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Abstract One attractive advantage of the presented single-index hazards regression
is that it can take into account possibly time-dependent covariates. In such a model
formulation, themain themeof this research is to develop a theoretically valid and prac-
tically feasible estimation procedure for the index coefficients and the induced survival
function. In particular, compared with the existing pseudo-likelihood approaches, our
one proposes an automatic bandwidth selection and suppresses an influence of out-
liers. By making an effective use of the considered versatile survival process, we
further reduce a substantial finite-sample bias in the Chambless-Diao type estimator
of the most popular time-dependent accuracy summary. The asymptotic properties
of estimators and data-driven bandwidths are also established under some suitable
conditions. It is found in simulations that the proposed estimators and inference pro-
cedures exhibit quite satisfactory performances. Moreover, the general applicability
of our methodology is illustrated by two empirical data.
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1 Introduction

In survival analysis, a significant amount of research has been devoted to characterizing
the relationship between a continuous failure time T and some interesting covariates
Zt = (Z1t , . . . , Zdt )

�, which might be time independent or predictable time depen-
dent. Basically, hazard rates can capture all information in the survival process and lay
a proper foundation to formulate the influence of possibly time-dependent covariates.
In view of these facts, we propose an appealing single-index hazards (SIH) model:

λT (t |zHt ) = λ(t, ztβ0), t ∈ [0, τ ], (1)

where λT (t |zHt ) stands for the hazard function of T given a realization zHt of the
entire covariate history Z Ht = {Zu : u ∈ [0, t]} up to time t , λ(t, υ) is an unknown
bivariate function, ztβ = z1t + z2tβ2 + · · · + zdtβd , β0 = (β02, . . . , β0d)T is the true
coefficient vector, and τ is the time of last follow-up or the end of the study period.
One attractive feature of the SIHmodel is to resolve the limitation of time independent
covariates in some semiparametric survival models. For the sake of identifiability and
simplicity, the coefficient of a significant covariate, say Z1t , is assumed to be one. As
a result, the coefficient β0k is interpreted as the relative effect of Zkt , compared to Z1t ,
on the hazard function, k = 2, . . . , d.

In the past decades, the Cox’s proportional hazards (PH) model (Cox 1972) and the
accelerated failure time (AFT) model have been widely used and extensively studied
in the analysis of survival data. To reduce the risk of misspecification in paramet-
ric models and the difficulty of explanation in a fully nonparametric one, Khan and
Tamer (2007) considered a generalized AFT model for time-independent covariates
and developed the partial rank estimation for the index coefficients. In fact, all of these
models are particular forms of the SIH model with a monotonic dependence on the
linear predictor. In the context of risk-specific SIHmodels for several types of failures,
Gørgens (2004, 2006)modified theweighted average derivative estimation (WADE) to
propose a new estimation for the setup of censored survival data. However, the derived
estimator will suffer from the so called “curse of dimensionality,” especially when the
number of covariate increases. Furthermore, an intensive calculation task for multiple
integrals is usually required and the bandwidth selection for the estimator is still unset-
tled. Recently, Bouaziz and Lopez (2010) introduced a pseudo-likelihood approach to
avoid the computational complexity in the generalizedWADE. By taking into account
a more general and realistic censoring mechanism, Strzalkowska-Kominiak and Cao
(2013, 2014) proposed other pseudo-maximum likelihood estimators (PMLEs). As
evidenced by our numerical studies, both of the PMLEs might introduce rather large
finite-sample variances, which are partially caused by some degree of subjective trim-
ming function and bandwidths. To overcome the limitation of classical AFT models,
which are only applicable for time-dependent predictors, Zeng and Lin (2007) con-
sidered an extended model of Cox and Oakes (1984) and developed a more efficient
kernel-smoothed profile likelihood estimation. As one can see, the induced hazard
function is different from our model formulation in (1).

By incorporating the counting process representation of a failure time into suit-
able estimating equations, an alternative approach is developed to estimate the index
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Censored single-index hazards regression 525

coefficients β0. Same with some novel semiparametric approaches, the proposed esti-
mator is also

√
n-consistent, asymptotically normally distributed, and independent of

the dimension of covariates. Further, the involved bandwidth, which is treated as a
tuning parameter, is estimated by the solution of a pseudo-cross-validation estimating
equation. It is shown that the chosen bandwidth is valid only when a fourth-order
or higher-order kernel function is adopted. In practice, the induced survival function
of the SIH model can be directly estimated by the Kaplan–Meier type estimator in
the constructed estimating equations. Different from the bandwidth selector for the
estimator of β0, another data-driven criterion is introduced to estimate the optimal
bandwidth of the survival function estimator in terms of a certain asymptotic inte-
grated mean squared error. Basically, our estimation and inference procedures rely on
a very general censoring assumption and can be easily extended to survival data with
competing risks. Without the limitation of continuous covariates in the WADE, the
developed approach is applicable to survival data with some discrete and/or continu-
ous covariates provided that the continuity condition of Ichimura (1993) is satisfied.
Based on the defined pseudo-residual process, the test rules of Chiang and Huang
(2012) can be further carried over to check the model correctness.

In light of the equality between the conditional distribution of T and the conditional
expectation of the underlying counting process of T on the baseline marker values
Z , modeling for the distribution function (or survival function) can be regarded as
assessing the discriminability of Z on cumulative cases versus dynamic controls,which
are defined by Heagerty et al. (2000). Under this classification framework and a strict
increase in λ(t, υ) in υ, the single-index Zβ0 can be shown to have the highest receiver
operating characteristic (ROC) curve among all composite markers (cf. McIntosh and
Pepe 2002) at each time point t . In the perspective of optimality for classification
and prediction, the area under the time-dependent ROC curve (AUC) of Zβ0 , thus,
provides a concise and informative summary. Different from the classical rank-based
measures such as the concordance index and the rank correlation, it displays the time-
dependent changes in discrimination. By making an effective use of our versatile
survival process, a new estimation is proposed to estimate such an accuracy measure.
Basically, this approach can substantially reduce a finite-sample bias in theChambless-
Diao estimator. To achieve the

√
n-consistence of the introduced estimators, we also

establish a cross-validation criterion for bandwidth selection.
The rest of this article is organized as follows. In Sect. 2, we outline a new pseudo-

estimation for the index coefficients and the conditional survival function. Some
feasible criteria for bandwidth selection and the asymptotic properties of the pro-
posed estimators are also established in this section. Section 3 focuses on studying
estimation and inference for the time-dependent AUC. In Sect. 4, we investigate the
finite-sample performances of the proposed estimators andmake comparisons with the
existing competitors through simulations. The Mayo primary biliary cirrhosis (PBC)
data and the British Columbia Vital Statistics (BCVS) data are further used in Sect. 5
to illustrate the usefulness of our methodology. Moreover, the last section provides the
concluding remarks and presents future directions of this research. As for the techni-
cal lemmas and the proofs of the main theorems, they are relegated to Supplementary
Materials (I) and (II).
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2 Estimation and inference for the SIH model

Let X = min{T, C} and δ = I (X = T ) with C being the censoring time. For
ease of presentation, ˜N (t), N (t), V (t), and Y (t) are used to stand for the underlying
counting process I (T ≤ t), the observed counting process I (X ≤ t, δ = 1), the
available vital status (1 − I (X ≤ t, δ = 0)), and the at-risk process I (X ≥ t),
respectively. Further, we define K (m)(u) as the mth derivative of a generic function
K (u), ̂E−k as a generic estimator ̂E with the kth unit being deleted, and S(t, zHt , β) =
∏

{0<u≤t}(1 − E[d N (u)|Zuβ = zuβ ]/E[Y (u)|Zuβ = zuβ ]), where ∏

represents the
infinite product. With censored survival data of the form {(Xi , δi , Zi Xi ) : 1 ≤ i ≤
n}, the estimation and inference are proposed under the assumption of conditionally
independent censoring:

A1. E[d˜N (t)|Z Ht ,
˜N (t−), I (C ≤ t)] = E[d˜N (t)|Z Ht ,

˜N (t−)] ∀t .

