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Abstract Wederive an information criterion to select a parametricmodel of complete-
data distribution when only incomplete or partially observed data are available.
Compared with AIC, our new criterion has an additional penalty term for missing
data, which is expressed by the Fisher information matrices of complete data and
incomplete data. We prove that our criterion is an asymptotically unbiased estima-
tor of complete-data divergence, namely the expected Kullback–Leibler divergence
between the true distribution and the estimated distribution for complete data, whereas
AIC is that for the incomplete data. The additional penalty term of our criterion for
missing data turns out to be only half the value of that in previously proposed infor-
mation criteria PDIO and AICcd. The difference in the penalty term is attributed to the
fact that our criterion is derived under a weaker assumption. A simulation study with
the weaker assumption shows that our criterion is unbiased while the other two criteria
are biased. In addition, we review the geometrical view of alternating minimizations
of the EM algorithm. This geometrical view plays an important role in deriving our
new criterion.
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1 Introduction

Modeling complete data X = (Y, Z) is often preferable to modeling incomplete or
partially observed data Y when missing data Z are not observed. The expectation-
maximization (EM) algorithm (Dempster et al. 1977) computes the maximum
likelihood estimate of parameter vector θ for a parametric model of the probabil-
ity distribution of X . In this research, we consider the problem of model selection in
such situations. Formathematical simplicity,we assume that X consists of independent
and identically distributed random vectors. More specifically, X = (x1, x2, . . . , xn),
and the complete-data distribution is modeled as x1, x2, . . . , xn ∼ px (x; θ). Each
vector is decomposed as xT = ( yT , zT ), and the marginal distribution is expressed as
py( y; θ) = ∫

px ( y, z; θ) d z, where T denotes thematrix transpose and the integration
is over all possible values of z. We formally treat y, z as continuous random variables
with the joint density function px . However, when they are discrete random variables,
the integration should be replaced with a summation of the probability functions. We
use symbols such as px and py for both the continuous and discrete cases, and simply
refer to them as distributions.

The log-likelihood function is �y(θ) = ∑n
t=1 log py( yt ; θ) with the parameter

vector θ = (θ1, . . . , θd)
T ∈ R

d . We assume that the model is identifiable, and the
parameter is restricted to � ⊂ R

d . Then, the maximum likelihood estimator (MLE)
of θ is defined by θ̂ y = argmax

θ∈�
�y(θ). The dependence of �y(θ) and θ̂ y on Y =

( y1, . . . , yn) is suppressed in the notation. Akaike (1974) proposed the information
criterion

AIC = −2�y(θ̂ y) + 2d

for model selection. The first term measures the goodness of fit, whereas the
second term is interpreted as a penalty for model complexity. The AIC values
for candidate models are computed, and then the model that minimizes AIC is
selected. This information criterion estimates the expected discrepancy between the
unknown true distribution of y, which is denoted as qy , and the estimated distribu-

tion py(θ̂ y). This discrepancy is measured by the incomplete-data Kullback–Leibler
divergence.

In this study, we work on the complete-data Kullback–Leibler divergence instead
of the incomplete-data counterpart. An information criterion to estimate the expected
discrepancybetween the unknown true distributionof x,which is denoted asqx , and the
estimated distribution px (θ̂ y) is derived. This approach makes sense when modeling
complete data more precisely describes the part being examined. Similar attempts are
found in the literature. Shimodaira (1994) proposed the information criterion PDIO
(predictive divergence for incomplete observation models)
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PDIO = −2�y(θ̂ y) + 2tr(Ix (θ̂ y)Iy(θ̂ y)
−1).

The two matrices in the penalty term are the Fisher information matrices for complete
data and incomplete data. They are defined by

Ix (θ) = −
∫

px (x; θ)
∂2 log px (x; θ)

∂θ∂θT
dx,

Iy(θ) = −
∫

py( y; θ)
∂2 log py( y; θ)

∂θ∂θT
d y.

Let pz|y(z| y; θ) = px ( y, z; θ)/py( y; θ) be the conditional distribution of z given y,
and Iz|y(θ) = Ix (θ) − Iy(θ) be the Fisher information matrix for pz|y . Since Iz|y(θ)

is nonnegative definite, we have tr(Ix (θ)Iy(θ)−1) = tr((Iy(θ) + Iz|y(θ))Iy(θ)−1) =
d + tr(Iz|y(θ)Iy(θ)−1) ≥ d. Thus, the nonnegative difference

PDIO − AIC = 2tr(Iz|y(θ̂ y)Iy(θ̂ y)
−1)

is interpreted as the additional penalty for missing data. There are similar attempts in
the literature (Cavanaugh and Shumway 1998; Seghouane et al. 2005; Claeskens and
Consentino 2008; Yamazaki 2014). In particular, Cavanaugh and Shumway (1998)
proposed another information criterion

AICcd = −2Q(θ̂ y; θ̂ y) + 2tr(Ix (θ̂ y)Iy(θ̂ y)
−1)

by replacing �y(θ̂ y) in PDIO with Q(θ̂ y; θ̂ y) to measure the goodness of fit. It should
be noted that cd stands for complete data. This is the function introduced in Dempster
et al. (1977) for the EM algorithm, and is defined by

Q(θ2; θ1) =
n∑

t=1

∫
pz|y(z| yt ; θ1) log px ( yt , z; θ2) dz.

