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Abstract In this paper, we discuss a class of mean-reverting, and self-exciting
continuous-time jump processes. We give a short overview, with references, of the
development of such processes, discuss maximum likelihood estimation, and put them
into context with processes that have been proposed recently. More specifically, we
introduce a class of SDE-governed intensity processes with varying jump intensity.We
studyMarkovian aspects of this process, and analyse its stability properties. Finally,we
consider parameter estimation of our model class with daily quotes of UK electricity
prices over a specific period.

Keywords Self-exciting processes · Jump processes · Markov processes ·
Energy markets

1 Introduction

In recent years, modelling of financial markets and instruments by means of
continuous-time jump processes has become common. In particular the class of Lévy
processes has turned into a widely used tool in the literature (see e.g. Cont and Tankov
2004 for general applications, and Benth et al. 2008 for energy market applications).
The class of Lévy processes is arguably the most natural extension of the continuous
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Brownian motion paradigm, retaining independence and stationarity of increments,
while excluding almost sure path-continuity.

However, one area where Lévy processes are not directly applicable is modelling
of volatility clustering. Indeed, by the independence and stationarity of Lévy process
increments, one rarely observes clustering of jumps. To tackle this problem, time-
changed Lévy processes have been introduced. We propose a different approach. In
this paper, we study a class of jump processes that are not Lévy processes, namely
self-exciting jump processes, with stochastic jump sizes, which feed into the intensity
process, and thus determine the future behaviour of the process. Our class of self-
exciting processes is special in that its intensity process admits a stochastic differential
equation, whichmakes the intensity processMarkovian.Wemoreover discuss limiting
behaviour and likelihood inference in this setting.

Modelling random phenomena by means of point processes, or a combination of
continuous stochastic processes together with point processes is common; see e.g.
Jacod (1974/1975), Brémaud (1981), Daley and Vere-Jones (1988), and parts of Jacod
and Shiryaev (2003) for classical accounts. One of the simplest, and arguably the most
important, conceivable point process that has been studied is the Poisson process (it is
also a Lévy process), which on a given interval records the number of incidents which
occur in an independent fashion. This means that distinct occurrences recorded by the
Poisson process have no bearing on each other, that is, the arrival times of incidents
are independent of each other. Many authors that use point processes in their models
impose such an independent arrival time condition, which is also called a memoryless
property, on their processes. While this restriction may admittedly serve to simplify
models considerably, it is certainly not alwayswarranted. Indeed, often the phenomena
one seeks to model by means of point processes seem to arrive in clusters, rather than
in an independently arriving fashion, as can be tested bymeans of statistical hypothesis
tests and has been observed by several authors, including Aït-Sahalia et al. (2015).

An alternative to modelling by means of constant intensity processes, is to employ
self-exciting processes, with stochastic jump-sizes, which essentially are processes
that excite their own intensity. In particular this implies that large jumps are likely to
be followed by a jump within a short time, thus triggering a potential jump clustering.
The class of processes we propose is similar to the so-called Hawkes processes, see
Hawkes (1971a, b); Hawkes and Oakes (1974), but with a random jump size. Recently,
there has been a renewed interest in processes of this type, see Errais et al. (2010),
Bacry and Muzy (2014), Bacry et al. (2013), Jaisson and Rosenbaum (2015) and
Embrechts et al. (2011) for studies of self-exciting processes in a financial setting.

Under certain conditions, which will be made clear in Section 3, Markov process
theory can be used to study the properties of the process and its intensity process.
In particular, one can use the extended generator (as defined by Davis 1993), and
Dynkin’s formula to infer moments as solutions of ordinary differential equations.
The extended generator can furthermore be employed to study stability properties of
the process in the sense of Meyn and Tweedie (1993).

Our approach is to model the intensity process as a stochastic differential equation
(SDE). This has the advantages that we can also model nonlinear effects via the SDE
drift function, and the jump distribution of the SDE can be made to depend on the
current intensity level, while still preserving the Markov property, so that e.g. high
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intensity may trigger large jumps which in turn may lead to increased intensity. We
note that our class of self-exciting processes has a discrete time analogue. Indeed, if
we discretize the SDE we get a model which resembles recent models for integer time
series (see Fokianos et al. 2009) which in turn can be thought of as an analogue to
GARCH models.

Having introduced our class of self-exciting processes, and examined its theoretical
properties, we demonstrate its applicability with an example. We fit a self-exciting
jump process to a dataset which we extract from UK electricity spot price data. To be
more specific, we extract a jump process driven Ornstein–Uhlenbeck type trajectory
from theUKspot price series, using amethod developed byMeyer-Brandis andTankov
(2008), in the same manner as Meyer-Brandis and Morgan (2014). Having extracted
the data in that manner, we proceed to fit it to a self-exciting process, and demonstrate
the advantages of doing this, compared to fitting a constant intensity process to the
data. Indeed we see that the self-exciting process does a good job replicating the
periods of jump-clustering which are observed in reality.

The paper is structured as follows. In the next section we introduce a class of self-
exciting processes, and discuss some of its basic properties. In Sect. 3, we show that
our self-exciting process is a Markov process, and moreover employ Markov theory
to study the process. In Sect. 4, we discuss an application of self-exciting processes
to model UK electricity spot price data. Finally, we conclude in Sect. 5.

