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Supplementary Material (I)

Notations

The notations used in Sections 2.3 and 3.2 and the proofs in Appendices A and B are briefly

collected as follows:

Hk1k2k3(t, zt, v) = E[λk1(t, Ztβ0)Y
k2(t)(Z̃t − z̃t)

⊗k3 |Ztβ = v]fZtβ
(v), k1, k2, k3 = 0, 1, 2,

Λ[ℓ](t, zHt , β) =

ℓ∑
ℓ1=0

(−1)ℓ+ℓ1

∫ t

0

H(1−ℓ1)(1−ℓ+ℓ1)0(u, zu, zuβ)(∂υH(1−ℓ+ℓ1)(1−ℓ1)1(u, zu, zuβ))
ℓ

H1+ℓ
010 (u, zu, zuβ))

du,

S[ℓ](t, ZHt , β) = exp(−Λ[0](t, zHt , β))(−Λ[1](t, zHt , β))
ℓ, ℓ = 0, 1,

J1(t, ν) = E[(I(Zβ0 ≤ ν)−A(t;β0))(1− S(t, Z, β0))], J2(t, ν) = E[(I(Zβ0 > ν)−A(t;β0))S(t, Z, β0)],

η(t) = E

[
(J1(t, Zβ0)− J2(t, Zβ0))S(t, Zβ0)

∫ t

0

(Λ[1](t, Z, β0)− Λ[1](u,Z, β0))duFC(u|Z)
]
,

ξ0 = −V −1
2

∫ τ

0

{N(t;S, β0)− (1− S(t, Z, β0))}S[1](t, Z, β0)dW (t),

ϕ(t, zβ0) =

∫ t

0

Y (u)λ(u, zβ0)du

H010(u, z, zβ0
)

− N(t)

H010(X, z, zβ0
)
,

ξ0(t) = η⊤(t)ξ0, ξ1(t) = N(t;S, β0)J1(t, Zβ0) + (1−N(t;S, β0))J2(t, Zβ0),

ξ2(t) = (J1(t, Zβ0)− J2(t, Zβ0))S(t, Z, β0)

∫ t

0

(ϕ(u,Zβ0)− ϕ(t, Zβ0))duFC(u,Zβ0),

ζ1(t) = E[ξ1(t)|Zβ0 ], ζ2(t) = (J1(t, Zβ0)− J2(t, Zβ0))S(t, Z, β0)ϕ(t, Zβ0),
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For notational clarity, we further define

Λ̂
[0]
h (t, zHt , β) =

∫ t

0

duĤ1,h(u, zu, β)

H010(u, zu, zuβ)

and Λ̂
[1]
h (t, zHt , β) =

n∑
i=1

1∑
ℓ=0

(−1)ℓ
∫ t

0

∂ℓυH01ℓ(u, zu, zuβ)∂
1−ℓ
β Kh(Ziuβ − zuβ)

nH2
010(u, zu, zuβ)

du

as the surrogates for Λ̂h(t, zHt , β) and ∂βΛ̂h(t, zHt , β), respectively. Moreover, let H
[k]
0 (t, zt, υ) =

∂kυH01k(t, zt, υ) and Ā
[k]
c,h(·) = ∂kβĀh(·) − A[k](·) for any generic estimator Āh(·) in which the target

function of ∂kβĀh(·) is denoted by A[k](·). Throughout the rest of this article, a possible value of

(zt, β, t) is restricted in Zδt
t × Bn × [0, τ ].

Appendix A.

For the derivation of the main results, some technical lemmas are established in this appendix.

Lemma 1. Under assumptions A1-A3,

sup
(zt,β,t)

∥Ĥ [k]
0c,h(t, zt, ztβ)∥ = o

(√
lnn

nh2k+1

)
+O(hq) a.s., k = 0, 1, 2. (1)

Proof. Let Fk = {cK(k)
q (a⊤1 Z0 + b)(Z0 − a2)

⊗k : a1, a2 ∈ Rd−1, b, c ∈ R} and Fℓk = {K(k)
q ((Ztβ −

ztβ)/h)Y
ℓ(t)(Z̃t − z̃t)

⊗k/h1+k : zt ∈ Zδt
t , β ∈ Bn, t ∈ [0, τ ]}, ℓ = 0, 1, k = 0, 1, 2. Apparently, F0k

has a smaller VC-dimension than Fk in which its VC-index is (d + 1). It is easy to conclude from

Lemma 2.12 in Pakes and Pollard (1989) that F0k is also Euclidean. Combining with the fact that

{Y (t) : t ∈ [0, τ ]} is a VC-class, the Euclidean class F1k is further ascertained by an application of

Lemma 2.14 in Pakes and Pollard (1989). Thus, the following property can be implied by Theorem

II.37 in Pollard (1984):

sup
(zt,β,t)

∥∂kβĤ0,h(t, zt, β)− E[∂kβĤ0,h(t, zt, β)]∥ = O

(√
lnn

nh2k+1

)
a.s. (2)

Moreover, a simple calculation yields that

E[∂kβĤ0,h(t, zt, β)] = ∂kυH01k(t, zt, ztβ) + h

∫ t

0

∂k+1
v H01k(u, zu, z

∗
uβ)u

k+1K
(k)
q,h(u)du, (3)

where z∗tβ lies between ztβ and ztβ + hu. By assumption A3 and integration by parts, one has

sup
(zt,β,t)

∥E[∂kβĤ0,h(t, zt, β)]− ∂kυH01k(t, zt, ztβ)∥

= sup
(zt,β,t)

∥∥∥∥∫ t

0

(∂k+1
υ H01k(u, zu, z

∗
uβ)− ∂k+1

υ H01k(u, zu, zuβ))hu
k+1K

(k)
q,h(u)du

∥∥∥∥ = O(hq). (4)