We recently found that the assumption in Shimodaira (1994) to derive PDIO is unnec-
essarily strong. Additionally, the same assumption explains the derivation of AICcd .
In this paper, we derive a new information criterion under a weaker assumption. The
updated version of PDIO is

AICx;y = −2�y(θ̂ y) + d + tr(Ix (θ̂ y)Iy(θ̂ y)
−1).

The first suffix x indicates that a random variable is used to measure the discrepancy,
while the second suffix y indicates a random variable is used for the observation. Then,
the additional penalty for missing data becomes

AICx;y − AIC = tr(Iz|y(θ̂ y)Iy(θ̂ y)
−1). (1)
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The additional penalty is only half the value of that in PDIO. In practice, the computa-
tion of AICx;y as well as the related criteria PDIO and AICcd is not very difficult. The
SEM algorithm of Meng and Rubin (1991) provides a shortcut to compute the penalty
term tr(Ix (θ̂ y)Iy(θ̂ y)

−1) without computing the two Fisher information matrices as
described in Shimodaira (1994) and Cavanaugh and Shumway (1998).

To derive AICx;y , we first review the basic properties of Kullback–Leibler diver-
gence for incomplete data in Sect. 2. Section 3 considers those for complete data.
Although these results are not new, they are crucial for the argument in later sections.
In particular, the geometrical view of alternating minimizations (Csiszár and Tusnády,
1984; Amari, 1995) in Sect. 3.3 is important to understand why the goodness of fit
term of AICx;y is expressed by the incomplete-data likelihood function instead of the
complete-data counterpart.

Section 4, which begins the argument of model selection, discusses what the infor-
mation criteria should estimate. In general, parametricmodels aremisspecified, andwe
do not assume that the true distribution is expressed as qx = px (θ0) using the “true”
parameter value θ0. However, the unbiasedness of AICx;y is based on the assumption
that pz|y(θ) is correctly specified for qz|y . In Sect. 5, we derive our new information
criterion. The argument is very straightforward; it simply follows the argument for
the robust version of AIC, which is also known as the Takeuchi information criterion
(TIC) that is described in Burnham and Anderson (2002) and Konishi and Kitagawa
(2008). Section 6 compares the assumptions used to derive PDIO and AICcd to those
of AICx;y . Section 7 presents a simulation study to verify the theory. Finally, Sect. 8
contains some concluding remarks. Proofs are deferred to the Appendix.

2 Incomplete-data divergence

Here, we reviewKullback–Leibler divergence and the asymptotic distribution ofMLE
under model misspecification (White 1982). Let gy and fy be the arbitrary probability
distributions of incomplete data. The incomplete-data Kullback–Leibler divergence
from gy to fy is

Dy(gy; fy) = −
∫

gy( y)(log fy( y) − log gy( y)) d y,

where Dy(gy; fy) ≥ 0 and the equality holds for gy = fy (Csiszár 1975; Amari and
Nagaoka 2007). The cross-entropy is

Ly(gy; fy) = −
∫

gy( y) log fy( y) d y

and the entropy is Ly(gy) = Ly(gy; gy). Instead of minimizing Dy(gy; fy) =
Ly(gy; fy) − Ly(gy) with respect to fy , we minimize Ly(gy; fy), because Ly(gy) is
independent of fy .

For the true distribution qy and the parametric model py(θ), we consider the min-
imization of Dy(qy; py(θ)) with respect to θ . The optimal parameter value is defined
by
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θ̄ y = argmin
θ∈�

Ly(qy; py(θ)).

This minimization is interpreted geometrically as a “projection” of qy to the model
manifold My(py) as illustrated in Fig. 1a. Let My(py) = {py(θ) : ∀θ ∈ �} be the set
of py(θ) with all possible parameter values. Then, the projection is defined as:

min
fy∈My(py)

Dy(qy; fy) = Dy(qy; py(θ̄ y)). (2)

The projection py(θ̄ y) is the best approximation of qy inMy(py)when the discrepancy
ismeasured by theKullback–Leibler divergence.We assume that the parametricmodel
is generallymisspecified and qy /∈ My(py). Later, we also consider the situationwhere
the parametricmodel is correctly specified and qy ∈ My(py). In the correctly specified
case, θ̄ y is the true parameter value in the sense that qy = py(θ̄ y).

Similar to the optimal parameter value, the maximum likelihood estimator is inter-
preted as a projection of q̂y toMy(py). Let q̂y( y) = 1

n

∑n
t=1 δ( y− yt ) be the empirical

distribution of y for the observed incomplete data y1, . . . , yn . Here, δ(·) denotes the
Dirac delta function for continuous random variables, or is simply the indicator func-
tion for discrete randomvariables such that δ( y− yt ) = 1 for y = yt and δ( y− yt ) = 0
otherwise. Then, we can write �y(θ) = −nLy(q̂y; py(θ)). Thus,

θ̂ y = argmin
θ∈�

Ly(q̂y; py(θ)). (3)

We assume the regularity conditions of White (1982) for consistency and asymptotic
normality of θ̂ y . More specifically, we assume all the regularity conditions (A1) to
(A6) for the true distribution qy and the model distribution py(θ). In particular, θ̄ y

is determined uniquely (i.e., identifiable) and is interior to the parameter space �.
We assume that Iy(θ), Gy(qy; θ) and Hy(qy; θ) defined below are nonsingular in the
neighborhood of θ̄ y . Then, White (1982) showed that, as n → ∞ asymptotically,

θ̂ y
a.s.→ θ̄ y and √

n (θ̂ y − θ̄ y)
d→ N (0, H−1

y GyH
−1
y ). (4)

The matrices are defined as Gy = Gy(qy; θ̄ y) and Hy = Hy(qy; θ̄ y), where

Gy(gy; θ) =
∫

gy( y)
∂ log py( y; θ)

∂θ

∂ log py( y; θ)

∂θT
d y,

Hy(gy; θ) = −
∫

gy( y)
∂2 log py( y; θ)

∂θ∂θT
d y.

