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Abstract We consider an estimating equations approach to parameter estimation in
adaptive varying-coefficient linear quantile model. We propose estimating equations
for the index vector of the model in which the unknown nonparametric functions are
estimated by minimizing the check loss function, resulting in a profiled approach. The
estimating equations have a bias-corrected form that makes undersmoothing of the
nonparametric part unnecessary. The estimating equations approach makes it possible
to obtain the estimates using a simple fixed-point algorithm. We establish asymptotic
properties of the estimator using empirical process theory, with additional complica-
tion due to the nuisance nonparametric part. The finite sample performance of the new
model is illustrated using simulation studies and a forest fire dataset.

Keywords Asymptotic normality · Bias-corrected estimating equations · Check
loss · Empirical processes · Single-index model

1 Introduction

The varying-coefficient model (VCM) has gained much attention in the literature.
Hastie and Tibshirani (1993) and Chen and Tsay (1993) are the two seminal works on
the VCM for cross-sectional data and time series data, respectively. Fan and Zhang
(1999) proposed a two-step local linear estimator in the VCM which achieves uni-
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variate optimal convergence rate. The VCM also has wide applications in longitudinal
studies; see Hoover et al. (1998), Fan and Zhang (2000) and Huang et al. (2002).
Recently, the VCM has been applied to high-dimensional data settings with large p;
seeWei et al. (2011), Lian (2012b) andXue andQu (2012) for the penalizationmethod
and Fan et al. (2014b); Liu et al. (2014) for the independence screening method.

We consider the following varying-coefficient model,

Yi = g0(XT
i β) +

p∑

j=1

g j (XT
i β)Xi j + ei , (1)

where Xi = (Xi1, . . . , Xip)
T are the covariates, Yi is the response, g j , 0 ≤ j ≤ p

are p + 1 unknown coefficient functions and β is an unknown p-vector, henceforth
referred to as the index vector. Fan et al. (2003) considered mean regression for the
model (1) with E[ei |Xi ] = 0 and termed it the adaptive varying-coefficient linear
model. The adaptiveness comes from that the coefficients are functions of XTβ, with
β estimated from data, in contrast to the standard varying-coefficient model where
the coefficient functions vary with some directly observed variable(s). The adaptive
varying-coefficient linear model avoids the curse of dimensionality for multivariate
data since only one-dimensional functions are being estimated. This model is also
similar to that proposed in Xia and Li (1999). Fan et al. (2003) proposed a new
computationally efficient procedure based on the profile least-squares local linear
regression. Large sample properties of the model are later established by Lu et al.
(2007).

Model (1) was previously considered for estimating the conditional mean of the
response. In this paper, we are instead interested in the conditional quantile, by assum-
ing P(ei ≤ 0|Xi ) = τ for some τ ∈ (0, 1). Quantile regression, since its introduction
by Koenker and Bassett Jr (1978) in a celebrated Econometrica paper, has been inten-
sively studied in both the econometrics and the statistics literature. Both parametric
and nonparametric modeling in quantile regression have been investigated (Bondell
et al. 2010; Koenker et al. 1994; Reich et al. 2010; Wu and Liu 2009; Yu and Jones
1998). Semiparametric quantile models have also attracted much attention. For exam-
ple, Kim (2007) considered varying-coefficient quantile regression and Wang et al.
(2009) extended this to partially linear varying coefficient models, both using polyno-
mial spline. Cai and Xiao (2012) investigated the partially linear varying-coefficient
models for time series data. Lee (2003) proposed efficient estimation method for par-
tially linear quantile regression. Horowitz and Lee (2005) used a two-stage estimation
procedure to achieve oracle efficiency for additive quantile regression models, using
polynomial splines in the first stage and kernel estimator in the second. Lian (2012a)
also considered additive models with a focus on model selection. Bayesian methods
are also popular, including Hu et al. (2013); Kottas and Krnjajic (2009); Tokdar and
Kadane (2011); Yang and He (2012); Yu and Moyeed (2001). Quantile regression in
high-dimensional situations is studied in Belloni and Chernozhukov (2011); Fan et al.
(2014a); Wang et al. (2012); Zhu et al. (2012).

In this paper, we consider the estimation problem for (1) assuming the conditional
τ -quantile of Yi is g0(XT

i β) +∑p
j=1 g j (XT

i β)Xi j . This semiparametric model can
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be regarded as an extension of quantile varying-coefficient regression model with
the coefficient varying with an unknown linear combination of the covariates. It can
also be regarded as an extension of quantile single-index models, for which Wu
et al. (2010) and Kong and Xia (2012) were the first to study the associated esti-
mation problem using kernel-based methods. However, to our knowledge quantile
version of (1) has not been studied. As shown in Lu et al. (2007), establishing asymp-
totic properties of adaptive varying-coefficient linear models is nontrivial even for
mean regression. For the coefficient functions, here we use polynomial splines as
our estimation method. The advantage of using regression splines largely resides in
its computational expediency, with all coefficient functions estimated simultaneously,
while for local polynomial-based method, one needs to choose a grid for the support
of XT

i β and the coefficient function values at each point on the grid are estimated
separately. However, our main intent is not to promote the splines. Estimation proce-
dure for quantile varying-coefficient linear model could also be developed using local
polynomial regression. Both approaches have their advantages and disadvantages.

Conceptually, we treat the nonparametric coefficient functions as the nuisance and
propose estimating equations for the estimation of β, with the unknown coefficient
functions replaced by their estimates for a given β. In this respect, we are using a
profiled procedure for constructing the estimating equations. This is the same as the
approach used in Cui et al. (2011) for generalized single-index models. Due to pro-
filing, the estimating equations have a bias-corrected form that resembles estimating
equations used in Cui et al. (2011); Lai et al. (2012); Wang et al. (2010); Zhu et al.
(2010). The bias-corrected form results from the profile approach and is the reason
that no undersmoothing for the nonparametric functions is necessary, as discussed in
Carroll et al. (1997). However, unlike those estimating equations mentioned in those
papers, the quantile version here is nonsmooth, and thus, we heavily rely on empirical
process theory to derive its asymptotic properties.

The rest of the article is organized as follows. In Sect. 2, we formally derive the
estimating equations and define the estimation as an approximate solution to the esti-
mating equations. We also establish the asymptotic normality of the estimator for the
index vector. Section 3 contains numerical experiments including simulation and a
real data application. We conclude with some discussions in Sect. 4. The technical
details for establishing the asymptotic properties are relegated to Appendix.

2 Methods

2.1 Derivation of estimating equations

Given independent and identically distributed data (Xi ,Yi ), i = 1, . . . , n, we write
(1) more succinctly as

Yi = gT(XT
i β)Zi + ei ,

with g = (g0, . . . , gp)T and Zi = (1,XT
i )T. ei is the error whose conditional τ th

quantile is 0, that is, P(ei ≤ 0|Xi ) = τ . For identifiability, we assume ‖β‖ = 1 with
β1 > 0.
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We first motivate the estimating equations based on calculations in the population.
Given β, let g(u;β) be the minimizer of

min
g∈Rp

E
[
ρτ (Y − gTZ)|XTβ = u

]
,

where ρτ (x) = x(τ − I {x ≤ 0}) is the check loss function. Since g(XTβ;β)

and its derivatives appear often below, it is important to distinguish between the
different partial derivatives. We use g′(XTβ;β) to denote ∂g(u;β)/∂u|u=XTβ , use
∂g(XTβ;β)/∂β to denote ∂g(u;β)/∂β|u=XTβ and use dg(XTβ;β)/dβ to denote
g′(XTβ;β)X + ∂g(XTβ;β)/∂β which results from the chain rule.

