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Supplementary Material (I)

Notations

The notations used in Sections 2.3 and 3.2 and the proofs in Appendices A and B are briefly

collected as follows:

Hk1k2k3 (t7 Zty ’U) = E[Akl (ty Ztﬂo)Ykz (t)(Zf - Et)®k3 |Zt[3 = U]thB (U)v k17 k2a k3 = 07 ]-a 25
¢
Atz B) = 3 (1) /t H(lffl)(17£+£1)0(u7zluZuﬂ)(avH(lff%»El)(lfll)l(u7Zmzub’))édu
£1=0 0 H(}IJZ(“vZuvZuB))

S[Z](ta ZHuﬂ) = eXp(—A[O](t,ZH”B))(—AD]((J),ZH”B))e, l = 0717

Jl(tvy) = E[(I(Zﬂo < V)_-A(t;ﬂO))(l_S(t>Zaﬁ0))]aJ2(tvy) :E[(I(Zﬂo > V)—A(t;ﬂo))S(t,Z,BO)L
nt) = E {(Jl(t’zﬁo) — Ja(t, Zs,))S (2, Zﬁo)/o (AN, 2, B0) — AV (u, Z, Bo))duFo(u| Z) |
o = V5! /0 NS, o) — (1= S(t Z, Bo)) b S 2, Z, o)W (1),
_ LY (u)A(u, 25, )du 3 N(t)
b za) = o How(u,z 25,)  How(X, 2, 25)
go(t) = nT(t)gOa El(t) :N(t5S7BO)J1(t7ZBo)+(1_N(t557ﬂ0>)*]2(t7z/30)7
SQ(t) = (Jl(trzﬂo) - JQ(t’ ZBO))S(t? Z, BO)/O (¢(uv Zﬁo) - (,ZS(t,ZﬁO))dch(u,Zgo),
Cl(t) = E[gl(tﬂzﬁo]? CQ(t) = (Jl(ta ZBO)_J2(t7Zﬂo))S(t7Zaﬁ0)¢(t7Z50)7
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For notational clarity, we further define

! duﬁh,h(U,Zmﬁ)

AL t,zm,,B) =
w (b 28 B) o Hoto(u, 2y, 2up)

e t 98 Hopo(u, 24, Zuﬁ)aé_eKh(Zmﬁ - Zuﬁ)d
U

ZZ(—l)Z/O nHE o (U, 2y, 2up)

i=1 =0

and Z\\E] (t,zm,,B)

as the surrogates for /A\h(t, zm,, ) and 85Kh(t, zm,,3), respectively. Moreover, let H([]k] (t, zt,v) =
OF Hyx(t, 2,v) and fll[:kgl() = 8’5[1;1(-) — AKI(.) for any generic estimator Ay (-) in which the target
function of 8’§Ah(-) is denoted by A¥(.). Throughout the rest of this article, a possible value of

(21, B, ) is restricted in 2% x B, x [0,7].

Appendix A.

For the derivation of the main results, some technical lemmas are established in this appendix.

Lemma 1. Under assumptions A1-AS3,

N Inn
M (¢ — — = )40 as., k=012 1
(Zst"»g?t)ll oen(ts 2 2p) | = 0 |\ oy | +O(RY) aus., .1 (1)

Proof. Let Fj, = {cKék)(aIZo +0)(Zo — a2)® : a1,a2 € RTL b c € R} and Fy = {K(gk)((Zw —
28) /W)Y E(4)(Z — )28 JhIHE - 2 € 208 € Bo,t € [0,7]}, £ = 0,1, k = 0,1,2. Apparently, Fo
has a smaller VC-dimension than Fj in which its VC-index is (d + 1). It is easy to conclude from
Lemma 2.12 in Pakes and Pollard (1989) that Fy is also Euclidean. Combining with the fact that
{Y(t) : t € [0,7]} is a VC-class, the Euclidean class Fyj, is further ascertained by an application of
Lemma 2.14 in Pakes and Pollard (1989). Thus, the following property can be implied by Theorem
I1.37 in Pollard (1984):

N ~ Inn
sup ||8§H0,h(t7zt7/6) _E[aléHO,h(tazt)B)]H =0 \/; a.s. (2)
(2¢,8,t) n
Moreover, a simple calculation yields that