In the case of the correct specification qy = py(θ̄ y), the matrices becomeGy = Hy =
Iy(θ̄ y).
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3 Complete-data divergence

Here,we reviewKullback–Leibler divergence for complete datawhen only incomplete
data can be observed (Csiszár and Tusnády 1984; Amari 1995).

3.1 Projection to the model manifold

Let gx and fx be the arbitrary probability distributions of complete data. The complete-
data Kullback–Leibler divergence from gx to fx is

Dx (gx ; fx ) = −
∫

gx (x)(log fx (x) − log gx (x)) dx.

All the arguments of incomplete data in Sect. 2 apply to complete data by replacing
y with x in the notation. For example, we write Dx (gx ; fx ) = Lx (gx ; fx ) − Lx (gx )
with Lx (gx ; fx ) = − ∫

gx (x) log fx (x) dx and Lx (gx ) = Lx (gx ; gx ). The projection
of qx to the model manifold Mx (px ) = {px (θ) : ∀θ ∈ �} is defined as:

min
fx∈Mx (px )

Dx (qx ; fx ) = Dx (qx ; px (θ̄ x )) (5)

with θ̄ x = argmin
θ

Lx (qx ; px (θ)). Figure 1b shows a geometric illustration. Note that

θ̄ x 
= θ̄ y and px (θ̄ x ) 
= px (θ̄ y) in general.

(a) (b)

Fig. 1 a Space of incomplete-data probability distributions. Projection from qy to the model manifold
My(py) (arrow with a solid line), and that from q̂y (arrow with a broken line) using Eqs. (2) and (3)

in Sect. 2, respectively. The dotted line indicates Dy(qy; py(θ̂ y)), which is the loss function for risky;y .
b Space of complete-data probability distributions. Projection from qx to the model manifold Mx (px )
using Eq. (5) in Sect. 3.1. Projection from px (θ) to the data manifold Sx (qy) using Eq. (9) in Sect. 3.2.
Alternating projections between the two manifolds using Eq. (10) in Sect. 3.3. The dotted line indicates
Dx (qx ; px (θ̂ y)), which is the loss function for riskx;y . The bold segment indicates Dx (qx ; pz|y(θ̄ y)qy),
which is assumed to be zero in (15).
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3.2 Projection to the data manifold

The following simple lemma helps understand how the incomplete-data divergence
and the complete-data divergence are related.

Lemma 1 For two distributions gx (x) and fx (x), we have

Dx (gx ; fx ) = Dx (gx ; fz|ygy) + Dy(gy; fy), (6)

where fz|ygy represents the distribution fz|y(z| y)gy( y). Therefore, the difference of
the two divergences is Dx (gx ; fx ) − Dy(gy; fy) = Dx (gx ; fz|ygy), which is zero if
gz|y = fz|y . For an arbitrary distribution hx (x), the last term in (6) is expressed as:

Dy(gy; fy) = Dx (hz|ygy; hz|y fy). (7)

In particular, choosing hx = fx gives Dy(gy; fy) = Dx ( fz|ygy; fx ), and

Dx (gx ; fx ) = Dx (gx ; fz|ygy) + Dx ( fz|ygy; fx ). (8)

We consider the set of all probability distributions gx with the same marginal
distribution gy = qy for a specified qy . This set is denoted as Sx (qy) = {gz|yqy :
∀gz|y}.Note that the elements of Sx (qy) arewritten as gz|yqy with arbitrary gz|y because∫
gz|y(z| y)qy( y) d z = qy( y). Equations (88) and (57) in Amari (1995) are Sx (q̂y) and

its restriction to a finite dimensional model, respectively, and are called the observed
data (sub)manifold there. Here, we call Sx (qy) the expected data manifold and Sx (q̂y)
the observed data manifold, although it may be abuse of the word “manifold” for
subsets with infinite dimensions.

The projection of px (θ) to Sx (qy) should be defined to minimize the complete-data
divergence over Sx (qy), but the roles of gx and fx in Dx (gx ; fx ) are exchanged from
those of (5). We minimize Dx (gx ; px (θ)) over gx ∈ Sx (qy). By letting gx ∈ Sx (qy)
and fx = px (θ) in (6),

Dx (gx ; px (θ)) = Dx (gz|yqy; pz|y(θ)qy) + Dy(qy; py(θ)),

which isminimizedwhen gz|y = pz|y(θ). Therefore, the projection gives theminimum
value as:

min
gx∈Sx (qy)

Dx (gx ; px (θ)) = Dy(qy; py(θ)). (9)

Using (8), the minimum value can also be written as Dy(qy; py(θ)) = Dx (pz|y(θ)qy;
px (θ)).

3.3 Alternating projections between the two manifolds

The optimal parameter θ̄ y of the incomplete data is interpreted as a dual or alternate
minimization problem of complete-data divergence. By minimizing (9) over θ ∈ �,
we define the alternating projections between Sx (qy) and Mx (px ) as:
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min
fx∈Mx (px )

min
gx∈Sx (qy)

Dx (gx ; fx ) = Dy(qy; py(θ̄ y)), (10)

where the minimum is attained by gx = pz|y(θ̄ y)qy and fx = px (θ̄ y). See Eq. (65) in
Amari (1995). This implies that pz|y(θ̄ y)qy is the best approximation of qx when the
two manifolds Sx (qy) and Mx (px ) are known, while px (θ̄ y) is the best approximation
of qx in Mx (px ). This interpretation is the key to understanding our problem.