By assumption A1 and the definition of S(t, zHt , β), it is straightforward to have
S(t, zHt , β0) = ∏

{0<u≤t}(1 − λ(u, zuβ0)du) (= exp(− ∫ t
0 λ(u, zuβ0)du)).

2.1 Background

In the spirit of Buckley and James (1979), one has

E[˜N (t)|X, δ, Z Ht ] = E[(V (t) + (1 − V (t))˜N (t)|X, δ, Z Ht ]
= V (t)˜N (t) + (1 − V (t))

S(X, Z Ht , β0) − S(t, Z Ht , β0)

S(X, Z Ht , β0)
.

(2)

By substituting S(t, Z Ht , β) for S(t, Z Ht , β0), the following counting process is
defined:

N (t; S, β) = V (t)˜N (t) + (1 − V (t))
S(X, Z Ht , β) − S(t, Z Ht , β)

S(X, Z Ht , β)
. (3)

It follows from (2)–(3) that E[N (t; S, β0)|Z Ht ] = E[˜N (t)|Z Ht ] = 1− S(t, Z Ht , β0).
The essential idea behind our approach is to fully use the distinctive features of this
estimable counting process N (t; S, β0). By an alternative expression (δ+(1−δ)I (X >

t)) of V (t), we can also derive that N (t; S, β0) = δ˜N (t) + (1 − δ)E[˜N (t)|X, δ =
0, Z Ht ], whereas this result is not easily explained in terms of imputation for missing
status of ˜N (t).

Given β = (β2, . . . , βd)� in the compact parameter space B ⊆ R
d−1, S(t, zHt , β)

can be reasonably estimated by the Kaplan–Meier type estimator

̂Sh(t, zHt , β) =
∏

0<u≤t

(1 − dû�h(u, zHu , β)), (4)
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where ̂�h(t, zHt , β) = ∫ t
0

du ̂H1,h(u,zu ,β)
̂H0,h(u,zu ,β)

	= ∫ t
0

1
n

∑n
i=1 Kq,h(Ziuβ−zuβ)d Ni (u)

1
n

∑n
i=1 Kq,h(Ziuβ−zuβ)Yi (u)

, q =
2, 4, . . . , and dt ̂�h(t, zHt , β) is naturally interpreted as 0 for ̂H0,h(t, zHt , β) ≤ 0.
In (4), a qth-order kernel function Kq,h(u) = Kq(u/h)/h is adopted with h being
a positive-valued bandwidth and Kq(υ) being symmetric about zero with bounded
variation and satisfying

∫

Kq(υ)dυ = 1,
∫

υk Kq(υ)dυ = 0, k = 1, . . . , (q − 1),
∫

|υ|q Kq(υ)dυ < ∞, and
∫

K (2)
q (υ)dυ = 0.

Basically, the constraint on K (2)
q (υ) is made to assure that the information matrix of

the proposed pseudo-estimating equations converges in probability to a nonsingular
constant matrix at each time point t . An example of such a kernel function is given by
Kq(υ) = αq(υ) · {15(1−υ2)2/16}I (|υ| ≤ 1), where αq(υ) is the (q/2− 1)-th-order
polynomial in υ2, q = 2, 4, . . . .

Let Zt ⊆ R
d be the union of a finite number of open convex sets such that

̂H0,h(t, zt , β) is far away from zero for zt ∈ Zt and t ∈ [0, τ ]. Under some suitable
conditions, it shall be shown that ̂Sh(t, zHt , β) converges uniformly to a parameter
function S[0](t, zHt , β). Moreover, S[0](t, zHt , β0) = S(t, zHt , β0) and

E

[

{

N (t; S, β0) − (1 − S[0](t, Z Ht , β))
}2

]

≥ E
[

{N (t; S, β0) − (1 − S(t, Z Ht , β0))}2
]

∀t ∈ [0, τ ] (5)

with the equality holding if and only if β = β0. Coupled with the invariance of β0
with respect to time, an available information of N (t; S, β0) can be appropriately
integrated over [0, τ ]. In application, τ is usually chosen as the maximum observed
time X(n) = max1≤i≤n{Xi }.

2.2 Estimators of β0 and S(t, zHt , β0)

By mimicking the score function of the pseudo-sum of integrated squares

PSS(β) = 1

n

n
∑

i=1

∫ τ

0

{

Ni (t; S, β0) − (1 − ̂Sh(t, Zi Ht , β))
}2

dWin(t), (6)

the pseudo-integrated least squares estimator (PILSE) ̂β ofβ0 is presented as a solution
of the estimating equations:

PSh(β)
	= 1

n

n
∑

i=1

∫ τ

0

{

Ni (t;̂Sh, β)
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−(1 − ̂Sh(t, Zi Ht , β))
}

∂β
̂Sh(t, Zi Ht , β)dWin(t) = 0, (7)

where Win(t) is a nonnegative and nondecreasing weight function, which uni-
formly converges to a Zi Ht -measurable function Wi (t) and satisfies assumption
A5 in Sect. 2.3, i = 1, . . . , n. Regardless of time-dependent or time-independent
covariates, β0 can be estimated by the estimating equations

∑n
i=1{Ni (t;̂Sh, β) −

(1 − ̂Sh(t, Zi Ht , β))}∂β
̂Sh(t, Zi Ht , β)/n = 0 for each t . The above estimating

equations further integrate available information over [0, τ ]. Different from the
pseudo-maximum likelihood estimation, the proposed estimation avoids the effect of
outliers because the possible values of Ni (t;̂Sh, β)’s and̂Sh(t, Zi Ht , β)’s are bounded
within the interval [0, 1]. Moreover, the difficulty in estimating the right-tail of distri-
bution can be suppressed by an appropriate choice of dWn(t). To deal with a subject
with Zt /∈ Zt for some t , the corresponding trimming function can also be absorbed
into dWn(t). For q > 2 and a suitable constraint on h (assumption A4 in Sect. 2.3),
the PILSE ̂β can be shown to be

√
n-consistent with the asymptotic distribution being

independent of q. As for complete failure time data with time-independent covariates,
the estimating equations in (7) will be simplified to those proposed by Chiang and
Huang (2012).