¢
E[05Hon(t, 2, B)] = OF Howk(t, ¢, z18) + h/ O Howg(u, 2, ZZg)UkHK;{C;) (u)du, (3)
0

where z;kﬁ lies between zg and 23 + hu. By assumption A3 and integration by parts, one has

sup ||E[3],§ﬁo,h(t,2t7ﬂ)} — O Houk(t, 2t, 248) ||

(Zt’ﬁvt)
t
— sup / (D5 Howe(u, 2u, 25 5) — 05 Horg(u, 24, 20p) Y ) (w)du|| = O(R). (4)
(z¢,8,t) 110 ’
Together with (2), (1) is directly obtained. O



Lemma 2. Under assumptions A1-A4,

t
~10] 0] =[0] Hy10(u, 24, 2up)
sup Ac (taZH,vﬁ)_ <Ac (taZHaB)_/ HC (U,Z y & )—du
(zmy,8:t) " t ot ' o " e Ho(u, 2us 2up)

1
and sug ) \A Wt zm,, B) =0 (\/ 7#1221) +O(h?) a.s,£=0,1. (6)

(ZHt7 ,
Proof. A simple application of Taylor expansion for Ay, (t,zm,, ) gives

dy Hy p(u, 24, B)

+ 7y ta ZHHB ’ 7
Hom(“ Zus Zup) ( ) @)

Rult, 2., B) = At 2, B) — / A, (1, 20 205)

where ry(t, zm,, ) =2> 1, fot Kn(Ziup — zuﬂ)ﬁéi},i(u, Zu, zuﬁ)dNi(U)/(nﬁSi(u, Zu, Zup)) With ﬁa",h(u,

Zu, Zyp) lying on the line segment between ﬁmh(u, 2y, B) and Hoio(u, 2y, 2y3). By assumptions A3 and

(3

1
wd sy [raltozn B =0, (=) ®)
(211, Bot) "\vn

By subtracting Al%(¢, zy,, 8) from both sides of (7), (5) is a direct result of (7)-(8). As for the proof

A4, we can also derive that

[0
¢ H([Jc],h(u7 Zu; Zup)

[doHy i (u, 201, B) — Hino(t, 24, 245)du]
ng(u, Zuy ZuB) A

sup
(zH,.8,t)

of (6), it can be shown in a similar way to Lemma 1. O

Lemma 3. Under assumptions A1-A4,

5 ~ Hio(u, 2y, 24 1
sup S£(,);L(t7ZHt7/B) + S[O](t72HﬂB) (Ac?]h(t ZHt’B / HOch u Zu?'zuﬁ)wdu>’ = 0p ()
(zm,,B,1) 010(“ Zus Zup)

.y Inn
and (Zsu];ﬁ) y |S’£’L(t,th,ﬁ)\ =0 (1/ nh”“) +O(h?) a.s,£=0,1. (10)
HygsPs

Proof. By substituting the kernel-weighted version of the Kaplan-Meier estimator into Theorem 3.2.3
in Fleming and Harrington (1991), we have

Sh(t, 2, B) b S (u—,zm, ,B)

=1- —duK ol . 11
SOI(t, zp,, B) S0, 2g ) hen(t 2, B) (11)
It follows from (11) that
S (¢, zm,, B) SO (um, 2py, B) N
—GhA\DTEOR/ y ZHy_ s duA[O] _ e,h s RHoy_ duA[O]
S[O](tazH“/B) 0 S[O](U7ZHu;5) c,h(u; ZHuvﬁ) 0 S[O](U72Hu’5) Cﬁh(u,ZHu,B)

S’
= —A[ Wt zm,, B // n0= 2, ’md A([:O]h(v zm,, B)duA O]h(u,zHu,ﬁ). (12)

SN (v, zm,, B)
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Coupled with (6) in Lemma 2, the following property can be derived by parallelling with the proof

steps from line 11 of page 161 to line 22 of page 162 in Du and Akritas (2002):

Sh vf ZH 7ﬂ) A ] - 1
/ / S[O] U szyﬂ) A (’U ZH, 7B)du (/Oh(u,ZHu,ﬂ)’ - O;D <\/’E> . (13)

From (12)-(13), Lemma 1, and (5) in Lemma 2, (9) is obtained and the assertion in (10) holds for

sup
(zm,,8:t)

£ =0. A straightforward calculation and an application of Lemma 1 further yield that

aggh(t,ZHmﬁ) _ —l Z ( )Eal q h(Zqu Zu[i)aéﬁo,h(uvZmﬂ)dNi(u)
Sh(t7ZH”B) i=1 ¢=0 HOh u, Zuaﬁ)(HO h(u Zuaﬁ) Z;L 1I(Xj = U)Kq,h(Zjuﬁ - Zu,@))

1y oo [ O5 K (Ziwg — 2up)08 Ho p (u, 2, B)(2HY , (1, 20, 2up)) 2 dN; (1) 1
==> 2 (1 ; +op