The above-mentioned geometrical interpretation corresponds to the well-known
fact that the EM algorithm of Dempster et al. (1977) is alternating projections between
Sx (q̂y) and Mx (px ). See Csiszár and Tusnády (1984), Byrne (1992), Amari (1995),
and Ip and Lalwani (2000). Starting from the initial value θ (1), the EM algorithm
computes a sequence of the parameter values {θ (s); s = 1, 2, . . .} by the updating
formula θ (s+1) = argmax

θ∈�
Q(θ; θ (s)). It follows from Lx (pz|y(θ1)q̂y; px (θ2)) =

−Q(θ2; θ1)/n that

θ (s+1) = argmin
θ∈�

Lx (pz|y(θ (s))q̂y; px (θ)),

meaning px (θ
(s+1)) is the projection from pz|y(θ (s))q̂y to Mx (px ). Alternatively,

pz|y(θ (s))q̂y is the projection from px (θ
(s)) to Sx (q̂y). Thus, the converging point of

the alternating projections satisfies

θ̂ y = argmin
θ∈�

Lx (pz|y(θ̂ y)q̂y; px (θ)). (11)

4 Risk functions for model selection

By looking at the incomplete-data distributions, the discrepancy between the true dis-
tribution qy and our estimation py(θ̂ y) is measured by the incomplete-data divergence

Dy(qy; py(θ̂ y)). If we take it as the loss function, the expected loss-function, or the
risk function, will measure the discrepancy in the long run. Then, AIC and its variants
are derived as estimators of

risky;y = E{Dy(qy; py(θ̂ y))}. (12)

The expectation is evaluated with respect to qx , although it involves only qy here. This
is the standard approach in the literature (Akaike 1974; Bozdogan 1987; Burnham and
Anderson 2002; Konishi and Kitagawa 2008).

Shimodaira (1994) and Cavanaugh and Shumway (1998) proposed another
approach, which employs the complete-data divergence Dx (qx ; px (θ̂ y)) to measure

the discrepancy between the complete-data distributions qx and px (θ̂ y). Using the
complete-data divergence as the loss function, the risk function becomes

riskx;y = E{Dx (qx ; px (θ̂ y))}. (13)
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The first suffix x indicates the random variable for the loss function, while the second
suffix y indicates the random variable for the observation.

However, estimating (13) is difficult. The complete-data empirical distribution
q̂x (x) = 1

n

∑n
t=1 δ(x − xt ) is unknown; we only know that q̂x is somewhere in

the observed data manifold Sx (q̂y). Considering the limiting situation of n → ∞, we
may only know that the true distribution is somewhere in the expected data manifold:
qx ∈ Sx (qy). Then, the best substitute for qx is

qx = pz|y(θ̄ y)qy (14)

as suggested by (10) from the viewpoint of the alternating projections in Sect. 3.3. To
estimate (13), we assume that (14) holds in this paper. This assumption is rephrased
as:

Dx (qx ; pz|y(θ̄ y)qy) = 0

or equivalently
qz|y = pz|y(θ̄ y), (15)

implying that pz|y(θ) is correctly specified for qz|y and that θ̄ x = θ̄ y , because the
two projections from qx and pz|y(θ̄ y)qy to Mx (px ) become identical as illustrated
in Fig. 1b. Because it is impossible to know how much qz|y actually deviates from
pz|y(θ̄ y)when Z = (z1, . . . , zn) is missing completely, we assume (15) in the follow-
ing argument to derive AICx;y . Note that assumption (15) holds with θ̄ x = θ̄ y = θ0
in the case of the correct specification where qx = px (θ0).

We are now ready to derive AICx;y as an estimator of 2n riskx;y . The arguments
in Lemma 2 and Theorem 1 almost duplicate that used to derive TIC mentioned in
Burnham and Anderson (2002) and Konishi and Kitagawa (2008). However, it should
be noted that in Lemma 2 the first term of riskx;y is expressed by the incomplete-data
divergence instead of the complete-data divergence. A point for proving the lemma is
that

Dx (qx ; px (θ̄ y)) = Dx (qx ; pz|y(θ̄ y)qy) + Dy(qy; py(θ̄ y)) = Dy(qy; py(θ̄ y)),

(16)
which follows from Lemma 1 and the assumption (15). Dx (qx ; px (θ̄ y)) on the left-
hand side is the amount of misspecification of px (θ), and can be decomposed into two
parts: Dx (qx ; pz|y(θ̄ y)qy) and Dy(qy; py(θ̄ y)), which are the contribution of pz|y(θ)

and py(θ), respectively. To estimate (13), instead of estimating Dx (qx ; pz|y(θ̄ y)qy),
we ignore it.

Lemma 2 Assume the regularity conditions of White (1982) mentioned in Sect. 2,
and also assume that (15) holds. Then, the expected loss is asymptotically expanded
as:

riskx;y = Dy(qy; py(θ̄ y)) + 1

2n
tr(Hx H

−1
y GyH

−1
y ) + O(n−3/2). (17)
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The matrices Gy and Hy are those defined in Sect. 2, and Hx = Hx (pz|y(θ̄ y)qy; θ̄ y)

with

Hx (gx ; θ) = −
∫

gx (x)
∂2 log px (x; θ)

∂θ∂θT
dx.