We nowderive the estimating equations. For now,we ignore the constraint ‖β‖ = 1.
In the population, the first-order condition for minimizing the profiled functional over
β, minβ E

[
ρτ (Y − gT(XTβ;β)Z)

]
, is given by

E

[(
X(g′(XTβ;β))TZ + ∂gT(XTβ;β)

∂β
Z
)

ψτ (Y − gT(XTβ;β)Z)

]
= 0, (2)

where ψτ (x) = τ − I {x ≤ 0}. To derive the estimating equations, we need a more

concrete expression for ∂gT(XTβ;β)
∂β

. Since g(u;β) is the minimizer of

min
g∈Rp+1

E
[
ρτ (Y − gTZ)|XTβ = u

]
, (3)

we have
E
[
Zψτ (Y − g(XTβ;β)TZ)|XTβ

]
≡ 0 (4)

for all β. We take the derivative of (4) with respect to β at β0. Using that
∂E[ψτ (Y − g)|X]/∂g|g=gT(XTβ;β)Z = − f (gT(XTβ;β)Z|X), where f (.|X) is the
conditional density of Y given X, we get

E

[
Z f (gT(XTβ;β)Z|X)ZTg′(Xβ;β)XT+Z f (gT(XTβ;β)Z|X)ZT ∂g

∂βT

∣∣XTβ

]
=0

(5)
at β = β0. Equation (5) is derived using the chain rule, and the fact that at β0, we
have

∂E
[
Zψτ (Y − g(XTβ0;β0)

TZ)|XTβ
]

∂β

= ∂E
[
E [Zψτ (e)|X] |XTβ

]

∂β

= 0,
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since E[Zψτ (e)|X] = 0. Thus by (5) we have

−∂gT(XTβ;β)

∂β
= E

[
XZTg′(XTβ;β) f (gT(XTβ;β)Z|X)ZT|XTβ

]

×
{
E[Z f (gT(XTβ;β)Z|X)ZT|XTβ]

}−1
.

It is also easy to see that the right-hand size above is the minimizer of

min
H∈Rp×(p+1)

E
[
f (gT(XTβ;β)Z|X)‖XZTg′(XTβ;β) − HZ‖2|XTβ

]
,

which can be written as H(XTβ;β) to make the dependence explicit. This can be
interpreted as a kind of projection in some space of functions aswe elucidate now. Such
projection is often used in semiparametric models to “orthogonalize” the parametric
part and the nonparametric part. LetMβ = {m : m(x) = hT(xTβ)z, Em2(X) < ∞}
be the space of functions taking the adaptive varying-coefficient form with fixed β.
For any random variable W , E[W |Mβ ] denotes the projection of W on Mβ in the
sense that E[W |Mβ ] is the minimizer of E

[
f (gT(XTβ;β)Z|X)(W − m(X))2

]
over

m ∈ Mβ . This definition can be extended to the case W = (W1, . . . ,Wp)
T is a

random vector, by E[W|Mβ ] = (E[W1|Mβ ], . . . , E[Wp|Mβ ])T.
Byour previous definition,− ∂gT(XTβ;β)

∂β
Z can also bewritten as E

[
XZTg′(XTβ;β)

|Mβ

]
. Plugging into (2), we get the estimating equations (EE)

(
XZTg′(XTβ;β) − E

[
XZTg′(XTβ;β)|Mβ

])
ψτ

(
Y − gT(XTβ;β)Z

)
= 0.

We note in passing that if g were known, the estimating equations would be naturally
defined as

XZTg′(XTβ;β)ψτ (Y − gT(XTβ;β)) = 0,

and thus our EE can be regarded as a bias-corrected EE taking into account that g is
unknown.

The parameter space B = {β : ‖β‖ = 1, β1 > 0} is a compact set. So far in the
derivation we have ignored the constraint ‖β‖ = 1. To take into account this, we
use the delete-one-component method of Cui et al. (2011); Yu and Ruppert (2002).
Assuming β1 > 0, we canwriteβ = ((1−‖β(−1)‖2)1/2, β2, . . . , βp)

T whereβ(−1) =
(β2, . . . , βp)

T is β without the first component. Thus β is a function of β(−1). The
p × (p − 1) Jacobian matrix is

J = ∂β

∂β(−1)
=
(

− β(−1)

(1−‖β(−1)‖2)1/2
I(p−1)×(p−1)

)
,
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where I(p−1)×(p−1) is the (p − 1) × (p − 1) identity matrix. Note J is actually a
function of β. Thus finally, our estimating equations are given by

JT
(
XZTg′(XTβ;β) − E[XZTg′(XTβ;β)|Mβ ]

)
ψτ

(
Y − gT(XTβ;β)

)
= 0.

The delete-one-component method is only used in the derivation of the estimating
equations and theoretical proofs, while for computation we use the fixed-point algo-
rithm as explained later.

2.2 Estimation and asymptotics

Quantile regression is typically performed by minimizing

∑

i

ρτ

(
Yi − gT(XT

i β)Zi

)
.

Since g is unknown, we approximate the p+ 1 functions using B-splines. We assume
that XT

i β are contained in some interval [a, b] (in practice the interval boundary can
be set to be the minimum and maximum value ofXT

i β based on the current estimates).
Let t0 = a < t1 < · · · < tK ′ < b = tK ′+1 be a partition of [a, b] into subintervals
[tk, tk+1), k = 0, . . . , K ′ with K ′ internal knots. We only restrict our attention to
equally spaced knots although data-driven choice can be considered such as putting
knots at certain sample quantiles of the observed values. A polynomial spline of
order s is a function whose restriction to each subinterval is a polynomial of degree
s − 1 and globally s − 2 times continuously differentiable on [a, b]. The collection of
splines with a fixed sequence of knots has a B-spline basis {B1(x), . . . , BK (x)} with
K = K ′ +s. We assume the basis functions are normalized to have

∑
k Bk(x) ≡ √

K .
This is not essential but simplifies some of the expressions in the proof.With the spline
basis defined, we can approximate g(x) ≈ �TB(x) where � = (θ0, θ1, . . . , θ p) is a
K×(p+1)matrix of spline coefficients andwe denoteB(x) = (B1(x), . . . , BK (x))T.

Given i.i.d. observations, the functions g(u;β) can be estimated by ĝ(u;β) =
BT(u)�̂(β) where �̂(β) is the minimizer of

min
�

∑

i

ρτ

(
Yi − BT(XT

i β)�Zi

)
,

for a given β, and g′(u;β) is estimated by ĝ′(u;β), the derivative of ĝ(u;β) with
respect to u. We similarly estimate H(u,β) by

Ĥ(u;β) = �̂ (I ⊗ B(u)) , (6)

where ⊗ denotes the Kronecker product and �̂ is the minimizer of

∑

i

f
(
gT(XT

i β;β)Zi |Xi

)
‖XiZT

i ĝ
′(XTβ;β) − �

(
Zi ⊗ B(XT

i β)
)

‖2,
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where � ∈ Rp×(p+1)K (this is same as minimizing over � row-by-row). We assume
that the density f (gT(XT

i β;β)Zi |Xi ) is known in our theoretical studies. The theory
still holds if f (gT(XT

i β;β)Zi |Xi ) can be consistently estimated (Wang et al. 2009).
Finally, we obtain the following sample-based estimating equations for β:

�n(β; m̂) = 1

n

∑

i

JT
(
XiZT

i ĝ
′(XT

i β;β) − Ĥ(XT
i β;β)Zi

)

×ψτ

(
Yi − ĝT(XT

i β;β)Zi

)
, (7)

where m̂ = (̂g, Ĥ) denotes all nonparametric functions that are estimated. m̂ implicitly
depends on β, and thus, sometimes we will write m̂(.; β̂) to make the dependence
explicit. Similarly we can writem = m(.,β) = (g(.;β),H(.;β)).

