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Abstract Suppose that the failure times of the units placed on a life-testing experiment
are independent but nonidentically distributed random variables. Under progressively
type II censoring scheme, distributional properties of the proposed random variables
are presented and some inferences are made. Assuming that the random variables
come from a proportional hazard rate model, the formulas are simplified and also the
amount of Fisher information about the common parameters of this family is calcu-
lated. The results are also extended to a fixed covariates model. The performance of the
proposed procedure is investigated via a real data set. Some numerical computations
are also presented to study the effect of the proportionality rates in view of the Fisher
information criterion. Finally, some concluding remarks are stated.

Keywords Fisher information - Maximum likelihood estimator - Cramer—Rao lower
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1 Introduction

Censored sampling arises in a life test whenever the experimenter does not observe
the lifetimes of all experimental units. The model of progressive type II censoring
is of importance in the field of reliability and life testing. In this censoring scheme,
n units are simultaneously placed on a lifetime test, and when the ith failure time
occurs, R; surviving units are randomly censored from the experiment, 1 < i < m.
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Thus, if m failure times are observed, then R; + - - - + R, units are censored; here,
R = (Ry,..., R,) denotes the progressive censoring plan. In the special case of
Ry = --- = R;,—1 = 0and R, = n — m, the progressive censoring scheme coin-
cides with the type II censoring scheme. Statistical inferences based on progressively
type II censored order statistics in the case of independent and identically distributed
(IID) random variables have been extensively investigated by several authors. Bal-
akrishnan et al. (2001) studied the point and interval estimation for both location and
scale parameters of the two-parameter exponential distribution based on progressively
type II censored samples. Burkschat et al. (2006) investigated the optimal plans in the
model of progressive type II censoring for a location-scale family of distributions.
In statistical inferences, the Fisher information (FI) plays an important role in the
estimation problem of unknown parameters through the Cramer—Rao inequality and
its association with the asymptotic properties of the maximum likelihood estimator
(MLE). Under certain regularity conditions, the FI about the real parameter 6 contained
in a random variable X with probability density function (pdf) f(x; @) is defined by

Ix(0) = —E(a%z2 log f(X; 9)); see, for example, Lehmann and Casella (1998, p. 116).
Zheng and Park (2004) expressed the FI contained in the progressively type Il censored
order statistics as a summation of a single integral involving the hazard rate function.
They also obtained a closed form for the FI about the scale parameter of the exponen-
tial and Weibull distributions with equal removal at each stage. Then, Abo-Eleneen
(2008) proposed an indirect approach for computing the FI in these statistics that
simplified the calculations. Balakrishnan et al. (2008) determined optimal plans for a
variety of lifetime distributions by employing maximum FI as an optimality criterion.
For a detailed description of the IID case of progressively type II censored samples,
one may refer to the books by Balakrishnan and Aggarwala (2000) and Balakrishnan
and Cramer (2014). Furthermore, an overview of various developments that have been
considered about the properties of progressively type II censored order statistics and
inferential procedures based on them is provided by Balakrishnan (2007). The author
also suggested some potential problems of interest for further research.

The model of progressive type II censoring was generalized by Balakrishnan and
Cramer (2008) to the case of independent and nonidentical distributed (INID) ran-
dom variables. They developed the basic distribution theory for order statistics in this
case. Also, Fischer et al. (2008) studied a mixture representation for the joint distri-
bution function of progressively type II censored order statistics from heterogeneous
distributions and illustrated the applications of this representation to stochastic order-
ings and inequalities. Cramer and Lenz (2010) and Mao and Hu (2010) investigated
the positive association and the stochastic properties of these statistics, respectively.
Recently, Rezapour et al. (2013) investigated some more properties of progressively
type II censored order statistics in the INID case.

Although the joint density function of the INID progressively type II censored
order statistics was expressed by Balakrishnan and Cramer (2008), we are not aware
about any investigations about the problem of parameter estimation or computing the
information measures in this case. It seems that the main reason is the functional
form of the joint density function of these statistics which has been expressed as a
summation over all permutations of {1, ..., n}, which cannot be used to make any
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inferences about the common parameters of various distributions. In this paper, we
first consider a vector of random variables including the INID progressively type II
censored order statistics and then derive an explicit expression for the corresponding
likelihood function which may be applied to make inference about the parameters of
interest.

The rest of this paper is as follows. In Sect. 2, the model of interest is described. In
order to identify the failed units and those that are removed from the experiment, two
indicator variables are defined and based on them the appropriate likelihood function
for the parameter of interest is derived. The probability functions of the INID progres-
sively type II censored order statistics are presented in Sect. 3. Section 4 focuses on
INID random variables coming from a proportional hazard rate family; the probability
functions are simplified and the amount of FI about the common parameters of inter-
est is derived. More details are presented when the exponential family and Weibull
distribution are the baseline distributions of this model. Some results are extended to
a fixed covariates model in Sect. 5. The performance of the proposed procedure in the
paper is investigated via a real data set in Sect. 6. In Sect. 7, the FI contained in the
INID progressively type II censored order statistics about the common parameter of a
proportional hazard rate family with the baseline Weibull distribution is numerically
computed. Some concluding remarks are presented in Sect. 8.