By extending the bandwidth selection procedure of Härdle et al. (1993), the band-
width estimator ̂h is chosen for h with (̂β,̂h) simultaneously satisfying PSh(β) = 0
and

PSβ(h)
	= 1

n

n
∑

i=1

∫ τ

0

{

Ni

(

t;̂S−i
h , β

)

−
(

1 − ̂S−i
h

(

t, Zi Ht , β
)

)}

∂ĥS
−i
h (t, Zi Ht β)dWin(t) = 0. (8)

In S1 of Supplementary Material (II),̂h is further demonstrated to be Op(n−1/(1+2q)).
Unfortunately, ̂β cannot achieve the

√
n-consistencywhen a second-order kernel func-

tion is adopted in (7), (8). To avoid the numerical instability caused by the use of
higher-order kernel functions, a fourth-order kernel function K4(υ) is suggested in
practical implementation.

For the computation of (̂β,̂h), an iterative scoring procedure is implemented by the
following steps:

Step 1. Set ̂β(1) and ̂h(1) ∝ n−1/(2q+1) with ∂βPŜh(1) (̂β(1)) being nonsingular and
∂hPŜβ(1) (̂h(1)) �= 0.

Step 2. Compute

(

̂β(k+1)

̂h(k+1)

)

=
(

̂β(k)

̂h(k)

)

−
(

(∂βPŜh∗(k) (̂β(k)))−1PS
̂h(k) (̂β(k))

(∂hPŜβ(k) (̂h(k)) + E (k))−1PS
̂β(k) (̂h(k))

)

, k = 1, . . . ,

(9)

where h∗(k) = h(k)nε1k with ε1k being close to zero in the interval 1/(2q +
1) − (1/5, 1/4q) such that ∂β P S

̂h∗(k) (̂β(k)) is nonsingular, and E (k) = 0
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if ∂h P S
̂β(k) (̂h(k)) �= 0 and E (k) = n−(2q−2)/(2q+1)+ε2k for some ε2k > 0

otherwise.
Step 3. Repeat Step 2 until ‖̂β(k+1)−̂β(k)‖/‖̂β(k)‖ < εβ0 and |h(k+1)−h(k)|/|h(k)| <

εh0 for some pre-chosen small values εβ0 and εh0 , where ‖ · ‖ stands for the
Euclidean norm of a vector.

As in the context of generalized estimating equations, theminimumasymptotic vari-
ance of ̂β can be achieved by taking into account the conditional variance-covariance
function σ(t1, t2) of N (t; S, β0),

S
(

tm, Z Htm
, β0

)

(

1 − S
(

tM , Z HtM
, β0

))

+E

⎡

⎣(V (tm) − V (tM ))
S

(

X, Z HtM
, β0

)

− S
(

tM , Z HtM
, β0

)

S
(

X, Z HtM
, β0

) |Z HtM

⎤

⎦

−E

[

(1−V (tm))S
(

tM , Z HtM
, β0

) S
(

X, Z Htm
, β0

)−S
(

tm, Z Htm
, β0

)

S2
(

X, Z Htm
, β0

) |Z HtM

]

,

(10)

for any t1, t2 ∈ [0, τ ] with tm = min{t1, t2} and tM = max{t1, t2}. Another improve-
ment in efficiency is to take dWin(t)/dt as the reciprocal of a conditional variance
estimator of Ni (t; S, β0), i = 1, . . . , n. However, it is usually complicated to estimate
the above censoring distribution, especially in the presence of a high-dimensional
covariate space. Currently, there is still no standard rule to choose Win(t)’s in the esti-
mation of β0. The specifications of a uniform distribution over the interval of interest
and an empirical distribution of Xi ’s are two simple ways in practical implementation.
Although an estimator of the marginal survival function, say S(t), is another popular
candidate, more computational effort is usually required to obtain an initial estimator
of β0 and an appropriate bandwidth in the sample analogue of E[1 − N (t; S, β0)]
(= S(t)). Different from the conclusion of Chiang and Huang (2012) for the case of
complete failure time data, no competitive advantage can be gained by specifying this
type of weight in our numerical experiments.

With specific covariates zHt , our estimation is also useful in predicting S(t, zHt , β0).
Substituting ̂β for β, K2(υ) for an arbitrary qth-order kernel function Kq(υ), and ς

for h in (4), it is naturally estimated by the resulting estimator, which is denoted by

˜Sς (t, zHt ,
̂β). (11)

The bandwidth ς can be further chosen by the minimizer ς̃ of the following cross-
validation sum of squares:

CV1(ς) = 1

n

n
∑

i=1

∫ τ

0

{

Ni

(

t;̂S−i
̂h

, ̂β
)

−
(

1 − ˜S−i
ς

(

t, Zi Ht ,
̂β
)

)}2
dt. (12)
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The reason of using ̂S−i
̂h

(t, zHt ,
̂β) in Ni (t;̂S−i

̂h
, ̂β) is mainly to eliminate the effects

of its asymptotic bias and variance in those of ˜S−i
ς (t, Zi Ht ,

̂β), i = 1, . . . , n. In the
proposed estimator ˜Sς̃ (t, zHt ,

̂β), ς̃ is obtained by the following iterative scheme:

ς̃new = ς̃old −
(

∂2ςCV1(ς̃old)
)−1

∂ςCV1(ς̃old). (13)

In S2 of Supplementary Material (II), the data-driven bandwidth ς̃ = Op(n−1/5) is
shown to be optimal in terms of a certain asymptotic integrated mean squared error of
˜Sς (t, zHt ,

̂β).

Remark 1 Under assumption A1 and noninformative censoring, the proxy for the log-
likelihood function of a random sample {(Xi , δi , Zi HXi

) : 1 ≤ i ≤ n} can be derived
as follows:


h12(β) = 1

n

n
∑

i=1

{

δi ln̂λh12(Xi , Zitβ) + ln̂Sh1

(

Xi , Zi HXi
, β

)}

, (14)

where h12 = (h1, h2) is a bandwidth vector and ̂λh12(t, ztβ) = ∫ τ

0 Kq,h2(t −
u)dû�h1(u, zHu , β). Thus, the pseudo-maximum likelihood estimator (PMLE) β̄,
which is a maximizer of 
h12(β), is proposed as an alternative to the PILSE ̂β. In
contrast with the PILSE, this estimation can deal with internal time-dependent covari-
ates. However, more effort is required in seeking an appropriate trimming sequence to
trim away observations with small pseudo-hazard and survival function estimates in
(14). The large sample properties of β̄ are further established in S3 of Supplementary
Material (II).

Remark 2 When time-independent covariates are considered, 
h12(β) will be approx-
imately same as that of Strzalkowska-Kominiak and Cao (2014). With a second-order
kernel function K2(υ) in (14), the

√
n-consistency and asymptotic normality of β̄ can

be accomplished whenever h1 = O(n−δ1) and h2 = O(n−δ2) with δ1 ∈ (1/8, 1/6)
and δ2 ∈ (1/4, 5/6 − 3δ1). As for the bandwidth selection, it is difficult and imprac-
tical to estimate two-separate-bandwidths in the cross-validated version of 
h12(β).
Although the bandwidths h̄1 and h̄2 with h̄1 = Op(h̄2) have been recommended in
the former work, the good asymptotic behavior of β̄ cannot be guaranteed by such
bandwidths. Even with the specification of a fourth-order kernel function K4(υ) in
(14), β̄ is still sensitive to two-dimensional bandwidth estimators (ȟ1, ȟ2) in the cross-
validation counterpart of 
h12(β). In view of these drawbacks and an empirical insight
of Huang and Chiang (2016), the PILSE should compare favorably with the PMLE,
especially in the cases with small sample sizes or heavy censoring rates.