Since �n(β; m̂) is a discontinuous function of β (inherited from the discontinuity
of ψτ (.)), we formally define the estimator as any β̂ that satisfies (the infimum may
not be achieved by any β due to discontinuity)

‖�n(β̂; m̂)‖ ≤ inf
β

‖�n (β; m̂(.;β)) ‖ + op
(
n−1/2

)
. (8)

We note here that we always implicitly think of β as a function of β(−1). For exam-
ple, (8) is regarded as minimization over β(−1). Mathematically this is the same as
constrained minimization over B. Let

φβ,m = JT
(
XZTg′(XTβ;β) − H(XTβ;β)Z

)
ψτ

(
Y − gT(XTβ;β)Z

)
,

and �(β;m) = Eφβ,m.
Now we define appropriate classes of smooth functions. For α > 0, we consider

Cα(M), the class of univariate functions on a bounded set that possess uniformly
bounded derivatives up to order α (the greatest integer strictly smaller than α) and
whose αth derivative is Lipschitz of order α −α. More specifically, let f (k) be the kth

derivative of f and ‖ f ‖α = maxk≤α supx | f (k)(x)| + supx,y
| f (α)(x)− f (α)(y)|

|x−y|α−α ; then,
Cα(M) = { f : ‖ f ‖α ≤ M}.

We impose the following assumptions.

(A1) X ∈ Rp has a bounded joint density supported on a bounded convex set.
(A2) The space of parameters is B = {β : ‖β‖ = 1, β1 > 0}. Uniformly in X

and β, the conditional density of Y at gT(XTβ;β)Z is bounded and bounded
away from zero, and the derivative of the conditional density at gT(XTβ;β)Z
is bounded.

(A3) As functions of u, entries of g(u;β) are in Cα(M) for someα > 5/2 andM > 0,
and entries of H(u;β) are in Cα′

(M) for some α′ > 1/2. Entries of g(u;β),
g′(u;β), H(u;β) are continuous functions of β.

(A4) The true parameter β0 is the unique minimizer of ‖�(β,m(.;β))‖. For any
ε > 0, we have inf‖β−β0‖≥ε ‖�(β,m(.;β))‖ − ‖�(β0,m(.;β0))‖ > 0.
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(A5) The matrix E
[(
JTXZTg′(XTβ;β) − JTE[XZTg′(XTβ;β)|Mβ ])⊗2

]
has eig-

envalues bounded and bounded away from zero, uniformly over β ∈ B, where
A⊗2 = AAT for any matrix A.

(A6) Suppose the number of basis functions is set to be K ∼ n1/(2α+1) for estimation
of g, while K ∼ n1/(2α

′+1) for the estimation of H.

Assumption (A1) guarantees that XTβ is supported on a bounded interval, which
makes it suitable to use the polynomial splines for estimation. Assumption (A2) on
conditional density is commonly used in quantile regression (He and Shi 1994; Wang
et al. 2009). Smoothness condition (A3) is used in Proposition 1 (in Appendix) which
is in turn used in our proof of consistency and asymptotic normality. Both (A4) and
(A5) are identifiability assumptions. The choice of the number of basis functions is
the theoretically optimal one according to the different smoothness assumptions for g
andH, respectively. However, to simplify notation, we denote both basis functions by
B = (B1, . . . , BK )T for simplicity of notation.

The following is the main result that establishes the asymptotic normality of β̂.

Theorem 1 Under assumptions (A1)–(A6) we have

√
n(β̂

(−1) − β
(−1)
0 )

d→ N (0,�−1
1 �2�

−1
1 ),

where �1 = E
[
f (gT(XTβ0)Z|X)

(
JTXZTg′(XTβ0) − E

[
JTXZTg′(XTβ0)Z

|Mβ0

])⊗2
]
and �2 = τ(1 − τ)E

[(
JTXZTg′(XTβ0) − E

[
JTXZTg′(XTβ0)Z|

Mβ0

])⊗2
]
, in which J is evaluated at β0. By the Delta method, as an immediate

corollary,

√
n(β̂ − β0)

d→ N (0, J�−1
1 �2�

−1
1 JT),

In the proof of the theorem, wemake use of Proposition 1, which also directly gives
as a corollary the rate of convergence of the unknown coefficient functions g.

Corollary 1 Under assumptions (A1)–(A6), we have

∥∥̂g(.; β̂) − g(.)
∥∥2 :=

p∑

j=0

‖g j (.; β̂) − g j (.)‖2 = Op

(
n−2α/(2α+1)(rm logn)

)
,

where ‖.‖ denotes the L2 norm of functions, as well as l2 norm for vectors.

3 Numerical Experiments

3.1 Estimation algorithm

In this subsection, we present the fixed-point algorithm first proposed by Cui et al.
(2011) and adapt it to our adaptive varying coefficient linear models.
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Specifically, for the estimating Eq. (7), we can rewrite them as

�n(β; m̂) = J
T
G(β; m̂) with G(β; m̂) = (G1(β; m̂), . . . ,Gp(β; m̂))

T
,

where

G j (β; m̂) = 1

n

n∑

i=1

(Xi jZT
i ĝ

′(XT
i β;β) − Ĥ j (XT

i β;β)Zi )ψτ (Yi − ĝT(XT
i β;β)Zi ),

and Ĥ j (XT
i β;β) is the j th rowof Ĥ(XT

i β;β), j = 1, . . . , p. The estimating equations
�n(β; m̂) = 0 can be written as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−β2G1(β; m̂)/

√
1 − ‖β(−1)‖2 + G2(β; m̂) = 0,

−β3G1(β; m̂)/

√
1 − ‖β(−1)‖2 + G3(β; m̂) = 0,

...

−βpG1(β; m̂)/

√
1 − ‖β(−1)‖2 + Gp(β; m̂) = 0,

which leads to
⎧
⎨

⎩

β1 = |G1(β; m̂)|/‖G(β; m̂)‖2,
β2
j = G2

j (β; m̂)/‖G(β; m̂)‖2, 2 ≤ j ≤ p,
sign{β j G1(β; m̂)} = sign{G j (β; m̂)}, 2 ≤ j ≤ p.

The above system can be also written as

β
G1(β; m̂)

‖G(β; m̂)‖ = |G1(β; m̂)|
‖G(β; m̂)‖ × G(β; m̂)

‖G(β; m̂)‖ . (9)

Since ‖G(β; m̂)‖ may sometimes be a small value, which leads to the algorithm
unstable. For fast convergence and robustness of the fixed-point algorithm, add Cβ to
both sides of (9) and after transformation, we obtain

β = C

G1(β; m̂)/‖G(β; m̂)‖ + C
β + |G1(β; m̂)|/‖G(β; m̂)‖2

G1(β; m̂)/‖G(β; m̂)‖ + C
G(β; m̂), (10)

whereC is a constant which can be properly chosen such thatG1(β; m̂)/‖G(β; m̂)‖+
C �= 0. Further discussions on choosing the constantC are referred to Cui et al. (2011).

Using (10), we can iteratively perform

β ← C

G1(β; m̂)/‖G(β; m̂)‖ + C
β + |G1(β; m̂)|/‖G(β; m̂)‖2

G1(β; m̂)/‖G(β; m̂)‖ + C
G(β; m̂),

until convergence. All numerical results below are produced by using the linear regres-
sion estimator (normalized to have unit norm) as the initial estimator. Our experience
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is that that the algorithm seems insensitive to the choice of initial estimators and
the algorithm always converges to a small neighborhood of the true parameter in the
simulations.

Within each iteration, for given β, spline coefficients of g j (·), j = 0, . . . , p can be
obtained using R package quantreg. The projection estimate Ĥ(u;β) in (6) is obtained
by the least squares estimate with weights f (gT(XT

i β;β)Zi |Xi ), i = 1, . . . , n. Here,
we adopt the difference quotient method of Hendricks and Koenker (1992),

f̂ (gT(XT
i β;β)Zi |Xi ) = 2hn

{
ĝ
T

τ+hn (X
T

i β̂τ+hn )Zi − ĝ
T

τ−hn (X
T

i β̂τ−hn )Zi

}−1
,

(11)
where β̂τ and ĝτ (·) denote the estimators at quantile level τ (obtained when values of
ones are used in place of the conditional density for simplicity) and hn is a bandwidth
parameter tending to zero as n → ∞. In our numerical studies, we choose

hn = 1.57n−1/3
(
1.5φ2{�−1(τ )}/(2{�−1(τ )}2 + 1)

)2/3

following Hall and Sheather (1988), where φ(·) and �(·) are the pdf and cdf of the
standard normal distribution.