2 Model description

Let X1, ..., X, be the lifetimes of n units which are independently and simultaneously
placed on a test for which X, comes from cumulative distribution function (cdf)
F,(x; 0) with corresponding pdf f,(x;0), 1 < r < n, where 8’ = (61, ...,6,) is
the common vector of parameters of the various distributions. Moreover, let R =

(Ry, ..., Ry) be the progresswe censoring plan withn = m + ) ;.| R;. For brevity,

we denote by y; = n — Zl_l R; — j + 1 the number of units remaining in the
experiment before the jth failure time.

To obtain the likelihood function of the parameters of interest # on the basis of the
INID progressively type II censored order statistics, denoted by XR Lo+ o0 X ,lfl e
let us first define the following random variable to identify the failed units on a lifetime

test

A( D 1, if the lifetime of the ith unit coincides with the jth failure time,
0, otherwise,

where for each j = 1,...,m, Z;’:l Agj) = 1. Also, after the jth failure time, R;
of surviving units are removed from the experiment. Therefore, we use the following
random variable to specify the units removed from the test

H( D 1, if the ith unit is removed from the test after the jth failure time,
0, otherwise,
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such thatforeach j =1, ..., m, 27:1 Hl.(]) = R;. Notice that for a fixed j, say jo, if
Agm =1lor Hi(jO) = 1, then for other values of j (j # jo), AEI) =0and Hl.(j) =0.

According to the above random variables, it is reasonable to use the following
random vector to make inferences about the parameters of interest

B={xR,,. A0 0O 1<j<m1<i<n].

To determine the likelihood function, note that in progressive type II censoring
scheme, n units are simultaneously placed on test, and at the first failure time, R
of n — 1 remaining units are randomly removed from the experiment, so there is an
integer s1 (1 < s1 < n) such that AAEII) = 1, and also there are R, integers iy, ..., ig,,
not equal to sy, for which Hi(jl) =1 (1 < j < Ry). At the first failure time of the
remaining n — R; — 1 units, R, units are randomly censored; hence, there is another
integer 57 (s2 € {1, ..., n}\{s1, i1, ..., ig,}) suchthat Ag) = 1, and also there are R;
integers, say ig,+1, - .., iR,+R,>» Which belong to {1, ..., n}\{s1,i1,...,ig,, s2} for
which Hl.(j2) =1(R;1+1 =< j < Ry + R»). This procedure continues to arrive at the
mth failure time in a sample of size n. It is clear that the lifetimes of the removed units
from the test after the jth failure time are greater than the jth failure time. Therefore,
by taking into account the above scenario, the likelihood function of # on the basis of
the data set B can be presented as

m m n
0 = G
L@® = [Tvi | TTATT0A Gy 01 [FiGejs )17 ¢ (1)
j=1 j=1 li=1
where x;, 81.('/ ) and nlg"' ) are the observed values of X%m:n, AE'i ) and Hi(j ), respec-

tively. Notice that the constant y; represents the number of ways in which the jth
progressively type II censored order statistic may occur.

Remark 1 The likelihood function of € in (1) can be used for the following cases:
— Let Xy, ..., X,, be INID random variables with k (k < n) different distributions
such that n; of them come from the cdf F;(x;0),1 < j < k, for which n =

Z’;: 1 1j; then, the likelihood function of @ in (1) can also be applied to make
inference about 6.
— In the case of usual order statistics, we have m = n as well as R; = 0. In this case,

yj =n—j+1and Hl.(j) =0,foreach 1 <i <nand 1 < j < n. Therefore,
using (1), the likelihood function of @ can be presented as

L@ =n [ []fiG: 007

j=li=l1

— Sinceforeach j = 1,...,m, Y7 AV = 1and Y7, H'” = R}, the likelihood
function of @ in (1) converts to the joint density function of progressively type 11
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censored order statistics in the case of IID random variables; see, for example,
Balakrishnan and Aggarwala (2000).

3 Joint probability functions

In this section, the probability of the events (xR emn > Vs A(k) = 1} and {XR

k:m:n
v, Hl.(k) = 1} is presented in Theorems 1 and 2, respectively, which will be used in
the next sections and also are useful in the other statistical inferences. Accordingly,

the joint probability functions of (XR Cmen A(k)) and (XR emne H (k)) the marginal pdf

of X,F and also the probability of the events {A(k) 1} and {H; ® _ = 1} may be
derived.

Theorem 1 Foreachi =1,...,n,k=1,..., m and every positive real value y, we
get

-1
k=L
Pr(Xf, > v 4 =1) = 1T] <ij )
i J

J=1

x Z/ // / ]_[ fo; (xj: 0) ]_[ Fi(xj;0)

g+ teC)

x<fitxi0) | [ Fi:o)| dxi...doodxidx, )
real*
where the summation index El-(k) extends over all permutations (S1, ..., Sk, i1, ..,
iZf R, ) of the integers {1, ..., n}\{i} for which for 1 < j <k, iz_rj;: Rl <<
I further
r= 1
C(j):{ZIIR+1""’i ',/=|Rr}’ 3)
k . . .
Ag S T AN IV o TR l;ler,l}. @
Proof Notice that before the kth failure time, the units X, ..., Xj, , are failed and the
units X, ..., X ikt ATE removed randomly from the test. Indeed, at the jth (1 <
r=1""