2 Self-exciting processes

In this section we give a short account of the development of self-exciting processes,
including the Hawkes process, and introduce the model class which we work with in
the current paper. Hawkes and Oakes (1974) give a cluster process interpretation of the
self-exciting Hawkes process. They show that the Hawkes process can be thought of
as a migrant point process in which there is a standard Poisson process with constant
intensity λ0 > 0 which records the number of migrants, and that associated to each
migrant there is a further inhomogeneous Poisson process, starting at their migration
time, with an intensity that tends to zero, which represent the number of descendants
of that particular migrant, with each of these descendants in turn generating their own
inhomogeneous Poisson descendant process, starting at their time of birth. Given this
construction the Hawkes process is the sum of migrants and their descendants (of any
generation) at a given time.

This sort of a construction is quite appealing in the sense that it is easy to inter-
pret, and has a whole range of potential application areas, besides the earthquake,
and aftershock model they were initially employed to model. For example in popula-
tion dynamics, the migrants could represent the number of immigrants to a particular
country, with the inhomogeneous Poisson processes representing their children. Sim-
ilarly, one can apply analogies of this type to financial modelling of buy (or sell)
orders (as Aït-Sahalia et al. 2015) with migrants representing exogenous orders, and
descendants representing orders made as a result of previous orders. Thus, the Hawkes
process, initially employed in seismological modeling, has started to find its way into
mainstream financial modeling in recent years. In the current paper we propose to
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use a Markov type self-exciting processes to model jumps in electricity spot price
markets.

Now let us give a mathematical description of self-exciting jump processes. To
that end we introduce the following notation, which we shall employ throughout the
paper; for a more detailed discussion see Jacod (1974/1975) and Brémaud (1981). Let
(�,F) denote a measurable space, and let {(Tn)}n≥1 denote a point process taking
values inR+. The sequence {Tn}n≥1 is assumed non-negative and non-decreasing, i.e.
0 ≤ T1 ≤ T2 ≤ · · · holds. We moreover introduce the counting process associated to
the point process

N (t) :=
∑

n≥1

1{Tn≤t}, (1)

where t ≥ 0, is the counting process which records all the jumps of the point process.
We identify a point process with its counting process (1) and let

FN
t := σ {N (s) : 0 ≤ s ≤ t},

where t ≥ 0. Given a point process adapted to some filtration {Ft }, with FN
t ⊂ Ft ,

suppose that N (t) admits a càdlàgFt -adapted (and thus predictable) intensity λ(t) (in
the sense of Brémaud 1981), then

E

[∫ ∞

0
f (s)dN (s)

]
= E

[∫ ∞

0
f (s)λ(s)ds

]
,

holds for all predictable f : � × R+ → [−∞,∞].
Given the above notation, the Hawkes process is a point process with a stochastic

intensity given by

λ(t) = λ0 +
∫ t

0
g(t − s)dN (s),

where λ0 > 0 is the base intensity, and g is a deterministic non-negative function,
with ‖g‖L1(R+) < 1. In the case when the kernel function of the above Hawkes model
has the form g(u) = βe−αu , we can show that λ(t) is the solution to the following
pure-jump Langevin equation

dλ(t) = α(λ0 − λ(t))dt + βdN (t),

with λ(0) = λ0. Indeed, if we suppose that the above SDE dynamics hold, and let
f (u, t) = ueαt , it follows from the Itô lemma (see Theorem II.33 in Protter 2005)
applied to t �→ f (λ(t), t) that
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λ(t)eαt − λ0 = α

∫ t

0
λ(s)eαsds +

∫ t

0
eαsdλ(s)

= α

∫ t

0
λ(s)eαsds +

∫ t

0
eαs{α(λ0 − λ(s))ds + βdN (s)}

= λ0(e
αt − 1) + β

∫ t

0
eαsdN (s),

from which it follows that

λ(t) = λ0 + β

∫ t

0
e−α(t−s)dN (s).

Note in particular that a nice property of the above exponential self-exciting model is
that for a fixed δ > 0, it is autoregressive, in the sense that

λ(t + δ) = (1 − e−αδ)λ0 + e−αδλ(t) + β

∫ t+δ

t
e−α(t+δ−s)dN (s).

Thus, as we shall see in the next section, at time t information about λ(t) is sufficient
to make predictions about a future time point t + δ, which means that, given λ(t),
further information about the trajectory of the process prior to time t does not improve
our future prediction, and that under certain regularity conditions discussed in the
following section, in this case, the self-exciting process fulfills the Markov property.
On the other hand, it is easy to see that kernel functions which are not on this form
generally do not fulfill a Markov property. If we assume that the kernel function g is
regular enough and that we observe no jumps in (t, t + δ], then we obtain by Taylor
expansion that

λ(t + δ) = λ(t) +
∫ t+δ

0
(g(t + δ − s) − g(t − s))dN (t)

= λ(t) + δ

∫ t+δ

0
g′(t − s)dN (s) + O(δ2).

So, unless g is exponential, λ(t) will not be autoregressive, or Markovian.
Inspired by the above constructionswenow introduce aMarkovian intensity process

which is excited by its own jumps in a stochastic manner, to be more specific, we
introduce a point process with SDE intensity dynamics, where the intensity process
jumps whenever an associated point process jumps. The stochastic jump process is
given by

U (t) =
N (t)∑

k=1

Xk, (2)

where N (t) is the counting process (1), and {Xk} is a family of random variables,
Xk has the distribution ν(λ(Tk−), ·), for a given family {ν(λ, ·)}λ>0 of probability
distributions, and t− := lims↑t s. Thus, we allow the value of the intensity process
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immediately before the jump to influence the jump size distribution. We introduce the
SDE

dλ(t) = μ(λ(t))dt + βdU (t), (3)

where β ∈ R is a constant and we assume throughout the paper that μ : R+ → R, is
Lipschitz continuous. We denote by Fλ

t = σ {λ(s) : s ≤ t} the filtration generated by
(3).