We also need to select the number of knots and the order of splines to approximate
the nonparametric functions. In practice, the cubic spline (s = 4) is used and the
number of knots can be chosen by minimizing the following Schwarz Information
Criterion (SIC, Horowitz and Lee 2005)

K̂ = argminKSIC(K ),

where

SIC(K ) = log

⎛

⎝
n∑

i=1

ρτ

⎛

⎝Yi −
p∑

j=0

Zi jB
T
(X

T

i β̂)θ̂ j

⎞

⎠

⎞

⎠+ log(n) × ((p + 1)K )/(2n),

where θ̂ j , j = 0, 1, . . . , p denote the estimated spline coefficients for a given K .
Finally, based on the density estimate given in (11) and Theorem 1, we can obtain

the estimate of variance–covariance matrix for index parameter β by the following
sandwich formula

�̂β = 1

n
J�̂

−1
1 �̂2�̂

−1
1 JT, (12)

where

�1 = 1

n

n∑

i=1

f̂ (ĝT(XT
i β̂)Zi |Xi )(JTXiZT

i ĝ
′(XT

i β̂) − JTĤ(XT
i β̂; β̂)Zi )

⊗2
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and

�2 = τ(1 − τ)
1

n

n∑

i=1

(
JTXiZT

i ĝ
′(XT

i β̂) − JTĤ(XT
i β̂; β̂)Zi

)⊗2
,

in which J is evaluated at β̂.

3.2 Simulation studies

Consider the following model

Yi = g0(X
T

i β) +
p∑

j=1

g j (X
T

i β)Xi j + 0.1 exp(κ · XT

i β) × ei , i = 1, . . . , n,

where the true parameter β = (1, 2, 0, 2, 0, . . . , 0︸ ︷︷ ︸
p−4

)
T
, and the nonparametric functions

g0(u) = 3 exp(−u2), g1(u) = 1.8u2, g3(u) = 2 sin(πu),

and

g2(u) ≡ 0, g j (u) ≡ 0, j = 4, . . . , p.

The covariates Xi = (Xi1, . . . , Xip)
T are independent random vectors uniformly

distributed on [−1, 1]p , and the error ei are independently sampled from standard
normal distribution N (0, 1) or t(3), the Student’s t distributionwith degrees of freedom
3. In addition, the quantity κ equals 0 or 1 corresponding to homoscedasticmodel (HM)
and heteroscedastic model (HT), respectively. Here, we focus on the quantile levels at
τ = 0.1, 0.25 and 0.5, and conduct the simulations with sample size n = 400, each
with 500 replications.

For the dimension of covariates X, we consider three cases with p = 4, 8, 12. To
assess the finite sample performance of the estimated index parameter, we report

the root mean squared errors denoted as RMSEβ =
√

1
p

∑p
j=1(β̂ j − β j )2. For the

nonparametric functions, we also use the root mean squared errors defined as

RMSEg = 1

p + 1

p∑

j=0

√√√√ 1

ngrid

ngrid∑

k=1

(ĝ j (uk) − g j (uk))2,

where {uk : k = 1, . . . , ngrid} are regular grid points on [mini X
T

i β̂,maxi X
T

i β̂] with
ngrid = 100. To illustrate the robustness of the median regression (quantile regression
when τ = 0.5, we also report the results of adaptive varying-coefficient linear model
with quadratic loss (mean regression), for which we again used polynomial splines.
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Table 1 Simulation results at three quantile levels with β = (1, 2, 0, 2, 0, . . . , 0)
T

κ p τ N (0, 1) t (3)

RMSEβ RMSEg RMSEβ RMSEg

κ = 0 4 0.1 0.0051 (0.0023) 0.3556 (0.1850) 0.0083 (0.0035) 0.3827 (0.3340)

0.25 0.0039 (0.0016) 0.3339 (0.1619) 0.0050 (0.0023) 0.3820 (0.3252)

0.5 0.0037 (0.0016) 0.2964 (0.1241) 0.0042 (0.0019) 0.3112 (0.1261)

8 0.1 0.0059 (0.0036) 0.3290 (0.1699) 0.0086 (0.0105) 0.3844 (0.3186)

0.25 0.0048 (0.0014) 0.3120 (0.1591) 0.0059 (0.0018) 0.3801 (0.3113)

0.5 0.0043 (0.0013) 0.2541 (0.1325) 0.0049 (0.0014) 0.2840 (0.1402)

12 0.1 0.0138 (0.0266) 0.3430 (0.3180) 0.0199 (0.0330) 0.3967 (0.3824)

0.25 0.0057 (0.0097) 0.3279 (0.2963) 0.0102 (0.0145) 0.3937 (0.3744)

0.5 0.0048 (0.0011) 0.2479 (0.1090) 0.0061 (0.0063) 0.2600 (0.1123)

κ = 1 4 0.1 0.0048 (0.0023) 0.3622 (0.2871) 0.0077 (0.0034) 0.4089 (0.3821)

0.25 0.0037 (0.0016) 0.3602 (0.2762) 0.0047 (0.0023) 0.4008 (0.3765)

0.5 0.0035 (0.0016) 0.3552 (0.1697) 0.0040 (0.0019) 0.3937 (0.1954)

8 0.1 0.0113 (0.0564) 0.3513 (0.2699) 0.0091 (0.0033) 0.4205 (0.3809)

0.25 0.0045 (0.0015) 0.3495 (0.2614) 0.0057 (0.0018) 0.4200 (0.3764)

0.5 0.0041 (0.0013) 0.2773 (0.1475) 0.0048 (0.0014) 0.3449 (0.1791)

12 0.1 0.0156 (0.0261) 0.3751 (0.3412) 0.0243 (0.0367) 0.4380 (0.4186)

0.25 0.0070 (0.0187) 0.3720 (0.3352) 0.0082 (0.0152) 0.4373 (0.4147)

0.5 0.0046 (0.0012) 0.2805 (0.1551) 0.0054 (0.0023) 0.3635 (0.2072)

The values in the parentheses are the sample standard errors computed based on the 500 replications

The simulation results for the quantile model are shown in Table 1, while those for
the mean regression model are shown in Table 2. From Table 1, we see that the
performance of our proposed estimation procedure is reasonable for all cases, for
both homoscedastic and heteroscedastic models at three different quantile levels, even
when the dimension p is not too small. Empirically, the algorithm converges well in
all cases. We also note that among the three quantile levels, the errors for τ = 0.1 are
the largest and the errors for τ = 0.5 are the smallest, suggesting tail of the response
distribution is more difficult to estimate.

To better illustrate the difference between quantile method (τ = 0.5) and mean
regression for each setting, the boxplots of both RMSEβ and RMSEg are shown
in Fig. 1–2. We see that comparing mean regression with median regression, the
performance of our proposed procedure is significantly better than mean regression
for t errors, which is as expected due to robustness of median regression.