J < k—1)failure time, R units are randomly removed from (y; —1) remaining units on

test. Therefore, the probablllty of the event that units indexed byzZ T REEE Vi g
r=1 r=1 "7

are removed from the test at the jth failure time is equal to 1/()'-%,__1). Hence, by
J
summing up over all permutations of failures and random removals, we get
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k—1

-1
=1
Pr (X,l}:m:n >y, a0 = 1) — <ij ) > Pr(Xi >y,
j

j=1 Ei(k—l)

k—1 _ ;
Xi<Z8FV0 Xi> Xy > Xo > > X 02O > xsj}), (5)
where N stands for the intersection of the events; for k > 1, we have

k .
z® =m1n{X1,...,Xn}\{Xsl,...,Xsk,Xil,...,Xl-zk . ,Xi},
r=1""
with Zl.(o) =min{X,..., X} \ {X;} and

YY =mini{X;, ., ,....Xi . :
X)) Retl Xy Rr

Using the independence property of the random variables in (5) and performing some
algebraic calculations, we find

-1
k—1

(%)
jor N R

00 X LXR—1  [LXk—2 x (k] -
Z / / / / / Hfsj(xj;G)Fy(j)(xj;w
y 0 0 0 0 Jj=1

X
Ei(k—l)

Pr(XR,, > v.aY =1) =

Xfl' (x; O)le(k—l) (X; 0)dx1 e dxk_3dxk_2dxk_1dx.

Therefore, the result follows. O

Corollary 1 Using Theorem 1, the following results may be deduced:

1. The probability for the event that the lifetime of the ith unit coincides with the kth
failure time may be obtained for eachi = 1,...,nandk =1, ..., m. That is,

pr(al =1) =pr(xR,, >0.40 =1). 6)
2. The joint probability function of (X:m:n, Al(k)) at point (y, 1) may be obtained as

fXR

kim:n>

d
A (e D) = —5E (X,Em:n >y, A% = 1).
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3. By summing up both sides of (2) over i from I up to n, the survival function of
Xk:m:n may be derived. That is,

n
k
Pr (X,Em:n > y) = ZPr (X,I}:m:n >y, Ag ) — 1).

i=1

Theorem 2 Foreachi =1,...,n,k =1,..., m and every positive real value y, we
have

-1

k—1
Pr (Xlgm:n >, Hi(k) = 1) l_[ < )

V"_l j=1

/ // / Hfsj(x,,()) [1 7Gs0)§ Fio)

<k 1 teC)
x{ Y A0 [ FG:o)p do-dg ady dz, @)
vea®=D rea® =D
' o

where El.(k), Cc9D and Al(.k) are as defined in Theorem 1.

Proof As mentioned in the proof of Theorem 1, the units indexed by lz i1 p

r= l -’

- g, are removed from the test at the jth failure time with probability 1/ ( ),
r=1

1 < j < k—1.Then, after the kth failure time, (yx — 1) units remain in the experlment

Therefore, occurring the event {Hl.(k) = 1} is equivalent to removing the ith unit from
the test as one of the Ry units which must be randomly censored. So, we get

k—1 -1

R *) Ri vi—1 (k—1)
Pr(Xk;m:n>y,Hi :l)zyk—l H( R ) ZPr(Zi >y,
j=1 E0D
X >z8V s x| > XSH > X O > Xy })
k—1
St (G Dol A Y A AT
RN AN £*D

k-1
l_lfsj-(xﬁa)ﬁy(.i)(xj;o) Fi(z;9)fz_(k—1>(1§0)
j=1

xdxp ...dxg_3dxg_odxg_1dz,
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where
fpn@0 = > fEo [ F@o).
l vea®=b reab
’ 1#v
Hence, the relation (7) is derived. O

Corollary 2 By use of Theorem 2, the following results are deduced:

1. The probability of the event that the ith unit is censored from a lifetime test after
the kth failure time, for eachi = 1,...,nandk =1, ..., m, is given by

Pr (H}’O - 1) —Pr (x,‘} >0, HY = 1) . ®)
2. The joint probability of (Xi:m:n, Hi(k)) at point (y, 1) may be derived as follows

d R (k)
fX,Em:n,Hi(k)(x’ D= _Epr (Xk:m:n >y, H = 1) :

Note. In the special case of k = 1, we get El.(l) = (). Hence, the probabilities in (2)
and (7) are simplified as

00 n
Pr (X}‘m >y, A0 = 1) =/ fi(x; 0) ]_[ Fj(x; 0) dx, 9)
y j=1
J#
and
R 0o N no
pr(xR,, >y B =1) = — / S f@o [ Fi o) dz (10)
Yooy=1 j=1
v J#v
respectively.

Remark 2 Based on the proposed procedure in this paper, the following expressions
deduce:

— Surely, one of the surviving units in the lifetime test is the kth failure, i.e.,
n
ZPr(A}’”:l):L k=1,...,m. (11)
i=1

Therefore, in the case of IID random variables, it is trivial that

I
Pr(af =1) = =Pr(af =1)=—.
n
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— The ith unit on test is either one of the m failures or one of those that are removed
from the test. Hence,

m
S {pr(a® =)+ e(E® =1} =1 i=1 0
k=1
— Certainly, there are Ry units censored from the test at the kth (1 < k < m) failure

time, such that each of them with probability one is one of the working units on
the test. Therefore,

n
ZPr(Hi(k)zl):Rk, k=1.....m. (12)
i=1

Hence, in the case of IID random variables, it is obvious that

R
Pr(Hf“ - 1) = =Pr<H,§"> - 1) _ Bk
n

4 Inference based on proportional hazard rate family

Let X1, ..., X, beasample of independent random variables for which X;, 1 <i <n,
has the survival function ) .

