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Abstract Variable selection problems are typically addressed under the regularization
framework. In this paper, an exponential type penalty which very closely resembles
the L0 penalty is proposed, we called it EXP penalty. The EXP penalized least squares
procedure is shown to consistently select the correct model and is asymptotically nor-
mal, provided the number of variables grows slower than the number of observations.
EXP is efficiently implemented using a coordinate descent algorithm. Furthermore,
we propose a modified BIC tuning parameter selection method for EXP and show that
it consistently identifies the correct model, while allowing the number of variables to
diverge. Simulation results and data example show that the EXP procedure performs
very well in a variety of settings.

Keywords Penalized least squares · Coordinate descent algorithm · Variable
selection · MBIC · Oracle property

This work was supported by the K. C. Wong Education Foundation, Hong Kong, Program of National
Natural Science Foundation of China (No. 61179039) and the Project of Education of Zhejiang Province
(No. Y201533324). The authors gratefully acknowledges the support of K. C. Wong Education
Foundation, Hong Kong. And the authors are grateful to the editor, the associate editor and the
anonymous referees for their constructive and helpful comments.

B Yanxin Wang
wyxinbj@163.com

1 School of Science, Ningbo University of Technology, Ningbo 315211, China

2 Department of Statistics, University of Warwick, Coventry CV4 7AL, UK

3 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China

4 School of Applied Mathematics, Xiamen University of Technology, Xiamen 361024, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-016-0588-3&domain=pdf


192 Y. Wang et al.

1 Introduction

Variable selection is an important aspect of high dimensional statistical modelling,
particularly in regression and classification. In the regularization framework, various
penalty functions are used to perform variable selection by putting relatively large
penalties on small coefficients. The best subset selection, namely, the L0 penalty,
along with the traditional model selection criteria such as AIC, BIC and RIC (Akaike
1973; Schwarz 1978; Foster and George 1994) is attractive for variable selection since
it directly penalizes the number of nonzero coefficients. However, one drawback of
L0 penalized least squares (PLS) procedure is instability of the resulting estimators
(Breiman 1996). This results from the fact that the L0 penalty is not continuous at 0.
Another perhaps more significant drawback of the L0 penalty is that implementing
L0 PLS procedures is NP-hard and may involve an exhaustive search over all possible
models. Thus, implementing these procedures is computationally infeasible when the
number of potential predictors is evenmoderately large, let along the high dimensional
data.

Such computational difficulty motivated various continuous relaxations. For exam-
ple, the bridge regression (Frank and Friedman 1993) uses the Lq penalty, 0 < q ≤ 2.
In particular, the use of the L2 penalty is called the ridge regression. The nonnegative
garrote was introduced by Breiman (1995) for variable selection and shrinkage esti-
mation. The L1 PLS method was termed LASSO by Tibshirani (1996), which is also
collectively referred to as the L1 penalization methods in other contexts. However,
LASSOmay not consistently select the correct model and is not necessarily asymptoti-
cally normal (Knight and Fu 2000; Zou 2006). Other commonly used penalty functions
include the SCAD (Fan and Li 2001), MCP (Zhang 2010), SICA (Lv and Fan 2009),
Elastic net (Zou and Hastie 2005), SELO (Dicker et al. 2013) and so on.

In this paper, we propose a exponential type penalty function named EXP penalty
which very closely approximates the L0 penalty. EXP penalty is continuous, so the
EXP estimators may be more stable than those obtained through L0 penalized meth-
ods. Furthermore, the EXP penalty is a smooth function on [0,∞) and we use a
coordinate descent (CD) algorithm (Friedman et al. 2010; Fan and Lv 2011). Also, we
formally establish the model selection oracle property enjoyed by EXP estimators. In
particular, the asymptotic normality of the EXP is formally established. Our asymp-
totic framework allows the number of predictors p → ∞, along with the number of
observations n, provided p/n → 0.

The practical performance of PLS procedures depends heavily on the choice of a
tuning parameter. In our study, we propose a modified BIC (MBIC) tuning parameter
selector that accounts for lost degrees of freedom and performs very well when used
in conjunction with EXP penalty. Furthermore, we also prove that this EXP/MBIC
procedure consistently identifies the correct model, if p/n → 0 and other regularity
conditions are met.