2.3 Inferences on ̂β and ˜Sς (t, zHt ,
̂β)

For the sake of simplicity, β0 is assumed to be an interior point of B, and
FC (t), fZt (zt ), fZtβ (v), Pn , and ⊗ are used to stand for the distribution func-
tion of C , the density function of Zt , the density function of Ztβ , the empirical
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measure, and the Kronecker power, respectively. In addition, we define Zδt
t =

{zt : ‖zt − z∗
t ‖ ≤ δt , z∗

t ∈ Zt } and Zδt
tβ0

= {ztβ0 : zt ∈ Zδt
t } for given

δt > 0 and t ∈ [0, τ ], Bn = {β ∈ B : ‖β − β0‖ < b0n−1/2} for given
b0 > 0, ξ(β) = ∫ τ

0 {N (t; S[0], β) − (1 − S[0](t, zHt , β))}S[1](t, zHt , β)dW (t),
V1 = E[ξ⊗2(β0)], and V2 = E[∫ τ

0 {S[1](t, Z Ht , β0)− (1− V (t))�[1](t, Z Ht , β0)(1−
�[1](X, Z Ht , β0))}S[1]�(t, Z Ht , β0)dW (t)]. As for the notations �[
](t, zHt , β),
S[
](t, Z Ht , β), and Hk1k2k3(t, zt , v), their definitions are given in Supplementary
Material (I).

The following conditions are further imposed for the main results:

A2. inf{zt ∈Zδt
t ,t∈[0,τ ]} fZt (zt ) > f0, inf{ztβ0∈Zδt

tβ0
,t∈[0,τ ]} fZtβ0

(ztβ0) > f1, and

inf{zt ∈Zδt
t ,t∈[0,τ ]} P(X ≥ τ |zHτ ) > fτ for some positive constants f0, f1, and

fτ > 0.
A3. ∂

k3
υ Hk1k2k3(t, zt , υ) is Lipschitz continuous in (t, υ) with a Lipschitz constant
being independent of (t, zt , υ).

A4. h = h0n−δ0 for δ0 ∈ (1/4q, 1/5) and some positive constant h0.
A5. Win(t) − Wi (t) = ∑n

j=1 ηi j (t)/n + op(n−1/2) uniformly in (zi Ht , t), where
ηi j (t), . . . , ηin(t) are conditionally independent and identically distributed with
sup(zi Ht ,t)

|E[ηi j (t)|zi Ht ]| = op(1) and sup(zi Ht ,t)
Var(ηi j (t)|zi Ht ) = op(n−1/2),

i = 1, . . . , n.
A6. V2 is nonsingular.

To achieve the
√

n-consistency of ̂β, the involved bandwidth in ∂k
β
̂Sh(t, zHt , β)’s

should be well controlled. The reason of not using a second-order kernel function
K2(υ) in (7), (8) is because the bandwidth selector̂h = Op(n−1/5) [see S1 of Supple-
mentary Material (II)] will lead to a violation of assumption A4. Thus, a fourth-order
kernel function K4(υ) is suggested in practical implementation. As for the weight
function Wn(t), a uniform distribution, an empirical distribution of X , an estimator of
S(t), and an estimator of S(t, zHt , β0) can be justified to satisfy assumption A5.

The consistency and asymptotic normality of ̂β are established below.

Theorem 1 Suppose that assumptions A1–A6 are satisfied. Then,

̂β
p→ β0 and

√
n(̂β − β0)

d→ N
(

0, V −1
2 V1V −1

2

)

. (15)

Proof See Appendix B of Supplementary Material (I). ��
By virtue of Theorem 1, the asymptotic variance of ̂β can be found to rely on the
choice of weight functions Win(t)’s in (7)–(8). As shown in Sect. 2.2, the optimal
weights involve the conditional distribution ofC , which is usually treated as a nuisance
parameter in application and is not easily modeled in practice. For other feasible
weight functions, we carefully investigate their effects on the variation of ̂β through
the numerical experiments.

The next theorem gives the asymptotic Gaussian process of ˜Sς (t, zHt ,
̂β).

Theorem 2 Under assumptions A1-A6 and assumption (A7. ς = ς0n−κ1 for κ1 ∈
(1/8, 1/3)and some positive constantς0), there exists a sequence of centered Gaussian
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processes Gn(t, zHt ) with continuous sample paths and variance-covariance function
ς E[�n(t1, zHt1

)�n(t2, zHt2
)] such that

sup
(zHt ,t)

|√nς
(

˜Sς

(

t, zHt ,
̂β
)−S

(

t, zHt , β0
)−E

[

�n
(

t, zHt

)])−Gn
(

t, zHt

) |=op(1),

(16)

where sup(zHt ,t)
|E[�n(t, zHt )]| = O(ς2) and ς E[�n(t1, zHt1

)�n(t2, zHt2
)] con-

verges to some nondegenerate function of (t1, zHt1
) and (t2, zHt2

) with

�n(t, zHt ) = −S(t, zHt , β0)

∫ t

0

Kς (Zuβ0 − zuβ0)

H010(u, zu, zuβ0)
(dN (u) − Y (u)λ(u, zuβ0)du).

Proof See Appendix B of Supplementary Material (I). ��

3 Estimation and inference for the time-dependent AUC

For the discrimination of time-independent marker values Z on cumulative cases
{T ≤ t} versus dynamic controls {T > t}, Zβ0 can be shown to have the highest time-
dependent ROC curve whenever λ(t, υ) in (1) is strictly increasing in υ. In terms of the
definition by Heagerty et al. (2000), its time-dependent ROC curve is the spectrum of
values for the true positive rate P(Zβ0 > υ|T ≤ t) and the false positive rate P(Zβ0 >

υ|T > t) over varying threshold values υ. The corresponding time-dependent
AUC, denoted by A(t;β0), also has an explicit probability expression P(Ziβ0 >

Z jβ0 |˜Ni (t) = 1, ˜N j (t) = 0). By replacing ˜N (t) with ̂N (t;˜S�, ̂β) in A(t;β0), a
sample analogue of the probability expression is proposed as an estimator and is com-
pared with the Chambless-Diao type estimator. Moreover, the large sample properties
of these AUC estimators are established under a very general censoring assumption.

3.1 Estimation of A(t;β0)

It follows from E[˜N (t)|X, Z , δ] = N (t; S, β0) and the probability expression of
A(t;β0) that

A(t;β0) = A1(t;β0)

A0(t;β0)
with A
(t;β0)

= E
[

I 
(Ziβ0 > Z jβ0)Ni (t; S, β0)(1 − N j (t; S, β0))
]

, 
 = 0, 1. (17)

Substituting Ni (t;˜S�, ̂β)’s into the sample analogues of A
(t;β0)’s, an estimator of
A(t;β0) is given by

Ā(t; ̂β) = Ā1(t; ̂β)

Ā0(t; ̂β)
with Ā
(t; ̂β)
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= 1

n(n − 1)

∑

i �= j

I 
(Zîβ > Z ĵβ)Ni (t;˜S�, ̂β)(1 − N j (t;˜S�, ̂β)), 
 = 0, 1.

