, we randomly
drop one slice and the samplemean estimator μ̂ is based on the rest two slices. Figure3
presents theMSE and distribution of the samplemean estimator over the 105 replicates
for ILs, ISs and FSDs, respectively.

Example 3 reveals that FSDs outperform ISs and ILs when some slices fail and so
are robust. Next example consider a group of different functions used inQian (2012). It
illustrates the performance of FSDswhen their different slices are arranged to different
models based on similar mathematics.

Example 4 Consider two-dimensional functions in Qian (2012):

f (1,1)(x) = log

(
1√
x1

+ 1√
x2

)

f (1,2)(x) = log

(
0.98√

x1
+ 0.95√

x2

)

f (2,1)(x) = log

(
1.02√

x1
+ 1.02√

x2

)

where x = (x1, x2) follows a uniform distribution on [0, 1]2. Similar to that in
Example 2, the experiment contains two 6-run slices and one 4-run slice. For
λ1,1 = λ1,2 = 0.3 and λ2,1 = 0.4, Fig. 4 shows the MSE and distribution of η̂

over the 105 replicates for ILs, ISs and FSDs, respectively. As depicted in 4, FSDs
enjoy 18.42% variance reduction compared with ISs, which is greater than the 13.15%
variance reduction from substituting ISs for ILs.

6 Discussion

In this paper,we propose flexible sliced designs (FSDs) formulti-slice computer exper-
iments. Compared with existing sliced space-filling designs such as SLHDs in Qian
(2012), FSDs permit different sample sizes for different slices. We derive a theoret-
ical framework of the sampling properties of FSDs. Compared with two alternative
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642 X. Kong et al.

schemes, FSDs permit a smaller variance of η̂. The parameter η can be any linear com-
bination of sample mean from different slices. A central limit theorem is established
showing that η̂ follows an asymptotic normal distribution.

FSDs can be further refined according to different criterion such as correlation con-
trol (Owen 1994) and maximin inter-site distance. Using the ranked Gram–Schmidt
(RGS) algorithm (Owen 1994) for each slice, we can control the correlations of
columns for FSDs (Morris and Mitchell 1995).
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Appendix: proofs of Propositions and Theorems

Proof of Proposition 1 First, we prove that Di, j is statistically equivalent to an
ordinary LHD(Ni ). Let H = (hi, j )N×m be the design matrix of an experiment.
Let h(1), j , . . . , h(N ), j denote the ordered statistics of h1, j , . . . , hN , j . Review the
construction of LHD(Ni ). Simple analysis shows that if (i) h1, j , . . . , hN , j is a ran-
dom permutation of h(1), j , . . . , h(N ), j , (ii) hi, j follows the uniform distribution on
( i−1

N , i
N ], and (iii) each column is generated independently, and then design H is

statistically equivalent to an ordinary LHD(N ). For the design matrix Di, j given in
our algorithm, the columns are generated independently. Let di, j,(1),v, . . . , di, j,(Ni ),v

denote the ordered statistics of di, j,1,v, . . . , di, j,Ni ,v . The random permutation of each
row of M (i) reveals that the second condition is satisfied. It is now sufficient to
show that di, j,(u),v follows the uniform distribution on ( u−1

Ni
, u

Ni
] for u = 1, . . . , Ni .

Simple analysis shows that, before the row-element permutation, we have (i) m(i)
j,u

follows the discrete uniform distribution on {a(i)
(u−1)ni +b1

: b1 = 1, . . . , ni }, (ii)
a(i)
(u−1)ni +b1

follows the discrete uniform distribution on {mi,[(u−1)ni +b1−1]λi +b2 : b2 =
1, . . . , λi } and (iii) mi,[(u−1)ni +b1−1]λi +b2 follows the discrete uniform distribution on

Zk ⊕ {[(u − 1)ni + b1 − 1]λi + b2 − 1}k. Thus, m(i)
j,u follows the uniform distribution

on { kl
Ni ni

(u −1)+1, kl
Ni ni

(u −1)+2, . . . , kl
Ni ni

u}. From Eq. (1), we know that di, j,(1),v

follows the uniform distribution on ( u−1
Ni

, u
Ni

] for u = 1, . . . , Ni , which completes the
proof. ��

Then we prove that Di is statistically equivalent to an SLHD(Ni , ni ). Review the
construction of SLHD(Ni , ni ). AnSLHD(Ni , ni ) is statistically equivalent to a ni -slice
design which (i) each slice is statistically equivalent to an ordinary LHD(Ni ), and (ii)
the combined design is an LHD(Ni ni ). Di, j is statistically equivalent to LHD(Ni )
and the combined design of all Di, j ’s is also an LHD since matrix �Di · Ni ni� is an
Ni ni -row Latin hypercube. And Proposition 1 right follows.