This paper is organized in the followingway: InSect. 2,we introducePLSestimators
and give a brief overview of existing nonconvex penalty terms, and a new nonconvex
penalty function is presented. Then, we discuss some of its theoretical properties in
Sect. 3. In Sect. 4, we propose anMBIC tuning parameter selectionmethod for EXP. In
Sect. 5, we describe a simple and efficient algorithm for obtaining the EXP estimator.
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Variable selection and estimation 193

Simulation studies and an application of the proposed methodology are presented in
Sect. 6. The proofs are relegated to the Appendix.

2 Variable selection and estimation with EXP penalty

2.1 Linear models and penalized least squares

We start with the linear regression model

y = Xβ∗ + ε, (1)

whereX = (x1, x2, . . . , xn)T is an n × p design matrix, y = (y1, y2, . . . , yn)T is an n-
dimensional response vector, and ε are the iid random errors with mean 0 and variance
σ 2 n-dimensional noise vector, β∗ = (β∗

1 , . . . , β∗
p)

T are the regression parameter.
The problem of interest involves estimating a vector of coefficients β defined by

minimizing an objective function Q(β) composed of a loss function combined with a
penalty that encourages sparsity and prevents overfitting:

Q(β) = 1

2n
‖y − Xβ‖2 +

p∑

j=1

pλ(|β j |), (2)

where ‖ · ‖2 denotes the L2 norm, and pλ(·) is a penalty function indexed by the regu-
larization parameter λ ≥ 0. By regularizing the conventional least-squares estimation,
we hope to simultaneously select important variables and estimate their regression
coefficients with sparse estimates.

Various penalty functions have been used in the variable selection literature for
linear regression models. Tibshirani (1996) proposed the LASSO. However, LASSO
estimates may be biased and inconsistent for model selection (Fan and Li 2001; Zou
2006). This implies that the LASSO does not have the oracle property. The adaptive
LASSO is a weighted version of LASSO which has the oracle property (Zou 2006).
Other commonly used penalty functions include the SCAD and MCP. The SCAD
penalty is the continuous function, whose derivative is given by

p′
λ(t) = λ

{
I (t ≤ λ) + (aλ − t)+

(a − 1)λ
I (t > λ)

}
, (3)

where a > 2. Fan and Li (2001) recommended taking a = 3.7 and we follow this
recommendation throughout. A closely related minimax concave penalty (MCP) was
proposed by Zhang (2010), the MCP is the continuous function defined by

p′
λ(t) = (aλ − t)+

a
, (4)

where the parameter a > 0 determines the concavity of pλ(·). Zhang (2010) proved
that the MCP procedure may select the correct model with probability tending to 1
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194 Y. Wang et al.

and that MCP estimators have good properties in terms of Lq -loss, provided λ and a
satisfy certain conditions. Zhang’s results in fact allow for p 	 n.

2.2 EXP penalty

The EXP penalty is defined by

pλ,a(|θ |) = λ
{
1 − e− |θ |

a

}
, (5)

The EXP penalty has a tuning parameter a > 0, in addition to λ, and when a is small,
pλ(|θ |) ≈ λI (θ �= 0). In fact, we have

lim
a→0

pλ,a(|θ |) =
{

λ, if |θ | �= 0,
0, if |θ | = 0.

It is clearly that the EXP penalty is a continuous approximation to the L0 penalty.
Since the EXP penalty is continuous, the associated PLS procedure is more stable
than L0 procedure. The EXP penalty function (a = 0.5) is plotted in Fig. 1, along
with the SCAD, LASSO, MCP and L0 penalties. Notice that the EXP penalty mimics
the L0 penalty much more closely than the L1, MCP or SCAD penalties.

Also, we can see MCP and EXP penalty begin by applying the same rate of penal-
ization as the LASSO, but continuously relax that penalization. MCP relaxes the rate
of penalization linearly, and thus results in p′(|θ |) = 0 for all |θ | > aλ, where a is
an additional tuning parameter of MCP playing a role similar to a in (5). The EXP
penalty, on the other hand, allows the penalty to decay exponentially, approaching
p′
λ,a(|θ |) = 0 asymptotically but never reaching it. The diminishing rate of penaliza-

tion is an attractive property; as discussed in Fan and Li (2001), it leads to the estimator
θ̂ being nearly unbiased given a large enough sample size.
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Fig. 1 Plots of the penalties (including L0, LASSO, SCAD, MCP and EXP)
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It is worth mentioning that Douglas (2011) also proposed a continuous function
which very closely resembles the L0 penalty. The penalty function is of the form:

pλ(|θ |) = λ

{
1 − e− θ2

a2

}
.