Together with (2), (1) is directly obtained.
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Lemma 2. Under assumptions A1-A4,

sup
(zHt ,β,t)

∣∣∣∣Λ̂[0]
c,h(t, zHt , β)−

(
Λ̂
[0]
0c,h(t, zHt , β)−

∫ t

0

Ĥ
[0]
0c,h(u, zu, zuβ)

H110(u, zu, zuβ)

H2
010(u, zu, zuβ)

du

)∣∣∣∣ = op

(
1√
n

)
(5)

and sup
(zHt ,β,t)

|Λ̂[ℓ]
c,h(t, zHt , β)| = o

(√
lnn

nh2ℓ+1

)
+O(hq) a.s., ℓ = 0, 1. (6)

Proof. A simple application of Taylor expansion for Λ̂h(t, zHt , β) gives

Λ̂h(t, zHt , β) = Λ̂
[0]
h (t, zHt , β)−

∫ t

0

Ĥ
[0]
0c,h(u, zu, zuβ)

duĤ1,h(u, zu, β)

H2
010(u, zu, zuβ)

+ rn(t, zHt , β), (7)

where rn(t, zHt , β) = 2
∑n

i=1

∫ t
0 Kh(Ziuβ − zuβ)Ĥ

[0]2
0c,h(u, zu, zuβ)dNi(u)/(nĤ

∗3
0,h(u, zu, zuβ)) with Ĥ

∗
0,h(u,

zu, zuβ) lying on the line segment between Ĥ0,h(u, zu, β) and H010(u, zu, zuβ). By assumptions A3 and

A4, we can also derive that

sup
(zHt ,β,t)

∥∥∥∥∥
∫ t

0

Ĥ
[0]
0c,h(u, zu, zuβ)

H2
010(u, zu, zuβ)

[duĤ1,h(u, zHu , β)−H110(u, zu, zuβ)du]

∥∥∥∥∥ = op

(
1√
n

)

and sup
(zHt ,β,t)

|rn(t, zHt , β)| = op

(
1√
n

)
. (8)

By subtracting Λ[0](t, zHt , β) from both sides of (7), (5) is a direct result of (7)-(8). As for the proof

of (6), it can be shown in a similar way to Lemma 1.

Lemma 3. Under assumptions A1-A4,

sup
(zHt ,β,t)

∣∣∣∣Ŝ[0]
c,h(t, zHt , β) + S[0](t, zHt , β)

(
Λ̂
[0]
c,h(t, zHt , β)−

∫ t

0

Ĥ
[0]
0c,h(u, zu, zuβ)

H110(u, zu, zuβ)

H2
010(u, zu, zuβ)

du

)∣∣∣∣ = op

(
1√
n

)
(9)

and sup
(zHt ,β,t)

|Ŝ[ℓ]
c,h(t, zHt , β)| = o

(√
lnn

nh2ℓ+1

)
+O(hq) a.s., ℓ = 0, 1. (10)

Proof. By substituting the kernel-weighted version of the Kaplan-Meier estimator into Theorem 3.2.3

in Fleming and Harrington (1991), we have

Ŝh(t, zHt , β)

S[0](t, zHt , β)
= 1−

∫ t

0

Ŝh(u−, zHu− , β)

S[0](u, zHu , β)
duΛ̂

[0]
c,h(u, zHu , β). (11)

It follows from (11) that

Ŝ
[0]
c,h(t, zHt , β)

S[0](t, zHt , β)
= −

∫ t

0

S[0](u−, zHu− , β)

S[0](u, zHu , β)
duΛ̂

[0]
c,h(u, zHu , β)−

∫ t

0

S
[0]
c,h(u−, zHu− , β)

S[0](u, zHu , β)
duΛ̂

[0]
c,h(u, zHu , β)

= −Λ̂
[0]
c,h(t, zHt , β) +

∫ t

0

∫ u−

0

Ŝh(v−, zHv− , β)

S[0](v, zHv
, β)

dvΛ̂
[0]
c,h(v, zHv , β)duΛ̂

[0]
c,h(u, zHu , β). (12)
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Coupled with (6) in Lemma 2, the following property can be derived by parallelling with the proof

steps from line 11 of page 161 to line 22 of page 162 in Du and Akritas (2002):

sup
(zHt ,β,t)

∣∣∣∣∣
∫ t

0

∫ u−

0

Ŝh(v−, zHv− , β)

S[0](v, zHv , β)
dvΛ̂

[0]
c,h(v, zHv , β)duΛ̂

[0]
c,h(u, zHu , β)

∣∣∣∣∣ = op

(
1√
n

)
. (13)

From (12)-(13), Lemma 1, and (5) in Lemma 2, (9) is obtained and the assertion in (10) holds for

ℓ = 0. A straightforward calculation and an application of Lemma 1 further yield that

∂βŜh(t, zHt , β)

Ŝh(t, zHt , β)
= − 1

n

n∑
i=1

1∑
ℓ=0

∫ t

0

(−1)ℓ∂1−ℓ
β Kq,h(Ziuβ − zuβ)∂

ℓ
βĤ0,h(u, zu, β)dNi(u)

Ĥ0,h(u, zu, β)(Ĥ0,h(u, zu, β)− 1
n

∑n
j=1 I(Xj = u)Kq,h(Zjuβ − zuβ))

=
1

n

n∑
i=1

∑
ℓ1,ℓ2∈{0,1}

(−1)1+ℓ1

∫ t

0

∂1−ℓ1
β Kq,h(Ziuβ − zuβ)∂

ℓ1
β Ĥ0,h(u, zu, β)(2Ĥ

[0]
0c,h(u, zu, zuβ))

ℓ2dNi(u)

H2+ℓ2
010 (u, zu, zuβ)

+ op

(
1√
n

)

= −Λ[1](t, zHt , β)− Λ̂
[1]
c,h(t, zHt , β) +

∑
ℓ1,ℓ2∈{0,1}

(−1)1+ℓ1(1 + ℓ2)

∫ t

0

Ĥ
[1−ℓ2]
0c,h (u, zu, zuβ)

H2+ℓ2
010 (u, zu, zuβ)

(∂ℓ1υ H10ℓ1(u, zu, zuβ))
1−ℓ2

· (Hℓ1(1−ℓ1)0(u, zu, zuβ)∂υH(1−ℓ1)ℓ11(u, zu, zuβ))
ℓ2du+ op

(
1√
n

)
(14)

uniformly in (zHt , β, t). Finally, the assertion in (10) is ascertained for ℓ = 1 by mean of Lemma 1.