Finally, according to a referee’s suggestion, we report the results of an additional
simulation study inTable 3where the indexparameterβ = (1, 2, 0, 2, 0.25, . . . , 0.25︸ ︷︷ ︸

p−4

)
T

with p = 8 and 12, and the other settings are the same as above, to illustrate the case
when the number of nonzero parameters increases. As we can see, our proposed esti-
mation procedure still works well, with larger dimensionality associated with larger
errors.
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Table 2 Simulation results for mean regression of adaptive varying-coefficient linear model with β =
(1, 2, 0, 2, 0, . . . , 0)

T

κ p N (0, 1) t (3)

RMSEβ RMSEg RMSEβ RMSEg

κ = 0 4 0.0029 (0.0012) 0.2814 (0.1174) 0.0050 (0.0020) 0.3396 (0.1676)

8 0.0035 (0.0010) 0.2296 (0.0992) 0.0056 (0.0024) 0.3062 (0.1919)

12 0.0037 (0.0009) 0.2156 (0.0861) 0.0074 (0.0034) 0.2884 (0.1488)

κ = 1 4 0.0036 (0.0015) 0.3598 (0.1594) 0.0068 (0.0041) 0.4799 (0.2637)

8 0.0045 (0.0014) 0.2784 (0.1342) 0.0075 (0.0049) 0.4245 (0.3637)

12 0.0047 (0.0011) 0.2811 (0.1440) 0.0088 (0.0064) 0.4568 (0.3300)

The values in the parentheses are the sample standard errors computed based on the 500 replications
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Fig. 1 The boxplots of RMSE for quantile regression method (QR, with τ = 0.5) and least squares method
(LS) with homoscedastic t errors, where the two rows corresponds to RMSEβ and RMSEg , respectively

3.3 Data application

Forest fire has been amajor environmental issue,which leads to economic and ecologic
damage and endangers human lives. Fast detection is a key element for controlling
such phenomenon (Cortez and Morais 2007). In this subsection, we will apply our
proposed quantile adaptive varying-coefficient model to the forest fires data.

The data were collected from the Montesinho natural park, which lies in Trás-
os-Montes northeast region of Portugal, from January 2000 to December 2003 and
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Fig. 2 The boxplots of RMSE for quantile regression method (QR, with τ = 0.5) and least squares method
(LS) with heterogeneous t errors, where the two rows corresponds to RMSEβ and RMSEg , respectively

Table 3 Simulation results at three quantile levels with β = (1, 2, 0, 2, 0.25, . . . , 0.25)
T

κ p τ N (0, 1) t (3)

RMSEβ RMSEg RMSEβ RMSEg

κ = 0 8 0.1 0.0059 (0.0017) 0.3231 (0.1980) 0.0095 (0.0033) 0.4892 (0.3498)

0.25 0.0047 (0.0013) 0.2855 (0.1670) 0.0059 (0.0017) 0.3083 (0.1544)

0.5 0.0044 (0.0012) 0.2683 (0.1323) 0.0050 (0.0015) 0.2983 (0.1473)

12 0.1 0.0198 (0.0274) 0.5899 (0.4875) 0.0333 (0.0568) 0.8141 (0.8212)

0.25 0.0072 (0.0143) 0.3163 (0.2000) 0.0083 (0.0154) 0.3863 (0.2742)

0.5 0.0064 (0.0181) 0.3090 (0.1879) 0.0056 (0.0014) 0.3262 (0.1917)

κ = 1 8 0.1 0.0058 (0.0019) 0.4052 (0.2556) 0.0093 (0.0036) 0.6092 (0.4260)

0.25 0.0045 (0.0014) 0.3426 (0.1867) 0.0055 (0.0018) 0.4292 (0.2299)

0.5 0.0043 (0.0012) 0.3239 (0.1699) 0.0049 (0.0016) 0.3762 (0.2025)

12 0.1 0.0239 (0.0321) 0.6679 (0.6139) 0.0303 (0.0418) 1.0062 (0.9705)

0.25 0.0081 (0.0226) 0.3965 (0.2777) 0.0084 (0.0168) 0.4950 (0.3373)

0.5 0.0052 (0.0095) 0.3759 (0.2304) 0.0056 (0.0015) 0.4394 (0.2842)

The values in the parentheses are the sample standard errors computed based on the 500 replications

available at http://www.dsi.uminho.pt/~pcortez/forestfires/. The response variable of
interest is the burned area (in hectares); we will use the adaptive varying-coefficient
model to explore the relationship between burned area and some predictors at different
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Table 4 The estimate of index parameter under two different quantile levels

β1 β2 β3 β4 β5 β6 β7

τ = 0.5 Estimate 0.6954 0.1081 0.5248 0.2777 0.0136 0.0227 −0.3892

Std 0.0172 0.0102 0.0124 0.0141 0.0555 0.0137 0.0484

τ = 0.95 Estimate 0.1289 −0.6642 0.3712 −0.4168 −0.0751 0.1245 0.4578

Std 0.0005 0.0006 0.0003 0.0005 0.0011 0.0002 0.0015

quantile levels. These include seven forest fire weather index: fine fuel moisture code
(FFMC), duff moisture code (DMC), drought code (DC), initial spread index (ISI),
outside temperature (TEMP, in oC), outside relative humidity (RH, in %) and outside
wind speed (WIND in km/h). There are a total of 517 observations.

The distribution of burned area is severely right-skewed, and thus, we use
log(burned area + 1) as the response. The estimated index parameters using the pro-
posed adaptive varying-coefficient linear model are shown in Table 4 for τ = 0.5 and
τ = 0.95. The standard errors are obtained based on asymptotic normality. All the
seven variables are significant for τ = 0.95, and two variables, i.e., TEMP and RH, are
insignificant when τ = 0.5. Obviously the estimates at the tail are very different from
the estimates at the center of the response distribution and such information cannot
be gained by mean regression. Figures 3 and 4 show the estimated curves of eight
nonparametric functions for τ = 0.5 and τ = 0.95, and the 95% confidence band
for each function is also shown, which is obtained by bootstrap method. Visually the
bands for τ = 0.95 are generally wider. If we think of XTβ as an overall weather
index, we can interpret the curves based on this constructed index. For example, we
see that at τ = 0.5, g1 is flat for most of the index values while it increases suddenly
when the index is very large. This means when the overall weather index is extreme
(large), the effect of FFMC (the variable X1) becomes more obvious.

4 Discussion

In this paper, we proposed a profiled estimating equations approach for estimation in
adaptive varying-coefficient quantile models. The quantile model allows us to obtain
a more complete picture of the conditional distribution of a response variable given
covariates. We use polynomial splines to estimate the unknown nonparametric coeffi-
cient functions and derive the bias-corrected estimating equations that do not require
undersmoothing of the nonparametric functions. A fixed-point algorithm is used in
our implementation to obtain the estimator for the index vector.

In our experience, the fixed-point algorithm seems to be quite insensitive to the
choice of initial estimators. It is known that the fixed-point algorithm converges if
the iteration is contractive. However, it seems this is generally not true. Thus whether
there is theoretical guarantee for the fixed-point algorithm, we use here is an open
question.

A problem of interest is penalized variable selection when the covariate vector is
high dimensional. For linear quantile regression, this has been studied in Belloni and
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Fig. 3 The estimated curves for nonparametric functions when τ = 0.5
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Chernozhukov (2011); Fan et al. (2014a); Wang et al. (2012), while Sherwood and
Wang (2016); Tang et al. (2013) considered high-dimensional partially linear quantile
models.

Another related problem is whether one can estimate the multiple quantiles simul-
taneous while borrowing information cross-quantile levels for estimation and variable
selection. Some efforts along this direction for different setups have appeared in Jiang
et al. (2013); Yang and He (2012) and more recently in Sherwood and Wang (2016).

Acknowledgements We sincerely thank the AE and two anonymous reviewers for their insightful com-
ments which have led to significant improvement of the paper. The research of Zhao was supported in part
by National Social Science Fund of China (15BTJ027), and the research of Lian was supported by a start
up Grant (No. 7200521/MA) from the City University of Hong Kong.

Appendix: Technical proofs

In our proofs, C denotes a generic positive constant which can take different values
even on the same line.

Proof of Theorem 1 Consider the class of functions

F =
{(

xzTg′(xTβ) − H(xTβ)z
) (

τ − I
{
y − gT(xTβ)z ≤ 0

})
,β ∈ B,

and for some α > 3/2, α′ > 1/2, and M > 0,

entries of g are in Cα(M), and entries of H are in Cα′
(M)

}
.