Similar to the EXP penalty proposed by us, the penalty function is continuous and
can have arbitrarily steep slope in a neighborhood near zero, thus mimicking the L0
penalty. However the function is not singular at zero, θ will have no zero-valued
components, although some will have been shrunk arbitrarily close thereto. The EXP
function we proposed is singular at zero and satisfies the condition of sparsity (Fan
and Li 2001). Also, we noticed that the EXP penalty is similar to that proposed by
Breheny (2015)

pλ,a(|θ |) = λ2

a

{
1 − e− a|θ |

λ

}
. (6)

Despite the penalties in Eqs. (5) and (6) have the different forms, but they have similar
properties. The two penalties allow the penalty to decay exponentially, approaching
p′
λ,a(|θ |) = 0 asymptotically but never reaching it. The EXP penalty in (5) is infinitely

differentiable with a smooth derivative that decays exponentially at a rate regulated by
the parameter a, while the exponential penalty in (6) is controlled by the parameter a
and λ. For example, the EXP penalty in (5) approaches the L0 penalty as a → 0, the
parameter a controlled the degree of approximation, while the the exponential penalty
in (6) approaches the L0 penalty as λ

a → 0. Furthermore, Breheny (2015) only focus
on using the exponential penalty for grouped regularization, and detailed study of the
properties of the estimator for the ungrouped case is not be done.

Like the exponential penalty in (6), the EXP penalty in (5) is not convex, neither
the coordinate descent algorithms nor the LLA algorithm are guaranteed to converge
to a global minimum in general. However, it is possible for the objective function to
be convex with respect to β even though it contains a nonconvex penalty component.
These conditions are presented in the following proposition. Let

Qn(β) = 1

2n
‖y − Xβ‖2 +

p∑

j=1

pλ,a(|β j |), (7)

be the objective function, and pλ,a(|β j |) is the EXP penalty function.

Proposition 1 Let λmin(
1
nX

TX) denote the minimum eigenvalue of 1
nX

TX, Then
objective function (7) is strictly convex if λmin(

1
nX

TX) > λ
a2

.

Remark 1 Proposition 1 indicates that if Qn(β j ) denote (7) considered as a function
only of β j , with all other coefficients fixed. Then Qn(β j ) is strictly convex if λ < a2.
However, the conclusion is different with Breheny (2015) which required a < 1. In
fact, the λ

a2
in EXP penalty (5) is equal to a in the exponential penalty (6). The proof

is similar, so we omit it here.
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196 Y. Wang et al.

Remark 2 Since the penalty function is separable and the objective function is convex
in each coordinate dimension, we may apply a coordinate descent approach to solve
for β and the approach is guaranteed to converge to the minimum.

Remark 3 In high dimensions (p > n), the minimum eigenvalue λmin(
1
nX

TX)will be
zero, so the strict global convexity is not possible. However, local convexity may still
apply.

3 Theoretical properties of the EXP estimator

In this section we study the theoretical properties of the EXP estimator proposed in
Sect. 2 in the situation where the number of parameters p tends to ∞ with increasing
sample size n. When discussing variable selection, it is convenient to have con-
cise notation. Denote the columns of X by x1, . . . , xp ∈ Rn and the rows of X by
x1, . . . , xn ∈ R p. Let A = { j;β∗

j �= 0} be the true model and suppose that p0 is the
size of the true model. That is, suppose that |A| = p0, where |A| denotes the cardinal-
ity of A. In addition, for S ⊆ {1, 2, . . . , p}, let βS = (β j ) j∈S be the |S|-dimensional
sub-vector of β containing entries indexed by S and let XS be the n × |S| matrix
obtained from X by extracting columns corresponding to S. Given a p × p matrix C
and subsets S1, S2 ⊆ {1, 2, . . . , p}, let CS1,S2 be the |S1| × |S2| sub-matrix of C with
rows determined by S1 and columns determined by S2.

3.1 Regularity conditions

We need to place the following conditions:

(A) n → ∞ and pσ 2/n → 0.
(B) ρ

√
n/(pσ 2) → ∞, where ρ = min j∈A |β∗

j |.
(C) λ = O(n−γ ), λ

√
n/(pσ 2) → ∞, a = O(p1/2σn−γ /2) for some positive con-

stant 0 < γ < 1.
(D) There exist constants C1, C2 ∈ R such that C1 < λmin(

1
nX

TX) <

λmax(
1
nX

TX) < C2,
where λmin(

1
nX

TX) and λmax(
1
nX

TX) are the smallest and largest eigenvalues of
1
nX

TX, respectively.
(E) limn→∞ n−1 max1≤i≤n

∑p
j=1 x2i j = 0.