(18)

In our estimation for A(t;β0), the estimated counting process N (t;˜S�, ̂β) plays an
important role. Moreover, the proposed estimator takes into account a commonly
acceptable censoring mechanism and avoids the curse of dimensionality. As indicated
by Chambless and Diao (2006), A(t;β0) can also be expressed as

E[I (Ziβ0 > Z jβ0)(1 − S(t, Zi , β0))S(t, Z j , β0)]
E[(1 − S(t, Zi , β0))S(t, Z j , β0)] . (19)

Thus, A(t;β0) can be naturally estimated by

Ă(t;β) = Ă1(t; ̂β)

Ă0(t; ̂β)
with Ă
(t; ̂β)

= 1

n(n − 1)

∑

i �= j

I 
(Zîβ > Z ĵβ)(1 − ˜S�(t, Zi , ̂β))˜S�(t, Z j , ̂β), 
 = 0, 1.

(20)

Basically, this type of estimation is an extension of Chiang and Hung (2010) for the
discriminability of a single marker. Since the underlying counting process ˜N (t) is
completely disregarded in (20), Ă(t; ̂β) is heavily affected by the inherent biases of
˜S�(t, Zi , ̂β)’s andmight suffer froma substantial bias.On the other hand, the bias effect
on Ā(t; ̂β) is generally negligible whenever the random quantity

∑n
i=1(1 − Vi (t))

is small. Although the asymptotic variances of Ā(t; ̂β) and Ă(t; ̂β) are not exactly
the same, the variance of Ā(t; ̂β) is relatively small in most cases of our numerical
experiments. In light of these advantages, Ā(t; ̂β) is preferred to Ă(t; ̂β) for finite
samples.

For the involved bandwidths in (18) and (20), neither ̂h nor ς̃ can guarantee the√
n-consistency of Ā(t; ̂β). To resolve this problem, � is chosen by the minimizer �̃

of the following cross-validation sum of squares:

CV2(�) = 1

n(n − 1)

∑

i �= j

∫ τ

0

{

I (Zîβ > Z ĵβ)Ni

(

t;̂S−i
̂h

, ̂β
)

(

1 − N j

(

t;̂S− j
̂h

, ̂β
))

− Ā−i j
1 (t; ̂β)

}2
dt. (21)

By virtue of Lemma 3 in Appendix A of SupplementaryMaterial (I), we further derive
in S4 of Supplementary Material (II) that CV2(�) = Op(n−1/2 + �2 + (n�)−3/4) and
�̃ = Op(n−3/11) satisfies the constraint in assumption A8 of the next subsection.
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3.2 Asymptotic properties of Ā(t; ̂β) and Ă(t; ̂β)

It is noted that the setsZt ,Zδt
t , andZδt

tβ0
can be simplified to be invariant with respect to

t for time-independent covariates Z . As one shall see in Appendix B of Supplementary
Material (I), the uniform approximation of ˜S�(t, z, β0) and the i.i.d. approximation
of (̂β − β0) are essential ingredients in deriving the asymptotic behaviors of Ā(t; ̂β)

and Ă(t; ̂β). In the succeeding discussions, some assumptions are made as follows:

A7. ∂β H
1
2k(t, z, zβ) is Lipschitz continuous in β with a Lipschitz constant being
independent of (t, z, zβ), 
1, 
2 = 0, 1, k = 0, 1, 2.

A8. � = �0n−κ2 for κ2 ∈ (1/4, 1/3] and some positive constant �0.

Since the selected bandwidth �̃ satisfies the constraint in assumption A8, both of
Ā(t; ̂β) and Ă(t; ̂β) can achieve the

√
n-consistency. The notations used in the fol-

lowing theorem are further defined in Supplementary Material (I).

Theorem 3 Suppose that the conditions in Theorem 1 and assumptions A7-A8 are
satisfied. Then,

(i) sup{t∈[0,τ ]} |Ā(t; ̂β) − At (β0)| p→ 0 and sup{t∈[0,τ ]} |Ă(t; ̂β) − A(t;β0)| p→ 0.

(ii)
√

n(Ā(t; ̂β)−A(t;β0)) and
√

n(Ă(t; ̂β)−At (β0)) converge to mean zero Gaus-
sian processes with the respective covariance functions

ν1(t1, t2) = E[(ξ0(t1) + ξ1(t1) + ξ2(t1)(ξ0(t2) + ξ1(t2) + ξ2(t2))]
A0(t1;β0)A0(t2;β0)

and

ν2(t1, t2) =
∑2

k=1 E[ζk(t1)ζk(t2)]
A0(t1;β0)A0(t2;β0)

.

Proof See Appendix B of Supplementary Material (I). ��
After some algebraic manipulations, ν2(t, t) is readily shown to be E[(ξ1(t) +
ξ2(t))2]/A2

0(t;β0). Let FC (t |z) and FC (t, ν) stand for the distributions of C given
Z = z and Zβ0 = ν, respectively. When C is independent of (T, Z) or FC (t |z) =
FC (t, zβ0), ξ0(t) = 0 can be derived by the fact that E[�[1](t, Z , β0)|Zβ0 ] = 0. As a
result, both of the AUC estimators have the same asymptotic variance. However, nei-
ther Ā(t; ̂β) nor Ă(t; ̂β) is universally better than the other in terms of their asymptotic
variances.

4 Monte carlo simulations

In our numerical experiments, data were repeatedly generated 1000 times with sample
sizes of 75, 125, and 250 and censoring rates of 20 and 40%.To simplify our assessment
for the estimators of β0, S(t, zHt , β0), and A(t;β0), the setup of time-dependent
covariates was omitted in the investigation of estimators of β0 and S(t, zHt , β0). The
time-independent covariates Z = (Z1, Z2, Z3)

� were designed to follow a trivariate
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normal distribution with a mean of zero, a standard deviation of one, and a pairwise
correlation of 0.5. Conditioning on Z = z, T and C were assumed to be independent
with the respective hazard rate functions

λT (t |z) = exp(−zβ0 + 5)

2(exp(−zβ0 + 5) − t)2
I (0 < t < exp(−zβ0 + 5)) (22)

and λC (t |z) = 1

c0t
I

(

exp

(

z1 − z3
c0

+ 4

)

< t < exp

(

z1 − z3
c0

+ 4 + c0

))

,

(23)

where β0 = (−1, 0.2)� and c0 was specified to produce the expected censoring rates.
Instead of designing the widely applied relative risk model, additive risk model, and
extended accelerated failure time model, such a hazard formulation is used to empha-
size the flexibility of a general single-index hazards model. Due to the difficulty and
complexity in directly estimating the asymptotic distributions of the estimators, a ran-
domweighted bootstrap technique for semiparametricmodels (seeKosorok 2008) was
employed. Independent of survival data, exchangeable random weights were repeat-
edly generated 500 times based on i.i.d. Gamma(4, 2) random variables, which have
better numerical results than others, with a scale factor modification of 0.5 for the
variability in the random weights. Further, simultaneous confidence bands were con-
structed for S(t, z, β0) over Tq(zβ0) = [0, tq(zβ0)] and At (β0) over Tq = [0, tq ],
where tq(zβ0) and tq are the respective qth quantiles of S(t, z, β0) and S(t) with
q = 0.65, 0.75, and 0.85.