Fi(x;0) = [G(x; 0)1", (13)
where 0’ = (64, ..., Gt_) is a common vector of parameters; A, ..., A, are known

positive constants and G = 1 — G is the survival function of the baseline distribution.
This family is well known as proportional hazard rate family with proportionality
rates Ay, . .., A,; see, for example, Lawless (2003). This family includes several well-
known lifetime distributions such as exponential, Weibull, Pareto and Burr type-XII.
For example, suppose that n units which have been made by different companies
and the corresponding lifetimes come from different distributions are independently
placed on a life test. Also, suppose that there exists a hierarchical relation among
these distributions through relation (13). If one considers the first distribution as the
baseline distribution, that is, A1 = 1, then A, ..., A, represent the proportionality
rates of the other distributions with respect to the first (baseline) distribution. In this
section, we would like to make inference about the common parameters of the lifetime
distributions in the proportional hazard rate family.

First of all, to determine the joint probability functions of (X,l}:m:n, Afk) ) and

(xR H®), letusdefine D; = CYP Ufs;}and A; = AY Ui} with C¥) and A\

(1 < j < k) being as defined in (3) and (4), respectively. In fact, A} = {1, ..., n}.
Moreover, for each set A, we define

1 _
. _ . ZjeA Aj
p(y; A) = Sk [G(y: 0)] , (14)
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with ¢(y; @) = 0; further, we consider the set v = {(vi, ..., )0 =+1, v =
+1,2 < j < k} with V(O = ¢. Then, by using (2) and performing some algebraic
calculations, it can be shown that for the proportional hazard rate family (13), for
1 <k <m,we get

k—1
R ® _ )= M
Pr(Xk:m:n>y’Ai _l)_r[’?l—()’j_l) Z H)‘Sj
j:l Rj E.(kfl) /:1

[1Zi v
X —— (0 (y; Ap) — 0 (y; A — Wi—1))
V(kzl) 1_[]‘;:} Zrer Ar
=Wk, i e(y; ), (15)

where A — B stands for the difference of set B from A. Moreover, Wy = A, W| = D;
and for2 < j <k,

W, = Dj, ifvj=+1
J W;_1UDj, ifvj=—].

Similarly, by use of the (7), for I <k < m, we obtain

k—1
R
R ® _ 1) — k
Pr <Xk:m:n >, Hi - 1) - k—1 (yj—1 Z 1_[ )Ls./'
(e —1 Hj:l ( R; ) k=1 j=l

1= v
X Z Aj Z k_lj— (p(ys Ar) — o(y; Ak — Wi—1))
jea®b y(k=1) Hj:l Zrewj Ar
=W (k, i 0(y;0), (16)
where ¢(y; -) is as defined in (14).

Note. Using (9) and (10), the expressions in (15) and (16) may be simplified for the
special case of k = 1, as follows:

v (1,65 0(y; ) = Aip(y; A1)
and
n

D hj =i | ey A,

j=1

Ry
—1

(1,005 ) = .

respectively.
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Remark 3 Using (15), the probability functions fXR 4 (v, 1) and fXR (y) and
from (16), the joint probability function f Xk o (y, 1) may be obtalned Moreover

the failed and censored probabilities in the proportronal hazard rate family are derived

via (6) and (8), respectively, which are free of the baseline distribution and are only

depend on the proportionality rates, A1, ..., A, and the progressive censoring plan,
=(Ri,..., Rn).

Using (1) and (13), the log-likelihood function of @ based on the data set B is

(8) = Zlogyk+228(k) log A; +Zlogh(xk,0)

k=1 i=1

+ Z i [)»i (8[,(/‘) + nlfk)) log G (xy; 0)} , (17)

k=1 i=1

where i = g/G is the hazard rate function of the baseline distribution with cdf G and
pdf g. Using (17), the FI contained in the data set B about 8’ = (61, ..., 6,) is given
by the matrix

Ig@) =1[1s0)]; r,s=1,....1, (18)

where

2
5.(0) = —E (”_(”)
20,90

_Z <ae T logh(XII}:m:n;0)>
_ZZAE[( A® 4 H.(k))( i log G (xR 0))]
i 30,0, kimn>

k=1i=1

m 00 2
9~ log h(y; 0)
B 0000 ;0)d
X—: /0 ( aer aes fX/l}:m:n (y ) y
m
- Z Z A / <fxll}:m:n’At('k) (y, 1) + fXIEm:n’Hi(k) (y7 1))

k=1 i=1

321og G(y; 0
% og—(y) dy. (19)
00,00,
Remark 4 For the special case of A; = --- = X, = 1 in the family (13), i.e., when
X1, ..., X, are IID random variables, for fixed k, the random variables A(k) nd

H; ) (1 < i < n) are independent of xR cm-n» While in the INID case this is not true.
Therefore using (11), (12) and (19), the FI contained in the data set B about § may
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be obtained from (18), such that /, ;(@) is simplified as follows

Ir,s(a) = - Z <39 30, logh(XII}:m:n; 0))

_ZZA (Pr(a® = 1)+Pr<Hi(k)21))E<8210g§9(r§gsmn;0))

k=1 i=1
e Zlogh(XR .9 92logG(XR .0

= oy e (0 Nt 00 | gy gy (2108 X 0 |
P 96,90 96, 90,

In the sequel, the exponential family and Weibull distributions are considered as the
baseline cdf for the proportional hazard rate family and some details are investigated.