The dominant term in (17) is also expressed as Dy(qy; py(θ̄ y)) = Ly(qy; py(θ̄ y)) −
Ly(qy) using the cross-entropy.

5 Information criteria

Let us define an information criterion as an estimator of riskx;y .

r̂iskx;y = Ly(q̂y; py(θ̂ y)) − Ly(qy) + 1

2n
tr(GyH

−1
y ) + 1

2n
tr(Hx H

−1
y GyH

−1
y ),

(18)
where the matrices Gy , Hy and Hx may be replaced by their consistent estimators
with error Op(n−1/2). When x ≡ y, (18) reduces to

r̂isky;y = Ly(q̂y; py(θ̂ y)) − Ly(qy) + 1

n
tr(GyH

−1
y ), (19)

which corresponds to the Takeuchi information criterion (TIC) for estimating risky;y
mentioned in Burnham and Anderson (2002) and Konishi and Kitagawa (2008). In
model selection, we ignore Ly(qy), because all candidate models have the same value.

The first term Ly(q̂y; py(θ̂ y)) = −�y(θ̂ y)/n of order Op(1) measures the goodness
of fit, while the last two terms of order O(n−1) are interpreted as the penalty of model
complexity. Our estimator is justified by the following theorem.

Theorem 1 Assume the regularity conditions of White (1982) mentioned in Sect. 2,
and also assume that (15) holds. Then, we have

L y(qy; py(θ̄ y)) = E{Ly(q̂y; py(θ̂ y))} + 1

2n
tr(GyH

−1
y ) + O(n−3/2), (20)

and therefore
E {̂riskx;y} = riskx;y + O(n−3/2). (21)

Thus, the estimator is unbiased asymptotically up to terms of order O(n−1).

In the case of the correct specification where qy = py(θ̄ y) for the incomplete-data
distribution, we have Gy = Hy = Iy(θ̄ y), and the information matrix is consistently

estimated by Iy(θ̂ y). Assuming (15), this implies that qx = px (θ̄ x ) is correctly speci-
fied for the complete-data distribution. Hence, Hx = Ix (θ̄ y) is consistently estimated

by Ix (θ̂ y). For model selection, we assume that py(θ) is misspecified for qy in general.
However, these equations may approximately hold if py(θ̄ y) is a good approximation

123



An information criterion for incomplete data 431

of qy . By substituting Gy ≈ Hy ≈ Iy(θ̄ y) and Hx ≈ Ix (θ̄ y) into (18) and (19), we
have

r̂iskx;y ≈ Ly(q̂y; py(θ̂ y)) − Ly(qy) + d

2n
+ 1

2n
tr(Ix (θ̂ y)Iy(θ̂ y)

−1),

and

r̂isky;y ≈ Ly(q̂y; py(θ̂ y)) − Ly(qy) + d

n
,

where Ly(qy) is ignored formodel selection.Multiplying by 2n converts these approx-
imations to AICx;y and AIC, respectively.

6 PDIO and AICcd

The idea behind the derivation of PDIO and AICcd is to replace q̂x by

q̂x = pz|y(θ̂ y)q̂y . (22)

This implies (14) by considering the limiting situation of n → ∞. Thus, the assump-
tion for PDIO and AICcd is stronger than the assumption for AICx;y . Substituting (22)
into the complete-data MLE gives

θ̂ x = argmin
θ∈�

Lx (q̂x ; px (θ)). (23)

Comparing (23) with (11) gives θ̂ x = θ̂ y . Therefore, there should not be any missing
data, or at least pz|y(θ) should not involve the parameter θ . Consequently, AIC, PDIO,
AICcd , and AICx;y are equivalent when PDIO and AICcd are justified under (22).

Although assumption (22) is too strong to work with, it is interesting to see how
PDIO andAICcd would be derived if (22) is formally accepted. The argument below to
derive PDIO and AICcd is rather confusing because q̂x is interpreted interchangeably
as the complete-data empirical distribution or the right-hand side of (22).

By a similar argument to the proof of Theorem 1, the Taylor expansion of
Lx (q̂x ; px (θ)) around θ = θ̂ y is

Lx (q̂x ; px (θ)) = Lx (q̂x ; px (θ̂ y)) + 1

2
(θ − θ̂ y)

T Ĥx (θ − θ̂ y) + Op(n
−3/2) (24)

with Ĥx = Hx (q̂x ; θ̂ y). Its expectation with θ = θ̄ y gives

Lx (qx ; px (θ̄ y)) = E{Lx (q̂x ; px (θ̂ y))}+ 1

2n
tr(Hx H

−1
y GyH

−1
y )+O(n−3/2). (25)

This corresponds to (20) of Theorem 1. Noticing (16) and thus, Dy(qy; py(θ̄ y)) =
Lx (qx ; px (θ̄ y)) − Lx (qx ), and then substituting (25) into (17) gives the estimator of
riskx;y unbiased up to O(n−1) under (22) as:
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r̂iskx;y = Lx (q̂x ; px (θ̂ y)) − Lx (qx ) + 1

n
tr(Hx H

−1
y GyH

−1
y ). (26)

The goodness of fit term is Lx (pz|y(θ̂ y)q̂y; px (θ̂ y)) = −Q(θ̂ y; θ̂ y)/n under (22).
Therefore, (26) gives AICcd by the same approximation used to derive AICx;y .