In this study, the performances of the PILSEs and the PMLEs were assessed and
compared on a variety of simulation settings. To investigate the effects of weight func-
tions Win(t)’s on the precision of ̂β, a uniform distribution, an empirical distribution of
X , and an estimator ̂S(t) = ∑n

i=1
˜Sς (t, Zi Ht ,

̂β)/n of the marginal survival function
S(t) were specified in (7)–(8) over (0,max{Xi : δi = 1}). For ease of presentation,
the resulting PILSEs are represented by ̂β(unif.), ̂β(empi.), and ̂β(surv.), respectively.
As for the bandwidth ς in the summands of ̂S(t), it was chosen by

ς̂ = argmin
ς

1

n

n
∑

i=1

∫

(

Ni
(

t;̂S
̂h, ̂β

) − ̂S−i (t)
)2

dt. (24)

As shown by Chiang et al. (2016), ̂S(t) has the rate of convergence Op(n−3/11) but
the chosen bandwidths in (9) and (12) cannot attain the

√
n-consistency of ̂S(t). The

PILSE ̂β(K2) with a uniform distribution weight and a second-order kernel function
in (7)–(8) was also given to illustrate a major impact on the bandwidth selection. By
specifying second and fourth-order kernel functions in 
h12(β), the derived PMLEs,
which are denoted by β̄(K2) and β̄ with β̄(K2) being asymptotically equivalent to that
of Strzalkowska-Kominiak and Cao (2014), were further considered in this numerical
investigation. Due to the poor performance of two-separate-bandwidths, both of the
PMLEs were computed with bandwidths of the form (˜h1,˜h2) = ˜h0(̂σ (X), σ̂ (Zβ̄ )),
where σ̂ is the sample standard deviation. As evidenced by the simulation findings
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in Strzalkowska-Kominiak and Cao (2013), we studied their PMLE β̄∗ because it is
comparable or even better than that of Bouaziz and Lopez (2010).

It is revealed in Table 1 that ̂β(unif.), ̂β(empi.), and ̂β(surv.) are generally compa-
rable and outperform ̂β(K2), β̄, β̄(K2), and β̄∗. One can also observe in this table that
the bias magnitudes of β̄ and β̄(K2) are much larger than those their competitors for
small samples and heavy censoring rates. Due to an inappropriate bandwidth for the
maximizer β̄(K2) of 
h12(β), the performance of β̄ is expected to be better than that of
β̄(K2). Compared with β̄ and β̄(K2), β̄∗ has a relatively small standard deviation. For
moderate samples, the averages of 1000 bootstrap standard errors and the empirical
coverage probabilities are fairly close to the standard deviations of their 1000 esti-
mates and the nominal level of 0.95 (Table 2). Conditioning on the first, second, and
third quartiles of Zβ0 , we further display the survival functions, the mean and standard
deviation curves of 1000 estimated survival functions, and the averages of 1000 boot-
strap standard error curves in Figs. 1, 2, and 3 and Figures S1–S3 of Supplementary
Material (II). When the sample size is moderate or the censoring rate is low, the true
and estimated curves are very similar to each other. Moreover, it is found in Table 3
that the simultaneous coverage probabilities are quite near the nominal level of 0.95
for moderate samples.

The second simulation study aims at assessing the performance of Ā(t; ̂β) and
making a comparison with the Chambless-Diao type estimator Ă(t; ̂β). For the com-
putation of the time-dependent AUC estimators, the involved bandwidths were chosen
by the minimizer �̃ of a cross-validation criterion in (21). In Fig. 4 and Figure S4 of
Supplementary Material (II), one can observe that Ă(t; ̂β) systematically deviates
from A(t;β0), whereas Ā(t; ̂β) has a very small bias. Therefore, an extremely large
sample size is generally expected to alleviate the bias problem in Ă(t; ̂β). Further-
more, the variance of Ă(t; ̂β) is slightly larger than that of Ā(t; ̂β). As for the bootstrap
standard errors, their averages are found to increase toward the standard deviations
of 1000 estimates as the sample size increases or the censoring rate decreases. The
simultaneous coverage probabilities ofA(t;β0) , which are exhibited in Table 4, also
stay around the nominal level of 0.95 for moderate samples.

5 Applications

The Mayo PBC data set was first used to illustrate the applicability of our estima-
tion approach for the index coefficients and the survival functions of interest. In
an angiography cohort study, the proposed estimator for the time-dependent AUC
was further used to assess the overall classification ability of the optimal composite
plasma biomarker. Based on the computed pseudo-residuals eit = Ni (t;̂S

̂h, ̂β)− (1−
˜Sς̃ (t, Zi Ht ,

̂β), i = 1, . . . , n, the test rules established by Chiang and Huang (2012)
can be directly applied to examine the correctness of the SIH model.

5.1 Application to a primary biliary cirrhosis study

The data presented by Fleming and Harrington (1991) were collected from the Mayo
clinical trial study. Among 418 patients, who participated in this study on PBC of

123



Censored single-index hazards regression 537

Ta
bl
e
1

T
he

m
ea
ns

(M
ea
n)

an
d
th
e
st
an
da
rd

de
vi
at
io
ns

(S
D
)
of

th
e
PI
L
SE

s
̂ β
(u
ni
f.
),

̂ β
(e
m
pi
.)
,̂ β

(s
ur
v.

),
an
d

̂ β
(K

2
),
an
d
th
e
PM

L
E
s
β̄
an
d

β̄
(K

2
)

(
n
,
c
.
r
.
)
(%

)
β
0

̂ β
(u
ni
f.
)

̂ β
(e
m
pi
.)

̂ β
(s
ur
v.
)

̂ β
(K

2
)

β̄
β̄
(K

2
)

β̄
∗

M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
M
ea
n

SD
M
ea
n

SD

(7
5.
20

)
−1

.0
−0

.9
9

0.
10

6
−1

.0
0

0.
08

9
−1

.0
0

0.
08

2
−1

.0
1

0.
12

4
−1

.0
3

0.
20

9
−1

.0
1

0.
25

1
−1

.0
0

0.
14

0

0.
2

0.
20

0.
10

9
0.
19

0.
08

7
0.
19

0.
07

3
0.
21

0.
12

6
0.
21

0.
17

8
0.
21

0.
15

1
0.
20

0.
12

8

(7
5.
40

)
−1

.0
−1

.0
0

0.
12

4
−1

.0
0

0.
13

5
−1

.0
0

0.
11

7
−1

.0
0

0.
16

4
−1

.0
4

0.
24

0
−1

.0
5

0.
28

9
−1

.0
2

0.
18

2

0.
2

0.
20

0.
11

5
0.
20

0.
14

1
0.
20

0.
13

9
0.
24

0.
16

7
0.
21

0.
22

2
0.
25

0.
35

4
0.
23

0.
17

1

(1
25

.2
0)

−1
.0

−1
.0
0

0.
08

3
−0

.9
9

0.
06

6
−0

.9
9

0.
05

1
−1

.0
1

0.
11

2
−1

.0
2

0.
16

1
−1

.0
2

0.
18

2
−1

.0
0

0.
10

8

0.
2

0.
20

0.
08

1
0.
19

0.
05

8
0.
19

0.
06

0
0.
21

0.
10

0
0.
20

0.
14

1
0.
21

0.
16

9
0.
20

0.
09

7

(1
25

.4
0)