Appendix B.

Proof of Theorem 1. By assumption A5, (10) in Lemma 3, and applying the Taylor expansion

technique, we have

PSh(β) = PS[0](β) + rn(β), (15)

where PS[0](β) = Pnξ(β) and supβ∈Bn
∥rn(β)∥ = op(1). The Lipschitz continuity of ξ(β) in β, which

is ensured by assumption A3, further implies that the class {ξ(β) : β ∈ Bn} is Euclidean (cf. Lemma

2.13 in Pakes and Pollard (1989)). Moreover, it follows from Lemma 2.8 in Pakes and Pollard (1989)

that

sup
β∈Bn

∥PS[0](β)− E[ξ(β)]∥ = op(1). (16)

Together with (15), one has

sup
β∈Bn

∥PSh(β)− E[ξ(β)]∥ = op(1). (17)

In view of assumptions A3 and A6, β0 is the unique root of E[ξ(β)] = 0 locally. Thus, the consistency

of β̂ can be ascertained by (17) and Theorem 2.10 in Kosorok (2008).
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By the first-order Taylor expansion of PS1(β̂) at β0, it yields that

√
nPSh(β0) + V2[

√
n(β̂ − β0)] +Rn[

√
n(β̂ − β0)] = 0, (18)

where Rn = ∂βPSh(β̂
∗)− V2 and β̂∗ lies on the line segment between β̂ and β0. Further,

1 = P (−
√
nPSh(β0) = V2[

√
n(β̂ − β0)] +Rn[

√
n(β̂ − β0)])

= P ((Id−1 + V −1
2 Rn)[

√
n(β̂ − β0)] = −V −1

2 [
√
nPSh(β0)])

≤ P

(
√
n(β̂ − β0) = −

[ ∞∑
k=0

(V −1
2 Rn)

k

]
V −1
2 [

√
nPSh(β0)], ∥V −1

2 Rn∥ <
1

2

)
+ P

(
∥V −1

2 Rn∥ ≥ 1

2

)

≤ P

(√
n∥β̂ − β0∥ ≤ ∥V −1

2 ∥∥
√
nPSh(β0)∥

1− ∥V −1
2 Rn∥

, ∥V −1
2 Rn∥ <

1

2

)
+ P

(
∥V −1

2 Rn∥ ≥ 1

2

)

≤ P

(
∥
√
n(β̂ − β0)∥ ≤ 2∥V −1

2 ∥∥
√
nPSh(β0)∥, ∥V −1

2 Rn∥ <
1

2

)
+ P

(
∥V −1

2 Rn∥ ≥ 1

2

)

≤ P
(
∥
√
n(β̂ − β0)∥ ≤M

)
+ P

(
M ≤ 2∥V −1

2 ∥∥
√
nPSh(β0)∥

)
+ P

(
∥Rn∥ ≥ ∥V2∥

2

)
∀M > 0. (19)

As a result, the pseudo score function can be decomposed as

√
n(PSh(β0)− PS[0](β0)) =

5∑
k=1

√
n

n(n− 1)

∑
i ̸=j

∫ τ

0

φki(t)ψkij(t)dWin(t) + φ6i(t)dηij(t) + op(1), (20)

where φki(t)’s are some bounded smooth functions,

ψmij(t) = ∂m−1
β Kq,h(Zjtβ0 − Zitβ0)Yj(t)−H

[m−1]
0 (t, Zit, Zitβ0), m = 1, 2,

ψ3ij(t) =

∫ t

0

Kq,h(Zjuβ0 − Ziuβ0)dNj(u)

H010(u, Ziu, Ziuβ0)
− Λ[0](t, ZHit , β0), ψ4ij(t) = I(Xi = t)Kq,h(Zjtβ0 − Zitβ0),

and ψ5ij(t) =

1∑
ℓ=0

(−1)ℓ
∫ t

0

H
[ℓ]
0 (u,Ziu, Ziuβ0)∂

1−ℓ
β Kq,h(Zjuβ0 − Ziuβ0)dNj(u)

H2
010(u,Ziu, Ziuβ0)

− Λ[1](t, ZHit , β0).

By E[H
[1]
0 (t, Zt, Ztβ0)|Ztβ0 ] = 0, E[Λ[1](t, ZHt , β0)|Ztβ0 ] = 0, and Lemmas 1-2, it can be shown

that E[φki(t)|ZiHt ] = 0 and E[ψkij(t)|ZiHt ] = O(hq), k = 1, . . . , 5. These facts together with

E[φ6i(t)|ZiHt ] = 0 and assumption A5 assure that the summands in (20) are all op(1) and, hence,

√
n(PSh(β0)− PS[0](β0)) = op(1). (21)

An application of the multivariate central limit theorem to PS[0](β0) further enables us to have

√
nPSh(β0)

d→ N(0, V1). (22)

By (10) in Lemma 3, there exists a continuous function V (β) of β such that V (β0) = V2 and

sup
β∈Bn

∥∂βPSh(β)− V (β)∥ = op(1). (23)
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For any ε > 0, there also exists an integer nε such that β0 ∈ Bn and supβ∈Bn
∥V (β) − V2∥ < ε/3

whenever n ≥ nε. Together with (18) and (23), we can thus derive that

P

(
sup
β∈Bn

∥∂βPSh(β)− ∂βPSh(β0)∥ > ε

)