¢ 2

i=1 £,,6,€{0,1} Heo (4, 2us Zup) vn

t A[l—h](u 2

c » AUy uﬁ) _

= AU, 2y, 8) - ALY} (t zm,, ) + Z (=)' (1+ £y) nggz (05 Huoe, (u, 24, 2up))' "
41,0,€{0,1} 0 H010 (Uvzuazuﬁ)
1

(Hey (1-00)0 (U, 2us 208) 00 H(1— 0,001 (U, 2, 2u)) 2 du + 0y (ﬁ) (14)

uniformly in (zp,, 8,t). Finally, the assertion in (10) is ascertained for £ = 1 by mean of Lemma 1. [

Appendix B.

Proof of Theorem 1. By assumption A5, (10) in Lemma 3, and applying the Taylor expansion

technique, we have
PSi(8) = PS(B) + 1 (B), (15)

where PSI%(8) = P,&(B) and supgeg, |Imn(B)|l = 0p(1). The Lipschitz continuity of £(3) in 3, which
is ensured by assumption A3, further implies that the class {{(5) : 8 € By} is Euclidean (cf. Lemma
2.13 in Pakes and Pollard (1989)). Moreover, it follows from Lemma 2.8 in Pakes and Pollard (1989)

that
sup [|PSP(8) — BB = op(1)- (16)
BEB,,

Together with (15), one has
sup || PSp(8) — EE(B)]l| = 0p(1)- (17)
BEBy

In view of assumptions A3 and A6, 5y is the unique root of E[{(3)] = 0 locally. Thus, the consistency
of B can be ascertained by (17) and Theorem 2.10 in Kosorok (2008).



By the first-order Taylor expansion of PS; (B) at [y, it yields that
VIS (Bo) + Va[v/n(B = Bo)] + Ralv/n(B — Bo)] = 0, (18)
where R, = 83PSh(,§*) — V5 and B* lies on the line segment between B and By. Further,

1 = P(—VnPSy(Bo) = Va[v/n(B — Bo)] + Rulv/1(B — Bo)])

= P((Ii-1 + Vs ' Ry)[Vn(B — Bo)] = — V5 [VnPSu(Bo)])
< P (f B=Bo)=— (> (Va VzWEPSh(ﬁo)Lllean||<;>+P(||V;1Rn||>;)
k=0
IV HIVAPSH o)l 1 s L
< p(vap - sl < PR jvm < ) 4 p (157l > 5)
< 2 (IV(B - B0l < 20V VARSI Gl Vs Rl < 5) + 2 (107 ol = 5

< P(IVAG - sl < ar) + P (a1 < 2 Nivarsanl) + P (1l = 120 vars 0. o)

As a result, the pseudo score function can be decomposed as

Vn(PSy(Bo) — PS8 Z

k=1

Z / k(1) ris (DAWin () + 9os (i (1) + 0p(1), (20)

n

where ¢p;(t)’s are some bounded smooth functions,

Umis(t) = O Kyn(Zisgy — Zitgo)Yi(t) — HY" Nt Ziv, Zivs,), m=1,2,
K h juf3 zuﬁ )dN (u)
Vaiall) = / - Ho]m ZL Ziu, ijo) — AN, Zir,,, Bo), oais(8) = T(Xs = ) K n(Zjupe — Zitso):
CH (4, Zia, Ziugo )0 Ko (Zjugy — Ziupy)AN (1)
and Yo () = 3 (~1) / AW, Zag, o).
Y ; 0 HOlO(u Zzu7Ziuﬂ0)

By E[H\(t,Zy, Zp,)| Zis,) = 0, EAV(t, Zp,, B0)|Zes,) = 0, and Lemmas 1-2, it can be shown
that Elori(t)|Zin,] = 0 and EYw;(t)|Zin,] = O(h9), k = 1,...,5. These facts together with