Definition 1 An SDE-driven self-exciting jump process is a point process with a
Fλ
t -adaptable intensity λ(t), given by (3), with jump-sizes, Xk , which follow the

distribution ν(λ(Tk−), ·), where {ν(λ, ·)}λ>0 is a family of probability distributions,
and ν(λ, ·) is supported on [λ0 − λ,∞).

This equation admits a unique solution, see Theorem V.7 in Protter (2005) for proof of
existence and uniqueness. Note that since λ(t) is càdlàg and adapted it is predictable.
The advantages of specifying the intensity process as an SDE in the above manner
are the following. First of all, it extends the exponential Hawkes model, in that the
exponential Hawkes process is obtained as a special case. It moreover allows us to
record stochastic jumpswhich can depend on the current value of the intensity process.
Finally, as we shall see in the following section, it is Markovian, in the sense that
given the state of the process at the current time, the future is independent of the
past. The setting is rather general in the sense that one is free to specify quite general
drift functions and jump-size distributions. Typically, the jumps of the point process
excite the intensity in the sense that λ(t) increases at the jump time, whereas the
drift function, μ, drives λ(t) back towards its mean level. However, if desirable, this
relationship can be turned around, with the jumps contributing to a lower (but still
positive) intensity and the drift pushing it up. Thus, we allow negative jumps, but the
jump distribution support is not allowed to take the process below the basis (initial)
intensity level, λ0 > 0. The dependence of the jump-size distributions on the current
state of the intensity process, and the deterministic motion of the intensity process
between jumps, make it a Markov process. Note, furthermore, that the self-exciting
jump process is related to marked point processes, without being one. Recall that a
marked point process is a double sequence, {(Tn, Xn)}n≥1, where {Tn}n≥1 is a point
process, and {Xn}n≥1 is a sequence of “marks” in some measurable space, which is
also called the mark space. In the setting introduced in the definition above, one could
think of the jumps introduced in the intensity process as marks. However, we refrain
from doing so, since it only serves to complicate things without offering any obvious
benefits.

To avoid the explosion of the counting process (1) it is necessary to balance the
relationship of the drift, μ, and the jump-size distribution, ν. To that end, we ensure
that the integrated intensity process is almost surely finite. Let

	(T ) =
∫ T

0
λ(t)dt,

for T > 0.

Assumption 1 For any T > 0, 	(T ) < ∞ holds almost surely.
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According to Theorem II-T8 in Brémaud (1981), an SDE driven self-exciting process
which satisfies the above assumption is non-explosive. As we have already indicated
the drift function, μ, and the jump-size distribution, ν, need to balance the intensity
process to guarantee that 	(T ) is almost surely finite. One way of doing this is to
compare the intensity SDE (3) with an SDEwhich is known to be integrable. Thus, for
instance in the casewhen the drift function is decreasing, and the jump-size distribution
has positive support, the intensity process can be compared with a zero-drift intensity
process which has the same jump-size distribution. If the jump-size distribution does
not grow too much, then the resulting zero-drift piecewise deterministic intensity
process, can be thought of as the intensity of a birth process, which has an integrable
intensity.

The above integrated intensity process determines the jump sequence {Tk} in the
sense that if {ξk} is a sequence of independent exponentially distributed random vari-
ables with mean 1, then given FTk ,

Tk+1
D= inf{t > Tk : 	(t) − 	(Tk) ≥ ξk}, (4)

for k ≥ 0. This means in particular that regions in which the intensity process (3) is
high we expect jumps to occur closer to each other than in regions where the intensity
(3) is small. It is, furthermore, relevant to note that the random variables {Tk}k≥2 do
not fulfill the memoryless property. Recall that a non-negative random variable, T , is
called memoryless if

P(T > t + s|T > s) = P(T > t)

holds for all s, t ≥ 0.We remark that it follows that N (t) is not an additive (independent
increment) process, and thus in particular not a Lévy process.

Example 1 As an example of a non-linear drift functionwemight consider a stochastic
intensity model on the form

dλ(t) = (α + δ exp(−γ λ(t)2))(λ0 − λ(t))dt + βdU (t),

where α, β, γ, δ > 0. This model extends the linear model in the sense that the speed
of mean-reversion varies between α + δe−γ λ20 for λ(t) = λ0 and tends to α for large
values of λ(t). Thus, in a neighbourhood where the intensity is high the speed of
mean reversion is lower than in neighbourhoods where it is low, which could have the
interpretation that in periods of low activity the effects of a jump fade out faster than in
periods of high activity. In an energy market context this would in turn mean that in a
period where there are few jumps in prices, a jump will typically not excite the market
as much as it would in times of high activity. In Fig. 1, we have simulated a trajectory
of the non-linear model, using a thinning algorithm, see Ogata (1981), which displays
the characteristics we have described. This example is a continuous time analogue of
an exponential autoregressive time series model; see e.g. chapter 3 of Teräsvirta et al.
(2010).

