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Abstract In this paper, we obtain fixed-width confidence interval for covariate-
adjusted response-adaptive designs. Specifically, we consider logistic regression
model and the normal regression model for binary and continuous responses,
respectively, both in the situations for presence and absence of treatment–covariate
interactions. Simulation study and real-data analysis are carried out.
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1 Introduction

Fixed-width confidence interval estimation is an important problem in sequential anal-
ysis literature. See the booklength discussion by Ghosh et al. (1997) in this context.
However, the problem becomes complicated if the data come from some dependent
process. Response-adaptive design (see Atkinson and Biswas 2014) is such a set up
where the allocation among two (or more) competing treatments depends on the sigma
field generated by all the previous allocation-and-response history. Towards this direc-
tion, Bandyopadhyay and Biswas (2015) worked on fixed-width confidence interval
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estimation of a real-valued function measuring treatment difference. However, so far
our knowledge goes, not much work on fixed-width confidence interval estimation in
the covariate-adjusted response-adaptive (CARA) set up has been done; possibly the
only exception is the work of Chang and Park (2013). The present paper aims to fulfil
that gap.

In this paper, we consider a typical response-adaptive set up in phase III clinical
trials with two treatments (indexed by A and B), where the objective is to skew the
allocation in favor of the better treatment (see, for example, Atkinson and Biswas
2014) so that eventually a larger number of allocation is done by the better treat-
ment in a sequential allocation procedure. So the subjects under consideration are
patients of the trial. Each subject receives one of the two treatments, A and B, using
some randomized allocation technique. More the treatment difference, the allocation
should be more skewed in favor of the better treatment. Early studies on response-
adaptive designs focused on finding the allocation probabilities based on allocation
and response history of the previously allocated patients (see, e.g., the randomized
play-the-winner rule of Wei and Durham 1978). However, a success from a patient
with favorable treatment condition should have different weight than a success from a
patient with adverse condition. Later, the covariate history of the previously allocated
patients was also used in finding the allocation probabilities (see, e.g., the covariate-
adjusted randomized play-the-winner rule of Bandyopadhyay and Biswas 1999), the
normal cumulative distribution function-type link function-based design for continu-
ous responses of Bandyopadhyay and Biswas (2001). Then, the CARA designs came
into play with the provision of using the covariate information of the current patient
in finding the allocation probabilities (see, e.g., Biswas and Coad 2005). Here, for
example, the allocation probability of an old patient differs from that of a young
patient.

Let δk be the allocation indicator of the kth treatment, k = A, B, where δA(=
1 − δB) = 1 or 0 according as a subject receives treatment A or treatment B. Let Xk

be the potential response to treatment k, k = A, B. Clearly, for subject, either XA or
XB is observed depending on the treatment given to this subject. Then, the observed
response of a subject is Y = δAXA + δB XB .

The response is usually influenced by some covariate Z , which is real or vector
valued. We assume that, given Z , Xk follows the distribution according to the density
or mass function (cf. McCullagh and Nelder 1989)

fk(x |θk, Z) = exp

[
1

φk
(xμk(Z) − ak(μk(Z))) + b(x, φk)

]
,

where

(i) μk(Z) = hk(θ�
k Z) is the link function,

(ii) θk = (αk, β
�
k )�, in which αk (real valued) is the effect due to treatment k and

βk (may be vector valued) is the corresponding regression coefficient, and Z =
(1, Z�

1 )�,
(iii) φk , ak(·) and bk(·, ·) are some specific functions.
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We assume that θk ∈ �k , a bounded subset of Rr (r ≥ 2), k = A, B. We further
assume that Z is discrete valued and is uniformly bounded. This is justified as, in
real clinical trials, covariates are the measurements on some clinical characteristics of
human beings (e.g., blood pressure, blood sugar, age, etc.), and thus they vary within
certain finite limits. In other words, we can find M ∈ (0,∞) such that 0 < ||Z || < M .
We consider φk = 1, k = A, B. Specifically, in this paper we consider

(a) logistic regression model in which Xk , given Z , follows Bernoulli (pk(Z)) dis-
tribution, where we assume that

logit(pk(Z)) = αk + β�
k Z1, k = A, B,

and
(b) normal regressionmodel in which Xk , given Z , follows N (μk(Z), 1) distribution,

where we assume that

μk(Z) = αk + β�
k Z1, k = A, B.

In this paper, we provide fixed-width confidence interval (CI) of αA −αB using the
data obtained under covariate-adjusted response-adaptive (CARA) design. We carry
out the analysis in the situations for the presence and absence of treatment–covariate
interactions. Note that, αA−αB can be interpreted as the treatment difference at Z = 0
under no treatment–covariate interaction (i.e., under βA = βB). We can as well carry
out our fixed-width confidence interval estimation for other parametric functions in a
similar way.

The rest of the paper is organized as follows. In Sect. 2, we discuss some prelimi-
nary results regarding the CARA design. The fixed-width confidence-interval and the
related results are obtained in Sect. 3. Numerical illustration through simulations and
redesigning real data is done in Sect. 4. Section 5 concludes, followed by technical
details in “Appendix”.