Proof of Proposition 2 The uniform distribution of each design point is trivial and so
omitted here. We move on to the joint distribution of Xi1 and Xi2 . Note that the m
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dimensions are generated independently. Consider only the one-dimensional projec-
tion of the design.

In Step 1 of construction (1), we actually divide [0, 1] to kl intervals. Given Xi1 =
(xi1,1, . . . , xi1,m), we know that there exists j1 ∈ Zni1

and u1 ∈ Z Ni1
such that

di1, j1,u1,1 = xi1,1. Similarly, there exists j2 ∈ Zni2
and u2 ∈ Z Ni2

such that xi2,1 =
di2, j2,u2,1. Let ai1 = �di1, j1,u1,1 · kl�. First, we figure out the distribution of di2, j2,u2,1
conditional on xi1,1. Let Ri2 denote the i2th row of the matrix M and be random
conditional on ai1 . For an arbitrary integer b ∈ Zkl , simple analysis reveals that
Case 1 P(b ∈ Ri2) = 0 if b = ai1 ;
Case 2 P(b ∈ Ri2) = 1

k−1 if b �= ai1 and � b
k � = � ai1

k �;
Case 3 P(b ∈ Ri2) = 1

k if � b
k � �= � ai1

k �.
Review the construction process given in Steps 2 and 3. Similar analysis as that in

the proof of Proposition 1 reveals that, if b ∈ Ri2 , then the P(m(i2)
j2,u2

= b) = l−1. From

Eq. (1), we know di2, j2,u2,1 follows the uniform distribution on (
m

(i2)

j2,u2
−1

kl ,
m

(i2)

j2,u2
kl ] In

Step 2, a is chosen with a uniform probability of Ni ni
l . Thus, for any b ∈ Zkl , the

conditional density function of di2, j2,u2,1 on ( b−1
kl , b

kl ] is

P(b ∈ Ri2) · P(m(i2)
j2,u2

= b) · kl = k · P(b ∈ Ri2).

Note that the single-point distribution of Xi1,1 is the uniform distribution on (0, 1].
This immediately gives the one-dimensional joint distribution of Xi1,1 and Xi2,1 as

k

k − 1

[
k − 1

k
+ 1

k
δl(xi1,1, xi2,1) − δkl(xi1,1, xi2,1)

]

.

The conditional density function of Xi2 given Xi1 right follows. ��
Proof of Proposition 3 Let �r� denote the largest integer not greater than a real number
r . Without loss of generality, assume v1 ≤ v2. From Eq.4, P(Xi1,1 ≤ v1, Xi2,1 ≤ v2)

can be calculated as

∫ v1

0

∫ v2

0

k

k − 1

[
k − 1

k
+ 1

k
δl(xi1,1, xi2,1) − δkl(xi1,1, xi2,1)

]

dxi1,1dxi2,1

= v1v2 + k

k − 1

∫ v1

0

∫ v2

0

[
1

k
δl(xi1,1, xi2,1) − δkl(xi1,1, xi2,1)

]

dxi1,1dxi2,1. (4)

Note that Xi1,1 and Xi2,1 Then P(Xi1,1 ≤ v1, Xi2,1 ≤ v2)− P(Xi1,1 ≤ v1)P(Xi2,1 ≤
v2) can be calculated as Let λ = �lv1�, where �r� is the largest integer not greater
than r . Let ṽ1 = v1 − l−1λ and ṽ2 = v2 − l−1λ. Note that for any positive integer b
and xi2,1, we have

∫

((b−1)l−1,bl−1]

[
1

k
δl(xi1,1, xi2,1) − δkl(xi1,1, xi2,1)

]

dxi1,1 = 0.
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So integral (4) can be rewritten as

k

k − 1

∫ ṽ1

0

∫ ṽ2

0

[
1

k
δl(xi1,1, xi2,1) − δkl(xi1,1, xi2,1)

]

dxi1,1dxi2,1. (5)

Case 1 ṽ2 ≥ 1
l . The integral equals 0.

Case 2 0 ≤ ṽ2 ≤ 1
l and �xi1,1 ·kl� �= �xi2,1 ·kl�. The integral equals k−1ṽ1(̃v2−l−1) ≤

0.
Case 3 0 ≤ ṽ2 ≤ 1

l and �xi1,1 · kl� = �xi2,1 · kl�. Let p = �̃v2 · kl� = �̃v1 · kl�,
r1 = ṽ1 · kl − p and r2 = ṽ2 · kl − p. The integral equals to (r1+p)(r2+p)l

(kl)3
− p+r1r2

(kl)2
.