123



380 H. Eyjolfsson, D. Tjøstheim

0 200 400 600 800 1000 1200 1400 1600 1800
t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
λ(
t)

Fig. 1 A simulated trajectory of the non-linear intensity model in Example 1, where λ0 = 0.0248, α =
0.1233, β = 0.0399, γ = 1.6259 × 103 and δ = 1.6758, and the jumps are simulated from an inverse
Gaussian distribution with parameters 1.9389 (mean) and 5.4943 (shape). The parameter values are inspired
by estimates in Sect. 4

3 Markovian dynamics

In this section, we introduce the concept of a Markov generator, which is a useful
tool for analysing the behaviour of the Markovian intensity process (3), in particular
we shall use the tools developed here to study the stability of (3). Note that discrete
Markov chain techniques have been used to study stability of nonlinear time series
models in Tjøstheim (1990) and Fokianos and Tjøstheim (2012).

We denote by Pλ the probability measure induced by the transition function of the
Markov process λ(t) at time t ≥ 0, with λ(t) = λ, that is, given λ ≥ λ0, s ≥ 0
and B ∈ B([λ0,∞)), let Pλ(λ(t + s) ∈ B) := P(λ(t + s) ∈ B|λ(t) = λ), where
Eλ, furthermore, denotes the corresponding expected value operator. Associated to the
Markov intensity process λ(t) is its strong generator, which is defined as the derivative
of the semigroup Pt f (λ) := Eλ[ f (λ(t))] under the sup-norm, ‖ f ‖ = supλ≥λ0

| f (λ)|.
Moreover, if we denote the set of bounded measurable functions on [λ0,∞) such that
the limit

Â f := lim
t↓0

Pt f − f

t

exists (under the sup-norm) by D(Â), then it can be shown that strong continuity of
{Pt } (continuity of t �→ Pt under ‖ · ‖) implies that D(Â) is dense in the space of
bounded measurable functions f : [λ0,∞) → R. However, even if this is true, it is
usually not the whole space. The following result follows by Proposition 14.13, p.31,
in Davis (1993).

Proposition 1 For f ∈ D(Â), and t ≥ 0, let

C f (t) := f (λ(t)) − f (λ(0)) −
∫ t

0
Â f (λ(s))ds.

Then for any λ ≥ λ0, the process {C f (t)}t≥0 is a martingale on (�,F , {Ft }t≥0,Pλ),
where Ft := σ {λ(s) : s ≤ t}.
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It follows that

Eλ[ f (λ(t))|Fs] = f (λ(s)) + Eλ

[∫ t

s
Â f (λ(r))dr |Fs

]

holds for any λ ≥ λ0, 0 ≤ s ≤ t and f ∈ D(Â), and in particular, by letting s = 0,
the process t �→ f (λ(t)) verifies the so-called Dynkin formula,

Eλ[ f (λ(t))] = f (λ) + Eλ

[∫ t

0
Â f (λ(r))dr

]
,

for any λ ≥ λ0, t ≥ 0 and f ∈ D(Â). However, as we have already observed,
the domain D(Â) is usually not the entire space of bounded measurable functions
on [λ0,∞). Thus, following Davis (1993) we, therefore, define D(A) to be the set
of measurable functions f such that there exists a measurable function ψ for which
t �→ ψ(λ(t)) is integrable Pλ-a.s. for all λ ≥ λ0 and the process

C f (t) = f (λ(t)) − f (λ(0)) −
∫ t

0
ψ(λ(s))ds

is a local martingale. We, moreover, write ψ = A f , and call (A,D(A)) the extended
generator of the process λ(t). Note in particular that D(Â) ⊂ D(A).

With these definitions in mind we derive the form of the extended generator, and
describe its domain in Proposition 2. Recall that we denote by ν(λ(Tk−), ·) the non-
negative jump size distribution of Xk , given the value of λ(TK−). The strong generator
is given by

(A f )(λ) = μ(λ) f ′(λ) + λ

∫
( f (λ + βx) − f (λ)) ν(λ, dx). (5)

Proposition 2 If for any t > 0 and a given measurable function, f : [λ0,∞) → R,
it holds that the map

λ �→
∫

f (λ + x)ν(λ, dx)

is measurable, and

Eλ

[∫ t

0

∣∣∣∣λ(s)
∫

( f (λ(s) + βx) − f (λ(s))) ν(λ(s), dx)

∣∣∣∣ ds
]

< ∞, (6)

then f is in the domain of the extended generator of λ(t), f ∈ D(A), whereA is given
by (5).
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Proof By Itô’s lemma (see Theorem II.31 in Protter 2005) it holds that

f (λ(t)) − f (λ(0)) =
∫ t

0
f ′(λ(s))μ(λ(s))ds +

∑

0<s≤t

{ f (λ(s)) − f (λ(s−))} .