4.1 Baseline exponential family

Let X1, ..., X, be independent random variables for which X; (1 < i < n) comes
from the model (13) with the baseline one-parameter exponential family with the cdf

G(x;0)=1—e PODPX, (20)

where §(6) and D(x) are positive and differentiable functions and 0 is a real-valued
parameter. Notice that by the Cramer—Rao lower bound, the variance of any estimator
of ¥ (0), any differentiable function of 6, is related to the inverse of the FI about 6.
Also, the FI plays a valuable role in the asymptotic properties of the MLE. Hence, in
spite of computing the FI about 6 we would like to study the estimation problem of
B1(0) = 1/B(0), the hazard rate function of the baseline distribution at v: 5,(0) =
h(v;0) = g(v;0)/G(v;0) = B(0)d(v), where d(v) is the first derivation of D(v),
and the survival function at v: 83(0) = G(v: 0) = e PODO) oy the basis of the data
set B.

Theorem 3 Let Xy, ..., X, be independent random variables for which X; (1 <i <
n) comes from a proportional hazard rate family with survival function in (13). Then,
the random variable

T(B) = ZZA (A(” H(”)D(ijn) Q1)
] 1i=1

is a sufficient statistic for 6 on the basis of the data set B if and only if the baseline
distribution in (13) belongs to the exponential family with cdf (20).

Proof (1) Sufficiency: If the baseline distribution in (13) belongs to the exponential

family with the cdf (20), then the joint density (1) is also in the one-parameter expo-
nential family; thus, the result deduces.
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(i1) Necessary: By sufficiency of T'(B), it is deduced that the observed value of
T (B) must be appeared in the last term of the log-likelihood function of 6 in (17);
moreover, from the third term in the right hand side of (17), we get

m

[TrG:0) =n@i ... .x) K@),

j=1
where (xi, ..., X;,) is the observed value of (X}‘:m:n, R X,lfl:m:”) and K (-) and n(-)
are some positive functions of 6. Therefore, there exist some positivez functions,
say d(-) and B(-) for which h(x;;0) = d(x;)B(0) or equivalently G(x;;0) =
exp{—pB(0)D(x;)}. O
Remark 5 Let the baseline distribution in a proportional hazard rate model belong to

the exponential family with cdf (20); then, using the properties of the one-parameter
exponential family (see, for example, Lehmann and Casella 1998), we get

— The FI contained in the data set B about 6 is

B©))
Ig(0) =m < , (22)
B©)
where depends on neither the progressive censoring plan, R = (Ry, ..., R,), nor
proportionality rates, Aq, ..., A,.

— The statistic 7(B) in (21) is complete, and also using its sufficiency in Theorem
3, it is the best (most efficient) unbiased estimator (BUE) for g1 (0) on the basis of
the data set B in the sense that its variance attains the Cramer—Rao lower bound.

— The statistic 7 (B) in (21) is also the consistent MLE of §;(6), and using (22) it is

asymptotically distributed as N (51 ), [ﬂlfni]z>, where N (i, 02) stands for the

normal distribution with mean y and variance 2. Hence, an asymptotic 100(1 —
)% confidence interval for 81(0) is as follows:

TB) T®)
o | (23)
Jm LT

where z4 is the ath upper quantile of the standard normal distribution. Notice
that the confidence interval in (23) can be used for large values of m such that
/m > z4/2. Itis obvious that larger values of m lead to more reliable confidence
interval.

Corollary 3 Using the invariance property of the MLE, the following results deduce:

- ;‘fgg)) is the MLE of B>(6),

D(v)
— ¢ T® jsthe MLE of B3(6),
where T (B) is as defined in (21). Since $,(0) and B3(0) are monotone functions of

B1(0), the asymptotic confidence intervals for these parameters can be obtained using
(23).
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4.2 Baseline Weibull distribution

In this section, we assume that the baseline cdf in model (13) is the two-parameter
Weibull distribution. The Weibull distribution appears very frequently in practical
problems as the most widely used lifetime distribution model. A random variable X is
said to have the two-parameter Weibull distribution, denoted by We (01, 6,), if its cdf
is 0

G(x;601,6)=1—¢ (@> x>0,

where 61 and 6, are the shape and scale parameters, respectively.
4.2.1 6 unknown, 61 known

Let the shape parameter be known and assume without loss of generality that 6; = 1;
then, the We(1, 6») distribution belongs to the exponential family in (20). Therefore,
using (22) we get

03 Ip(62) = m,

which depends on neither the progressive censoring plan nor proportionality rates. On
the other hand, using Remark 5,

m n
T*(B) = % Y u(a?+H) xR, (24)

j=1i=1

is a complete sufficient statistic, and also it is the BUE and the MLE of f1(62) = 65.
Note that since 7*(B) in (24) is a linear function of X Ifm:ns, it is also the best linear
unbiased estimator (BLUE) of 8,. Moreover, using (23), an asymptotic 100(1 — «)%
confidence interval for 0, is

T*B) T*(B)

/2’ _ Ze2
1+f] NG

(25)

Furthermore, by Corollary 3, we have
- T*(B) is the MLE of 8,(62) = 1/63,
_ ¢ T® is the MLE of 3(62) = e %,

where 7*(B) is as defined in (24). Also, using (25), the asymptotic confidence intervals
for B2(6>) and B3(62) can be derived.