In Cavanaugh and Shumway (1998), for evaluating (3.15) there, they assumed that
E{Q(θ0; θ̂ y)} ≈ E{Q(θ0; θ0)} or E(Lx (pz|y(θ̂ y)q̂y; px (θ0))) ≈ Lx (pz|y(θ0)qy;
px (θ0)) under the correct specification qx = px (θ0). The equality holds exactly under
(22) because E(Lx (q̂x ; px (θ0))) = Lx (qx ; px (θ0)) if q̂x is interpreted as the empirical
distribution. Unfortunately, the difference is E{Q(θ0; θ̂ y)} − E{Q(θ0; θ0)} = O(1)
in general without assuming (22), leading to the bias of AICcd even when (15) holds.

In Shimodaira (1994), (3.5) corresponds to our (24), where θ̂ x = θ̂ y is assumed
implicitly to ignore the first derivative. Although Lx (q̂x ) diverges for continuous
random variable x, Dx (q̂x ; px (θ̂ y)) = Lx (q̂x ; px (θ̂ y)) − Lx (q̂x ) is formally con-

sidered. Similar to (16), we then have Dx (q̂x ; px (θ̂ y)) = Dy(q̂y; py(θ̂ y)) in (3.6)

there. From this argument, the goodness of fit term of (26) is Lx (q̂x ; px (θ̂ y)) =
Ly(q̂y; py(θ̂ y)) + Lx (q̂x ) − Ly(q̂y), where Lx (q̂x ) − Ly(q̂y) is independent of the
model specification if q̂x is interpreted as the empirical distribution. Therefore, (26)
gives PDIO because Lx (q̂x ; px (θ̂ y)) can be replaced with Ly(q̂y; py(θ̂ y)) for model
selection.

7 Simulation study

7.1 Simulation 1

To verify Theorem 1, we performed a simulation study of the two-component normal
mixture model defined as follows. Let z ∈ {1, 2} be a discrete random variable for
the component label, and y ∈ R be a continuous random variable for the observation.
The distribution of z is P(z = i) = πi and the conditional distribution of y given
z = i is the normal distribution with mean μi and variance σ 2

i . The true parameter for
data generation is specified as θT0 = (π1, μ1, μ2, σ

2
1 , σ 2

2 ) = (0.6,−1, 1, 0.72, 0.72).
We consider two candidate models for selection. Model 1 is a two-component normal
mixture model with a constraint σ 2

1 = σ 2
2 (d = 4), whereasModel 2 is the samemodel

without the constraint (d = 5). Because these two models are correctly specified, (15)
holds. However, (22) obviously does not.

We generated B = 4000 datasets with sample size n = 100, 200, 500, 1000, 2000,
5000, 10000. They are denoted as X (b) = (x(b)

1 , . . . , x(b)
n ), b = 1, . . . , B.

We also generated datasets of sample size ñ = 15000, which are denoted as
X̃ (b) = (x̃(b)

1 , . . . , x̃(b)
ñ ) for computing the loss functions. For each X (b) =

(Y (b), Z (b)) and Model k, k = 1, 2, we computed the information criteria
AIC(Y (b), k), PDIO(Y (b), k), AICcd(Y (b), k), AICx;y(Y (b), k), and the loss functions

lossy;y(Y (b), k) = Ly(qy; py(θ̂ (b)
y )), lossx;y(X (b), k) = Lx (qx ; px (θ̂ (b)

y )), where θ̂
(b)
y

is computed from Y (b). In the formulas below, :≈ denotes that the expectation on the
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left-hand side is computed numerically by the simulation on the right-hand side. The
loss functions are computed numerically by

lossy;y(Y (b), k) :≈ −1

ñ

ñ∑

t=1

log py( ỹ
(b)
t ; θ̂

(b)
y ),

lossx;y(X (b), k) :≈ −1

ñ

ñ∑

t=1

log px (x̃
(b)
t ; θ̂

(b)
y ),

where px , py , and θ̂
(b)
y are for Model k. Then, the expectation with respect to qx =

px (θ0) is computed by the simulation average. For example,

E(	AIC) :≈ 1

B

B∑

b=1

(AIC(Y (b), 1) − AIC(Y (b), 2)),

	riskx;y :≈ 1

B

B∑

b=1

(lossx;y(X (b), 1) − lossx;y(X (b), 2)).

This Monte Carlo method calculates the expectation accurately for sufficiently large
ñ and B.

The result shown inTable 1verifiesTheorem1. For sufficiently largen, E(	AIC) =
2n	risky;y and E(	AICx;y) = 2n	riskx;y hold very well. On the other hand,
E(	PDIO) differs significantly from 2n	risky;y and 2n	riskx;y . Thus, PDIO is not
a good estimator of either of these risk functions. In addition, the expected value of
AICcd is similar to that of PDIO, but its variation is larger than PDIO, as seen in the
standard errors.

Let us consider the difference PDIO − AICcd

diff(Y, θ̂ y) = 2Q(θ̂ y; θ̂ y) − 2�y(θ̂ y) = 2
n∑

t=1

∫
pz|y(z| yt ; θ̂ y) log pz|y(z| yt ; θ̂ y) d z,

and its difference between the two models, which is denoted as 	diff(Y, θ̂ y) =
	PDIO − 	AICcd . 	diff(Y, θ̂ y) and E(	diff(Y, θ̂ y)) can be very large, and they
are O(n) under model misspecification. If (15) holds, as is the case of Table 1,
E(diff(Y, θ̄ y)) = 2n

∫
qx (x) log qz|y(z|y) dx is independent of the model. Therefore,

the difference becomes smaller; 	diff(Y, θ̂ y) = Op(
√
n) and E(	diff(Y, θ̂ y)) =

O(1).