Elpei(t)|Zim,] = 0 and assumption A5 assure that the summands in (20) are all 0,(1) and, hence,
V(PSy(Bo) = PS'(B0)) = 0,(1). (21)
An application of the multivariate central limit theorem to PS[) (Bp) further enables us to have
VIPSy(Bo) % N(0,Vh). (22)
By (10) in Lemma 3, there exists a continuous function V' (3) of 5 such that V(5y) = V2 and

sup [0 PSk(8) = V(B = 0p(1). (23)
BEB,



For any ¢ > 0, there also exists an integer n. such that 8y € B, and supgegp, [|V(8) — Val| < /3

whenever n > n.. Together with (18) and (23), we can thus derive that

P (sup |08 PSh(B) — 83 PSK(Bo)| > 5)
BEBy

<p <sup 185PSw(8) — V(B)]| > ;) P (||V(50) — 85PSh(Bo)|| > %) S0asn oo (24)
BEBL

Moreover, it is implied by (22) and (24) that

lim inf P (||V21|||\/EPSh(BO)| < Zwil) > 1 —¢ for some M, >0 (25)
oo 20Vl
and
Vz -~ Vz Vz
P (1 > T2 < P (105203 - 0ol > L) 4 p (0spsicon) - vag > 21
[Vall 5
< P| sup [05P5(8) ~ 9 PSu(Bo)| > 12 | + P (B & Bua )
P 2
+P <|55PSh(BO) — Vol > ”‘f”) — 0 as n — oo. (26)
Substituting (25)-(26) into (19), one has
liminf P(v/n]|3 — fol| < M) > 1 —e, ie. Va5 — Boll = Oy(1), (27)
and (18) can be simplified as
V(B = Bo) = =V ' i PSy(Bo) (1 + 0p(1)). (28)

From (22) and (28), the proof for the asymptotic normality of B\ is completed.

~ ~

Proof of Theorem 2. By the decomposition of (Sc(¢, zm,,8) — S(t,zmH,, o)) and the first-order

Taylor expansion of §g(t, th,B) with respect to 5y, one has

Vne(S.(t, ZH”B) - S(t,zm,, Bo))
= V505 (t, 2, B5) VR (B — Bo)] + /s (Sc(t, 2, , Bo) — S(t, 211, Bo)) (29)

with 8* lying between 3 and fo. It follows from Lemma 3 and (27) that (29) can be further simplified

as

Vns(Sq(t, ZHt?B) = S(t zm,, Bo)) = VnsPp W, (t, 25,) (1 + Y (t, 2m,)), (30)



where sup(.,, 1) [ (t, 2m,)| = op(1). Further, the class {<Wn(t,zm,) : 2 € 20t € [0,7]} is easily
shown to be Euclidean and satisfies the conditions UBV and LUBYV in Rio (1994). By Corollary 1.1 in
Rio (1994), there exists a sequence of centered Gaussian processes Gy (t, zp,) with continuous sample

paths and E[Gy,(t1, 2m,, ) Gn(te, 21, )] = SE[Wn(t1, 21, ) Yn(te, 2, )] such that

Inn
(Sup) Wns(PpVn(t, zm,) — E[¥0(t, z1,)]) — Gu(t, 21,)| = O <\/ W) a.s. (31)
ZH, b

Subtracting (v/nSE[V,(t, zm, )] — Gn(t, zm,)) from both sides of (30), the asymptotic Gaussian process

of §g(t, Z, 3) is thus ascertained.

Proof of Theorem 3. From (3.2) in Section 3, A(t; B) — A(t; Bp) can be expressed as

(JMZ”(% > Z;5) = Alt; o) )Ni(t: Sy, B)(1 = Nj(t: 5, 5)). (32)
nn — olt; it

It follows from (10) in Lemma 3 and Theorem 1 that

§Q(t’z7§) _S(t’z’ﬁo) _ §Q(t72750) —S(t,Z,Bo) [1] 3 _
S(t, 2, Bo) B S(t, 2, Bo) + A2, 2, B0) (B — Bo) + rin(t, 2) (33)

with sup(, ) |r1n(t, 2)| = op(n~1/?). Together with

§ (taZ7B0) _S(t’Z7BO) 1 - _ 1
(:;(1}3) ¢ S(t72,50) - E ;qbi(t’Ziﬁo)KlQ(Z’iﬁo - Zﬂo) = Op (\/ﬁ) ) (34)
which is a simplified version of Lemma 3, it can be derived that
m;u@; > Z,3)— Au(Bo))Ni(t: Sy B)(1—N; (15 5, B)) ZU;W +(B—Bo)Usn(t) +7an(t), (35)
i#]
where
up ran(0) = 0p(n™1%), - Uin(t:8) = gy S (1(Zia > Zis) = Al Bo) Nu(t 5, o) (1 = N (55, ).
i]
S(t, Z;,
Usn t36) = =5 ;;B (55)(1 = V(0D o 6(Xs, Zi) = ults Zis el D, — Zi)
_ S Zi.Bo) z0iix. 7 5y Al 7
and U?m(t) - (TL — 1 ZB” t B ( ))S(X“Z“ﬁo) (A (XzaZuBO) A (tzzzaﬂo))

i#]
with By;(t; 8) = (I(Zig > Zjg) — A(t; Bo)) (1 — N; (8.5, o)) — (I(Zjp > Zig) — A(t; Bo))N;(t: S, Bo)-