2 CARA design and related results

2.1 CARA design

CARA design has been studied by different authors. There has been growing interest
in this context since the work of Rosenberger et al. (2001) was published in the context
of response-adaptive designs for binary responses. Several references are available in
Atkinson and Biswas (2014) and Biswas and Bhattacharya (2016). Zhang et al. (2007)
studied the analytical properties of CARA designs under a general linear model set
up.

The CARA design consists of setting the allocation function πA(θ, Z) (= 1 −
πB(θ, Z)) such that πA(θ, Z) = P(δA = 1|Z), where 0 < πA(θ, Z) < 1 and
θ = (θ�

A , θ�
B )�. We assume that

(I) πA(θ, Z) is continuous in θ for each covariate value of Z .
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(II) ρA = ρA(θ) = E [πA(θ, Z)] ∈ (0, 1).

For example, the allocation function

πA(θ, Z) = Pθ (XB < XA|Z) + 1

2
Pθ (XA = XB |Z),

where Xk is distributed according to the probability model (a) or (b), satisfies (I) and
(II) and is used in the present study.

As θ is unknown, CARA design starts with n0 subjects to each treatment so as
to get a reasonable initial estimate of the parameter. Let n be the target number of
subjects to be examined in the trial. The corresponding observations on (Z , δA,Y )

are {(Zi , δAi ,Yi ), i ≤ n}, in which the allocation indicators {δAi , 2n0 ≤ i ≤ n} are
distributed according to the probability model

P
[
δA,i+1=1|Fi , Zi+1

]=1−P
[
δB,i+1 = 1|Fi , Zi+1

] = πA(θ̂i , Zi+1), i ≥ 2n0,

for allocating the (i + 1)st subject to treatment A based on Fi , the σ -field of the
history {(Z j , δAj ,Y j ), j ≤ i} and the current covariate Zi+1, where θ̂i = (θ̂�

Ai , θ̂
�
Bi )

�
is a consistent estimator of θ based on Fi .

2.2 Estimation

For estimation of θ , we use the maximum likelihood (ML) method where the log-
likelihood function

Ln(θ) =
n∑

i=1

∑
k=A,B

δki [(Yiμk(Zi ) − ak(μk(Zi ))) + bk(Yi )]

is maximized. In the presence of treatment–covariate interactions, the ML estimator,
θ̂n = (θ̂�

An, θ̂
�
Bn)

�, of θ is the solution of the likelihood equations

n∑
i=1

δki (Yi − a′
k(μk(Zi )))Z

�
i = 0, (1)

for k = A, B. The solution is unique and the likelihood function attains absolute
maximum at the respective unique solution. For model (a), the above equations reduce
to

n∑
i=1

δki Yi Zi =
n∑

i=1

δki Zi Z
�
i pk(Zi ), k = A, B, (2)
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whereas, for model (b), the equations become

n∑
i=1

δki Yi Zi =
n∑

i=1

δki Zi Z
�
i θk, k = A, B. (3)

In the absence of treatment–covariate interactions, we have μk(Z) = μkc(Z) =
hk(αk + β�Z1), k = A, B, so that θ = θc = (αA, αB, β�)� ∈ �c, a bounded subset
of Rr+1. Here, β represents the common regression coefficient. As in (1), we have on
setting [a′

k(μkc(Zi ))]� = (a′
1k(μkc(Zi )), [a′

2k(μkc(Zi ))]�),

n∑
i=1

δki (Yi − a′
1k(μkc(Zi ))) = 0, k = A, B,

n∑
i=1

∑
k=A,B

δki (Yi − a′
2k(μkc(Zi )))Z

�
1i = 0, (4)

which, for model (a), becomes

n∑
i=1

δki Yi =
n∑

i=1

δki pkc(Zi ), k = A, B, (5)

n∑
i=1

∑
k=A,B

δki Yi Z1i =
n∑

i=1

∑
k=A,B

δki Z1i Z
�
1i pkc(Zi ), (6)

and, for model (b), becomes

n∑
i=1

δki Yi =
n∑

i=1

δki (αk + β�Z1i ), k = A, B, (7)

n∑
i=1

∑
k=A,B

δki Yi Zi =
n∑

i=1

∑
k=A,B

δki (αk + β�Z1i )Z
�
1i , (8)

where pkc(Z) = exp(αk + β�Z1)/[1+ exp(αk + β�Z1)]. The solution of the above
equations is denoted by θ∗

cn = (α∗
An, α

∗
Bn, β

∗�
n )�.

2.3 Related asymptotic results

Let nk = ∑n
i=1 δki be the number of subjects treated by treatment k, and nk(Z) be that

for a given covariate value Z (k = A, B) when n responses are obtained. Then, in the
presence of treatment–covariate interactions, it follows that (cf. Zhang et al. 2007), as
n → ∞,

nk
n

→ ρk and
nk(Z)

n
→ πk(θ, Z)
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almost surely, k = A, B. Moreover, θ̂n is strongly consistent for θ . Next, consider the
following matrix:

I (θ |Z) = −E

⎡
⎣ ∑

k=A,B

πk(θ, Z)
d2 fk(Xk |θk, Z)

dθ2

∣∣∣∣∣∣ Z
⎤
⎦ ,

which, by a routine computation, can be simplified to

Diag (πA(θ, Z)τA(Z), πB(θ, Z)τB(Z)) ⊗ (Z Z�)

with τk(θk, Z) = τk(Z) = pk(Z)(1−pk(Z)) and1 formodels (a) and (b), respectively,
k = A, B. Now, as in Theorem 2.1 of Zhang et al. (2007), we state the following result.