≤ P

(
sup
β∈Bn

∥∂βPSh(β)− V (β)∥ > ε

3

)
+ P

(
∥V (β0)− ∂βPSh(β0)∥ >

ε

3

)
→ 0 as n→ ∞. (24)

Moreover, it is implied by (22) and (24) that

lim inf
n→∞

P

(
∥V −1

2 ∥∥
√
nPSh(β0)∥ <

Mε

2∥V −1
2 ∥

)
> 1− ε for some Mε > 0 (25)

and

P

(
∥Rn∥ >

∥V2∥
2

)
≤ P

(
∥∂βPSh(β̂

∗)− ∂βPSh(β0)∥ >
∥V2∥
4

)
+ P

(
∥∂βPSh(β0)− V2∥ >

∥V2∥
4

)

≤ P

 sup
β∈B ∥V2∥

2

∥∂βPSh(β)− ∂βPSh(β0)∥ >
∥V2∥
4

+ P
(
β̂ /∈ B ∥V2∥

2

)

+P

(
∥∂βPSh(β0)− V2∥ >

∥V2∥
4

)
→ 0 as n→ ∞. (26)

Substituting (25)-(26) into (19), one has

lim inf
n→∞

P (
√
n∥β̂ − β0∥ ≤Mε) > 1− ε, i.e.

√
n∥β̂ − β0∥ = Op(1), (27)

and (18) can be simplified as

√
n(β̂ − β0) = −V −1

2

√
nPSh(β0)(1 + op(1)). (28)

From (22) and (28), the proof for the asymptotic normality of β̂ is completed.

Proof of Theorem 2. By the decomposition of (S̃ς(t, zHt , β̂) − S(t, zHt , β0)) and the first-order

Taylor expansion of S̃ς(t, zHt , β̂) with respect to β0, one has

√
nς(S̃ς(t, zHt , β̂)− S(t, zHt , β0))

=
√
ς∂βS̃ς(t, zHt , β

∗)[
√
n(β̂ − β0)] +

√
nς(S̃ς(t, zHt , β0)− S(t, zHt , β0)) (29)

with β∗ lying between β̂ and β0. It follows from Lemma 3 and (27) that (29) can be further simplified

as

√
nς(S̃ς(t, zHt , β̂)− S(t, zHt , β0)) =

√
nςPnΨn(t, zHt)(1 + γn(t, zHt)), (30)
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where sup(zHt ,t)
|γn(t, zHt)| = op(1). Further, the class {ςΨn(t, zHt) : zt ∈ Zδt

t , t ∈ [0, τ ]} is easily

shown to be Euclidean and satisfies the conditions UBV and LUBV in Rio (1994). By Corollary 1.1 in

Rio (1994), there exists a sequence of centered Gaussian processes Gn(t, zHt) with continuous sample

paths and E[Gn(t1, zHt1
)Gn(t2, zHt2

)] = ςE[Ψn(t1, zHt1
)Ψn(t2, zHt2

)] such that

sup
(zHt ,t)

|
√
nς(PnΨn(t, zHt)− E[Ψn(t, zHt)])−Gn(t, zHt)| = O

(√
lnn

n(1−2κ1)/2

)
a.s. (31)

Subtracting (
√
nςE[Ψn(t, zHt)]−Gn(t, zHt)) from both sides of (30), the asymptotic Gaussian process

of S̃ς(t, z, β̂) is thus ascertained.

Proof of Theorem 3. From (3.2) in Section 3, Ā(t; β̂)−A(t;β0) can be expressed as

1

n(n− 1)Ā0(t; β̂)

∑
i ̸=j

(I(Ziβ̂ > Zjβ̂)−A(t;β0))Ni(t; S̃ϱ, β̂)(1−Nj(t; S̃ϱ, β̂)). (32)

It follows from (10) in Lemma 3 and Theorem 1 that

S̃ϱ(t, z, β̂)− S(t, z, β0)

S(t, z, β0)
=
S̃ϱ(t, z, β0)− S(t, z, β0)

S(t, z, β0)
+ Λ[1](t, z, β0)(β̂ − β0) + r1n(t, z) (33)

with sup(z,t) |r1n(t, z)| = op(n
−1/2). Together with

sup
(zβ0

,t)

∣∣∣∣∣ S̃ϱ(t, z, β0)− S(t, z, β0)

S(t, z, β0)
− 1

n

n∑
i=1

ϕi(t, Ziβ0)K2,ϱ(Ziβ0 − zβ0)

∣∣∣∣∣ = op

(
1√
n

)
, (34)

which is a simplified version of Lemma 3, it can be derived that

1

n(n− 1)

∑
i̸=j

(I(Ziβ̂ > Zjβ̂)−At(β0))Ni(t; S̃ϱ, β̂)(1−Nj(t; S̃ϱ, β̂)) =
2∑

k=1

Ukn(t; β̂)+(β̂−β0)U3n(t)+r2n(t), (35)

where

sup
t

|r2n(t)| = op(n
−1/2), U1n(t;β) =

1

n(n− 1)

∑
i ̸=j

(I(Ziβ > Zjβ)−A(t;β0)Ni(t;S, β0)(1−Nj(t;S, β0)),

U2n(t;β) =
1

n2(n− 1)

n∑
k=1

∑
i ̸=j

Bij(t;β)(1− Vi(t))
S(t, Zi, β0)

S(Xi, Zi, β0)
[ϕk(Xi, Ziβ0)− ϕk(t, Ziβ0)]K2,ϱ(Zkβ0 − Ziβ0),

and U3n(t) =
1

n(n− 1)

∑
i ̸=j

Bij(t; β̂)(1− Vi(t))
S(t, Zi, β0)

S(Xi, Zi, β0)
(Λ[1](Xi, Zi, β0)− Λ[1](t, Zi, β0))

with Bij(t;β) = (I(Ziβ > Zjβ)−A(t;β0))(1−Nj(t;S, β0))− (I(Zjβ > Ziβ)−A(t;β0))Nj(t;S, β0).