−1
.0

−1
.0
0

0.
10

4
−1

.0
0

0.
11

6
−1

.0
0

0.
10

8
−1

.0
1

0.
13

3
−1

.0
2

0.
17

0
−1

.0
2

0.
18

8
−1

.0
1

0.
11

9

0.
2

0.
20

0.
11

0
0.
20

0.
10

2
0.
20

0.
10

4
0.
24

0.
12

9
0.
20

0.
17

3
0.
19

0.
17

8
0.
22

0.
12

0

(2
50

.2
0)

− 1
.0

−1
.0
0

0.
04

5
−1

.0
0

0.
04

1
−1

.0
0

0.
03

6
−1

.0
0

0.
07

5
−1

.0
1

0.
09

8
−1

.0
1

0.
14

4
−1

.0
0

0.
06

2

0.
2

0.
20

0.
04

3
0.
20

0.
04

0
0.
20

0.
03

7
0.
20

0.
07

1
0.
20

0.
07

8
0.
21

0.
13

3
0.
20

0.
06

7

(2
50

.4
0)

−1
.0

−1
.0
0

0.
06

4
−0

.9
9

0.
06

5
−0

.9
9

0.
06

9
−1

.0
0

0.
09

7
−1

.0
1

0.
14

0
−1

.0
1

0.
15

9
−1

.0
0

0.
08

6

0.
2

0.
20

0.
07

3
0.
20

0.
08

0
0.
20

0.
08

5
0.
23

0.
08

7
0.
19

0.
12

1
0.
20

0.
14

1
0.
21

0.
08

3

123



538 C.-T. Chiang et al.

Ta
bl
e
2

T
he

st
an
da
rd

de
vi
at
io
ns

(S
D
)
an
d
bo

ot
st
ra
p
st
an
da
rd

er
ro
rs

(B
.S
.E
.)
of

̂ β
(u
ni
f.
),
th
e
qu

an
til
e
in
te
rv
al
s
(Q

.I
.)
,
th
e
bo

ot
st
ra
p
co
nfi

de
nc
e
in
te
rv
al
s
(B

.C
.I
.)
,
an
d
th
e

co
ve
ra
ge

pr
ob
ab
ili
tie
s
(C
.P
.)

c
.
r
.

β
0

20
%

40
%

n
SD

B
.S
.E

Q
.I
.

B
.C
.I

C
.P
.

SD
B
.S
.E

Q
.I
.

B
.C
.I

C
.P
.

75
−1

.0
0.
10

6
0.
12

3
(−

1.
22

8,
−0

.7
80

)
(−

1.
12

3,
−0

.7
38

)
0.
94

3
0.
12

4
0.
14

8
(−

1.
24

7,
−0

.7
63

)
(−

1.
29

7,
−0

.7
04

)
0.
96

7

0.
2

0.
10

9
0.
12

3
(
0.
00

5,
0.
43

4)
(−

0.
04

8,
0.
44

5)
0.
96

1
0.
11

5
0.
14

6
(
0.
01

0,
0.
41

7)
(−

0.
09

0,
0.
49

4)
0.
96

1

12
5

−1
.0

0.
08

3
0.
08

7
(−

1.
18

4,
−0

.8
76

)
(−

1.
17

5,
−0

.8
21

)
0.
95

0
0.
10

4
0.
10

2
(−

1.
20

4,
−0

.8
12

)
(−

1.
20

1,
−0

.7
93

)
0.
94

2

0.
2

0.
08

1
0.
08

6
(
0.
05

2,
0.
37

3)
(
0.
01

2,
0.
38

5)
0.
94

5
0.
11

0
0.
11

6
(−

0.
02

0,
0.
38

8)
(−

0.
04

9,
0.
41

7)
0.
94

4

25
0

−1
.0

0.
04

5
0.
04

3
(−

1.
09

2,
−0

.9
05

)
(−

1.
07

9,
−0

.9
06

)
0.
94

7
0.
06

4
0.
07

0
(−

1.
18

9,
−0

.9
06

)
(−

1.
14

6,
−0

.8
68

)
0.
95

5

0.
2

0.
04

3
0.
04

2
(
0.
10

2,
0.
28

9)
(
0.
11

3,
0.
28

2)
0.
95

1
0.
07

3
0.
07

7
(
0.
02

4,
0.
30

4)
(
0.
05

3,
0.
36

2)
0.
95

4

123



Censored single-index hazards regression 539

the liver between 1974 and 1984, 185 died during the study period. The primary
research interest focuses on investigating the influences of some prognostic factors
on the number of days between registration and death. Measurements taken in our
data analysis included age in days (age), albumin in gm/dl (albumin), serum bilirubin
in mg/dl (bilirubin), presence of edema (edema), and prothrombin time in seconds
(protime).
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(a) n=125,c.r.=20%

(b) n=250,c.r.=20%

(c) n=125,c.r.=40%

(d) n=250,c.r.=40%

Fig. 1 a–d The survival functions (solid curves) conditioning on Zβ0 = SI0.25 and the estimated condi-
tional survival functions (dashed curve). e, f The standard deviation curves (solid curves) and the bootstrap
standard error curves (dashed curves) of the estimated conditional survival functions
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(e) S.D. : n=125,c.r.=20%

(f) S.D. : n=250,c.r.=20%
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(h) S.D. : n=250,c.r.=40%

Fig. 1 continued

To characterize the relative effects of age, log(albumin), log(bilirubin), and edema,
compared to log(protime), on the death time, a SIH model was fitted with the linear
predictor

log(protime) + β02age + β03log(albumin) + β04log(bilirubin) + β05edema.

The PILSE (0.026,−2.866, 0.905, 1.239) of (β02, β03, β04, β05) is computed with
the bootstrap standard error vector (0.0081, 0.4391, 0.1754, 0.3202). Meanwhile, the
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bandwidth ̂h = 0.864 is obtained from the cross-validation estimating equation in
(8). The corresponding 95% bootstrap confidence intervals of the coefficients are
further constructed as (0.0116, 0.0435), (−3.4035,−1.6104), (0.6101, 1.3589), and
(0.5385, 1.9375). In this data analysis, the estimates and inferences are found to have
a comparable degree of agreement with those of Zeng and Lin (2007) for an extended
AFT model. As for the correctness of the fitted SIH model, it is ascertained by the
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Fig. 2 a–dThe survival functions (solid curves) conditioning on Zβ0 = SI0.5 and the estimated conditional
survival functions (dashed curves). e–f The standard deviation curves (solid curves) and the bootstrap
standard error curves (dashed curves) of the estimated conditional survival functions
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(e) S.D. : n=125,c.r.=20%
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(g) S.D. : n=125,c.r.=40%

(h) S.D. : n=250,c.r.=40%

Fig. 2 continued

equality of the single-index cross-validation measure SICn = 0.0996 and the total
residual sum of squares TSSn = 0.0996. This conclusion is also evidenced by the
F-test statistic of 0.9894 with the bootstrap p value of 0.338.

Provided that the conditional mean E[T |Z = z] exists and is not constant for all
possible values of z, the estimation procedure of Lopez et al. (2013) was implemented
to estimate their proposed mean regression single-index model. The estimated linear
predictor log(protime)+0.021age −0.315log(albumin)+0.522log(bilirubin)+
1.438edema appears to closely match our one, i.e. Z

̂β . This conclusion is further
ensured by the extremely high canonical correlation of 0.992 between both of the
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estimated directions. As one can expect, the corresponding bootstrap standard errors
(0.0294, 1.1499, 0.1797, 0.2701) of the parameter estimates are somewhat larger than
ours because this estimation is rather sensitive to the presence of outliers in data.
In Fig. 5a–c, the estimated survival functions, which are computed with the chosen
bandwidth ς̃ = 1.271, are presented together with their 95% simultaneous bootstrap
confidence bands. These figures partly justify the qualitative structure that the survival
function is a nonincreasing function of the SI at each time.