Result 1 As n → ∞,

√
n(θ̂n − θ) → N2r (0, �)

in distribution, where

� = �(θ) = {E [I (θ |Z)]}−1 = Diag(�A, �B)

is positive-definite with �k = [E(πk(θ, Z)τk(Z)Z Z�)]−1, k = A, B.

Let σ 2 = σ 2(θ) (> 0) be the sum of the first principal diagonal elements from the
matrices �k , k = A, B. Then, given d (> 0) and α ∈ (0, 1), we can find the positive
integer

ν = ν(θ) = min

{
m ≥ 2n0 : m ≥ u2σ 2(θ)

d2

}
,

where P(|N (0, 1)| ≤ u) = 1 − α and n0 (≥ r) is a pre-fixed positive integer. Now,
writing θ̂kν = (̂αkν, β̂

�
kν)

�, Result 1 implies that, as d ↓ 0,

√
ν (̂αAν − α̂Bν − αA + αB) → N (0, σ 2(θ))

in distribution. Hence, we get

lim
d↓0 Pθ {|̂αAν − α̂Bν − αA + αB | ≤ d} = 1 − α for all θ ∈ �A × �B . (9)

In the absence of treatment–covariate interactions, the parameter θ becomes θc ∈
�c, a bounded subset ofRr+1 and, thus, using θ∗

cn in place of θ̂n , we can obtain similar
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results to thosewhich are found under the presence of treatment–covariate interactions.
However, for getting the asymptotic distribution of θ∗

cn , we need to consider thematrix

Ic(θc|Z) = −E

⎡
⎣ ∑

k=A,B

πk(θc, Z)
d2 fk(Xk |θkc, Z)

dθ2c

∣∣∣∣∣∣ Z
⎤
⎦ ,

where θkc = (αk, β
�)�, k = A, B. Hence, unlike the previous one, we get

Ic(θc|Z)

=
⎛
⎝ πA(θc, Z)τAc(Z) 0 πA(θc, Z)τAc(Z)Z�

1
0 πB(θc, Z)τBc(Z) πB(θc, Z)τBc(Z)Z�

1
πA(θc, Z)τAc(Z)Z1 πB(θc, Z)τBc(Z)Z1

∑
k=A,B πk(θc, Z)τkc(Z)Z1Z�

1

⎞
⎠

with τkc(θkc, Z) = τkc(Z) = pkc(Z)(1 − pkc(Z)) and 1 for models (a) and (b),
respectively, k = A, B. Hence, as in Result 1, we get the following result.

Result 2 As n → ∞,

√
n(θ∗

cn − θc) → Nr+1 (0, �c)

in distribution, where �c = �(θc) = {E [Ic (θc|Z)]}−1 is positive definite.

Let σ 2
c = σ 2

c (θc) > 0 be the sum of the first two principal diagonal elements of
�c. Then, setting

νc = νc(θc) = min

{
m ≥ 2n0 : m ≥ u2σ 2

c

d2

}

with 2n0 ≥ r + 1, we have θ∗
cνc = (α∗

Aνc
, α∗

Bνc
, β∗�

νc
)�, and hence, by Result 2,

√
νc

(
α∗
Aνc

− α∗
Bνc

− αA + αB
) → N (0, σ 2

c )

in distribution as d ↓ 0. This implies, as in (9),

lim
d↓0 Pθ

{∣∣̂α∗
Aνc

− α̂∗
Bνc

− αA + αB
∣∣ ≤ d

} = 1 − α for all θ ∈ �c.

3 Fixed-width confidence interval

In practice, σ 2 and σ 2
c are unknown as θ and θc are unknown. Estimating θ sequentially

from the likelihood equations (see (2) and (3)), a strongly consistent estimator of
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E[I (θ |Z)] (see Note A.1 of “Appendix”) can be obtained by the following sequences
of matrices:

Îm = Diag

{
1

m

m∑
i=1

δkiτk
(
θ̂km, Zi

)
Zi Z

�
i , k = A, B

}
, m ≥ 2n0.

Similarly, estimating θc from the Eqs. (5)–(8), a strongly consistent estimator of
E[Ic(θc|Z)] is obtained from

I ∗
cm =

⎛
⎝

1
m

∑m
i=1 δAi τAc

(
θ∗
Acm , Zi

)
0 1

m

∑m
i=1 δAi τAc

(
θ∗
Acm , Zi

)
Z�
1i

0 1
m

∑m
i=1 δBi τBc

(
θ∗
Bcm , Zi

) 1
m

∑m
i=1 δBi τBc

(
θ∗
Bcm , Zi

)
Z�
1i

1
m

∑m
i=1 δAi τAc

(
θ∗
Acm , Zi

)
Z1i

1
m

∑m
i=1 δBi τBc

(
θ∗
Bcm , Zi

)
Z1i

1
m

∑m
i=1

∑
k=A,B δki τkc

(
θ∗
kcm , Zi

)
Z1i Z�

1i

⎞
⎠ ,

for m ≥ 2n0.
Now, to estimate σ 2 and σ 2

c , we consider two continuous functions, g and gc, such
that g(�) = σ 2 and gc(�c) = σ 2

c . Then, σ̂ 2
m = g(�̂m) and σ ∗2

cm = gc(�∗
cm), where

�̂m = Î−1
m and �̂cm = I ∗−1

m , will provide strongly consistent estimators of σ 2 and
σ 2
c , respectively. Now, we define the stopping rules:

N = N (d) = min

{
m ≥ 2n0 : m ≥ u2σ̂ 2

m

d2

}
(10)

and

Nc = Nc(d) = min

{
m ≥ 2n0 : m ≥ u2σ ∗2

cm

d2

}
.

