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1 Proof of Step 1

We denote the positive constants ¢ and C' as generic constants depending on the context,

which can vary from line to line. For simplicity, we write Z(w) with Z for short, where

Z(+) is an arbitrary function.

Step 1: For some 0 < k < 1/2, we first prove

max sup P(|p%(X;,Y|W = w) — pA(X;, Y|W = w)| > en ") gcexp<—7éh>. (1)
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Thus p*(X;, Y|W = w) can be written as

ﬁQ(X Y‘W—w) . ZIZ6jZ2+ZQZ3j22_22227210]'
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To prove (1), according to Lemma S5 of Liu et al. (2014), we first show

cn™"

max sup P(|Z; — h*f*(w VE(dy dYy|Wh = w, Wa = w)| > 8en ™) < Cexp(—

L<I<P we(a,b]

),

and the other desired inequalities can be obtained analogously.
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By condition (C1) and the assumptions in Theorem 1, it can be shown that
MAX1 < j<p SUPye(ap) | 26,5 — h2f2(w)E(df2jd¥2|W1 =w, Wy = w)| < Ch? < 4en™" for large
enough n. Consequently,

max sup P(|Ze; — R2f2(w)E(diy d2| Wi = w, Wy = w)| > 8cn™")

1<j<p we€|a,b] 7

< max sup P ZAG,-—ZG,-
o swp P12 =

| Zoy — W2 L2 (W) E(diy &)Wy = w, Wa = w)| > 8cn™)

< max sup P(|Zs; — Ze,;| > 4en™). (3)
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By using the Cauchy-Schwartz inequality and condition (C2), it follows
X X
Zﬁ,j < M(?E‘dkl dk:Yl‘ < M(?(E(dkl )2E(dkyl)2)l/2a

where |K(t)] < My < oo hold uniformly over the support of K(-). This, together with
condition (C3), implies that Zg ; is uniformly bounded in p. That is, maxj<;<, Zg; < 00.

Take n large enough such that Zs ;/n < 2cn™". Then, it can be easily shown that

max sup P(|Zs; — Zs,| > 4en™)
1<G<P wela,b]
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= max sup P(|Z; . —— — Zg.;
léjﬁpwe[fb] <| 63 p 6.

1
— ZG,jE| Z 4071_%)

. —1 1
< max sup P(|Z; — Z6,j|n > den™ — Zg;—)
I n

L<I<P we(a,b]

< max sup P(\ZAgJ — Zs j| > 2en™"). (4)

L<I<P we(a,b]

To establish the uniform consistency of 26,]- in 7, it suffices to show the uniform consistency

of Zg; in j. Let h(Xj, Yi, Was Xi0, Yi,, Wisw) = dy/ dly K (W= K (W) .= hI(h >

M) + hI(h < M) be the kernel of the U statistics Zg’j, where M will be specified later.
Then

n

> hI(h< M)+ !

—)zn:h](h>M)

Zg -
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n(n —1)
= Zgi;t Zeay
Accordingly, we decompose the Zg ; into

Zsj = Eh[(hSM)+Eh](h>M) = Ze1; + Ze2,j-

3



We prove the uniform consistency of ZAng in j, first, with the Markov’s inequality,
for any ¢ > 0, we have
P(Z;

1~ Ze1j = en™™) < exp(—ten™")exp(—tZe ;) E exp(tZAng). (5)

With a similar discussion about U statistics in Zhu et al. (2011), the U statistics ZAng
can be represented as an average of iid random variables. That is,

Zgl,j - (n!)_l Z Q(lea }/17 Wl; e ;Xjna Yn; Wna w)7

n!

where ) denotes the summation over all possible permutations of (1,2,---,n), and
each Q(X;1,Y1;--- ; X, Y,) is an average of m = [n/2] iid random variables. Thus, it

follows from the Jensen’s inequality that, for j =1,2,--- | p,
Eexp(tZAng) = FEexp(t(n)™ Z QX Y, Whs -5 X, Ve, Wh, w))
n!

< () Eexp(tQ(X;0, Vi, Wis -+ 3 X, Yo, W, w))
n!

= EMexp(tm 'hI(h < M)). (6)
According to Lemma 1 in Li et al. (2012), for j =1,2,---,p, by (5), (6), we have

P(Zglyj — Ze1j >cen") < exp(—ten " )E™exp(m't[hI(h < M) — Zg1 4])

< exp(—ten™" + M*t*/8m).

By choosing t = 4cn™"m/M? such that P(ZAng — Zg1; > en™") < exp(—2c¢®n~*"m/M?).

A

Similarly, we can prove that P(Zg — Ze1; < —cn™") < exp(—2c¢*n~2*m/M?). Therefore,

1
for y=1,2,--- ,p, we have

cn~ % 2en™"mh

P(Z, — Zongl 2 en”™®) < 2exp(—2¢n % /M%) = 2exp(- =0 (1)

Since h = O(n~7), we take M = O(n"), where v — k < 7 < (1 — v — K)/2, such that

2en~"mh
—chQm =COn!TTE >,
for sufficiently large n. (7) is then simplified as
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P(|Zg17j — Ze1j| > en™") < Cexp(—
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Next, we consider the uniform consistency of ZAg;QJ. in j, with Cauchy-Schwartz in-

equality and Markov’s inequality, we have
Zg; < E(R*)P(h> M) < E(h*)exp(—s'M)E(exp(s'h)) for 0 < s < s.