Substituting the kernels of the above U-statistics into the proof steps of Theorem 4 in Sherman (1993),

we also have

Uin(t; B) = Urn(t; Bo) + L(5 — Bo) TNL(t) + %(ﬁ — B0) "Vi(B — Bo) + 0,18 — Bol*) + 0, (%) Jk=1,2, (36)

NG
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uniformly in (f,¢) with N, (t) converging to a mean zero Gaussian process and V(t) being a non-
degenerate matrix function of ¢, which is justified to be bounded by assumption A6. Thus, (35) can

be simplified as

o
n(n —1)

;(I(Zig > Z,5)—Al(t; Bo) )Ni(t; Sos B)(1=N;(t; 55, 3)) ZUkn : B0)+(B—B0)Usn (t)+73n(t), (37)

where sup, |13, ()| = 0,(n"'/2). Obviously, both Uy, (t; Bo) and Us,(t; Bo) are centralized U-processes.
By assumption A3, the class of each corresponding kernel function indexed by ¢ is Euclidean. It is

implied by Corollary 4 in Sherman (1994) that
Uin(t qu (n/?) and Uy, (t; Bo) = ng ) + 0p(n™1/?) (38)
uniformly in ¢. A straightforward calculation further leads to
sup [Usn(t) = n(t)| = (1) and Suple( B) — Ao(t; Bo)| = 0p(1). (39)

Combining (32), (37)-(39), and the i.i.d. approximation Y., {i/n of (E — Bp), the proof for the
consistency of A(t; B) is thus completed. Moreover, the limiting Gaussian process of /n(A(t; E) -
A(t; Bp)) can be ascertained by applying the functional central limit theorem and the Slutsky’s theorem.
As for the uniform consistency and asymptotic Gaussian process of ./vl(t; B), the proof is similar and is

omitted in the interest of brevity.
Supplementary Material (1I)

Let Ei(t;h) = Ni(t; S, Bo) — (1= 5, (¢, Zim,» o)), PSEi(t; h) = Su(t, Zim,, B) — Su(t, Zim,, Bo), and
SE;(t;h,B) = §h(t, Zim,, B) — S(t, Zig,,Bo), i = 1,...,n. Moreover, PSEi_i(t; h) and SEi_i(t; h,B) are
defined as PSE;(t; h) and SE;(t; h, 5) with the ith unit being removed in computation.

S1. Convergence Rate of h for the PILSE

After some algebraic manipulations, PS’E(h) can be decomposed into

PS5(h) = ,Z / Ei(t; R)On Sy (t, Zim, , Bo)dWin (t) Z / E;(t; h)0RPSE; " (t; h)dWi,, ()

1 [T S~ - , ~
+- 2_:/0 {(Ni(t; Sn, B) — Ni(t; S, Bo)) + PSE; *(t; h) }YOuS, “(t, Zir, , Bo)dWin (t)

(1>

I(h) + II(h) + III(h). (40)



Moreover, I(h) can be re-expressed as

) = o (i > [ S wh g awnn + 23 [ Enser hﬁo)dWm(t))
=170 =170
2 9,(MISE(h) + Io(h)). (41)
S Zz P\ LiHy Po) K, ubo ZW 0
Let S;;L(t, Do, 50) t H BO Z/ I—;Oflzo J gﬁm Zwﬁi )) (de (u) — YJ(U)A(% Ziuﬁo)dU)v

MISE(h Z/ (So i (t, Zin,, o)) 2dWi(t), and Io(h Z/ Ei(t;h)S_} (t, Zin, , Bo)dWi(t).

By assumption A5 and the ¢.i.d. approximation of ,§h (t,zm,, Bo) in Lemma 3, one has

sup MISE@;MISE(h) = 0,(1) and sup M = 0,(1). (42)
h MISE(h) h Io(h)
It is implied by Theorem 2 in Marron and Hérdle (1986) that
MISE(h) — AMISE(h)|

where AMISE(h) is the asymptotic mean integrated square error of Sj (¢, zn,, Bo) with

AMISE(h) = h2 / BB (Z3,)dW (#)] + n~ b~ / E[V/(Z,)dW (1)), (44)