Then, we prove the following results.

Result 3 For every d > 0, Pθ (N < ∞) = 1 for all θ ∈ �A × �B.

Proof As σ̂ 2
m is strongly consistent for σ 2 (> 0), we have

Pθ (N > m) ≤ Pθ

(
m <

u2

d2
σ̂ 2
m

)
→ P(φ) = 0 for all θ ∈ �A × �B

as m → ∞. 
�
Note By the standard argument as above, we have for each d > 0,

Pθ (N < ∞) = 1 for all θ ∈ �c.

Result 4 As d ↓ 0, we have

N

ν
→ 1 almost surely.
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Proof Note that, by definition (10), N = N (d) ↑ ∞ as d ↓ 0. Hence, as d ↓ 0,
N → ∞ almost surely. This gives, as d ↓ 0,

Nk =
N∑
i=1

δki → ∞ almost surely, k = A, B.

Further, let θ̂N be that value of θ for which, as in (1), we have

N∑
i=1

δki (Yi − a′
k(μk(Zi )))Z

�
i = 0, k = A, B. (11)

Then, as d ↓ 0, almost sure convergence of θ̂ν to θ implies that of θ̂N to θ . Moreover,
martingale convergence theorem, together with the convergence of θ̂N to θ , implies
that

Nk

N
→ ρk almost surely as d ↓ 0, k = A, B,

which implies �̂N converges almost surely to �.
Now, combining all these, we ultimately get, as d ↓ 0,

g(�̂N ) = σ̂ 2
N → σ 2 almost surely.

Hence, using the definition of N , we get

Nd2

u2
→ σ 2 almost surely as d ↓ 0,

which using the fact that

νd2

u2
→ σ 2 as d ↓ 0

implies the required result. 
�
Note 1 Proceeding along the same line as above, we can show that

Nc

νc
→ 1 almost surely as d ↓ 0.

Here, as in (11), we find θ∗
Nc

from the equations under (4) setting n = Nc. Then, as
above, θ∗

Nc
is strongly consistent for θc.

Note 2 As d ↓ 0,

Nk(Z)

N
→ πk(θ, Z) and

Nck(Z)

Nc
→ πk(θc, Z) almost surely, k = A, B,
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where Nk(Z) (Nck(Z)) is the number of subjects receiving treatment k for a given
covariate value Z when treatment–covariate interactions are present (absent).

Next, as in Zhang et al. (2007), it is possible to set r-component vector Uk(Y, Z)

such that

θ̂kν = θk + 1

ν

ν∑
i=1

δkiUk(Yi , Zi ) + εkd , (12)

where

E [Uk(Xk, Z)|Z ] = 0, E[||Uk(Xk, Z)||2] < ∞,

and, as d ↓ 0,

1√
ν
||εkd || → 0 almost surely, k = A, B.

In particular, we assume that for the vector Z, E ||Z ||2 < ∞, which holds since Z is
uniformly bounded, and the matrix E[Z Z�] is positive definite. Then, for model (a),
(12) holds when

Uk(Xk, Z) = I−1
Zk Z(Xk − pk(Z)) with IZk

= E[πk(θ, Z)pk(Z)(1 − pk(Z))Z Z�], k = A, B,

whereas, for model (b), (12) holds when

Uk(Xk, Z) = I−1
Zk Z(Xk − Z�θk) with IZk = E[πk(θ, Z)Z Z�], k = A, B.

Here, we note that the expression of Diag(IZ A, IZ B) is same as that of E[I (θ |Z)]. Let
us rewrite θ̂N = (θ�

AN , θ̂�
BN )� with θ̂kN = (̂αkN , β̂�

kN )�, k = A, B. Then, we get the
following result.

Result 5 As d ↓ 0,

Pθ [|̂αAN − α̂BN − αA + αB | ≤ d] → 1 − α for all θ ∈ �A × �B .

Proof As in (9), the result will be proved if, for d ↓ 0,

√
N (θ̂kN − θk) → Nr (0, �k)

in distribution, for k = A, B.
Writing

Skn =
n∑

i=1

δkiUk(Yi , Zi ), k = A, B,

123



Fixed-width confidence interval for CARA designs 363

we observe that {Skn, Fn} is a martingale and, hence, {||Skn − Skν ||; Fn, n ≥ ν} is
submartingale, k = A, B. By Result A.2, it follows that

1√
ν
Skν → Nr (0, �k) (13)

in distribution as d ↓ 0, k = A, B. Moreover, using Kolmogorov maximal inequality
for non-negative submartingales (see, for example, Sen 1981, p. 13), it follows by
some standard arguments that for each ε > 0 and η > 0, there are d∗ = d(ε, η) with
n∗ = n(d∗) and δ = δ(ε, η) > 0 such that