(F) E(|εi/σ |2+δ) < M for some δ and M < ∞.

Since p may vary with n, it is implicit that β∗ may vary with n. Additionally, we
allow the model A and the distribution of ε (in particular, σ 2) to change with n.
Condition (A) limits how p and σ 2 may grow with n. This condition is the same as
that required in Dicker et al. (2013) and substantially weaker than that required in
Fan and Peng (2004), who require p5/n → 0, and slightly weaker than that required
in Zou and Zhang (2009), who require log(p)/ log(n) → ν ∈ [0, 1). As mentioned
in Sect. 1, other authors have studied PLS methods in settings where p > n, i.e.
their growth condition on p is weaker than Condition (A). However, if Condition
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(A) is relaxed, additional stronger conditions are typically required in order to obtain
desirable theoretical properties. For instance, Kim et al. (2008) require a stronger
moment condition on εi and an additional condition on p0. Fan and Lv (2011) require
stronger conditions on n−1XTX. Condition (B) gives a lower bound on the size of the
smallest nonzero entry of β∗. Notice that the smallest non-zero entry of β∗ is allowed
to vanish asymptotically, provided it does not do so faster than

√
pσ 2/n. Similar

conditions are found in Fan and Peng (2004) and Zou and Zhang (2009). Condition
(C) restricts the rates of the tuning parameters λ and a. Note that condition (C) does
not constrain the minimum size of a. Indeed, no such constraint is required for our
asymptotic results about the EXP estimator. Since the EXP penalty approaches the L0
penalty as a → 0, this suggests that the EXP and L0-penalized least squares estimator
have similar asymptotic properties. On the other hand, in practice, we have found that
one should not take a too small, in order to preserve stability of the EXP estimator.
Condition (D) is an identifiability condition. Conditions (E) and (F) are used to prove
asymptotic normality of EXP estimators and are related to the Lindeberg condition
of the Lindeberg–Feller central limit theorem. As we will see in Theorem 2, which
is stated below, Conditions (A)–(F) imply that EXP has the oracle property and may
correctly identify the model A.

3.2 Oracle properties

Theorem 1 Suppose that conditions (A)–(D) hold, then for every r ∈ (0, 1), there
exists a constant C0 > 0 such that

lim inf
n→∞ P

[
argmin

β

Qn(β) ⊆
{
β ∈ R p‖β − β∗‖ ≤ C

√
pσ 2/n

}]
> 1 − r. (8)

whenever C ≥ C0. Consequently, there exists a sequence of local minimizers of Qn(β),
β̂, such that ‖β̂ − β∗‖ = OP (

√
pσ 2/n).

Theorem 2 (Oracle properties) Suppose that (A)–(F) hold, then there exists a
sequence of

√
n/pσ 2-consistent local minima of EXP, β̂, such that:

(i) (Model selection consistency)

lim
n→∞ P({ j; β̂ j �= 0} = A) = 1.

(ii) (Asymptotic normality)

√
nBn(n

−1XT
A X A/σ 2)

1/2
(β̂A − β∗

A) → N (0, G),

in distribution, where Bn is any arbitrary q × |A| matrix such that Bn BT
n → G, and

G is a q × q nonnegative symmetric matrix.

It is worth pointing out that we do not make any assumptions about the sparsity
level of β∗ in Theorem 2. In other words, we do not make any assumptions about
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p0, other than those implied by our assumptions about p. In any implementation of
EXP, concrete values of the tuning parameters λ and a must be selected. In Sect.
4 we propose an MBIC tuning parameter selection procedure and prove that when
EXP is implemented with MBIC tuning parameter selection, the resulting estimator
consistently selects the correct model.

4 Regularity parameter selection

Tuning parameter selection is an important issue in most PLS procedures. There are
relatively few studies on the choice of penalty parameters. Traditional model selection
criteria, such as AIC (Akaike 1973) and BIC (Schwarz 1978), suffer from a number
of limitations. Their major drawback arises because parameter estimation and model
selection are two different processes, which can result in instability (Breiman 1996)
and complicated stochastic properties. To overcome the deficiency of traditional meth-
ods, Fan and Li (2001) proposed the SCADmethod, which estimates parameters while
simultaneously selecting important variables. They selected tuning parameter by min-
imizing the generalized cross-validation criterion (Breiman 1995; Tibshirani 1996;
Fan and Li 2001).