4.2.2 61 unknown, 6> known

When the scale parameter is known, without loss of generality we consider the
We(6, 1) distribution. Therefore, the ith population in a proportional hazard rate
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family has cdf
Fi(x:0) =1 —e 2", (26)

Using (19) and (26), it can be shown that the FI contained in the data set B about 6;
is given by

OFIB(O1) = m+ )Y ki (W1 (k, i () + W2 (k. 5 1))
k=1 i=1
= Y(m,n, ), 27

where A = (A1, ..., A,) represents the proportionality rates; the functions ¥ (k, i;
n(-)) and Wy (k, i; pu(-)) are as defined in (15) and (16), respectively. Moreover, by
doing some algebraic calculations, for each set A, we get

wA) = / " 3e 7 (Ea%) tog yy2ay
0

2
1 2

=57 ?—2 y +log ij + | v +log Z)‘f ,

(ZJGA P jeA jeA

where y is the Euler’s constant and p () = 0 (see, for example, Balakrishnan et al.
(2008)).

Using (1), the MLE of 61 based on the data set B, denoted by élB, is the solution
of the following equation

21_1 _ i <log X}f}ﬂ) {(X}fm:n)& Xn:x,- (Afr) + Hl-(r)> - l} . (28)
i=1

r=1

It is trivial that the left-hand side of (28) is a positive decreasing function with respect
to 8. Also, it can be shown that the right-hand side of (28) is an increasing function of
01 for which it converges to a real positive constant as 0; tends to infinity. Therefore,
the existence and uniqueness of the MLE of 6 are confirmed.

A~ 2
Since 61 is asymptotically distributed as N (01, W), an asymptotic 100(1 —
)% confidence interval for 0y is

6 6
B B : (29)
1 + a/2 1 _ 72
N (m,n,L) N (m,n,L)

where ¥ (m, n, L) is as defined in (27). Notice that i (m, n, X) is an increasing function
in m; therefore, the confidence interval in (29) can be used for large values of m such

that /Y (m, n, X)) > z4/2.
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4.2.3 Both of 61 and 0, unknown

When both of shape and scale parameters are unknown, the ith population in model
(13) has the cdf

X

()"
Fono=1—cE) . cso 30)

It can be shown that the MLEs of 0, and 6, on the basis of the data set B are the
solutions of the following equations:

01
k k xR xR xR
S S (a0 +) (B ) g (S ) = g 1 0 (e ).
R

01
® 4 @\ () _
SN A (Ai + H ) <k9_2) =m.

Moreover, using (19) and (30), the FI contained in the data set B about 8’ = (1, 6>)
is given by
I 12
1(0) = ,
®) <1 12 122)

where, by doing some algebraic calculations, it can be shown that

32
0711 = —07E (sz)) = Y (m,n, 1),
1

where £(0) stands for the log-likelihood function of € on the basis of the data set B
and ¥ (m, n, A) is as defined in (27). Moreover,

2 82
—0;E| —£(0

= —mO + 016+ 1) Y ki (W1 (ki3 v() + ¥k, i3v()),

k=1 i=1

631

and

82
Oliph = —60E £(6
h 112 > (801862 ( ))

m n

=m =YY %W kiio0) + ¥ (kiiol),

k=1 i=1
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where ¥ (k,i; (-)) and ¥, (k, i; o (-) are as defined in (15) and (16), respectively.
Further, for each set A, we have

-2

o
v(A>=/ ye M e tdy = [ 3,
0

JEA
and

00 2—y—log<Z<A)»j)
w(A) = f yogy + e ¥ Xieatdy = 7,
0 (ZjeA )‘j)

where y is the Euler’s constant.
Note that asymptotic confidence intervals for any function of 8’ = (01, 6), say
£ : R> — R, may be derived through

. 60)\ 1, (56)
30 s(ewzv(o, (—80 ) (0>< 5 )) (31)

where 171(8) is the inverse of the FI matrix I (). For example, when the reliability

of the baseline population at point x is of interest, we have £(0) = exp{—(x/62)"}.
Hence,

() = () (@) R @) <),

Therefore, by determining the proportionality rates and doing some numerical com-
putations, the asymptotic confidence intervals may be obtained.

5 Fixed covariates model

Suppose that X1, ..., X, are independent random variables representing the lifetimes
of n units such thatfori = 1, ..., n, X; has an exponential distribution with parameter
Ai = exp{—y;B}, where y; = (yi1,...,yip) is the observation of the covariates
associated with X; and B’ = (B1,..., B ) is the regression coefficient. Hence, the pdf

of X; is given by
fi(x) = &P exp{—xe¥if}, x> 0.