By some simple inequalities, we have

ho= {00 = XY~ )T (Y = YR R (M

IN

2M§{(X32k + ngz)(YkQ + Y)Y

IN

Mg{(XJQk + ngl + Y2+ Y

IN

MOQ(XJZk JFXJZI + Y2 +Y?),
which yields that
E(exp(s'h)) < BE(exp(s'Mg (X}, + X5 + Y + Y1)

By condition (C3), and notice that M = O(n"), then max;<j<, Zg2; < cn”"/2 when n is

sufficiently large. Thus, for j =1,2,--- ,p, we get

P(|Z3yy = Zeng| > en™) < P(|Z55,| > en™/2)
< P(XZ+Y?>M/(2M), for some 1 <i<n)
< nP(X% > M/(4MR)) +nP(Y? > M/(4M3))
< 2nCexp(—sM/(4M2))

en™" h(sM/(4MZ) — logn)
h cnr

2C exp(— ).

The second line is because that if X7, + Y;> < M/(2Mg) for all 1 <4 < n, we then have
h < MZ(X3 + X3+ Y2 +Y?2) < M. This leads to |Z,;| = 0, which contradict with

|ZAg27j| > en~"%/2. The fourth line is due to Markov’s inequality and condition (C3). Since

h(sM/(4M§)—log n) -0

cn—h

(n"t7=7 —n"Tlogn) > 1, then, for j =1,2,--- | p, we have

)- (9)

A cn™F

P(]Zg}’j — Zgaj| > en™") < Cexp(—

Summarizing equations (3), (4), (8), (9), we obtain

—K

cn

max sup P(|Zs; — h2f2(w)E(dg do| Wy = w, Wy = w)| > 8en ™) < C exp(—
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2 Additional simulation

Following Example 3 in Fan et al. (2014), we further consider a linear varying coefficient
model setup. Let {Zy,---, Z,} be iid standard normal, {Uy, Us} be iid standard unifromly
distributed random variables, and the noise € follows the standard normal distribution.
The model is specified as:

4sin(27W)
—X
2 —sin27W ! te

Y =2X; + 3WXy + (W + 1)°X;5 +
where X; = (Z; + t1U1) /(1 +t1), j = 1,--- ,pand W = (Uy + taU1) /(1 + t2). t1,to
controls the correlation among the predictors X and the correlation between X and W
respectively. We study one setting: ¢t; = to = 0, which results in uncorrelated case.

We take p to be 1000, and the sample size n is 200, the model size d is chosen
to be d; = i[n*°/log(n*/®)], i = 1,2,3, where [a] denotes the integer part of a. Let
0=s59<s1 <:---<s10< 811 = 1 be a partition of the interval. Using the s; as knots,
we construct 7 normalized cubic (order is 3) B-spline basis functions for NIS method. All

the simulations are based on 500 replications. Similarly, we report the S, P; and P4y in

Table 1-2. We further present the boxplot of S in Figure 1.
Insert Table 1-2, Figure 1 here

Based on the results in Table 1-2 and Figure 1, we can see that in this uncorrelated
case, CDC-SIS, CC-SIS, NIS perform well and behave better than the unconditional
screening methods SIS, DC-SIS and DC-RoSIS. NIS behave comparable to the CDC-SIS
and CC-SIS according to the top fifty percent quantiles of S. However, in terms of the
75% and 95% quantiles of S, NIS method need a larger model size to include all active
predictors than the CDC-SIS and CC-SIS methods. Moreover, P4, of NIS is a little
lower than those of CDC-SIS and CC-SIS, but all these three methods outperform the

unconditional screening methods significantly.
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Table 1: The quantile of S

ti, to method 5% 25% 50% 5% 95%
ti=t, =0 CDC-SIS 4.0000 4.0000 4.0000 4.0000 5.0000
CC-SIS 4.0000 4.0000 4.0000 4.0000 5.0000
NIS 4.0000 4.0000 5.0000 13.0000  74.0000
SIS 4.0000 6.0000 25.5000 102.0000 410.5000
DC-SIS 4.0000 7.0000 28.0000 114.0000 427.5000
DC-RoSIS 4.0000 7.0000 31.0000 138.0000 472.5000

Table 2: The proportion of P; and Py

Pay
t1, 1o method  size X X5 X3 X, All
ty =t =0 CDC-SIS d; 1.0000 0.9880 1.0000 1.0000 0.9880
dy  1.0000 0.9960 1.0000 1.0000 0.9960
ds 1.0000 0.9960 1.0000 1.0000 0.9960
CC-SIS d;  1.0000 0.9980 1.0000 1.0000 0.9980
dy  1.0000 0.9980 1.0000 1.0000 0.9980
ds 1.0000 0.9980 1.0000 1.0000 0.9980
NIS d;  0.9860 0.8120 1.0000 0.9920 0.7940
dy  0.9980 0.8860 1.0000 0.9980 0.8840
dz 1.0000 0.9260 1.0000 1.0000 0.9260
SIS d;  1.0000 0.9980 1.0000 0.4160 0.4140
dy  1.0000 1.0000 1.0000 0.5340 0.5340
ds 1.0000 1.0000 1.0000 0.6180 0.6180
DC-SIS d;  1.0000 0.9900 1.0000 0.4100 0.4060
ds  1.0000 0.9960 1.0000 0.5260 0.5240
ds 1.0000 0.9980 1.0000 0.5980 0.5960
DC-RoSIS  d;  1.0000 0.9800 1.0000 0.3840 0.3780
dy  1.0000 0.9920 1.0000 0.5080 0.5060
ds 1.0000 0.9940 1.0000 0.5760 0.5740




Figure 1: Boxplot of minimum model size
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