However, it is well known that GCV and AIC-based methods are not consistent for
model selection in the sense that, as n → ∞, theymay select irrelevant predictors with
non-vanishing probability (Shao 1993; Wang et al. 2007). On the other hand, BIC-
based tuning parameter selection roughly corresponds to maximizing the posterior
probability of selecting the true model in an appropriate Bayesian formulation and
has been shown to be consistent for model selection in several settings (Wang et al.
2007; Wang and Leng 2007; Zou and Hastie 2007; Lee et al. 2014). The BIC tuning
parameter selector is defined by

BIC = log

(
‖y − Xβ̂‖2

n

)
+̂DF

log(n)

n
. (9)

wherêDF is the generalized degrees of freedom given by

̂DF = tr
{
X(XT + n�λ)

T
XT
}

,

and �λ = diag{p′
λ(|β̂1|)/|β̂1|, . . . , p′

λ(|β̂p|)/|β̂p|}. The diagonal elements of �λ are
coefficients of quadratic terms in the local quadratic approximation to the SCAD
penalty function pλ(·) (Fan and Li 2001). Dicker et al. (2013) pointed out that the
consistency results for BIC tuning parameter selection assume that the number of
predictors is fixed, they proposed a BIC-like procedures which implemented by min-
imizing

BIC0 = log

(
‖y − Xβ̂‖2

n − p̂0

)
+ log(n)

n
p̂0.
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They proposed estimating the degrees of freedom by the number of selected coeffi-
cients:̂DF = p̂0, where p̂0 = |{ j : β̂ j �= 0}|. To estimate the residual variance, they

use σ̂ 2 = (n − p̂0)
−1‖y − Xβ̂‖2. This differs from other estimates of the residual

variance used in PLS methods, where the denominator n − p̂0 is replaced by n (Wang
et al. 2007); here, n − p̂0 is used to account for degrees of freedom lost to estimation.

In this section, motivated by Zou and Hastie (2007) and Dicker et al. (2013), we
propose an MBIC tuning parameter selector for the EXP procedure and show that the
EXP/MBIC procedure is consistent for model selection, provided pσ 2/n → 0 and
other regularity conditions hold. On the basis of the above notation, we defined an
MBIC as

MBIC = log

(
‖y − Xβ̂‖2

n − p̂0

)
+ log(n) p̂0

n
Cn, (10)

where Cn is some positive constant to be discussed more carefully. If Cn = 1, the
modified BIC (10) reduces to the BIC0. Moreover, p is allowed to diverge to ∞ as
n → ∞. Slightly stronger conditions on p and ρ = min j∈A |β∗

j | than those required
for Theorem 2 are needed for the next theorem, which implies that the EXP/MBIC
procedure is consistent for model selection.
(A′) n → ∞ and Cnσ 2 p log(n)/n → 0.
(B′) ρ

√
n/Cnσ 2 p log(n) → ∞, where ρ = min j∈A |β∗

j |.

Theorem 3 Suppose that conditions (A′–B′), (C) and (E–F) hold and Cn → ∞. Sup-
pose further that � ⊆ R2 is a subset which contains a sequence (λ, a) = (λ∗

n, a∗
n ) such

that condition (C) holds. Let β̂∗ = β̂(λ∗
n, a∗

n ) be the local minima of EXP described
in Theorem 2 and let MBIC− = inf{MBIC {β̂(λ, a)}; (λ, a) ∈ �, Â �= A}. Then

lim
n→∞ P

{
MBIC{β̂(λ∗

n, a∗
n )} < MBIC−} = 1,

where Â = { j; β̂ j �= 0}.

Theorem 3 implies that if β̂(λ̂, â) is chosen to minimize MBIC, then β̂(λ̂, â) is
consistent for model selection. In other words, if MBIC{β̂(λ̂, â)} = MBIC−, then
limn→∞ P{{ j; β̂ j (λ̂, â) �= 0} = A} = 1.

Although in theory we require Cn → ∞, its rate of divergence can be arbitrarily
slow. For example, Cn = log(log(p)) is used for all our numerical experiments and
the simulation results are quite encouraging.