Now, using that N (t) − 	(t) is a martingale,

Eλ

⎡

⎣
∑

0<s≤t

{ f (λ(s)) − f (λ(s−))}
⎤

⎦

= Eλ

[∫ t

0

∫
{ f (λ(s−) + βx) − f (λ(s−)}ν(λ(s−), dx)dN (s)

]

= Eλ

[∫ t

0

∫
{ f (λ(s−) + βx) − f (λ(s−)}ν(λ(s−), dx)λ(s)ds

]

= Eλ

[∫ t

0
λ(s)

∫
{ f (λ(s) + βx) − f (λ(s)}ν(λ(s), dx)ds

]
,

where we have exploited the fact that

s �→
∫

{ f (λ(s−) + βx) − f (λ(s−))} ν(λ(s−), dx),

is predictable, and that a stochastic integral of a predictable process with respect to
a martingale is a martingale. It follows that for a function f which fulfills (6), the
process

t �→ f (λ(t)) − f (λ(0)) −
∫ t

0
A f (λ(s))ds

is a zero-mean martingale, and thus the proof is completed using the definition of the
extended generator. �

Having identified the extended generator of our class of processes, we proceed to
use it to analyse some of the class properties. To that end, we first of all notice that
our class of self-exciting processes is a piecewise deterministic process (PDP) in the
sense of Davis (1993). We adopt the following regularity conditions.

Assumption 2 It holds that

(i) λ �→ μ(λ) is Lipschitz continuous.
(ii) ν : [λ0,∞) → P(R) (the set of probability measures on R) is a measurable

function such that ν(λ, {λ}) = 0 for all λ ≥ λ0.
(iii) The map λ �→ ∫ ∞

λ0
f (x)ν(λ, dx) is continuous for continuous and bounded f .
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Together with the non-explosion assumption of Sect. 2, the first two of the above
assumptions are the so-called “standard conditions” of Davis (1993), which ensure
a certain regularity structure on the class of PDP processes. The first one of these
concerns the deterministic μ function, which governs the behaviour of the intensity
function between jumps. By requiring Lipschitz continuity we exclude explosions and
ensure that the process behaves like a deterministic non-explosive Markov process
between jumps. The second condition states the measurability of the family of jumps-
size distributions, and that we can almost surely detect jumps. The above assumption
moreover ensures that our process class is a so-called Borel right process (see Theorem
27.8 in Davis 1993). Finally, the continuity assumption of point three ensures together
with the non-explosive property that our process class fulfills the Feller property, i.e.
that the map x �→ Pt f (x) is bounded and continuous if f is bounded and continuous
for t ≥ 0.

Recall that the Markov process λ(t) is said to be φ-irreducible if φ is σ -finite and

Eλ

[∫ ∞

0
1{λ(t)∈A}dt

]
> 0

whenever φ(A) > 0, for all λ ≥ λ0. The following stability result employs the
form of the generator to analyse the stability properties of the intensity process. It
turns out that under certain assumptions on the generator the intensity process (3)
is asymptotically stable. Given a signed measure on B([λ0,∞)) and f ≥ 1, write
‖μ‖ f := sup|g|≤ f

∣∣∫ gdμ
∣∣.

Theorem 1 Suppose that λ(t) is φ-irreducible where φ is supported on a set with
non-empty interior, and there exist constants c > 0 and d ∈ R such that

Aλ = μ(λ) + λ

∫
xν(λ, dx) ≤ −cλ + d (7)

for all λ > λ0, then an essentially unique finite invariant measure, π , exists and λ(t)
is moreover geometrically ergodic, i.e. there exist β < 1, B < ∞ such that

‖Pt (λ, ·) − π‖ f ≤ B f (λ)β t ,

where Pt (λ, ·) = Pλ(λ(t) ∈ ·) and f (λ) = 1 + λ.

Proof It follows by the Feller property, the φ-irreducibility property (which also holds
for the sampled chain) and Theorem 3.4 in Meyn and Tweedie (1992) that all compact
subsets of a skeleton chain are petite. So the result follows directly from Theorem 6.1
in Meyn and Tweedie (1993). �

We note that the condition (7) makes statistical inference and maximum likelihood
theory possible. See Fokianos et al. (2009) for corresponding conditions in the much
simpler context of integer time series modelling with stochastic intensity.
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Example 2 In the case of linear drift, μ(λ) = α(λ0 − λ), we find that

Aλ =
(

β

∫
xν(λ, dx) − α

)
λ + αλ0,

so the conditions of Theorem 1 are fulfilled if there exists a constant K ≥ λ0 such that

α > β

∫
xν(λ, dx) (8)

for all λ > K . What this means in practice is that in the case of a linear drift, the
speed of mean reversion, that is the parameter α > 0, must be larger than the expected
value of the jump-size distribution, for all values of λ ≥ K . In other words, the rate
at which the intensity process is forced towards λ0, between jumps, is larger than
the expected value of the jump-size distribution for all λ outside a bounded interval,
which is intuitively reasonable. We finally note that the condition (8) is also sufficient
to ensure the stability of the process introduced in Example 1, because α + δe−γ λ2

tends to α as λ → ∞.

4 Modelling jumps of UK power data by means of a self-exciting jump
process

Having introduced and analysed a class of self-exciting processes, we apply it to
model electricity and energy prices, more precisely we employ a self-exciting process
to model the jumps of UK electricity spot price data.

The opening of electricity, and other energy commodity markets, worldwide during
the last two decades or so prompted the need for new stochastic models to be devel-
oped to model the idiosyncratic features that such markets display. Indeed, electricity
and commodity markets are known to display quite distinct features that are rarely
observed in more traditional stock markets, and are thus very challenging to model.
These features include sudden jumps of many magnitudes, due to a sudden unforeseen
shortage of energy supply, followed by an equally steep mean-reversion once the sup-
ply has matched the demand, along with the occasional appearance of negative prices
due to overproduction. Another interesting feature of such markets is the clustering of
jumps, i.e. the apparent observation that jumps are more likely to appear in clusters
than as a realization of a Poisson process. In other words, the appearance of jumps
seems to be governed by a stochastic intensity process, which is self-exciting.