Pθ

{
max|n−ν|≤δν

||Skn − Skν || < ε
√

ν

}
< η (14)

for all ν ≥ n∗. Hence, combining (12) with (14), we get

Pθ

[
max|n−ν|≤δν

||θ̂kn − θ̂kν || < ε/
√

ν

]
< η (15)

for all ν ≥ n∗, k = A, B. Thus, Anscombe (1952) condition holds for such ML
estimators under CARA design. Now, setting

θ̂kN = θk + (θ̂kν − θk) + (θ̂kN − θ̂kν)

and using (12), (13) and (15), the required result follows. 
�
Next, we consider the case of no interaction between treatment and covariates in

which, as in (12), it is also possible to find (r + 1)-component vectors Ukc(Y, Z),
k = A, B, such that

θ∗
νc

= θc + 1

νc

νc∑
i=1

∑
k=A,B

δkiUkc(Yi , Zi ) + εcd ,

where

E [Ukc(Xk, Z)|Z ] = 0, E[||Ukc(Xk, Z)||2] < ∞

and, as d ↓ 0,

1√
νc

||εcd || → 0 almost surely, k = A, B.

In particular, for model (a), we have (setting φk = 1, k = A, B)

UAc(XA, Z) = I−1
Zc

⎛
⎝ XA − pAc(Z)

0
Z1 (XA − pAc(Z))

⎞
⎠ and
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364 U. Bandyopadhyay, A. Biswas

UBc(XB, Z) = I−1
Zc

⎛
⎝ 0

XB − pBc(Z)

Z1 (XB − pBc(Z))

⎞
⎠ ,

where

IZc = E

⎛
⎝ πA(θc, Z)VAc(Z) 0 πA(θc, Z)VAc(Z)Z�

1
0 πB(θc, Z)VBc(Z) πB(θc, Z)VBc(Z)Z�

1
πA(θc, Z)VAc(Z)Z1 πB(θc, Z)VBc(Z)Z1 (Z1Z�

1 )
∑

k=A,B πk(θc, Z)Vkc(Z)

⎞
⎠ ,

with Vkc(Z) = pkc(Z) (1 − pkc(Z)), k = A, B. Similarly, for model (b), we have

UAc(XA, Z) = I−1
Zc

⎛
⎝ XA − Z�θAc

0
Z1

(
XA − Z�θAc

)
⎞
⎠ and

UBc(XB, Z) = I−1
Zc

⎛
⎝ 0

XB − Z�θBc
Z1

(
XB − Z�θBc

)
⎞
⎠

with

IZc = E

⎛
⎝ πA(θc, Z) 0 πA(θc, Z)Z�

1
0 πB(θc, Z) πB(θc, Z)Z�

1
πA(θc, Z)Z1 πB(θc, Z)Z1 Z1Z�

1

⎞
⎠ .

Note that the expression of IZc is same as that of E [Ic(θc|Z)].
Now, as in Result 5, we get

Result 6 As d ↓ 0,

Pθ

[|α∗
ANc

− α∗
BNc

− αA + αB | ≤ d
] → 1 − α for all θ ∈ �c.

4 Evaluation

Wehavedonedetailed computation through simulations under different setup, but here,
for the sake of brevity, we present only a brief illustrative snapshop only. Moreover,
we illustrate the proposed procedure through one data example which has been used
by many authors for the last two decades for illustrative purposes in the context of
response-adaptive designs.

4.1 Simulation

For illustration, in Tables 1 and 2, we report the results obtained from the computations
from 10,000 iterations on normally distributed responses for α = 0.05. We assumed
that μA = αA + βAZ1 and μB = αB + βB Z1, where Z1 can take only two possible
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Table 1 The values of E(N ), CP for the CARA design with normally distributed responses for d =
0.30, 0.50 and different values of αA , when α = 0.05 and σ = 1; and PropA , Prop

(1)
A and Prop(0)

A for the
CARA design

αA E(N ) CP PropA Prop(1)
A Prop(0)

A

d = 0.50; here 2n0 = 10

0.0 136.3835 (0.4415) 0.9532 (0.0021) 0.5003 (0.0011) 0.5014 (0.0017) 0.4992 (0.0014)

0.2 140.0700 (0.5022) 0.9511 (0.0022) 0.5713 (0.0011) 0.5746 (0.0016) 0.5777 (0.0014)

0.4 152.0789 (0.7118) 0.9510 (0.0022) 0.6424 (0.0010) 0.6493 (0.0015) 0.6356 (0.0013)

0.6 176.0866 (1.0588) 0.9504 (0.0022) 0.7090 (0.0009) 0.7172 (0.0013) 0.7009 (0.0012)

0.8 211.0685 (1.4334) 0.9516 (0.0021) 0.7679 (0.0008) 0.7805 (0.0011) 0.7555 (0.0011)

1.0 265.2023 (1.9929) 0.9459 (0.0023) 0.8183 (0.0007) 0.8303 (0.0009) 0.8063 (0.0010)

Standard errors (SE’s) are given in the parentheses. Here αB = 0, βA = βB = 1

Table 2 The values of E(N ), CP for the CARA design with normally distributed responses for d =
0.30, 0.50 and different values of αA , when α = 0.05 and σ = 1; and PropA , Prop