5 Implementation: algorithm

Finding the estimator of β that minimizes the objective function (7) poses a number
of interesting challenges because the penalized functions are nondifferentiable at the
origin and nonconcave with respect to β (Breheny 2015).
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Coordinate optimization has been widely used to solve regularization problems.
For example, for the PLS problem, Fu (1998), Daubechies et al. (2004) and Wu and
Lange (2008) proposed a coordinate descent (CD) algorithm that iteratively optimizes
Eq. (7) one component at a time. The algorithm was also recently proposed for a very
general class of penalized likelihood methods by Fan and Lv (2011), who refer to the
algorithm as “iterative coordinate ascent” (ICA). Coordinate descent algorithms for
fitting LASSO-penalized models have also been described by Friedman et al. (2007,
2010) and Breheny and Huang (2011). Recently, Peng and Wang (2014) proposed a
new iterative coordinate descent algorithm (QICD) for solving nonconvex penalized
quantile regression in high dimension. In this section, we consider the CD algorithm
for obtaining EXP estimators for a range of tuning parameter values. The EXP tuning
parameter selection procedure is described above.

Next we describe CD algorithms for least squares regression penalized by EXP.
For β > 0, the derivative of the EXP penalty is

p′
λ,a = λ

a
e− β

a ,

for λ > 0, a > 0. The rationale behind the penalty can be understood by considering
its derivative: EXP penalty allows the penalty to decay exponentially, approaching 0
asymptotically but never reaching it.

The rationale behind the EXP can also be understood by considering its univariate
solution. Consider the simple linear regression of y upon x , with unpenalized least
squares solution z = n−1xTy (recall that x has been standardized so that xTx = n). In
fact, for this simple linear regression problem, it is easy to show that the EXP estimator
has the following closed form:

β̂ =
{
sign(z)βs, if |z| > λ

a ,

0, if |z| ≤ λ
a .

(11)

where βs is the solution of equation β −|z|+ sign(β)λ
a e

− |β|
a = 0, which may be done

very rapidly using Newton iterative formula or some other procedure.
The idea of the CD algorithm is to find local optima of a multivariate optimiza-

tion problem by solving a sequence of univariate optimization problems. Consider a
penalized residual sum squares as (7).Without loss of generality, let us assume that the
predictors are standardized:

∑n
i=1 xi j = 0, 1n

∑n
i=1 x2i j = 1. For each fixed λ, a, cyclic

coordinate descent can be easily implemented for solving the EXP. Let ri = yi − xTi β̃

be the current residual. To update the estimate for β j we need to solve a univariate
EXP problem

β̂ j = argmin
β j

Qn(β j |β̃),

where
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Qn(β j |β̃) = 1

2
(β j − β̃ j )

2 − 1

n

n∑

i=1

ri xi j (β j − β̃ j ) + λpλ,a(β j ).

Indeed, one observes that the solution can be obtained by Eq. (11).
The CD algorithm is implemented by minimizing Qn(β j |β̃) and using the solution

to update β; we next set β̃ j = β̂ j as the new estimate. In this way, we cycle through
the indices j = 1, . . . , p. The operation is sequentially conducted on each coordinate
β j till convergence.

The CD algorithm returns the minimum of the EXP PLS, for a fixed pair of tun-
ing parameters, (λ, a). To obtain a EXP solution path, we repeatedly implement CD
algorithm for a range of value (λ, a). The details are given in Algorithm 1. In prac-
tice, we have found that if the columns of X are standardized so that ‖x j‖2 = n, for
j = 1, . . . , p, then taking a = 0.01 or selecting a from a relatively small range of
possible values works well.

Algorithm 1 The coordinate descent algorithm for EXP PLS
1. Input a grid of increasing λ values  = {λ1, . . . , λL }, and a grid of increasing a

values � = {a1, . . . , aK }. Define λL+1, such that β̂(λL+1, aK ) = 0.
2. For each value of l ∈ {L , L − 1, . . . , 1} repeat the following:

(1) Initialize β̃ = β̂(λl+1, aK )

(2) For each value of k ∈ {K , K − 1, . . . , 1} repeat the following:
(a) Cyclic coordinate descent, for j = 1, 2, . . . , p

Calculate ri = yi − xT
i β̃ and β̂ j = argminβ j Qn (β j |β̃)

where

Qn (β j |β̃) = 1
2 (β j − β̃ j )

2 − 1
n
∑n

i=1 ri xi j (β j − β̃ j ) + λpλ,a (β j )

(b) Set β̃ j = β̂ j
(c) Repeat steps (a)-(b) until the updates β̂ converge to β̂∗.
(d) Assign β̂(λl , ak ) ← β̂∗.