_ Z q —/
b(ZHt) _ S(tVZHt?ﬂO) </ du)/ Zé 0 6 HZlO(u ZU’Zuﬁo)A (Iu?ZUBO)du’

q! Ho10(w, 2us 2up,)
¢ t
Hi1o(u, zus 2ug, ) 2
and V(zg,) = S*(t,zm,,p (/K2udu>{ 0y, — Au, zy8, )du .
( H) ( H 0) q( ) o H0210(U7 Zu7zuﬁ0) ( 0 ( /50) )

Coupled with (43), we have

—~—

MISE(R) = O,(h* +n"*h™1). (45)

By Lemma 4 in Hardle and Marron (1985), the following property is directly obtained:

Io(h)

Sup | —=——
MISE(h)

h

= 0,(1). (46)

As a consequence of (42) and (45)-(46), the convergence rates of I(h) in (40) can be derived as
I(h) = Op(R** " + n~'h72). (47)

For the convergence rates of I1(h) and I1I(h), an application of the Taylor expansion yields that

) (4. _ (1_‘/2(1;)) S(t7 ZthvﬂO)
Ni(t; S, B) — Ni(t; S, Bo) = S(Xi, Ziny,  Bo) {S(Xi,Zini,ﬁo)

+7"1n (ta Zth )SEf(sz h7 B\) (48)



and
SE;(t;h,8) = PSE;(t;h) + SE;(t; h, o)
= 058t Zin,. o) (B — Bo)(1 + ran(t, Zim,)|IB = Boll) + SEi(t: b fo), (49)
where sup(z,, |Tkn(t, Zm,)| = Op(1), k = 1,2. From the proof of Theorem 1, one has
B—Bo=0,(n"2) + 0, (h* +n~V/2pM? 4~ 1p=5/2), (50)
Moreover, it is ensured by (A.10) in Lemma 3 that

sup S (t, 21, Bo)| = 0p(1) and  sup [SE;(t; h, Bo)| = Op(h+n /20" 1/2). (51)
(Zu,t) (Z,t)

Substituting (50)-(51) into (49), the convergence rates of PSE;(¢; h) and SE;(¢; h, B) in (49) are shown

to be
PSE; (t; h) = O, (h* +n~Y?h=Y2 4 = h=5/2) and SE,(t; h, B) = Op(h? +n~/2hY? 0~ 1h=%2) (52)
respectively, uniformly over (Zp,,t), which imply that (V;(¢, §h, E) — N;(t; S, 5p)) in (48) satisfies

sup |Ni(t, S, B) — Ni(t; S, Bo)| = Op(hY +n~'2R12 4 n~1p=5/2), (53)
(ZHf,7t)

By using the equality th}:i(t, Zim,, Bo) = 8hSEi_i(t; h, Bo) and replacing (SE;(t; h, Bo), PSE;(¢; h)) with
(SE;“(t; h, Bo), PSE; “(t; h)) in (51)-(52), we can further derive that

I1(h) = Op(n~Y/2p%9=t 4 = 1p=1/2 4 n=3/277/2) (54)

and TTI(h) = O,(h%~1 4 p~t/2pta=t L p=1p2a=1 4 n=2p=2 4 =3/2p20=4 | =3 =15/2 4 =5/2=%)  (55)

From (47) and (54)-(55), II(h) and II1(h) are thus shown to be negligible compared to I(h). As a

result, the chosen bandwidth 7 has the convergence rate of O, (n~1/(+2a)),
S2. Optimality of ¢ for the Survival Predictor

A simple application of the Cauchy-Schwartz inequality in CV;(s) leads to

CVi(s { Z/ B} (t;<)dt + — Z/ (PSE; "(t;6))%dt + — Z/ i(t:85,8) — Z—(t;S,BO))2dt}

(14 0,(1)) 2 CVi1(<) + CVia(s) + CVis(s). (56)

Same with the derivation for I(h) in S1 with W, (t) = ¢, we can obtain that

CVi1(s) = AMISE(<)(1 + 0,(1)) for ¢ = 2. (57)

10



By using h = Op(n~?) in SA(t ZH,, B) and replacing PSE;(t; h) with PSE; “(t;<) in (52), it is ensured
that

CVia() = Op(n™1). (58)
Moreover, from (53) and §E(t’ ZH, s E) — S(t, zm,, Bo) = Op(n~*?), one has

CVis(s) = Op(n™*?). (59)
Finally, substituting (57)-(59) into (56), it yields that

CVi(s) = AMISE(s)(1+ 0,(1)) (60)