(1)
A and Prop(0)

A for the
CARA design

αA E(N ) CP PropA Prop(1)
A Prop(0)

A

d = 0.50; here 2n0 = 10

0.0 138.0170 (0.4086) 0.9493 (0.0022) 0.3432 (0.0009) 0.1939 (0.0012) 0.4913 (0.0014)

0.2 140.6379 (0.4780) 0.9511 (0.0022) 0.4039 (0.0010) 0.2464 (0.0014) 0.5590 (0.0014)

0.4 151.4740 (0.6108) 0.9461 (0.0023) 0.4648 (0.0010) 0.2997 (0.0016) 0.6279 (0.0013)

0.6 170.5558 (0.7955) 0.9483 (0.0022) 0.5273 (0.0010) 0.3647 (0.0016) 0.6880 (0.0012)

0.8 202.4080 (1.0722) 0.9500 (0.0022) 0.5925 (0.0010) 0.4370 (0.0016) 0.7467 (0.0011)

1.0 260.3217 (1.9763) 0.9452 (0.0023) 0.6580 (0.0009) 0.5153 (0.0015) 0.7995 (0.0010)

d = 0.30; here 2n0 = 10

0.0 356.3226 (0.4450) 0.9500 (0.0022) 0.3320 (0.0007) 0.1653 (0.0009) 0.4977 (0.0009)

0.2 365.6799 (0.5195) 0.9509 (0.0022) 0.3947 (0.0007) 0.2173 (0.0010) 0.5710 (0.0009)

0.4 394.0609 (0.6988) 0.9497 (0.0022) 0.4619 (0.0007) 0.2791 (0.0011) 0.6438 (0.0009)

0.6 447.2048 (1.0112) 0.9461 (0.0023) 0.5316 (0.0007) 0.3503 (0.0011) 0.7120 (0.0008)

0.8 532.1538 (1.3932) 0.9424 (0.0023) 0.6004 (0.0006) 0.4262 (0.0010) 0.7740 (0.0007)

1.0 650.4065 (1.7324) 0.9459 (0.0026) 0.6675 (0.0006) 0.5068 (0.0010) 0.8278 (0.0006)

Standard errors (SE’s) are given in the parentheses. Here αB = 0, βA = 1 and βB = 2

values, 1 and 0; that is Z1 is a Bernoulli(0.5) variable. We considered fixed the values
of αB , βA and βB . In Table 1, we considered αB = 0 and βA = βB = 1, whereas in
Table 2, αB = 0, βA = 1 and βB = 2 are considered. In Table 1, d = 0.50 is taken,
but in Table 2, the two possible values of d, namely d = 0.5 and 0.3, are considered.
We have considered σ = 1 throughout. Also an initial sample size of 2n0 = 10
is taken, which is equally distributed among the two competing treatments. These
are used to get initial estimates of the parameters. The response-adaptive allocation
procedure is carried out from the (2n0 + 1)st patient onwards. For the allocation
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purpose, the estimates of the parameters are obtained for every patient starting from
the patient number (2n0 + 1). We then varied αA (≥ 0) to compute the average value
of sample size N , i.e., E(N ), and the corresponding coverage probability (CP) for
obtaining a fixed-width confidence interval of αA − αB by our given procedure. For
response-adaptive allocation, we considered CARAversion of the link-function-based
allocation function,

πA(θi , Zi+1) = �

(
α̂Ai − α̂Bi + (β̂Ai − β̂Bi )Z1,i+1

σ̂i

)
(16)

of Bandyopadhyay and Biswas (2001), where �(·) is the cdf of a standard normal
distribution. Here, as Z1 is binary, we also report the proportion of allocation to treat-
ment A for the two strata separately (given by Prop(1)

A and Prop(0)
A ). The proportions

of allocation to the better treatment A (= PropA = 1−PropB) are also provided. The
standard errors of N , CP , PropA, Prop

(1)
A and Prop(0)

A are also given in parentheses.
Clearly, E(N ) is smaller for larger value of d when all other parameters are same.

The values of CP are almost 0.95. The PropA-values for the adaptive allocation are
more than 50% when μA > μB , which is an important advantage of using adaptive
allocation rule. In fact, these PropA-values increase with the increase in μA −μB (for
some fixed μA).

The initial sample size is an important issue for any such adaptive allocation. The
initial samples are used to get initial estimates of the underlying parameters to get
the allocation procedure started. So, the initial sample size should be large enough
to get estimates of all the parameters. Moreover, it should be large enough so that
the initial estimates become reliable. Usually, without any prior information about the
superiority of one treatment over the other, the initial samples are equally taken on the
two competing treatments. It is expected that a large initial sample size will produce
good initial estimates and, hence, the first few adaptive allocations for the patients
2n0 + 1, 2n0 + 2, . . . will be reliable and less variable. Thus, the adaptive mechanism
will yield good and reliable allocation with small variation. On the other hand, a large
initial sample size will allocate a large number of patients equally, and as a result the
final allocation will be less skewed in favor of the better performing treatment.