Due to the relatively frequent number of jumps in the aforementioned markets, a
modelling paradigm in which (deseasonalised) spot prices are modelled as the sum
of a continuous diffusion part, and a discontinuous jump part has been developed see
e.g. Meyer-Brandis and Tankov (2008), Meyer-Brandis and Morgan (2014), and the
thresholdmodel ofGemanandRoncoroni (2006). This is somethingwhichwedo in our
setting as well. We study a UK (APX) power price series, with a single observation per
day, in the period from February 6, 2001 to December 31, 2007 (excluding weekends
and holidays). The time series was kindly provided by Montel. The reason we choose
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Fig. 2 Top daily quotes of UKpower data.Middle the fitted seasonality function.Bottom the deseasonalised
UK power data

to analyse this time period of UK power data, is to compare it with an analysis of
the same time period performed by Meyer-Brandis and Morgan (2014), in which the
authors extract a jump trajectory from the deseasonalised data and fit a compound
Poisson driven Ornstein–Uhlenbeck process to the jump trajectory. In particular this
means that the inter-arrival times of jumps are memoryless, since they are determined
by a Poisson process, which excludes the appearance of clusters. We remedy this
problem by introducing a self-exciting process to model the jump part of the model.

We shall employ the similar steps as Meyer-Brandis and Morgan (2014) do with
the exception that we fit a self-exciting process to the jump trajectory of the process.

4.1 Removing seasonality and extracting a jump trajectory

The UK spot data is fitted to the seasonality function

S(t) = exp

(
a + bt +

2∑

k=1

(
c1k sin

(
2kπ

252
t

)
+ c2k cos

(
2kπ

252
t

)))
. (9)

The parameter estimates are â = 3.447, b̂ = 0.0003304, ĉ11 = −0.1535, ĉ21 =
0.00983, ĉ21 = −0.08266, ĉ22 = −0.04492, and the data, together with the sea-
sonality function, and the deseasonalised process, which is obtained by dividing the
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Fig. 3 The empirical, and estimated autocorrelation function of the deseasonalised data

observed data with S(t), is displayed in Fig. 2. The jump trajectory is extracted from
the deseasonalised time series using a hard thresholding method described by Meyer-
Brandis and Tankov (2008). Note the difference in scale in the upper and lower panels
of Fig. 2. The seasonality function in themiddle panel clearly displays an upwards trend
and seasonal variation independent of jumps. We conjecture that the deseasonalised
time series is the sum of two mean reverting Ornstein–Uhlenbeck (OU) processes,
the first one driven by a Wiener process, and the second one driven by a self-exciting
process. This statement is supported by the empirical autocorrelation function, which
is displayed in Fig. 3, to which we have fitted the curve

h �→ w1e
−ρ1h + w2e

−ρ2h,

where w1, w2, ρ1, ρ2 > 0, with the estimates w1 = 0.9267, w2 = 0.07394, ρ1 =
0.5459, ρ2 = 0.005725. That is, we conjecture that the higher speed of mean rever-
sion corresponds to the jump part of the process, while the smaller speed of mean
reversion corresponds to the Wiener process driven OU part of the process. Thus the
deseasonalised price is the sum of two OU processes with, the first one driven by a
Wiener process with a low speed of mean reversion (0.005725), and the second one
driven by a self-exciting jump process with a high speed of mean reversion (0.5459).
The rationale behind associating the higher speed ofmean reversion to the self-exciting
process driven OU process is that a big jump in prices is usually caused by something
unusual or unpredicted in themarket (e.g. a sudden closure of a power plant), which the
market usually corrects for in a reasonably short time (e.g. by increasing power pro-
duction elsewhere). By contrast the speed of mean reversion associated to the Wiener
process driven OU process is much lower as its effects decay much slower.

We assume that the jump price trajectory has dynamics governed by

dY (t) = −ρY (t)dt + dU (t), (10)

whereρ = 0.5459, the jump component is estimated from the data, and has an intensity
which we will specify below. We extract the jump process trajectory using the hard
thresholding method described by Meyer-Brandis and Tankov (2008). Taking out the
120 largest jumps from the deseasonalised time series yields the series displayed in
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Fig. 4 The jump trajectory with 120 jumps extracted from the data

Fig. 4. Note that the method we use to extract the largest jumps removes the largest
jumps according to their size in absolute in value, thus there are a few negative jumps
in the series (7 out of 120). Having extracted this jump trajectory one may apply a
variety of self-exciting jump processes to it. We proceed to discuss some possibilities
in this direction in the next subsection.

4.2 Fitting a self-exciting model to the jump trajectory

Weconsider simultaneous estimation of themodel parameters viamaximum likelihood
estimation. It is well known (see e.g. Ogata 1978 and Daley and Vere-Jones 1988) that
the likelihood of the counting process (1) on the interval [0, t] is given by

Lt (θ) =
∏

Tk≤t

λ(Tk) exp

(
−

∫ t

0
λ(s)ds

)
,

where {Tk} is the jump-time sequence, and θ ∈ R
d , for some d ≥ 1 is the parameter

vector which specifies the model. The corresponding log-likelihood is given by

log Lt (θ) =
∑

Tk≤t

log λ(Tk) −
∫ t

0
λ(s)ds.