Jo EIV(Zn,))dt
4[TE b2 (Zp,)]dt

and, hence, ¢ = argmin AMISE(¢)(1+ 0,(1)) = n5(1 4 0,(1)) for ¢ = 2. (61)
S

S3. Asymptotic Properties of the PMLE

Since the bandwidth selection for 3 with the second-order kernel function is infeasible and the resulting
PMLEs with the specifications of the second and fourth order kernel functions in ¢;,,(5) have the
same asymptotic behavior, we focus on establishing the consistency and asymptotic normality of /3
with the fourth-order kernel function in £5,,(8). The following notations and assumptions are further

introduced:

AE(E, 24, B) = OF Hiow (t, 26, 208),  €9(B) = Pu(8In M(X, Zxp,) +InSONX, Zy ., B)),

AU, Zx, o) 5 SHIX ZHX,50>> Ve —

MU(X, Zx, Bo) . SUN(X, Zy ,ﬂo)>®2
[1] — X
6 =B, < MX, Zxp,) S(X, Zuy, Bo) ( 5+ ’

X, Zxp,) S(X, Zny, Bo)

1

Sy DK, 2, o040

md V= NF(X, Zxs,)

d+(-1)

o (SBU(X, Zyy )20
SI+Z(X7 ZHX»/BO) )

=0
A4, hy = hogn =% for 0, € (1/16,1/6) and some positive constant hgg, k = 1,2.

A5’. Vg is non-singular.
Theorem S3.1. Suppose that assumptions A1-A3 and A4’-A5’ are satisfied. Then,

B L By and v/n(B — Bo) 5 N(0, Vg VsV ). (62)
Proof. Let ALy (t, 2. 8) = Oy (t, 28) — A(t, 20, 8), € = 0,1, hinaw = max{h, ho}, and Amin =
min{hy, hy}. It follows from Lemma 2 that

sup

1111() 7zu7zu3
(ZHtvﬁ t)

0] . 0 L
)\C,h12 (t7 ZHt,B) - /(; Kq,hg (t - ’LL) (dAOC his (t ZHt?/B) Oc h(u Zus Z’U«B)Hglo(u’ Zu, Zuﬁ’)

Inn

L NJ 4
=0, (\/ﬁ) and sup |/\C7h12 (t,zm,,B)| =0 ( h2€+2> + O(hyy0e) @.S. (63)

(ZHtaﬁvt) min

11



By the Taylor expansion technique, (A.10) in Lemma 3, and (63), one has

sup [0, (8) — ((8)] = 0p(1). (64)
BEB,

Further, the class {§In \(X, Zx3) + InS%(X, Zg,,B) : B € By} can be shown to be Euclidean by
means of assumption A3. It is further implied by Lemma 2.8 in Pakes and Pollard (1989) that

sup [£9(5) — EION(B)]] = 0,(1). (65)
BEB,,

Coupled with (64), we can conclude that

sup [0n,, (8) — E[CCN(B)]| = 0p(1). (66)
BEB,

In view of assumptions A3 and A5’, By can be shown to be the unique maximizer of E[£1%(8)] locally
and, thus, the consistency of 3 to By can be ascertained by Theorem 2.12 in Kosorok (2008).
An application of the first-order Taylor expansion of dz¢(3) at B = fy yields that

\/ﬁaﬂghlz (50) —}—_8[236;“2 (B*)\/H(B - BO) = Oa (67)
where $* lies on the line segment between S and fy. The pseudo score function 9g¢(fp) is further
derived as .

Vn(05lhyz (Bo) — o Z n( Z Pmi¥mij + op(1) (68)
with m=1 i#j
" Kgni (Zjupy = Ziupy) Kq.ny (Xi — u)dN; (u)

ij = : — MXi, Zix, g

¢6 J / HOIO(U> Zzu7 Zzuﬂo) ( o )

! T 0 Howe(Xi, Zixss Zix:60)05 " Kony (Zjupo — Zinpo) Kqns (Xi — u)dN;(u)
= _1¢/ v 1y “1 X “1.Xi 00 )Y g1\~ Jupbo 1ufBo q,n2 )\[1] Xi;Zi | )
d)?j ;( ) 0 Hglo(XhZinZiXiﬂo) ( i 50)
After some algebraic manipulations, Elomi|Ziny | = 0 and E[mi;|Ziny, ] = O(h%,.), m=1,...,7,

can be obtained. These facts together with assumption A4’ enable us to simplify (68) as
V95t (Bo) — (1(Bo)) = 0p(1). (69)
It is ensured by an application of the multivariate central limit theorem to \/ﬁﬁm (Bo) that
Vdslh,, (Bo) > N(0,V5). (70)
From (A.10) in Lemma 3 and (63), there exists a continuous function V' (53) of 5 such that
sup 105¢n,,(8) = V(B)|l = 0p(1) and V(Bo) = Vs. (71)