Substituting the kernels of the above U-statistics into the proof steps of Theorem 4 in Sherman (1993),

we also have

Ukn(t;β) = Ukn(t;β0) +
1√
n
(β − β0)

⊤Nn(t) +
1

2
(β − β0)

⊤Vt(β − β0) + op(|β − β0|2) + op

(
1√
n

)
, k = 1, 2, (36)
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uniformly in (β, t) with Nn(t) converging to a mean zero Gaussian process and V(t) being a non-

degenerate matrix function of t, which is justified to be bounded by assumption A6. Thus, (35) can

be simplified as

1

n(n− 1)

∑
i̸=j

(I(Ziβ̂ > Zjβ̂)−A(t;β0))Ni(t; S̃ϱ, β̂)(1−Nj(t; S̃ϱ, β̂)) =
2∑

k=1

Ukn(t;β0)+(β̂−β0)U3n(t)+r3n(t), (37)

where supt |r3n(t)| = op(n
−1/2). Obviously, both U1n(t;β0) and U2n(t;β0) are centralized U -processes.

By assumption A3, the class of each corresponding kernel function indexed by t is Euclidean. It is

implied by Corollary 4 in Sherman (1994) that

U1n(t;β0) =
1

n

n∑
i=1

ξ1i(t) + op(n
−1/2) and U2n(t;β0) =

1

n

n∑
i=1

ξ2i(t) +O(ϱ2) + op(n
−1/2) (38)

uniformly in t. A straightforward calculation further leads to

sup
t

|U3n(t)− η(t)| = op(1) and sup
t

|Ā0(t; β̂)−A0(t;β0)| = op(1). (39)

Combining (32), (37)-(39), and the i.i.d. approximation
∑n

i=1 ξ0i/n of (β̂ − β0), the proof for the

consistency of Ā(t; β̂) is thus completed. Moreover, the limiting Gaussian process of
√
n(Ā(t; β̂) −

A(t;β0)) can be ascertained by applying the functional central limit theorem and the Slutsky’s theorem.

As for the uniform consistency and asymptotic Gaussian process of Ă(t; β̂), the proof is similar and is

omitted in the interest of brevity.

Supplementary Material (II)

Let Ei(t;h) = Ni(t;S, β0)− (1− Ŝ−i
h (t, ZiHt , β0)), PSEi(t;h) = Ŝh(t, ZiHt , β̂)− Ŝh(t, ZiHt , β0), and

SEi(t;h, β) = Ŝh(t, ZiHt , β)− S(t, ZiHt , β0), i = 1, . . . , n. Moreover, PSE−i
i (t;h) and SE−i

i (t;h, β) are

defined as PSEi(t;h) and SEi(t;h, β) with the ith unit being removed in computation.

S1. Convergence Rate of ĥ for the PILSE

After some algebraic manipulations, PS
β̂
(h) can be decomposed into

PSβ̂(h) =
1

n

n∑
i=1

∫ τ

0

Ei(t;h)∂hŜ
−i
h (t, ZiHt

, β0)dWin(t) +
1

n

n∑
i=1

∫ τ

0

Ei(t;h)∂hPSE
−i
i (t;h)dWin(t)

+
1

n

n∑
i=1

∫ τ

0

{(Ni(t; Ŝh, β̂)−Ni(t;S, β0)) + PSE−i
i (t;h)}∂hŜ−i

h (t, ZiHt , β0)dWin(t)

△
= I(h) + II(h) + III(h). (40)
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Moreover, I(h) can be re-expressed as

I(h) = ∂h

(
1

n

n∑
i=1

∫ τ

0

(SE−i
i (t;h, β0))

2dWin(t) +
2

n

n∑
i=1

∫ τ

0

Ei(t;h)SE
−i
i (t;h, β0)dWin(t)

)
△
= ∂h(M̂ISE(h) + I0(h)). (41)

Let Ŝ−i
c,h(t, ZiHt , β0) =

−S(t, ZiHt , β0)

n

∑
j ̸=i

∫ t

0

Kq,h(Zjuβ0 − Ziuβ0)

H010(u,Ziu, Ziuβ0)
(dNj(u)− Yj(u)λ(u,Ziuβ0)du),

M̃ISE(h) =
1

n

n∑
i=1

∫ τ

0

(Ŝ−i
c,h(t, ZiHt , β0))

2dWi(t), and Ĩ0(h) =
2

n

n∑
i=1

∫ τ

0

Ei(t;h)Ŝ
−i
c,h(t, ZiHt , β0)dWi(t).

By assumption A5 and the i.i.d. approximation of Ŝh(t, zHt , β0) in Lemma 3, one has

sup
h

∣∣∣∣∣M̂ISE(h)− M̃ISE(h)

M̃ISE(h)

∣∣∣∣∣ = op(1) and sup
h

∣∣∣∣∣I0(h)− Ĩ0(h)

Ĩ0(h)

∣∣∣∣∣ = op(1). (42)

It is implied by Theorem 2 in Marron and Härdle (1986) that

sup
h

∣∣∣∣∣M̃ISE(h)−AMISE(h)

AMISE(h)

∣∣∣∣∣ = op(1), (43)

where AMISE(h) is the asymptotic mean integrated square error of Ŝh(t, zHt , β0) with

AMISE(h) = h2q
∫ τ

0

E[b2(ZHt)dW (t)] + n−1h−1

∫ τ

0

E[V (ZHt)dW (t)], (44)

b(zHt) =
−S(t, zHt , β0)

q!