(3) Decrement k.
3. Decrement l.
4. Return the two-dimensional solution surface β̂(λ, a), (λ, a) ∈  × �.

6 Simulation studies and a data example

The standard errors for the estimated parameters can be obtained directly because we
are estimating parameters and selecting variables at the same time. Let β̂ = β̂(λ, a)

be a local minimizer of EXP. Following Fan and Li (2001) and Fan and Peng (2004),
standard errors of β̂ may be estimated by using quadratic approximations to EXP.
Indeed, the approximation

pλ,a(|β j |) ≈ pλ,a(|β j0|) + 1

2|β j0| p′
λ,a(|β j0|)(β2

j − β2
j0), for β j ≈ β j0 (12)

suggests that EXP may be replaced by the quadratic minimization problem

min

⎧
⎨

⎩
1

n
‖y − Xβ‖2 +

p∑

j=1

p′
λ,a(|β j0|)
|β j0| β2

j

⎫
⎬

⎭ , (13)
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at least for the purposes of obtaining standard errors. Using this expression, we obtain
a sandwich formula for the estimated standard error of β̂ Â,

ĉov(β̂ Â) = σ̂ 2{XT
Â
X Â + n� Â, Â(β̂)}−1XT

Â
X Â{XT

Â
X Â + n� Â, Â(β̂)} (14)

where Â = { j; β̂ j �= 0}, �(β) = diag{p′
λ,a(|β1|)/|β1|, . . . , p′

λ,a(|βp|)/|βp|}, σ̂ 2 =
(n − p̂0)

−1‖y − Xβ̂‖2, and p̂0 = | Â| is the number of elements in | Â|.

6.1 Simulation studies I

In this example, simulation data are generated from the linear regression model,

y = xTβ + σε,

where β = (3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0)T, ε ∼ N (0, 1) and x is multivariate
normal distribution with zero mean and covariance between the i th and j th elements
being ρ|i− j | with ρ = 0.5. In our simulation, the sample size n is set to be 100 and
200, σ = 3. For each case, we repeated the simulation 1000 times.

In addition to EXP, we consider the LASSO, adaptive LASSO (ALASSO) (with

weights ω j = |β̂(0)|−1
, where β̂(0) is the OLS estimator), SCAD and MCP pro-

cedures. Covariates were standardized to have ‖x j‖ = n, j = 1, . . . , p, prior to
obtaining estimates; however, all summary statistics discussed below pertain to esti-
mators transformed to the original scale. In our simulations, EXP, LASSO, ALASSO,
MCP and SCAD solution paths are all computed using CD algorithms. The tuning
parameter selection is all performed with MBIC as (10). For EXP tuning parameter
selection, we find that a = 0.01 works well.

The model error for μ̂ = xTβ̂ is M E(μ̂) = (β̂ − β)
T

E(xxT)(β̂ − β) for lin-
ear model. Simulation results are summarized in Table 1, in which MRME stands
for median of ratios of ME of a selected model to that of the un-penalized mini-
mum square estimate under the full model. Both the columns of “C” and “IC” are
measures of model complexity. Column “C” shows the average number of nonzero
coefficients correctly estimated to be nonzero, and column “IC” presents the average
number of zero coefficients incorrectly estimated to be nonzero. In the column labeled
“Under-fit”, we present the proportion of excluding any nonzero coefficients in 1000
replications. Likewise, we report the probability of selecting the exact subset model
and the probability of including all three significant variables and some noise variables
in the columns “Correct-fit” and “Over-fit”, respectively.

As can be seen from Table 1, all variable selection procedures dramatically reduce
model error. EXP has the smaller model error among all competitors, followed by the
MCP and SCAD. In terms of sparsity, EXP also has the higher probability of correct
fit. The EXP penalty performs better than the other penalties. Also, EXP has some
advantages when the dimensionality p is high which can be seen in simulation III.