To understand this effect, we carried out a simulation studywherewe find the values
of E(N ),CP for the CARA design with normally distributed responses for αA = 0.4,
αB = 0, βA = 1, σ = 1 when α = 0.05. Two values of βB , namely 1 and 2, are
considered. We also obtain PropA, Prop

(1)
A and Prop(0)

A values. Standard errors (SE’s)
are given in the parentheses. These are reported in Table 3 for d = 0.5. Here, we
consider four values of initial sample size, namely 2n0 = 6, 10, 20, 30. From Table 3,
we observe that the expected sample size decreases as the initial sample size increases.
Also the allocation probability to the better treatment decreases with the increase in
2n0-value. Moreover, the standard errors decrease with 2n0. However, the coverage
probabilities are almost 0.95 for all the cases. We carried out computations with some
other values of αB and d. The results are in the same direction and, hence, we did
not report them for the sake of brevity. Thus, we need to set the initial sample size
carefully; not too small so that the initial adaptive allocations become unstable and
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Table 3 The values of E(N ), CP for the CARA design with normally distributed responses for d = 0.50,

α = 0.05 and σ = 1; and PropA , Prop
(1)
A and Prop(0)

A for the CARA design

2n0 E(N ) CP PropA Prop(1)
A Prop(0)

A

βB = 1

6 159.8554 (0.9921) 0.9492 (0.0022) 0.6458 (0.0012) 0.6543 (0.0018) 0.6376 (0.0014)

10 151.4740 (0.6108) 0.9461 (0.0023) 0.4648 (0.0010) 0.2997 (0.0016) 0.6279 (0.0013)

20 142.8337 (0.4065) 0.9520 (0.0021) 0.6285 (0.0008) 0.6320 (0.0012) 0.6248 (0.0011)

30 138.9402 (0.3105) 0.9492 (0.0022) 0.6165 (0.0007) 0.6187 (0.0010) 0.6142 (0.0010)

βB = 2

6 160.6003 (1.1300) 0.9475 (0.0022) 0.4654 (0.0012) 0.3022 (0.0019) 0.6267 (0.0014)

10 151.4740 (0.6108) 0.9461 (0.0023) 0.4648 (0.0010) 0.2997 (0.0016) 0.6279 (0.0013)

20 142.9273 (0.3839) 0.9489 (0.0022) 0.4672 (0.0008) 0.3154 (0.0011) 0.6173 (0.0012)

30 138.8313 (0.2974) 0.9490 (0.0022) 0.4713 (0.0007) 0.3327 (0.0010) 0.6086 (0.0010)

Standard errors (SE’s) are given in the parentheses. Here αA = 0.4, αB = 0, βA = 1 and βB = 1, 2

highly variable, and not too large to spoil the essence of skewing allocations in the
response-adaptive design. In the data example of Sect. 4.2, we set 2n0 = 10.

4.2 Data example

In this section, we illustrate the proposed methodology using the data from the flu-
oxetine trial originally reported by Tamura et al. (1994). It was a trial of fluoxetine
hydrochloride to treat outpatients of depressive disorder. The response variable is the
reduction of HAMD17 score which is originally measured in a 17-point scale. These
data are considered to be continuous as in Atkinson and Biswas (2005). The covari-
ate considered here is the indicator of shortened rapid eye movement latency. Out of
88 samples, the number of patients treated by Fluoxetine (treatment A) and placebo
(treatment B) was 45 and 43, almost 50:50 allocation. From the data, the proportion
of shortened rapid eye movement latency (REML) was exactly 50% (44 in number).
Using our model, the estimates of the parameters came out to be α̂A = 0.3606,
α̂B = 2.9100, β̂A = 1.4071, β̂B = −3.1190 and σ̂ 2 = 6.93722. Pretending them to
be true values, we carry out our proposed procedure of fixed-width confidence interval
estimation with the link-function based CARA design (16). We summarize the results
for obtaining the fixed-width confidence interval estimation for αA − αB in Table 4
(upper half) with α = 0.05, d = 0.8, 0.6, 0.4. This corresponds to the case when
Z1 = 0. Then, in the bottom half of Table 4, we provide the results corresponding
to the fixed-width confidence interval estimation of αA − αB + (βA − βB), which
corresponds to the case when Z1 = 1. We observe that we can simultaneously achieve
skewed allocation in favor of treatment A in the shortened REML group and skewed
allocation in favor of treatment B in the other group (keeping the overall allocation
nearly 50%), and fixed-width confidence interval estimation can be carried out at the
same time.
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Table 4 Results from data analyses of fluoxetine trial: α = 0.05, d = 0.40, 0.60, 0.80

d E(N ) CP PropA Prop(1)
A Prop(0)

A

Case of αA − αB

d = 0.80 70.6296 (0.2175) 0.9455 (0.0023) 0.4780 (0.0007) 0.6799 (0.0009) 0.2801 (0.0009)

d = 0.60 127.2192 (0.3156) 0.9499 (0.0022) 0.4770 (0.0005) 0.7054 (0.0007) 0.2510 (0.0007)

d = 0.40 293.0890 (0.5114) 0.9447 (0.0023) 0.4737 (0.0003) 0.7250 (0.0005) 0.2237 (0.0005)