The asymptotic properties of the maximum likelihood estimator associated with the
above likelihood are described by Ogata (1978). The author gives extensive conditions
under which the maximum likelihood estimator, θ̂t , satisfies

√
t(θ̂t − θ)

D→ N (0, I (θ)−1),

where

I (θ) =
{
Eπ

[
1

λ(t)

∂λ(t)

∂θi

∂λ(t)

∂θ j

]}d

i, j=1

as t → ∞, and π denotes the invariant measure of the model.
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Recall that in our setting the intensity process follows SDE dynamics on the form
(3), where the jump process U (t) records stochastic jumps which may depend on the
current value of the intensity process. For the purpose of constructing the likelihood
function note that the intensity may be written as

λ(t) = λ0 +
∫ t

0
μ(λ(s))ds + β

N (t)∑

k=1

Xk .

So for a given equidistant grid t0 < t1 < · · · < tN , with step size� > 0, and given the
observed jumps {Xk}, the intensity can be estimated recursively by setting λ(0) = λ0
and then applying the recursive step

λ(tn) = λ0 +
n∑

k=1

μ(λ(tk−1))� + β

N (tn)∑

k=1

Xk

= λ(tn−1) + μ(λ(tn−1))� + β�U (tn)

for n = 1, . . . , N , where �U (tn) = ∑N (tn)
k=N (tn−1)+1 Xk if some jumps occur on

(tn−1, tn], and �U (tn) = 0 otherwise.
Now we proceed to discussing different variants of the intensity model which we

will fit to the jump data extracted in the previous subsection. First, we consider a linear
model on the form

dλL(t) = α(λ0 − λL(t))dt + βdU (t) (11)

to the data, where θ = (λ0, α, β) is the parameter vector to be estimated. Then we
augment the linear model and consider

dλNL(t) = (α + δ exp(−γ λNL(t)2))(λ0 − λNL(t))dt + βdU (t), (12)

where θ = (λ0, α, β, γ, δ) is the parameter vector to be estimated. For the purpose
of maximum likelihood estimation we propose two alternatives. One can first of all
feed both positive and negative jumps into the maximum likelihood estimation, and
thus inspect the total impact of jumps on the intensity, irrespective of whether they
are positive or negative. On the other hand, one can simply disregard the 7 negative
jumps and use only the positive jumps.

In Table 1, using both of the approaches, we compare the maximum likelihood
estimates of the linear and non-linear models defined in (11) and (12) respectively.
Judging from the maximum likelihood estimates it seems that the non-linear model
does not perform much better than the linear model. Indeed, if one inserts all of the
jumps into the maximum likelihood estimation, then δ̂ = 5.2062 × 10−8 in the non-
linear model (whichmakes γ̂ = 0.2264 redundant) and λ̂0, α̂ and β̂ are identical to the
corresponding estimates for the linearmodel, whichmeans that one gains nothing from
the non-linear model. While, if one only inserts the positive jumps into the estimation
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Table 1 Maximum likelihood estimates of the linear model (11) and the non-linear model (12)

Model and jump input λ̂0 α̂ β̂ γ̂ δ̂

Linear model, all jumps 0.0246 0.1637 0.0641 – –

Linear model, positive jumps 0.0248 0.1233 0.0399 – –

Non-linear model, all jumps 0.0246 0.1637 0.0641 0.2264 5.2062 × 10−8

Non-linear model, positive jumps 0.0249 0.1219 0.0399 0.0880 0.0017

0 200 400 600 800 1000 1200 1400 1600 1800
t

0

0.5

1

λ(
t)

0 200 400 600 800 1000 1200 1400 1600 1800
t

0

5

10

Y
(t
)

0 200 400 600 800 1000 1200 1400 1600 1800
t

0

5

10

Y 0
(t
)

Fig. 5 Above a realization of the linear intensity process (11), simulated with λ̂0 = 0.0232, α̂ =
0.1181, β̂ = 0.0392, and inverse Gaussian jump size distribution. Middle the corresponding jump price
trajectory determined by (10), with the same β, and jump-size distribution. Bottom a jump price trajectory
simulated from a constant intensity estimated from the same data set

it can be argued that the non-linear model explains a little bit more than the linear
model, although, we maintain that in this particular case the gain is negligible.

Having observed that the non-linear model does not fit the data better than the linear
model for the dataset at handweproceed to simulate the linearmodel to display someof
its features and compare it to a constant intensity process. To that end we fit an inverse
Gaussian distribution to the positive jumps with parameter estimates 1.9389 (mean)
and 5.4943 (shape), and simulate the model by means of employing the form of the
linear intensity, alternatively one could employ a thinning algorithm, seeOgata (1981),
to simulate the process. We maintain that the simulated spike trajectory in the middle
panel of Fig. 5 and the extracted jump trajectory displayed in Fig. 4 have comparable
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characteristics. Indeed, we observe that both figures have clustering of jumps, and
relatively calm periods in between, which in turn correspond to the observed changes
in the latent intensity process. By contrast, a constant jump intensity process, such
as the one Meyer-Brandis and Morgan (2014), cannot be expected to reproduce this
clustering behaviour, as is apparent from the simulated trajectory in the bottompanel of
Fig. 5. Bywhichwemean that a constant intensity process is liable to underestimate the
jump clustering effects which is present in the data, since after all a constant intensity
process does not produce clusters. This in turn means that under a constant intensity
regime the price dynamics do not include any clustering effects. One might argue that
the effects of clustering do not matter, since the presence of jumps will simply smear
out the effects of the clusters, but the evidence suggest that they do matter, at least in
the short run. To see why let us study the mean behaviour of the self-exciting intensity
process. Let f (λ) = λ, then if we apply the extended generator to f it follows that

(A f )(λ) = α(λ0 − λ) + λβE[Y ].