7.2 Simulation 2

We next performed a simulation study on the three-component normal mixture
model to examine how well the information criteria work for model selection
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Table 1 Expected values of the information criteria and the risk functions in Simulation 1

n 100 200 500 1000 2000 5000 10000

E(	AIC) 0.810 0.898 0.982 0.978 0.986 0.982 1.04

(0.027) (0.025) (0.023) (0.023) (0.023) (0.023) (0.022)

E(	PDIO) 43.5 41.1 37.0 36.0 34.9 34.4 34.2

(1.64) (0.716) (0.344) (0.220) (0.141) (0.088) (0.064)

E(	AICcd ) 42.3 41.0 37.2 36.6 35.2 35.5 33.5

(1.67) (0.793) (0.518) (0.494) (0.573) (0.812) (1.08)

E(	AICx;y) 22.1 21.0 19.0 18.5 18.0 17.7 17.6

(0.821) (0.361) (0.174) (0.113) (0.074) (0.049) (0.037)

2n	risky;y 1.83 1.47 1.15 1.08 1.03 1.02 0.967

(0.052) (0.040) (0.030) (0.027) (0.026) (0.030) (0.033)

2n	riskx;y 100.9 28.9 20.3 18.6 18.2 17.5 17.0

(40.3) (1.39) (0.620) (0.487) (0.456) (0.464) (0.430)

These values are differences between the two models with standard errors in parentheses

Table 2 Frequency of model selection in Simulation 2

Model 1 Model 2 Model 3 Model 4a Model 5a

(d = 6) (d = 7) (d = 7) (d = 7) (d = 8)

AIC 881 2419 262 5600 838

PDIO 5442 16 4 4534 4

AICcd 2063 2 974 6551 410

AICx;y 3704 65 15 6190 26

a Correctly specified model

in a practical situation where some candidate models do not satisfy assump-
tion (15). The true parameter value is θT0 = (π1, π2, μ1, μ2, μ3, σ

2
1 , σ 2

2 , σ 2
3 ) =

(0.5, 0.3,−2, 0, 3, 0.72, 0.72, 12). We consider five candidates with the following
constraints. Model 1 is σ 2

1 = σ 2
2 = σ 2

3 (d = 6). Model 2 is σ 2
2 = σ 2

3 (d = 7).
Model 3 is σ 2

1 = σ 2
3 (d = 7). Model 4 is σ 2

1 = σ 2
2 (d = 7), and Model 5 has no

constraint (d = 8). Models 1, 2 and 3 are misspecified and do not satisfy (15). Mod-
els 4 and 5 are correctly specified and satisfy (15). None of the models satisfy (22).
We have generated B = 10000 datasets of n = 500 and ñ = 2000.

Table 2 shows the model selection results. Model 4 is the best model in the sense
that it minimizes both risky;y and riskx;y (Table 3). All the information criteria tend
to select Model 4. AIC tends to choose a more complex model (i.e., Model 2 or
Model 5) than the other criteria, indicating a smaller penalty for model complexity.
PDIO tends to choose a simpler model (i.e., Model 1), implying a larger penalty for
model complexity.

To compare candidate models in the long run, the expected loss of each Model k
relative to that of Model 4 is computed by
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Table 3 Risk functions for
models and those for
information criteria in
Simulation 2

2n	risky;y 2n	riskx;y

Model 1 6.60 (0.04) 33.2 (0.21)

Model 2 1.40 (0.02) 59.2 (0.71)

Model 3 7.86 (0.04) 80.7 (0.80)

Model 4a 0 (0.00) 0 (0.00)

Model 5a 1.32 (0.02) 45.6 (0.87)

AIC 1.44 (0.03) 39.6 (0.91)

PDIO 3.57 (0.04) 19.6 (0.30)

AICcd 2.33 (0.04) 28.2 (0.72)

AICx;y 2.36 (0.04) 14.8 (0.43)

These values are relative to
Model 4 with standard errors in
parentheses
a Correctly specified model

	riskx;y(k) :≈ 1

B

B∑

b=1

(lossx;y(X (b), k) − lossx;y(X (b), 4)).

Table 3 (upper) shows the results. The most complex model (Model 5) is the second
best in terms of risky;y , but the simplest model (Model 1) is the second best in terms
of riskx;y , indicating a large contribution of pz|y(θ) to the second term of (17).

The information criterion performance is measured by the expected loss of the
selected model. For example, the performance of AIC in terms of complete data is
measured by

	riskx;y(AIC) :≈ 1

B

B∑

b=1

(lossx;y(X (b), k̂(b)) − lossx;y(X (b), 4)),

where k̂(b) is the minimum AIC model computed from Y (b). Table 3 (lower) shows
the results, where the value in bold denotes the minimum value of each column. AIC
outperforms the other criteria in terms of risky;y , and AICx;y outperforms the other
criteria in terms of riskx;y . In this example, some models do not satisfy assumption
(15), but AIC and AICx;y work very well as expected.

8 Concluding remarks

We derived AICx;y as an unbiased estimator of the expected Kullback–Leibler diver-
gence between the true distribution and the estimated distribution of complete data
when only incomplete data are available. In Simulation 1,AICx;y andAICare unbiased
up to the penalty terms, whereas PDIO and AICcd are not.