(∫
uqKq(u)du

)∫ t

0

∑1
ℓ=0(−1)ℓ∂qvHℓ10(u,Zu, Zuβ0

)λ1−ℓ(u, zuβ0
)

H010(u, zu, zuβ0)
du,

and V (zHt) = S2(t, zHt , β0)

(∫
K2

q (u)du

){∫ t

0

H110(u, zu, zuβ0)

H2
010(u, zu, zuβ0)

du− (

∫ t

0

λ(u, zuβ0)du)
2

}
.

Coupled with (43), we have

M̃ISE(h) = Op(h
2q + n−1h−1). (45)

By Lemma 4 in Härdle and Marron (1985), the following property is directly obtained:

sup
h

∣∣∣∣∣ Ĩ0(h)

M̃ISE(h)

∣∣∣∣∣ = op(1). (46)

As a consequence of (42) and (45)-(46), the convergence rates of I(h) in (40) can be derived as

I(h) = Op(h
2q−1 + n−1h−2). (47)

For the convergence rates of II(h) and III(h), an application of the Taylor expansion yields that

Ni(t; Ŝh, β̂)−Ni(t;S, β0) =
(1− Vi(t))

S(Xi, ZiHXi
, β0)

{
S(t, ZiHt , β0)

S(Xi, ZiHXi
, β0)

SEi(Xi;h, β̂)− SEi(t;h, β̂)

}

+r1n(t, ZiHt)SE
2
i (Xi;h, β̂) (48)
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and

SEi(t;h, β̂) = PSEi(t;h) + SEi(t;h, β0)

= ∂βŜh(t, ZiHt , β0)(β̂ − β0)(1 + r2n(t, ZiHt)∥β̂ − β0∥) + SEi(t;h, β0), (49)

where sup(ZHt ,t)
|rkn(t, ZHt)| = Op(1), k = 1, 2. From the proof of Theorem 1, one has

β̂ − β0 = Op(n
−1/2) +Op(h

2q + n−1/2h1/2 + n−1h−5/2). (50)

Moreover, it is ensured by (A.10) in Lemma 3 that

sup
(ZHt ,t)

|Ŝ[1]
c,h(t, zHt

, β0)| = op(1) and sup
(ZHt ,t)

|SEi(t;h, β0)| = Op(h+ n−1/2h−1/2). (51)

Substituting (50)-(51) into (49), the convergence rates of PSEi(t;h) and SEi(t;h, β̂) in (49) are shown

to be

PSEi(t;h) = Op(h
2q + n−1/2h−1/2 + n−1h−5/2) and SEi(t;h, β̂) = Op(h

q + n−1/2h1/2 + n−1h−5/2), (52)

respectively, uniformly over (ZHt , t), which imply that (Ni(t, Ŝh, β̂)−Ni(t;S, β0)) in (48) satisfies

sup
(ZHt ,t)

|Ni(t, Ŝh, β̂)−Ni(t;S, β0)| = Op(h
q + n−1/2h1/2 + n−1h−5/2). (53)

By using the equality ∂hŜ
−i
h (t, ZiHt , β0) = ∂hSE

−i
i (t;h, β0) and replacing (SEi(t;h, β0),PSEi(t;h)) with

(SE−i
i (t;h, β0),PSE

−i
i (t;h)) in (51)-(52), we can further derive that

II(h) = Op(n
−1/2h2q−1 + n−1h−1/2 + n−3/2h−7/2) (54)

and III(h) = Op(h
6q−1 + n−1/2h4q−1 + n−1h2q−1 + n−2h−2 + n−3/2h2q−4 + n−3h−15/2 + n−5/2h−5). (55)

From (47) and (54)-(55), II(h) and III(h) are thus shown to be negligible compared to I(h). As a

result, the chosen bandwidth ĥ has the convergence rate of Op(n
−1/(1+2q)).

S2. Optimality of ς̃ for the Survival Predictor

A simple application of the Cauchy-Schwartz inequality in CV1(ς) leads to

CV1(ς) =

{
1

n

n∑
i=1

∫ τ

0

E2
i (t; ς)dt+

1

n

n∑
i=1

∫ τ

0

(PSE−i
i (t; ς))2dt+

1

n

n∑
i=1

∫ τ

0

(Ni(t; Ŝĥ, β̃)−Ni(t;S, β0))
2dt

}

· (1 + op(1))
△
= CV11(ς) + CV12(ς) + CV13(ς). (56)

Same with the derivation for I(h) in S1 with Win(t) = t, we can obtain that

CV11(ς) = AMISE(ς)(1 + op(1)) for q = 2. (57)
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By using ĥ = Op(n
−1/9) in Ŝ

ĥ
(t, zHt , β̂) and replacing PSEi(t;h) with PSE

−i
i (t; ς) in (52), it is ensured

that

CV12(ς) = Op(n
−1). (58)

Moreover, from (53) and Ŝ
ĥ
(t, zHt , β̂)− S(t, zHt , β0) = Op(n

−4/9), one has

CV13(ς) = Op(n
−8/9). (59)

Finally, substituting (57)-(59) into (56), it yields that

CV1(ς) = AMISE(ς)(1 + op(1)) (60)

and, hence, ς̃ = argmin
ς

AMISE(ς)(1 + op(1)) =

∫ τ

0
E[V (ZHt)]dt

4
∫ τ

0
E[b2(ZHt)]dt

n−1/5(1 + op(1)) for q = 2. (61)

S3. Asymptotic Properties of the PMLE

Since the bandwidth selection for β̄ with the second-order kernel function is infeasible and the resulting