For α > 1/2, define

F1 =
{
h(xTβ) : β ∈ B, h ∈ Cα(M)

}
.

For any fixed β, the class F1(β) := {h(xTβ) : h ∈ Cα(R)} has entropy
log N (δ, Cα(M), ‖.‖∞) ≤ Cδ−1/α by Theorem 2.7.1 of van der Vaart and Wellner
(1996). Since ‖h(xTβ) − h(xTβ ′)‖∞ ≤ C‖β − β‖s for some s > 1/2, it is easy
to see that the δ-entropy of F1 in L∞ norm is bounded by the sum of Cδ−1/α and
the δ1/s-entropy of B in Euclidean norm, with the latter being C log(1/δ). Thus by
Theorem 19.14 of van der Vaart (1998) and that x lies in a compact set,F1 is a Donsker
class.

Furthermore, consider

F2 =
{
I {y − gT(xTβ)z ≤ 0} : β ∈ B, g ∈ Cα(M)

}
.

123
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We have

E
(
I
{
y − gT1 (xTβ1)z ≤ 0

}
− I

{
y − gT2 (xTβ2)z ≤ 0

})2

≤ CE |gT1 (xTβ1)z − gT2 (xTβ2)z|

≤ C

(
E
[
g1(xTβ1) − g2(xTβ2)

]2)1/2

.

Thus log N (δ,F2, L2) ≤ C log N (Cδ2,F1, L2) ≤ Cδ−2/α and F2 is Donsker if
α > 1. Combining that F1 and F2 are Donsker classes, it is easy to see that F is also
a Donsker class.

First we prove consistency. Let F(.|X) be the conditional cumulative distribution
function of Y . Uniformly for all β ∈ B, we have

�(β; m̂(;β)) − �(β;m(;β))

= JTE
(
XZTĝ′(XTβ;β) − Ĥ(XTβ;β)Z

)
(τ − F

(
ĝT(XTβ;β)Z|X

)

−JTE
(
XZTg′(XTβ;β) − H(XTβ;β)Z

) (
τ − F

(
gT(XTβ;β)Z|X

))

= JTE
(
XZT

(
ĝ′(XTβ;β) − g′(XTβ;β)

)
−
(
Ĥ(XTβ)

−H(XTβ)
)
Z
)

(τ − F
(
ĝT(XTβ;β)Z|X

)

−JTE
(
XZTg′(XTβ;β) − H(XTβ)Z

) (
F
(
ĝT(XTβ;β)Z|X

)

−F
(
gT(XTβ;β)Z|X

))

= op(1), (13)

using Proposition 1. Furthermore, by the Glivenko–Cantelli Theorem (F is Donsker
implies it is Glivenko–Cantelli), sup f ∈F (Pn − P) f = op(1). Thus uniformly for
β ∈ B,

‖�n(β; m̂(.;β)) − �(β; m̂(.;β)‖ = op(1). (14)

Thus

‖�(β̂;m(.; β̂)‖
= ‖�(β̂; m̂(.; β̂)‖ + op(1)

= ‖�n(β̂; m̂(.; β̂)‖ + op(1)

≤ ‖�n(β0; m̂(.;β0)‖ + op(1)

= ‖�(β0; m̂(.;β0)‖ + op(1)

= ‖�(β0;m(.;β0)‖ + op(1),

where the first and the last equality used (13), the second and third equality used (14)
and the inequality follows from the definition of β̂ as an approximate minimizer of

123



572 W. Zhao et al.

‖�(β, m̂(.;β))‖. Thus by assumption (A4), ‖β̂−β0‖ < ε with probability approach-
ing one, for any ε > 0. This shows ‖β̂ − β0‖ = op(1).

Now we consider asymptotic normality. For readability, we split the proof into
several steps.

Step 1 By consistency, Lemma 19.24 in van der Vaart (1998) then implies that

Gn(φβ̂,m̂ − φβ0,m) = op(1), (15)

where Gn = √
n(Pn − P) is the empirical process.

Step 2 We show

√
nP(φβ̂,m̂ − φβ0,m) = �1

√
n(β̂

(−1) − β
(−1)
0 ) + op(

√
n(β̂

(−1) − β
(−1)
0 )) + op(1).

(16)
In the proof of (16), we write β̂ as β for simplicity of notation. Writing P(φβ,m̂ −

φβ0,m) = P(φβ,m̂ − φβ,m) + P(φβ,m − φβ0,m), we first compute P(φβ,m̂ − φβ,m)

as follows.

P(φβ,m̂ − φβ,m)

= JTE
(
XZTĝ′(XTβ;β) − Ĥ(XTβ;β)Z

) (
τ − F

(
ĝT(XTβ̂; β̂)Z|X

))

−JTE
(
XZTg′(XTβ;β) − H(XTβ;β)Z

) (
τ − F

(
gT(XTβ;β)Z|X

))

= JTE
(
XZT

(
ĝ′(XTβ;β) − g′(XTβ;β)

)
−
(
Ĥ(XTβ;β) − H(XTβ;β)

)
Z
)

·
(
τ − F

(
ĝT(XTβ;β)Z|X

))

−JTE
(
XZTg′(XTβ;β) − H(XTβ;β)Z

) (
F
(
ĝT(XTβ;β)Z|X

)

−F
(
gT(XTβ;β)Z|X

))

= JTE
(
XZT

(
ĝ′(XTβ;β) − g′(XTβ;β)

)
−
(
Ĥ(XTβ;β) − H(XTβ;β)

)
Z
)

·
(
F
(
gT(XTβ;β)Z|X

)
− F

(
ĝT(XTβ;β)Z|X

))

+JTE
(
XZT

(
ĝ′(XTβ;β) − g′(XTβ;β)

)
−
(
Ĥ(XTβ;β) − H(XTβ;β)

)
Z
)

·
(
F
(
gT(XTβ0;β0)Z|X

)
− F

(
gT(XTβ;β)Z|X

))

+JTE
(
XZT

(
ĝ′(XTβ;β) − g′(XTβ;β)

)
−
(
Ĥ(XTβ;β) − H(XTβ;β)

)
Z
)

·
(
τ − F

(
gT(XTβ0;β0)Z|X

))

−JTE
(
XZTg′(XTβ;β) − H(XTβ;β)Z

) (
F
(
ĝT(XTβ;β)Z|X

)

−F
(
gT(XTβ;β)Z|X

))
.
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By Proposition 1, the first term above is o(n−1/2) and the second term is op(‖β−β0‖).
The third term is actually zero since F

(
gT(XTβ0;β0)Z|X) = τ . Finally, the last term

is, by Taylor’s expansion

JTE
(
XZTg′(XTβ;β) − H(XTβ;β)Z

)
f
(
gT(XTβ;β)Z|X

)

×
(
ĝT(XTβ;β)Z − gT(XTβ;β)Z

)

+Op

((
ĝT(XTβ;β)Z − gT(XTβ;β)Z

)2)
.

The first term above is zero since H(XTβ;β)Z is the projection of XZTg′(XTβ;β)

onto Mβ while ĝT(XTβ;β)Z − gT(XTβ;β)Z ∈ Mβ . The second term above is
op(n−1/2) by Proposition 1.