If the units are placed on a life-testing experiment under type II censoring scheme,
then using (1), the log-likelihood function of the vector B is

1(B) = Zlog(yk)JriZ{‘s(k)y/ﬂ xpeYiB (8(k)+nl(k))}

k=1 i=1
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Therefore, the MLE of g is the solution of the following equation
m n m n
k k k /
3o = 33w (3 ) et
k=1 i=1 k=1i=1
Furthermore, the FI matrix of the B is I (B) = [I,s(B)], where forr,s =1, ..., p,

3%e(B)
3BPs )

m n
! k k
Z Zyiryisey’ﬂE (Xk:m:n (Al( ) + Hi( )))

k=1i=1

[r,s(ﬁ) =-F (

m

n
SS  virvise P (g k. izmon, ) — @3 k.izm n, B)).  (32)

k=1 i=1

where by doing some algebraic calculations, it can be shown that

[e¢)
Wk, ism,n, B) = /O 5y a0 (6 D

_ Ai Z {e—(2§=iy;j)ﬂ Z HIJ(';% vj

k=1 (7,—1 k=1 -y
[Ti=i ( R; ) £ vaon 1Tz Zrer e
L
-2 -2
s —y/ﬂ
A(ze) - & o
JEeAL JEA=Wi—1

and

oo
<ﬂ§(k,i;m,n,ﬂ)=/ g, gt Ddx
0 m:ns 1

Ry —-(X52ivs, )8 ~vB
= k=1 (v;—1 Z ¢ (= ]y]) Z eV
ve—1 Hj:l( R; ) gk=D jeAf")

i

X Z Hl;;i v Z efy.,/[g

k—1 —y
y k=1 Hj:l Zrer e Vih jEeAL

-2

_ Z o ViB

JEAR—Wi—)

where Ay and Wy are as used in (15). Using (31) and (32), the asymptotic confidence
interval for any function of 8 may be derived.
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Table 1 Summary descriptions of Boeing 720 jet aircraft data

i 1 2 3 4 5 6 7 8 9 10
X3i_p 194 413 90 74 55 23 97 50 359 50
X3i_1 15 14 10 57 320 261 51 44 9 254
X3 41 58 60 48 56 87 11 102 12 5

A 1 09017 09836 0.6803 06230 13770 10656 12787 0.4098 0.7705

Table 2 Progressively type II

censored order statistics i Xil?::z:n Xj Censored units after the ith failure time
extracted from the data in
Table 1 1 X30 5 X2 X10 X12 X23 Xo6

2 X3 10 X5 X6 X15 X138 X2

3 X2 11 X3 X9 X16 X27 X238

4 X20 51 X11 X13 X19 X25 X29

5 X7 90 X1 X4 X4 X17 X4

6 Application on a real data set

To illustrate the performance of the proposed procedure in this paper, we use a real
data set which consists of the time (in H) of successive failures of the air conditioning
system in ten Boeing 720 jet aircrafts; see, Proschan (1963) for a detailed description of
the data set. He tested and accepted the hypothesis that the successive failure times are
IID exponential for each aircraft, but with different failure rates. Therefore, we assume
that the corresponding failure times for the ith aircraft come from the cdf F;(x; o) =
| —eho'x , which coincides with a proportional hazard rate family in (13). Since in
the assumptions of our model, A;’s are known parameters, we consider some arbitrary
values for Ap, ..., A1 as presented in Table 1. Moreover, three observations related to
the ith aircraft, denoted by X3;_5, X3;_1 and X3; (1 <i < 10), which have the same
distribution as F;(x, o), are used to estimate the unknown common parameter . In
fact, we use a sample of size thirty of failure times for which the first three of them come
from cdf Fj(x; o), the second three of them come from cdf F>(x; o) and eventually
the last three of them come from cdf Fio(x; o). Notice that the common parameter in
these distributions is o which is of interest; moreover, there exist ten known parameters
A1, ..., A10 which construct the different distributions related together via relation in
(13). Summary descriptions are reported in Table 1.

Using the data in Table 1 and by using the progressive censoring plan R* =
(5,5,5,5,5), the first five progressively type II censored order statistics have been
extracted. The results are tabulated in Table 2. From the entries of this table, the values
of AE’ ) and Hl.(J ) in the data set B may also be specified.

Using (24) and the data in Table 2, the observed value of the BLUE and also the
MLE of o on the basis of the data set B is given by

1
th = 5 {x1 (A2 + A10 + A2 + A23 + A26 + A30)
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+x2 (As + A6 + Ag + A5 + A1s + A22)
+x3 (A3 + Ao + A1 + A21 + A27 + A2g)
+ x4 (A1 + 213 + A9 + 420 + A2s + A29)
+x5 (A +As+ A7+ Xig + A7 + Aog))
= 187.3066. (33)

From (25) and (33), the observed values of asymptotic 90 and 95% confi-
dence intervals for o based on the data in Table 2 are (108.0554, 702.6551) and
(99.8149, 1517.1270), respectively. Notice that in small samples, the asymptotic con-
fidence intervals lead to unreliable results. For this reason, the upper bounds of the
confidence intervals for o are rather large compared to its estimate.