PMLEs with the specifications of the second and fourth order kernel functions in ℓh12(β) have the

same asymptotic behavior, we focus on establishing the consistency and asymptotic normality of β̄

with the fourth-order kernel function in ℓh12(β). The following notations and assumptions are further

introduced:

λ[k](t, zt, β) = ∂kvH10k(t, zt, ztβ), ℓ[0](β) = Pn(δ lnλ(X,ZXβ0) + lnS[0](X,ZHX
, β)),

ℓ[1](β) = Pn

(
λ[1](X,ZX , β0)

λ(X,ZXβ0)
δ +

S[1](X,ZHX , β0)

S(X,ZHX
, β0)

)
, V5 = E

[(
λ[1](X,ZX , β0)

λ(X,ZXβ0)
δ +

S[1](X,ZHX , β0)

S(X,ZHX
, β0)

)⊗2
]
,

and V6 = E

[
1∑

ℓ=0

(−1)ℓ
(λ[2−ℓ](X,ZX , β0))

⊗(1+ℓ)

λ1+ℓ(X,ZXβ0)
δ + (−1)ℓ

(S[2−ℓ](X,ZHX , β0))
⊗(1+ℓ)

S1+ℓ(X,ZHX
, β0)

]
.

A4′. hk = h0kn
−δ2 for δ2 ∈ (1/16, 1/6) and some positive constant h0k, k = 1, 2.

A5′. V6 is non-singular.

Theorem S3.1. Suppose that assumptions A1-A3 and A4′-A5′ are satisfied. Then,

β̄
p→ β0 and

√
n(β̄ − β0)

d→ N(0, V −1
6 V5V

−1
6 ). (62)

Proof. Let λ̂
[ℓ]
c,h12

(t, zt, β) = ∂βλ̂h12(t, ztβ) − λ[ℓ](t, zt, β), ℓ = 0, 1, hmax = max{h1, h2}, and hmin =

min{h1, h2}. It follows from Lemma 2 that

sup
(zHt ,β,t)

∣∣∣∣λ̂[0]c,h12
(t, zHt , β)−

∫ τ

0

Kq,h2(t− u)

(
dΛ̂

[0]
0c,h12

(t, zHt , β)− Ĥ
[0]
0c,h(u, zu, zuβ)

H110(u, zu, zuβ)

H2
010(u, zu, zuβ)

du

)∣∣∣∣
= op

(
1√
n

)
and sup

(zHt ,β,t)

|λ̂[ℓ]c,h12
(t, zHt , β)| = o

(√
lnn

nh2ℓ+2
min

)
+O(h4max) a.s. (63)
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By the Taylor expansion technique, (A.10) in Lemma 3, and (63), one has

sup
β∈Bn

|ℓh12(β)− ℓ[0](β)| = op(1). (64)

Further, the class {δ lnλ(X,ZXβ) + lnS[0](X,ZHX
, β) : β ∈ Bn} can be shown to be Euclidean by

means of assumption A3. It is further implied by Lemma 2.8 in Pakes and Pollard (1989) that

sup
β∈Bn

|ℓ[0](β)− E[ℓ[0](β)]| = op(1). (65)

Coupled with (64), we can conclude that

sup
β∈Bn

|ℓh12(β)− E[ℓ[0](β)]| = op(1). (66)

In view of assumptions A3 and A5′, β0 can be shown to be the unique maximizer of E[ℓ[0](β)] locally

and, thus, the consistency of β̄ to β0 can be ascertained by Theorem 2.12 in Kosorok (2008).

An application of the first-order Taylor expansion of ∂βℓ(β̄) at β̄ = β0 yields that

√
n∂βℓh12(β0) + ∂2βℓh12(β

∗)
√
n(β̄ − β0) = 0, (67)

where β∗ lies on the line segment between β̄ and β0. The pseudo score function ∂βℓ(β0) is further

derived as
√
n(∂βℓh12(β0)− ℓ[1](β0)) =

7∑
m=1

√
n

n(n− 1)

∑
i ̸=j

φmiψmij + op(1) (68)

with

ψ6ij =

∫ τ

0

Kq,h1(Zjuβ0 − Ziuβ0)Kq,h2(Xi − u)dNj(u)

H010(u,Ziu, Ziuβ0)
− λ(Xi, ZiXiβ0),

ψ7ij =
1∑

ℓ=0

(−1)ℓ
∫ τ

0

∂ℓvH01ℓ(Xi, ZiXi , ZiXiβ0)∂
1−ℓ
β Kq,h1(Zjuβ0 − Ziuβ0)Kq,h2(Xi − u)dNj(u)

H2
010(Xi, ZiXi , ZiXiβ0)

− λ[1](Xi, ZiXi
, β0).

After some algebraic manipulations, E[φmi|ZiHXi
] = 0 and E[ψmij |ZiHXi

] = O(h2max), m = 1, . . . , 7,

can be obtained. These facts together with assumption A4′ enable us to simplify (68) as

√
n(∂βℓh12(β0)− ℓ[1](β0)) = op(1). (69)

It is ensured by an application of the multivariate central limit theorem to
√
nℓ[1](β0) that

√
n∂βℓh12(β0)

d→ N(0, V5). (70)

From (A.10) in Lemma 3 and (63), there exists a continuous function V (β) of β such that

sup
β∈Bn

∥∂2βℓh12(β)− V (β)∥ = op(1) and V (β0) = V6. (71)

Moreover, the argument for (27)) can be used to show that

√
n(β̄ − β0) = Op(1). (72)

Substituting (70)-(72) into (67), the asymptotic normality of β̄ is thus ascertained.
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S4. Convergence Rate of ϱ̃ for the AUC Estimator

It follows from a simple decomposition that

CV2(ϱ) = CV21 + CV22(ϱ) + CV23(ϱ), (73)

where

CV21 =
1

n(n− 1)

∑
i ̸=j

∫ τ

0

(I(Ziβ̂ > Zjβ̂)Ni(t; Ŝĥ, β̂)(1−Nj(t; Ŝĥ, β̂))−A1(t;β0))
2dt,

CV22(ϱ) =
1

n(n− 1)

∑
i ̸=j

∫ τ

0

(A1(t;β0)− Ā−ij
1 (t; β̂)2dt,

CV23(ϱ) =
1

n(n− 1)

∑
i ̸=j

∫ τ

0

(I(Ziβ̂ > Zjβ̂)Ni(t; Ŝĥ, β̂)(1−Nj(t; Ŝĥ, β̂))−A1(t;β0))(A1(t;β0)− Ā−ij
1 (t; β̂)dt.