BEB

Moreover, the argument for (27)) can be used to show that
V(B = Bo) = Oy(1). (72)

Substituting (70)-(72) into (67), the asymptotic normality of /3 is thus ascertained. O
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S4. Convergence Rate of ¢ for the AUC Estimator

It follows from a simple decomposition that

CVa(0) = CVa1 + CVaz (o) + CVa3(0), (73)
where
OV = Z/ (Z5 > Z;5)Nilt: S5, B) (1 — N, (t: 8, B)) — A (t: Bo))*dt,
#J
CVarle) = s Z/ (A (8 o) = A7 (0 B
CVasle) = ooy Z/ (Zig > Z;3)Ni(t: S5, B) (1= N (1 55, B)) — Au(t 50)) (Av(t; Bo) — Ay (8 B)dt

Clearly, the first term C'Va; on the right-hand side of (73) is independent of p. From the proof of

Theorem 4, one immediately has
CViz(0) = Op(* + (no) /). (74)
The \/n-consistency of 3, (53), and (B.29) further imply that

CVas(0)(1+ 0p(1))

= 1) 2 / 1(Z5 > Z,5)Ni(t; S5, B)(1 = N;(t; 55, B)) — Au(#: B0)) (Au (#; Bo) — Ay (5 Bo)t
Z#J

= n(n—1) Z/ I(Zz > Z;5)Ni(t;, S, Bo) (1 — N;(t; S, Bo)) — Ar(t; Bo)) (Ax(t; Bo) — AT (t; Bo)dt.  (75)

Moreover, the dominant term of CV23(Q) in (75) can be expressed as the fourth-order U-statistic

Tl _ 1 ol 1\2 E E H11]112]2

117#j1 127 ]2

with K‘iljli2j2 = f(;- I Zi1,30 > Zjlﬁo)Nil (t; S, 60)(1 — le (t; S, 50)) - A (t; 50))(.,41 (t; 60) — I(Zi250 >
Zj50) l2“(t S,B0)(1 = Ny, ﬁ(t S, Bo)))dt. After some tedious calculations, we get

n n

Z E[Hi1j1i2j2(9)|Xi1’5lle = OP(92n71/2 + n71971/2) - Z E[Hiljﬂzjz (0)| Xz, 0iy, Zi,] = 0,

i1=1 iog=1

- 1 1 O
n Z Elkiyj1ing2 (01 X515 851, Zj, ) = Op(e®n Y24 n7lo™?%), and n Z Blkirjriaga (0)|Xja: 052, Z3n] = 0.

31 1 j2=1
The above properties imply that the first-order Héjek projection of the U-statistic is Op(nfl/ 20% +

n~1o~Y2). By applying the maximal inequality in Sherman (1994), it is further ensured that the
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difference between the U-statistic and its first-order Hajek projection is Op(n_lg_l). Combining these

results, the convergence rate of C'Va3(p) is obtained as follows:

CVas(0) = Op(o*n~ Y2 4 n=tp™h). (76)
Substituting (74) and (76) into (73), one also has

CVa(e) = Tp + Op(e* + (ne) /") (77)

with T}, being independent of . Thus, the minimizer g is O,(n~3/") and the proof is completed.
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Figure S.1: (S1a)-(S1b) The survival functions (solid curves) conditioning on Zg, = STo.25 and the estimated conditional
survival functions (dashed curve). (Slc)-(S1d) The standard deviation curves (solid curves) and the bootstrap standard

error curves (dashed curves) of the estimated conditional survival functions.
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Figure S.2: (S2a)-(S2b) The survival functions (solid curves) conditioning on Zg, = SIo.5 and the estimated conditional
survival functions (dashed curves). (S2c)-(S2d) The standard deviation curves (solid curves) and the bootstrap standard

error curves (dashed curves) of the estimated conditional survival functions.
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Figure S.3: (S3a)-(S3b) The survival functions (solid curves) conditioning on Zg, = STo.75 and the estimated conditional

survival functions (dashed curves). (S3c)-(S3d) The standard deviation curves (solid curves) and the bootstrap standard

error curves (dashed curves) of the estimated conditional survival functions.
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Figure S.4: (S4a)-(S4b) The bias curves (solid and dashed curves) of A (Bx) and A (585) with a horizontal line at

zero (grey line). (S4c)-(S4d) The standard deviation curves (solid curve and dotted curves) of A (35) and A (Br) and

the bootstrap standard error curves (dotted-dashed curves) of A, (Eh)
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