7 Numerical computations

Let Xy, ..., X, be independent random variables from a proportional hazard rate
family for which X; (I < i < n) has the same distribution as presented in (26).
In this section, we determine the amount of FI about 6; contained in the data set B
for given proportionality rates. Toward this end, we assume that n = 8, m = 4 and
consider five n-tuples of proportionality rates as A; = (1,1,1,1, 1,1, 1, 1) which
corresponds to the case of IID random variables from We(0;, 1) distribution, A, =
(1,0.8,0.6,0.4,0.35,0.3,0.25,0.2), A3 = (1,0.9,0.8,0.7,0.6,0.5,0.4,0.3), Ay =
(1,2,3,4,5,6,7,8) and A5 = (1, 3,5, 7,9, 11, 13, 15). Using (27), the numerical
values of 91213(91) are presented in Table 3, for some choices of progressive censoring
plans, R.

From Table 3, it is deduced that:

1. For the cases in which all A, ..., Ag are less than or equal to 1 (such as in Ay,
A2 and A3), later removal of working units decreases the amount of FI about 6.
Therefore, it is better to remove units at the first stage of the test.

2. Ifall Ay, ..., Ag are greater than or equal to 1 (such as in A4 and A5), later removal
of working units increases the FI of 8. Therefore, it is preferred to remove units
at the last stage of the test.

8 Concluding remarks

In this paper, we assumed that X, ..., X, are the lifetimes of n units where are
independently and simultaneously placed on a test for which X, is distributed with
cdf Fy(x;0), 1 < r < n, where 6 is the common vector of parameters of these
distributions. The likelihood function of § was derived based on INID progressively
type II censored order statistics and the indicator random variables that identify the
failed units and those that are removed from the experiment. Some major results were
obtained regarding the distribution theory of these statistics. To construct the noniden-
tical distributed random variables, a proportional hazard rate family was considered
and it was shown that in this family the probabilities for the events that the ith unit is
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Table 3 Values of 912 I (07) for proportionality rate A; (1 <i < 6) and some choices of R

R Al Ao A3 Agq As

(4,0,0,0) 8.7609 13.7163 10.8837 16.5671 23.6522
(0,4,0,0) 8.4512 11.6792 9.6109 18.7637 26.9462
(0,0,4,0) 7.5424 9.0806 7.7709 19.9339 29.0779
(0,0,0,4) 6.2403 5.9955 5.4845 20.4534 30.4925
(3,1,0,0) 8.5275 12.7921 10.2666 17.2597 24.7602
(2,2,0,0) 8.4452 12.2530 9.9300 17.8450 25.6374
(1,3,0,0) 8.4312 11.9100 9.7319 18.3400 26.3511
(3,0,1,0) 8.0046 11.5344 9.3338 17.4715 25.3316
(2,0,2,0) 7.6902 10.3276 8.5278 18.3815 26.7911
(1,0,3,0) 7.5680 9.5784 8.0591 19.2035 28.0246
(3,0,0,1) 7.1959 9.8143 7.9880 17.2368 25.3935
(2,0,0,2) 6.5858 7.8898 6.6682 18.3675 27.3407
(1,0,0,3) 6.3284 6.7428 5.9314 19.4591 29.0324
(0,0,3,1) 6.7236 7.2611 6.3828 19.9365 29.4975
(0,0,2,2) 6.4447 6.5739 5.8864 20.1384 29.9375
(0,0,1,3) 6.3129 6.2147 5.6347 20.3129 30.2555

the kth failure or that it is censored after the kth failure time are free of the baseline
distribution. The results were derived in details for the baseline one-parameter expo-
nential and two-parameter Weibull family of distributions, and they also extended
to a fixed covariates model with multi-dimensional parameter. In the case of one-
parameter exponential family, a real data set was used to illustrate the performance of
the proposed procedure. Some numerical computations were also presented to study
the effect of the proportionality rates in view of the FI of the shape parameter of a
Weibull distribution contained in the data set B. The proposed procedure in this paper
can be extended to the following cases:

— Statistical inferences for the proportional hazard rate family have been obtained by
assuming that A1, ..., A, are known positive constants for which A; = 1. When
Ai (2 <i < n) is unknown, one can estimate it nonparametrically. Suppose that
there exists a sample of size N; from the ith (1 < i < n) distribution; then, the
nonparametric MLE for A; is

N —N;
Ai = , 2<i<n,

Y logG(Xiji0)

where G (x; 0) is the empirical estimator of G (x: 0) obtained on the basis of the
sample comes from the first (baseline) distribution; see, Razmkhah et al. (2008).
— Let Y7, ..., Y, be independent random variables for which ¥; (1 < i < n) is
distributed with the cdf F; (x; 0) = [Fy(x; 8)1%, where Fy(x; 6) is an absolutely
continuous cdf and §; is a known positive constant. The aforementioned identity
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is well known in the lifetime literature as proportional reversed hazard rate family
which includes several well-known distributions such as power function and Burr
type II1, Fréchet; see, for example, Lawless (2003). In this case, the results of the
paper hold with obvious modifications.

— Using the results of Theorem 1 regarding the probability of the event that the
lifetime of the ith unit is the kth failure time, we can develop a general approach
to robust inference about the parameter of interest in the presence of one or more
outliers.
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