To derive AICx;y , we assumed (15), meaning that the conditional distribution
pz|y(θ) of the missing data given the incomplete data is correctly specified, while
the marginal distribution py(θ) of the incomplete data is misspecified in general.
However, the conditional distribution is misspecified in practice. In Simulation 2, we
observed that AICx;y and AIC perform better than the other criteria even if some
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models are misspecified. Without assumption (15), the dominant term in (17) is
Dx (qx ; px (θ̄ y)) = Dx (qx ; pz|y(θ̄ y)qy) + Dy(qy; py(θ̄ y)) ≥ Dy(qy; py(θ̄ y)). Thus,
AICx;y estimates the lower bound of 2n riskx;y . It is impossible to reasonably esti-
mate the ignored term Dx (qx ; pz|y(θ̄ y)qy) in our setting where z1, . . . , zn are missing
completely.

Although we assume that pz|y(θ) is correctly specified, it is beneficial to include

pz|y(θ) as a part of px (θ) = pz|y(θ)py(θ) for model selection. The variance of θ̂ y

causes pz|y(θ̂ y) to fluctuate even if pz|y(θ̄ y) = qz|y . The amount of this random
variation is measured by the additional penalty term (1) in AICx;y .

In the future,we plan towork onmore complicatedmissingmechanisms or combine
a missing mechanism with other sampling mechanisms, such as the covariate-shift
(Shimodaira 2000) problem. One important extension is semi-supervised learning
(Chapelle et al. 2006; Kawakita and Takeuchi 2014), where the log-likelihood function
is

�(θ) =
n∑

t=1

log py( yt ; θ) +
n+n′
∑

t=n+1

log px (xt ; θ).

In this case, the additional complete data xn+1, . . . , xn+n′ help estimate conditional
distribution qz|y . We may reasonably estimate Dx (qx ; pz|y(θ̄ y)qy) without assuming
(15), leading to a new information criterion,whichwill be the subject in future research.
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Appendix A: Technical details

A.1 Proof of Lemma 1

For brevity, we omit ( y, z) of fx ( y, z) in the integrals below. Dx (gx ; fx ) =∫ ∫
gz|ygy(log gz|y + log gy − log fz|y − log fy)d zd y = ∫

gy
∫
gz|y(log gz|y −

log fz|y)d zd y + ∫
gy(

∫
gz|yd z)(log gy − log fy)d y = ∫

gy
∫
gz|y(log gz|ygy −

log fz|ygy)d zd y+∫
gy(log gy − log fy)d y = Dx (gz|ygy; fz|ygy)+Dy(gy; fy), thus

showing (6). Dy(gy; fy) = ∫ ∫
hz|ygy(log gy − log fy + log hz|y − log hz|y)d zd y =

Dx (hz|ygy; hz|y fy), which shows (7). ��

A.2 Proof of Lemma 2

We assume qz|y = pz|y(θ̄ y) and θ̄ x = θ̄ y . From the definitions of θ̄ x and Hx , we have
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∂Dx (qx ; px (θ))

∂θ

∣
∣
∣
θ̄ y

= 0,
∂2Dx (qx ; px (θ))

∂θ∂θT

∣
∣
∣
θ̄ y

= Hx .

Hence, the Taylor expansion of Dx (qx ; px (θ)) around θ = θ̄ y is

Dx (qx ; px (θ)) = Dx (qx ; px (θ̄ y)) + 1

2
(θ − θ̄ y)

T Hx (θ − θ̄ y) + O(n−3/2)

for θ − θ̄ y = O(n−1/2). The first term on the right-hand side is Dy(qy; py(θ̄ y)) as

shown in (16). Substituting θ = θ̂ y in Dx (qx ; px (θ)) and taking its expectation gives
(17) by noting

E
{
(θ̂ y − θ̄ y)

T Hx (θ̂ y − θ̄ y)
}

= tr
(
Hx E

{
(θ̂ y − θ̄ y)(θ̂ y − θ̄ y)

T
})

,

which becomes tr
(
Hx H−1

y GyH−1
y

)
/n + O(n−2) from (4). ��

A.3 Proof of Theorem 1

From the definitions of θ̂ y and Ĥy = Hy(q̂y; θ̂ y), we have

∂Ly(q̂y; py(θ))

∂θ

∣
∣
∣
θ̂ y

= 0,
∂2Ly(q̂y; py(θ))

∂θ∂θT

∣
∣
∣
θ̂ y

= Ĥy .

Hence, the Taylor expansion of Ly(q̂y; py(θ)) around θ = θ̂ y is

Ly(q̂y; py(θ)) = Ly(q̂y; py(θ̂ y)) + 1

2
(θ − θ̂ y)

T Ĥy(θ − θ̂ y) + Op(n
−3/2)

for θ−θ̂ y = Op(n−1/2). Substituting θ = θ̄ y in Ly(q̂y; py(θ)), we take its expectation
below. By noting Ĥy = Hy + Op(n−1/2), we have

E
{
(θ̄ y − θ̂ y)

T Ĥy(θ̄ y − θ̂ y)
}

= tr
(
Hy E

{
(θ̂ y − θ̄ y)(θ̂ y − θ̄ y)

T
})

+ O(n−3/2),

which becomes tr(HyH−1
y GyH−1

y )/n+O(n−3/2) from (4). This proves (20) because

E{Ly(q̂y; py(θ̄ y))} = E{Ly(q̂y; py(θ̂ y))} + 1

2n
tr(GyH

−1
y ) + O(n−3/2),

and E{Ly(q̂y; py(θ̄ y))} = Ly(qy; py(θ̄ y)). Substituting (20) into (17) and comparing
it with (18) yields (21). ��
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