Note that k ≥ p + 1. The integral is no greater than − p(1−r1)(1−r2)
(p+1)(kl)2

≤ 0.
Thus, integral (5) is no greater than 0, which completes the proof. ��

Proof of Theorem 1 For i1 �= i2, let X(i1, j1) and X(i2, j2) denote design points from
two different slices Di1, j1 and Di2, j2 , respectively. By Theorem 1 of Lehmann (1966),
Proposition 3 and the assumption on f (i, j)’s yield that

CovFSD
[

f (i1, j1)
(
X(i1, j1)

)
, f (i2, j2)

(
X(i2, j2)

)] ≤ 0. (6)

Consider η̂ = ∑k
i=1

∑ni
j=1 λi, j μ̂i, j . By combining Proposition 1 with Theorem 1 in

Qian (2012), we have VarFSD(μ̂i, j ) = VarIL(μ̂i, j ) = VarIS(μ̂i, j ) since each slice of
these designs is statistically equivalent to an ordinary LHD(Ni ), and

VarFSD

⎛

⎝
ni∑

j=1

λi, j μ̂i, j

⎞

⎠ = VarIS

⎛

⎝
ni∑

j=1

λi, j μ̂i, j

⎞

⎠ ≤ VarIL

⎛

⎝
ni∑

j=1

λi, j μ̂i, j

⎞

⎠ . (7)

Note that η̂ is an unbiased estimator of η for these three schemes. By combining
(6) and (7), we have

VarFSD(η̂) =
k∑

i=1

VarFSD

⎛

⎝
ni∑

j=1

λi, j μ̂i, j

⎞

⎠

+
∑

i1 �=i2

ni1∑

j1=1

ni2∑

j2=1

∑

X∈Di1, j1

∑

Y∈Di2, j2

CovFSD
[

f (i1, j1)(X), f (i2, j2)(Y )
]

≤
k∑

i=1

VarIS

⎛

⎝
ni∑

j=1

λi, j μ̂i, j

⎞

⎠ = VarIS(η̂)

≤
k∑

i=1

VarIL

⎛

⎝
ni∑

j=1

λi, j μ̂i, j

⎞

⎠ = VarIL(η̂),

which completes the proof. ��
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Proof of Theorem 2 For the FSD(N1 × n1 + · · · + Nk × nk) and i = 1, . . . , k, define
a group of functions φi : (0, 1) → (0, 1) as

φi (y) = {ykl − �ykl� + �yNi�}/Ni .

For x = (x1, . . . , xm), let �i (x) = (φi (x1), . . . , φi (xm)). For the FSD(N1 × n1 +
· · · + Nk × nk), let

D∗
i, j = {�i (x), x ∈ Di, j }.

Simple analysis shows that D∗
i, j ’s are statistically equivalent to

∑k
i=1 ni independent

LHDs with the same sample size.
For 1 ≤ i ≤ k and 1 ≤ j ≤ ni , let

μ̂∗
i, j =

∑

x∈D∗
i, j

f (i, j)(x) and η̂∗ =
k∑

i=1

ni∑

j=1

λi, j μ̂
∗
i, j .

Note that 0 < a <
Ni1
Ni2

< b as Ni → ∞ and D∗
i, j ’s are independent designs. From

Theorem 1 in Owen (1992), we have

(η̂∗ − η)/

⎛

⎝
∫

[0,1]m

k∑

i=1

ni∑

j=1

λ2i, j

Ni
r2i, j (x)dx

⎞

⎠

1/2

→ N (0, 1) (8)

as Ni → ∞. For any Xi ∈ Di , we have ||Xi −�i (Xi )|| = O(N−1
i ). Note that f (i, j)’s

are Lipschitz continuous. We have

1

Ni

∑

X∈Di, j

[
f (i, j)(X) − f (i, j)(�i (X))

]
= O

(
N−1

i

)
. (9)

From Eq. (9), a simple calculation reveals that

(η̂ − η̂∗)/

⎛

⎝
∫

[0,1]m

k∑

i=1

ni∑

j=1

λ2i, j

Ni
r2i, j (x)dx

⎞

⎠

1/2

= o(1). (10)

Let {Xn} and {Yn} be sequences of random variables. The Slutsky’s theorem says that
if Xn converges in distribution to a random element X , and Yn converges in probability
to a constant c, then Xn + Yn converges in distribution to X + c. By combining (8),
(10) and the Slutsky’s theorem, we have
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(η̂ − η)/

⎛

⎝
∫

[0,1]m

k∑

i=1

ni∑

j=1

λ2i, j

Ni
r2i, j (x)dx

⎞

⎠

1/2

→ N (0, 1),

which completes the proof. ��
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