Now we compute P(φβ,m − φβ0,m). We have

E[φβ,m − φβ0,m|X]
= JT

(
XZTg′(XTβ; β) − H(XTβ; β)Z

) (
τ − F

(
gT(XTβ; β)Z

))

= JT
(
XZTg′(XTβ; β) − H(XTβ; β)Z

) (
F
(
gT(XTβ0; β0)Z

)
− F

(
gT(XTβ; β)Z

))

= JT
(
XZTg′(XTβ; β) − H(XTβ; β)Z

)

f
(
gT(XTβ; β)Z|X

) (
gT(XTβ0; β0) − gT(XTβ; β)

)
Z + op

(
n−1/2

)

= −JT
(
XZTg′(XTβ; β) − H(XTβ; β)Z

)
f
(
gT(XTβ; β)Z|X

)

dgT

dβ
Z(β − β0) + op

(
n−1/2

)

= −
(
JT
(
XZTg′(XTβ; β) − H(XTβ; β)Z

))⊗2
f
(
gT(XTβ; β)Z|X

) (
β(−1) − β

(−1)
0

)

+op
(‖β − β0‖

)+ op
(
n−1/2

)

= −
(
JT
(
XZTg′(XTβ0; β0) − H(XTβ0; β0)Z

))⊗2
f
(
gT(XTβ0)Z|X

)

×
(
β(−1) − β

(−1)
0

)
+ op

(‖β − β0‖
)+ op

(
n−1/2

)
,

where in the second to last line, we used the identity

dgT(XTβ;β)

dβ
Z = XZTg′(XTβ;β) − E

[
XZTg′(XTβ;β)|Mβ

]
,

as derived in the previous subsection.

Step 3 Let β̃
(−1) = β

(−1)
0 − �−1

1 Pnφβ0,m, we have

Gn

(
φβ̃,m̂ − φβ0,m

)
= op(1).
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In fact, it is easy to see by central limit theorem that ‖β̃ − β0‖ = Op
(
n−1/2

)
and the

proof is similar to Step 1 (actually only ‖β̃ − β0‖ = op(1) is needed here).
Step 4

√
nPnφβ̃,m̂ = op(1).

Rewriting the result in Step 3 as

√
nPnφβ̃,m̂ = √

nP
(
φβ̃,m̂ − φβ0,m

)
+ √

nPnφβ0,m + op(1),

using the same arguments as in Step 2, we have

√
nP
(
φβ̃,m̂ − φβ0,m

)
= �1

√
n(β̃

(−1) − β
(−1)
0 ) + op(1),

and thus

√
nPnφβ̃,m̂ = �1

√
n
(
β̃

(−1) − β
(−1)
0

)
+ √

nPnφβ0,m + op(1) = op(1),

by the definition of β̃.
Step 5 Finish the proof. Since β̂ minimizes ‖√nPnφβ,m̂‖ (up to an op(1) term),

we have |√nPnφβ̂,m̂| ≤ |√nPnφβ̃,m̂| + op(1) = op(1).
Thus (15) can be rewritten as

√
nP
(
φβ̂,m̂ − φβ0,m

)
= √

nPnφβ0,m + op(1). (17)

Using the result in Step 2 on the left-hand side of (17), we have

√
n
(
β̂

(−1) − β
(−1)
0

)
= �−1

1

√
nPnφβ0,m + op

(√
n
(
β̂ − β0

))+ op(1).

This implies root-n consistency of β̂
(−1)

as well as the asymptotic normality. ��
Proposition 1 For α > 5/2, α′ > 1/2,

sup
β∈B

‖̂g(.;β) − g(.;β)‖ = Op

(
n−α/(2α+1)(logn)1/2

)
,

sup
β∈B

∥∥̂g′(.;β) − g′(.;β)
∥∥ = Op

(
n−(α−1)/(2α+1)(logn)1/2

)
,

and

sup
β∈B

∥∥Ĥ(.;β) − H(.;β)
∥∥ = Op

(
max

{
n−α′/(2α′+1), n−(α−1)/(2α+1)

}
(log n)1/2

)
.

In particular, all rates above are of order op(n−1/4). The term (log n)1/2 can be roughly
regarded as the cost of taking supremum over β ∈ B.
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Proof For illustration, we will only prove the first rate and the second is easily derived
by the first. The third rate is also easier since Ĥ is obtained from minimizing a
smooth weighted least square (unlike quantile regression). If g′ were known, we
would have the standard nonparametric rate n−α′/(2α′+1) for Ĥ (up to a logarith-
mic term). The other term is due to that g′ is estimated by ĝ′, contributing a term of
Op(n−(α−1)/(2α+1)}(log n)1/2). Since the arguments are standard, the details for the
rates of Ĥ are thus omitted.

Now we set out to show the uniform convergence rate of ĝ. Note that ĝ(u,β) =
�̂

T
B(u) where �̂ = �̂(β) is the minimizer of

min
�

∑

i

ρτ

(
Yi − BT(XT

i β)�Zi

)
.

Let �0 = �0(β) be such that ‖�T
0B(.) − g(.;β)‖∞ ≤ CK−d . Define θ = vec(�),

θ̂ = vec(�̂), θ0(β) = vec(�0(β)). Note that BT(XT
i β)�Zi can also be written as

(Zi ⊗ BT(XT
i β))Tθ .

The general strategy of proof is similar to that in He and Shi (1994). However,
besides that we have a single-indexmodel instead of a simple univariate nonparametric
regression, it turns out to be nontrivial to deal with supremum over β and this involves
an important modification of the arguments used in He and Shi (1994). The proof of
Proposition 1 is complete by combining Lemmas 1, 3 and 4 below. ��

Definemi (β) = gT(XT
i β;β)Z and ei (β) = Yi−mi (β). Note that τ− I {ei (β) ≤ 0}

does not have mean zero in general (unless β = β0) but Z (τ − I {ei (β) ≤ 0}) still
has mean zero, as in (4), which is sufficient for our purpose.

Lemma 1 Let rn = (√K/n + K−α
)
(log n)1/2.

sup
β∈B,‖θ−θ0(β)‖≤Crn

n∑

i=1

ρτ

(
Yi −

(
Zi ⊗ B(XT

i β)
)T

θ

)

−
n∑

i=1

ρτ

(
Yi −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)

)

+
n∑

i=1

(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) (τ − I {ei (β) ≤ 0})

−E
n∑

i=1

ρτ

(
Yi −

(
Zi ⊗ B(XT

i β)
)T

θ

)

+E
n∑

i=1

ρτ

(
Yi −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)

)
= op

(
nr2n
)

,

where the expectations are over Yi conditional on Xi (all expectations below are also
such conditional expectations).
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Proof As in He and Shi (1994), in the proof we consider median regression with τ =
1/2, ρτ (u) = |u|/2 and the general case can be shown in the sameway. For any β ∈ B,
letNβ =

{
θ (1)(β), . . . , θ (N )(β)

}
be a δn covering of {θ : ‖θ − θ0(β)‖ ≤ Crn}, with

size bounded by N ≤ (C/δn)
CK (see, for example, Lemma 2.5 of van der Geer (2000)

for the bound) and thus log N ≤ CK log n if we choose δn ∼ n−a for some a > 0
(we will choose a to be large enough). Let (β(1), . . . ,β(N ′)) be a δn covering of B (it
is well known that log N ′ ≤ C log n) andN = ∪1≤ j≤N ′ {β( j)}×Nβ( j) . We denote all
elements of N by (βs, θ s), 1 ≤ s ≤ S with S ≤ CK log n.

Define Mni (β, θ) = 1
2 |Yi −(Zi ⊗B(XT

i β))Tθ |− 1
2 |Yi −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)|+
(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) (1/2 − I {ei (β) ≤ 0}), and Mn(β, θ) = ∑n
i=1 Mni

(β, θ). Next we claim that for any β and any θ with ‖θ − θ0(β)‖ ≤ Crn , there
exists some βs, θ s ∈ N such that

|Mn(β, θ) − EMn(β, θ) − Mn(βs, θ s) + EMn(βs, θ s)| = op(nr
2
n ). (18)

By the construction of N , it is obvious that we can find (βs, θ s) ∈ N such that
‖β − βs‖ + ‖θ − θ s‖ ≤ Cδn . In He and Shi (1994), the β in the indicator function
I {ei (β) ≤ 0} in the definition of Mn(β,β) is actually β0, and Mn(β, θ) is Lipschitz
in (β, θ) and thus (18) is trivially satisfied when δn ∼ n−a with a sufficiently large.
Here proving (18) however is nontrivial since I {ei (β) ≤ 0} is not continuous in β.
We deal with this term in Lemma 2 below. With the help of Lemma 2 dealing with the
indicator function, and that all other terms in the definition of Mn(β, θ) are Lipschitz
continuous, we have that (18) holds.