20 25 30 35 40 45 50 55

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

20 25 30 35 40 45 50 55

Time

20 25 30 35 40 45 50 55

Time

20 25 30 35 40 45 50 55

Time

S
ur
vi
va

l
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur
vi
va

l
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur
vi
va

l
0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

S
ur
vi
va

l
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(b) n=250,c.r.=20%

(c) n=125,c.r.=40%

(d) n=250,c.r.=40%

Fig. 3 a–d The survival functions (solid curves) conditioning on Zβ0 = SI0.75 and the estimated condi-
tional survival functions (dashed curves). e, f The standard deviation curves (solid curves) and the bootstrap
standard error curves (dashed curves) of the estimated conditional survival functions
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(e) S.D. : n=125,c.r.=20%

(f) S.D. : n=250,c.r.=20%

(g) S.D. : n=125,c.r.=40%

(h) S.D. : n=250,c.r.=40%

Fig. 3 continued

5.2 Application to an angiography cohort study

The second survival data were obtained from the BCVS database. In this angiography
cohort study, 1050 patientswere recruited between 1993 and 1995 from twoVancouver
teaching hospitals for selective coronary angiography and 231 of the traceable patients
died within 3500days. In the work of Lee et al. (2006), the baseline plasma levels of
C-reactive protein (C R P), serum amyloid A protein (SAA), interleukin IL-6 (IL-6),
and total homocysteine (tHcy) were considered to be linked to the death.
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(a) Bias : n=125,c.r.=20%

(b) Bias : n=125,c.r.=40%

(c) Bias : n=250,c.r.=20%

(d) Bias : n=250,c.r.=40%

Fig. 4 a–d The bias curves (solid and dashed curves) of Ā(t; ̂β) and Ă(t; ̂β) with a horizontal line at zero
(gray line). e–h The standard deviation curves (solid curve and dashed curves) of Ā(t; ̂β) and Ă(t; ̂β) and
the bootstrap standard error curves (dotted-dashed curves) of Ā(t; ̂β)
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Fig. 4 continued

In our data analysis, a more flexible SIH model was employed to predict the all-
cause death time with the single-index of the form

tHcy + β02CRP + β03(SAA/100) + β04 I L-6.
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Table 4 The simultaneous coverage probabilities of the AUC curve over different time periods

c.r. 20% 40%

n T0.85(zβ0 ) T0.75(zβ0 ) T0.65(zβ0 ) T0.85(zβ0 ) T0.75(zβ0 ) T0.65(zβ0 )

75 0.945 0.946 0.940 0.972 0.971 0.968

125 0.954 0.952 0.954 0.953 0.953 0.955

250 0.950 0.951 0.953 0.954 0.953 0.950

The index coefficient vector of the composite biomarker value is estimated by
(−0.221, 0.285, 1.124) with the bootstrap standard error vector (0.0449, 0.0304,
0.0380). Meanwhile, the chosen bandwidth ̂h = 1.186 is chosen by our cross-
validation estimating equation. All the relative effects (β02, β03, β04) are fur-
ther detected to be significant from their 95% bootstrap confidence intervals
((−0.3642,−0.1660), (0.2004, 0.3322), (1.0511, 1.1942)). Moreover, there is no
significant evidence to reject the correctness of a fitted SIH model through the test
statistic Fn = 1 with the bootstrap p value of 0.518 and the equality SICn = TSSn =
0.1478. It follows from this conclusion that the time-varying logistic regressionmodel,
which was employed in the data analysis of Chiang and Huang (2009), might be ques-
tionable.

Once again, we apply the approach of Lopez et al. (2013) to estimate the index
coefficients of a mean regression single-index model. The relative effects of (CRP,
SAA/100, IL-6) are estimated by (−0.324, 0.167, 1.195) with the bootstrap standard
errors (0.1564, 0.3185, 0.2398). In light of the extremely high canonical correlation
0.998, the estimated single-index and Z

̂β are found to be closely matched. As men-
tioned in Sect. 5.1, the standard errors of their estimates are generally larger than ours.
In Fig. 5d–f, the estimated survival functions, which are computed with the chosen
bandwidth ς̃ = 0.690, have a very similar shape and a slightly decreasing trend in
the linear predictor. For the time-dependent AUC of the optimal composite plasma
biomarker value Zβ0 , the proposed estimates at the selected days are all higher than
those based on the time-varying logistic regression model (Fig. 6). With such a large
sample size, both of Ā(t; ̂β) and Ă(t; ̂β) (not shown in the figure), which are computed
with the chosen bandwidth �̃ = 0.849, are almost the same.

6 Conclusion and discussion

In the context of this article, the word “versatility” mainly highlights the essential
role and the diverse utility of N (t; S, β0) in estimation, classification, and model
checking. Under a very general censoring mechanism, the features of this estimable
counting process are fully considered in developing estimation procedures for the
index coefficients, the induced conditional survival function, and the time-dependent
AUC. For the proposed estimators, we further establish the related large sample prop-
erties and bandwidth selection procedures. It is noticeable that a chosen bandwidth
for the conditional survival function estimator is an estimator for the asymptotically
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Fig. 5 The estimated conditional survival functions (solid curves) and the corresponding 95% bootstrap-
based simultaneous confidence bands (dashed curves) for a primary biliary cirrhosis study (a–c) and an
angiography cohort study (d–f)

Fig. 6 The estimated AUC
curve (solid curve) and the
corresponding 95%
bootstrap-based simultaneous
confidence bands (dashed
curves), and the estimated AUCs
(+) based on the time-varying
logistic regression at the selected
days
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optimal bandwidth selector but those involved bandwidths in the PILSE and the AUC
estimators are only regarded as tuning parameters. In the numerical experiments, our
estimators for the index coefficients and the time-dependent AUC are found to outper-
form their competitors (the PMLEs and the Chambless-Diao type estimator) and the
presented conditional survival function estimator has a quite satisfactory performance.
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As expected, an intrinsic capacity of N (t; S, β0) in discrimination should be a
fairly good foundation for estimating the concordance index and other prospective
and retrospective accuracy measures. Based on the defined pseudo-residual processes
eit ’s in Sect. 5, we can directly apply the test rules of Chiang and Huang (2012) to
check the validity of the SIHmodel. To deal with competing risks data, the hazards for
failures of type j can be naturally formulated by generalizing model (1) as follows:

λTj (t |zHt ) = λ j (t, ztβ j0), j = 1, . . . , J, (25)

where λ j (·, ·)’s are unknown bivariate functions and Ztβ j0 ’s are type-specific linear
predictors. One estimation strategy for the above model is to extend our estimation
procedure with an appropriate modification. Another core theme emerged from the
data analysis is to develop a more powerful test for the monotonicity of λ(t, υ) in υ.
In longitudinal studies, time-dependent covariates might be intermittently collected at
multiple follow-up times. It remains a challenge to either develop a new approach or
a more flexible hazards model.
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