Case of αA − αB + (βA − βB )

d = 0.80 66.1572 (0.1844) 0.9344 (0.0025) 0.4957 (0.0007) 0.6917 (0.0009) 0.2954 (0.0009)

d = 0.60 117.1493 (0.2704) 0.9383 (0.0024) 0.4947 (0.0005) 0.7185 (0.0007) 0.2681 (0.0007)

d = 0.40 266.8701 (0.4254) 0.9467 (0.0022) 0.4949 (0.0004) 0.7440 (0.0005) 0.2450 (0.0005)

Standard errors are given in parentheses. Here 2n0 = 20

5 Concluding remarks

In this work, we have examined the impact of adaptive allocation rules by determining
a positive integer N , which is the stopping variable, where d (> 0) and α ∈ (0, 1)
are pre-specified. The theoretical results provide a basis for the application of this
technique. It is observed that if we could set some d and α at the outset, we can have a
very clear-cut stopping rule. The numerical simulations and the illustration with real
data show the practical applicability of the approach for stopping an experiment. It is
clear that we have gain in sample size and proportion of patients to the better treatment
by the adaptive procedure. The two-stage procedure has similar application with the
feature that we need to keep on estimating the parameters of the second stage.

Thus, the proposed procedure uses the particularCARAdesign under consideration,
but aims at finding the sample size appropriately to carry out fixed-width confidence
interval estimation of the particular treatment difference of interest. Our theoretical
development followed by simulation exercise and data illustration indicate that the
proposed procedure succeeds to achieve the targeted width while carrying out the
ethical CARA design.
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manuscript.

Appendix A

Result 7 As m → ∞,

1

m

m∑
i=1

δkiτk(θk, Zi )Zi Z
�
i → IZk

almost surely, k = A, B.
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Proof It is not difficult to observe that

m∑
i=1

[δkiτk(θk, Zi )Zi Z
�
i − E(πk(θ̂i−1, Zi )τk(θk, Zi )Zi Z

�
i )],

where θ̂i is the ML estimator based on {δk j ,Y j , Z j ; j = 1, 2, . . . , i; k = A, B}, is a
martingale sequence. Hence, applying the same technique as in (A.14) under Corollary
3.1 of Zhang et al. (2007), the required result follows. 
�
Note 3 Note A.1. If τk(θk, Z) = 1, the above result implies

Îmk = 1

m

m∑
i=1

δki Zi Z
�
i → E[πk(θ, Z)Z Z�] (17)

almost surely as m → ∞.

If τk(θk, Z) = eθ�
k Z

(1+eθ�
k Z

)2
, then the mean-value theorem yields

|τk(θ̂km, Z) − τk(θk, Z)| <
M

2
||θ̂km − θk ||, (18)

where M is described in Sect. 2. Consequently, (17) and (18) imply

Îmk = 1

m

m∑
i=1

δki
[
τk(θk, Zi ) + O

(||θ̂km − θk ||
)]

Zi Z
�
i

= 1

m

m∑
i=1

δkiτk(θk, Zi )Zi Z
�
i + O(||θ̂km − θk ||).O(1)

almost surely. Hence, by the above result, it follows that

Îmk → E[πk(θ, Z)pk(Z)(1 − pk(Z))Z Z�]

almost surely as m → ∞, k = A, B.

Result 8 As ν → ∞,

1√
ν
Skν → Nr (0, �k)

in distribution with �k given in Result 1, k = A, B.

Proof Let �k , k = A, B, be two r -component fixed vectors. Then, setting ai =
��
A I

−1
Z AZi and bi = ��

B I
−1
Z B Zi , consider

Vνi = 1√
ν
[δAiai (XAi − μA(Zi )) + δBibi (XBi − μB(Zi ))] ,
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where μk(Zi ) = pk(Zi ) and θ�
k Zi for models (a) and (b), i = 1, 2, . . . , ν, k = A, B.

The sequences {Vνi , 1 ≤ i ≤ ν, ν ≥ 1} represent differences corresponding to the
martingale sequence Tν = ∑ν

i=1 Vνi , ν ≥ 1. Then, we get

E(T 2
ν ) =

ν∑
i=1

E(V 2
νi ) ≤

∑
k=A,B

�� I−1
Zk E[τk(θk, Z)Z Z�]I−1

Zk �k < ∞.

Hence, by martingale central limit theorem (see, for example. Theorem 3.2 of Hall
and Heyde 1980, p. 58), it will follow that

Tν → N (0, η2)

in distribution as ν → ∞, where η2 = ∑
k=A,B(��

k �k�k), provided all the conditions
of Theorem 3.2 in Hall and Heyde (1980) are satisfied. Here, all the conditions, except
(3.19) of this theorem, are trivially satisfied. Now, to prove this non-trivial condition,
write

ν∑
i=1

Wi =
ν∑

i=1

[νV 2
νi − a2i τA(θ, Zi )δAi − b2i τB(θ, Zi )δBi ],

where

Wi = δAia
2
i [(XAi − μA(Zi ))

2 − τA(θ, Zi )] + δBib
2
i [(XBi − μB(Zi ))

2 − τB(θ, Zi )].

Using Theorem 2.13 (iii) of Hall and Heyde (1980), we get, as ν → ∞,

1

ν

ν∑
i=1

Wi → 0

in probability, which implies

ν∑
i=1

V 2
νi → η2

in probability as ν → ∞. Hence, by the Cramer–Wold device, we get the required
result. 
�
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