By (18), we only need to show that

sup
(βs ,θ s )∈N

|Mn(βs, θ s) − EMn(βs, θ s)| = op(nr
2
n ).

By simple algebra

|Mni (β, θ)| =
∣∣∣∣
1

2
|Yi −

(
Zi ⊗ B(XT

i β)
)T

θ | − 1

2
|Yi −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)|

+
(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) (1/2 − I {ei ≤ 0})
∣∣∣∣

=
∣∣∣∣
1

2
|ei (β) + mi (β) −

(
Zi ⊗ B(XT

i β)
)T

θ |

−1

2
|ei (β) + mi (β) −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)|

+
(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) (1/2 − I {ei ≤ 0})
∣∣∣∣

≤ |(Zi ⊗ B(XT
i β))T(θ − θ0(β))| ·
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×I {|ei | ≤ |
(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) |

+|mi (β) −
(
Zi ⊗ B(XT

i β)
)T

θ0(β)|}.

Thus

|Mni (β, θ)| ≤ C
√
Krn =: A,

where we used that ‖B(x)‖ ≤ C
√
K at any fixed point x ∈ [a, b].

Furthermore, we have

E |Mni (β, θ)|2 ≤ C(
√
Krn)E |

(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) |2

≤ C(
√
Krn)(r

2
n ) =: D2. (19)

Using Bernstein’s inequality, together with union bound, we have

P

(
sup

(β,θ)∈N
|Mn(β, θ) − EMn(β, θ)| > a

)
≤ C exp

{
− a2

aA + nD2 − CK log n

}
.

The right-hand side converges to zero with a = O
(
max

{
K 3/2rn log n,

√
nK 3/2r3n log n

})
= o

(
nr2n
)
. ��

Lemma 2

sup
1≤s≤S,‖β−βs‖+‖θ−θ s‖≤δn

∣∣∣
(
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β)) I {ei (β) ≤ 0}

−
(
Zi ⊗ B(XT

i βs)
)T (

θ s − θ0(βs)
)
I
{
ei (βs) ≤ 0

} ∣∣∣

= op
(
nr2n
)

.

Proof WritingWi (β, θ) = (Zi ⊗ B(XT
i β)
)T

(θ − θ0(β)), we only need to show that

sup
1≤s≤S,‖β−βs‖+‖θ−θ s‖≤δn

∣∣∣∣∣
∑

i

Wi (β, θ)(I {ei (β) ≤ 0} − F (mi (β)|Xi )

−
∑

i

Wi (βs, θ s)
(
I
{
ei (βs) ≤ 0

}− F
(
mi (βs)|Xi

))
∣∣∣∣∣

= op
(
nr2n
)

. (20)
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Obviously (20) is implied by

sup
1≤s≤S,‖β−βs‖+‖θ−θ s‖≤δn

∣∣∣∣∣
∑

i

Wi (βs, θ s) (I {ei (β) ≤ 0}

−I
{
ei (βs) ≤ 0

}− F (mi (β)|Xi ) + F
(
mi (βs)|Xi

))∣∣

= op
(
nr2n
)

. (21)

AssumeWi (βs, θ s) > 0 for now and we first show (21) without the absolute value on
the left-hand side. Since ‖β−βs‖ ≤ δn , by our assumptionwe have |ei (β)−ei (βs)| ≤
Cδn . By the monotonicity of the function t → I {ei (β) ≤ t}, the left-hand side of (21)
is bounded by

∑

i

Wi (βs, θ s)
(
I
{
ei (βs) ≤ Cδn

}− I
{
ei (βs) ≤ 0

}

−F (mi (β)|Xi ) + F
(
mi (βs)|Xi

))

=
∑

i

Wi
(
βs, θ s)(I

{
ei (βs) ≤ Cδn

}− I
{
ei (βs) ≤ 0

}

−F
(
mi (βs) + Cδn|Xi

)+ F
(
mi (βs)|Xi

))

+
∑

i

Wi (βs, θ s)
(
F
(
mi (βs) + Cδn|Xi

)− F (mi (β)|Xi )
)
. (22)

The first term of (22) is op
(
nr2n
)
which follows easily from Bernstein’s inequality, the

union bound, and that δn ∼ n−a for a sufficiently large. The second term of (22) is also
op
(
nr2n
)
since ‖β−βs‖ ≤ δn . Obviously, using I {ei (β) ≤ 0} ≥ I

{
ei (βs) ≤ −Cδn

}
,

we can also show that (22) is op
(
nr2n
)
if we change the sign.

So far we have assumed that Wi (βs, θ s) > 0. In general, we can consider
the positive part and the negative part of Wi (βs, θ s) separately and the proof is
complete. ��

Lemma 3 For L > 0 large enough

inf
β∈B,‖θ−θ0(β)‖=Lrn

∑

i

Eρτ

(
ei (β) + mi (β) −

(
Zi ⊗ B(XT

i β)
)T

θ

)

−
∑

i

Eρτ

(
ei (β) + mi (β) −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)

)

≥ L2Cnr2n .

Proof Applying the Knight’s identity ρτ (x − y) − ρτ (x) = −y (τ − I {x ≤ 0}) +∫ y
0 (I {x ≤ t} − I {x ≤ 0}) dt twice on the two terms, we have that
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E
n∑

i=1

ρτ

(
ei (β) + mi (β) −

(
Zi ⊗ B(XT

i β)
)T

θ

)

−E
n∑

i=1

ρτ

(
ei (β) + mi (β) −

(
Zi ⊗ B(XT

i β)
)T

θ0(β)

)

=
∑

i

∫ (
Zi⊗B(XT

i β)
)T

θ−mi (β)

(
Zi⊗B(XT

i β)
)T

θ0(β)−mi (β)

F (mi (β) + t |Xi ) − F (mi (β)|Xi ) dt

≥ C
∑

i

f (mi (β)|Xi )

[((
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β))

)2

+2

((
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β))

)((
Zi ⊗ B(XT

i β)
)T

θ0(β) − mi (β)

)]
.

Combining

∑

i

((
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β))

)2

≥ CL2nr2n ,

and

∑

i

((
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β))

)((
Zi ⊗ B(XT

i β)
)T

θ0(β) − mi (β)

)

≤ CLnrnK
−d ,

we get the statement of the lemma if L is large enough. ��
Lemma 4

sup
β∈B,‖θ−θ0(β)‖=Lrn

∑

i

(
Zi ⊗ B(XT

i β)
)T

(θ − θ0) (τ − I {ei (β) ≤ 0})

= L · Op

(
nr2n
)

.

Proof By Lemma 2, we only need to consider supremum over (βs, θ s) ∈ N .

For fixed β and θ , using
∑

i

((
Zi ⊗ B(XT

i β)
)T

(θ − θ0(β))
)2 = Op

(
L2nr2n

)
, and

| (Zi ⊗ B(XT
i β)
)T

(θ − θ0(β)) | ≤ CLrn
√
K , we have, by Bernstein’s inequality,

P

(
∑

i

(
Zi ⊗ B(XT

i β)
)T

(θ − θ0) (τ − I {ei (β) ≤ 0}) > a

}

≤ C exp

{
− a2

aL
√
Krn + nL2r2n

}
.
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Thus

P

(
sup

(β,θ)∈N

∑

i

(
Zi ⊗ B(XT

i β)
)T

(θ − θ0) (τ − I {ei (β) ≤ 0}) > a

}

≤ C exp

{
− a2

aL
√
Krn + nL2r2n

− CK log n

}
,

which implies sup(β,θ)∈N
∑

i

(
Zi ⊗ B(XT

i β)
)T

(θ − θ0)(τ − I {ei (β) ≤ 0}) =
LOp(

√
nrn

√
K log n) = LOp

(
nr2n
)
. ��
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