Clearly, the first term CV21 on the right-hand side of (73) is independent of ϱ. From the proof of

Theorem 4, one immediately has

CV22(ϱ) = Op(ϱ
4 + (nϱ)−3/4). (74)

The
√
n-consistency of β̂, (53), and (B.29) further imply that

CV23(ϱ)(1 + op(1))

=
1

n(n− 1)

∑
i ̸=j

∫ τ

0

(I(Ziβ̂ > Zjβ̂)Ni(t; Ŝĥ, β̂)(1−Nj(t; Ŝĥ, β̂))−A1(t;β0))(A1(t;β0)− Ā−ij
1 (t;β0)dt

=
1

n(n− 1)

∑
i ̸=j

∫ τ

0

(I(Ziβ̂ > Zjβ̂)Ni(t; , S, β0)(1−Nj(t;S, β0))−A1(t;β0))(A1(t;β0)− Ā−ij
1 (t;β0)dt. (75)

Moreover, the dominant term of CV23(ϱ) in (75) can be expressed as the fourth-order U-statistic

1

n2(n− 1)2

∑
i1 ̸=j1

∑
i2 ̸=j2

κi1j1i2j2(ϱ)

with κi1j1i2j2(ϱ) =
∫ τ
0 (I(Zi1β0 > Zj1β0)Ni1(t;S, β0)(1−Nj1(t;S, β0))−A1(t;β0))(A1(t;β0)− I(Zi2β0 >

Zj2β0) N
−i1
i2

(t;S, β0)(1−N−j1
j2

(t;S, β0)))dt. After some tedious calculations, we get

1

n

n∑
i1=1

E[κi1j1i2j2(ϱ)|Xi1 , δi1 , Zi1 ] = Op(ϱ
2n−1/2 + n−1ϱ−1/2),

1

n

n∑
i2=1

E[κi1j1i2j2(ϱ)|Xi2 , δi2 , Zi2 ] = 0,

1

n

n∑
j1=1

E[κi1j1i2j2(ϱ)|Xj1 , δj1 , Zj1 ] = Op(ϱ
2n−1/2 + n−1ϱ−1/2), and

1

n

n∑
j2=1

E[κi1j1i2j2(ϱ)|Xj2 , δj2 , Zj2 ] = 0.

The above properties imply that the first-order Hájek projection of the U-statistic is Op(n
−1/2ϱ2 +

n−1ϱ−1/2). By applying the maximal inequality in Sherman (1994), it is further ensured that the
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difference between the U-statistic and its first-order Hájek projection is Op(n
−1ϱ−1). Combining these

results, the convergence rate of CV23(ϱ) is obtained as follows:

CV23(ϱ) = Op(ϱ
2n−1/2 + n−1ϱ−1). (76)

Substituting (74) and (76) into (73), one also has

CV2(ϱ) = Tn +Op(ϱ
2 + (nϱ)−3/4) (77)

with Tn being independent of ϱ. Thus, the minimizer ϱ̃ is Op(n
−3/11) and the proof is completed.
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Figure S.1: (S1a)-(S1b) The survival functions (solid curves) conditioning on Zβ0 = SI0.25 and the estimated conditional

survival functions (dashed curve). (S1c)-(S1d) The standard deviation curves (solid curves) and the bootstrap standard

error curves (dashed curves) of the estimated conditional survival functions.
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(S2c) S.D. : n=75,c.r.=20%
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Figure S.2: (S2a)-(S2b) The survival functions (solid curves) conditioning on Zβ0 = SI0.5 and the estimated conditional

survival functions (dashed curves). (S2c)-(S2d) The standard deviation curves (solid curves) and the bootstrap standard

error curves (dashed curves) of the estimated conditional survival functions.

15



10 20 30 40 50

0.0
0.2

0.4
0.6

0.8
1.0

Time

Surv
ival

(S3a) n=75,c.r.=20%

10 20 30 40 50

0.0
0.2

0.4
0.6

0.8
1.0

Time

Surv
ival

(S3b) n=75,c.r.=40%

10 20 30 40 50

0.0
0.1

0.2
0.3

0.4
0.5

Time

Prob
.

(S3c) S.D. : n=75,c.r.=20%
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Figure S.3: (S3a)-(S3b) The survival functions (solid curves) conditioning on Zβ0 = SI0.75 and the estimated conditional

survival functions (dashed curves). (S3c)-(S3d) The standard deviation curves (solid curves) and the bootstrap standard

error curves (dashed curves) of the estimated conditional survival functions.
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(S4a) Bias : n=75,c.r.=20%
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(S4b) Bias : n=75,c.r.=40%
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(S4c) S.D. : n=75,c.r.=20%
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(S4d) S.D. : n=75,c.r.=40%

Figure S.4: (S4a)-(S4b) The bias curves (solid and dashed curves) of Āςt(β̃h) and Ăςt(β̃h) with a horizontal line at

zero (grey line). (S4c)-(S4d) The standard deviation curves (solid curve and dotted curves) of Āςt(β̃h) and Ăςt(β̃h) and

the bootstrap standard error curves (dotted-dashed curves) of Āςt(β̃h).
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