So letting m(t) := Eλ[λ(t)], where λ ≥ λ0 denotes the current value of the intensity
process, an application of Dynkin’s formula and Fubini yields

m(t) = λ +
∫ t

0
(αλ0 + ρm(r)) dr,

where ρ := βE[Y ] − α. This implies that m(t) solves the ODE

m′(t) − ρm(t) = αλ0,

with the initial value m(0) = λ, hence

m(t) =
(

αλ0

ρ
+ λ

)
eρt − αλ0

ρ
. (13)

Thus notice that if ρ < 0 (ρ = −0.0457 in our case), it follows that

lim
t→∞m(t) = −αλ0

ρ
, (14)

irrespective of the initial condition λ ≥ λ0, whereas ρ < 0, and λ = −αλ0/ρ

guarantees constant m(t) = −αλ0/ρ, for all t . We remark that one can do similar
calculations to derive the form of higher moments. Now, once we have estimated
the parameters of the intensity process t �→ λ(t) we can essentially observe it, by
observing the jumps which occur. Which in turn means that we can make predictions
about the short term behaviour of the intensity process. Thus, in particular, for the
model which we have estimated in the current section this means that the dynamics of
the model in the near future are highly influenced by the current state of the model. If
we observe that we are currently in a calm period with λ(t) close to or equal to the base
intensity, λ0, then we expect the intensity to mean revert to its stationary mean (14).
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Fig. 6 The mean function (13) with the parameter estimates in the current section and varying initial
positions λ ≥ λ0

Likewise, if we observe that we are currently going through a high intensity regime,
then we will expect the intensity to mean revert down to its stationary mean (14). For
the long run, however, information on the current state of the model is irrelevant, as all
we can say is that themodel will mean revert to the stationary level (14). The stationary
mean is close to being equivalent to a constant intensity model in the sense that if one
calculates the value of the stationary mean (14) by replacing the parameters with their
corresponding estimates, then the value one obtains is 0.0667, which is close to the
constant intensity estimate given by the total number of jumps divided by the length
of the period, which is 0.0659. This behaviour is observed in Fig. 6, and it is relevant
because it means that predictions based on this model will depend on the current value
of the intensity process, which as we have argued fits the data better than a constant
intensity process. Thus, we remark that the estimated model can be employed to make
forecast, or to price financial derivatives, either by means of Monte Carlo simulations
or exact calculations such as Prigent (2001) discusses. We shall, however, not dwell
further into that domain in the current paper.

We close the section with the following remark on the dataset. Note that the jump-
trajectory that we have extracted from our data using the above methods lives on a
lattice, by which we mean that it can only jump at the beginning of each day, and
only once per day, which is admittedly somewhat unrealistic from a point process
perspective, since the inter-arrival times of point processes are real numbers. This
fact is, however, not a big concern in our setting, as it has a relatively small effect on
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Table 2 Maximum likelihood
estimates given arrival times,
and perturbed arrival times

Arrival times λ̂0 α̂ β̂

{Tk } 0.0248 0.1233 0.0399

{T̃k } 0.0241 0.1254 0.0408

{Ťk } 0.0250 0.1516 0.0482

the maximum likelihood estimation of the model, as we observe below. To alleviate
potential concerns caused by this, we study the robustness of the maximum likelihood
estimator of the linear model under inter-arrival time perturbation. To be more precise
we investigate the sensitivity of the maximum likelihood estimators to perturbation of
the arrival times {Tk}. To that end we introduce arrival time perturbations, under which
we estimate themodel parameters.We consider two types of arrival time perturbations.

1. The arrival times {Tk} are perturbed by an iid family, {Uk}, of random variables
which are uniformly distributed on [−1/2, 1/2], yielding the perturbed arrival
times T̃k := Tk +Uk .

2. Initialize the arrival time sequence by first letting it be equal to the original arrival
time sequence, {Ťk} := {Tk}, and then for all k = 1, . . . , 120 perturb the remaining
121− k arrival times, i.e. let {Ťl}l≥k := {Ťl}l≥k +Uk , where {Uk}, is an iid family
of random variables which are uniformly distributed on [−1/2, 1/2].
The original parameter estimates are displayed with the parameters estimated from

the perturbed data in Table 2, they confirm that the perturbed data yield similar param-
eter estimates.

5 Conclusion

In this paper, we have briefly described self-exciting jump processes, discussed their
applicability in different settings, and introduced a general class of self-exciting pro-
cesses with intensity processes that admit an SDE representation. We have, moreover,
applied Markov theory to identify conditions which ensure the stability and asymp-
totic stationarity of our model class. Finally, we have discussed maximum likelihood
estimation with jump trajectory data extracted from UK power markets. The frame-
work which we have presented here can be extended in different directions. First of
all by adding time dependence and secondly by extended the framework to multiple
dimensions. We plan on exploring these directions along with some applications in a
separate article.
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