We now test the accuracy of our standard error formula (14). The median absolute
deviation divided by 0.6745, denoted by SD in Table 2, of 1000 estimated coefficients
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Table 1 Simulation results for linear regression models of simulation I

Method MRME No. of zeros Proportion of

C IC Under-fit Correct-fit Over-fit

n = 100, σ = 3

LASSO 0.6503 2.9990 0.9980 0.0010 0.3840 0.6150

ALASSO 0.3668 2.9430 0.2940 0.0570 0.7290 0.2140

SCAD 0.3653 2.9150 0.4910 0.0850 0.5890 0.3260

MCP 0.2920 2.9180 0.2520 0.0810 0.7390 0.1800

EXP 0.2839 2.9600 0.2440 0.0400 0.7640 0.1960

n = 200, σ = 3

LASSO 0.6738 3.0000 0.8540 0.0000 0.4520 0.5480

ALASSO 0.3290 3.0000 0.1280 0.0000 0.8870 0.1130

SCAD 0.2777 2.9950 0.1900 0.0050 0.8530 0.1420

MCP 0.2496 2.9980 0.1190 0.0020 0.9050 0.0930

EXP 0.2488 3.0000 0.1450 0.0000 0.8710 0.1290

Table 2 Standard deviations of estimators for the linear regression model (n = 200)

Method β̂1 β̂2 β̂5

SD SDm (SDmad) SD SDm (SDmad) SD SDm (SDmad)

n = 200, p = 12

LASSO 0.2585 0.2065 (0.0128) 0.2407 0.1847 (0.0186) 0.2297 0.1827 (0.0126)

ALASSO 0.2670 0.2334 (0.0134) 0.2693 0.2196 (0.0178) 0.2397 0.2053 (0.0112)

SCAD 0.2738 0.2435 (0.0160) 0.2767 0.2415 (0.0201) 0.2240 0.2149 (0.0114)

MCP 0.2604 0.2457 (0.0161) 0.2378 0.2468 (0.0170) 0.2238 0.2153 (0.0117)

EXP 0.2575 0.2460 (0.0162) 0.2354 0.2477 (0.0167) 0.2256 0.2155 (0.0120)

n = 200, p = 20

LASSO 0.2655 0.1981 (0.0115) 0.2526 0.1724 (0.0168) 0.2487 0.1743 (0.0119)

ALASSO 0.2753 0.2295 (0.0134) 0.2788 0.2124 (0.0188) 0.2525 0.2017 (0.0115)

SCAD 0.2907 0.2400 (0.0155) 0.3510 0.2328 (0.0295) 0.2328 0.2140 (0.0117)

MCP 0.2646 0.2445 (0.0155) 0.2587 0.2450 (0.0168) 0.2286 0.2147 (0.0115)

EXP 0.2594 0.2450 (0.0156) 0.2512 0.2469 (0.0164) 0.2311 0.2149 (0.0116)

in the 1000 simulations can be regarded as the true standard error. The median of the
1000 estimated SD’s, denoted by SDm , and the median absolute deviation error of
the 1000 estimated standard errors divided by 0.6745, denoted by SDmad, gauge the
overall performance of the standard error formula (13). Table 2 presents the results for
nonzero coefficients when the sample size n = 200. The results for the other case with
n = 100 are similar. Table 2 suggests that the sandwich formula performs surprisingly
well.
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Table 3 Simulation results for linear regression models of simulation I with common BIC

Method MRME No. of zeros Proportion of

C IC Under-fit Correct-fit Over-fit

n = 100, σ = 3

LASSO 0.6104 2.9990 1.2210 0.0010 0.3260 0.6730

ALASSO 0.3698 2.9500 0.3720 0.0500 0.6880 0.2620

SCAD 0.3513 2.9840 1.2820 0.0160 0.3390 0.6450

MCP 0.3403 2.9740 0.8090 0.0260 0.4820 0.4920

EXP 0.3129 2.9650 0.3170 0.0350 0.7240 0.2410

n = 200, σ = 3

LASSO 0.6604 3.0000 0.9580 0.0000 0.4170 0.5830

ALASSO 0.3294 3.0000 0.1530 0.0000 0.8680 0.1320

SCAD 0.2880 3.0000 0.7790 0.0000 0.5510 0.4490

MCP 0.2900 3.0000 0.5240 0.0000 0.6140 0.3860

EXP 0.2829 3.0000 0.2020 0.0000 0.8350 0.1650

The simulation results described above give an indication of the performance of the
proposed EXP methods, in comparison with current recommended implementations
of other PLSmethods. In particular, we focus onMBIC criterion (10) implementations
when implementing the alternative PLS methods. Table 1 summarizes the results of
a simulation study where the same MBIC criterion for (7) was used for each PLS
method.

Then, when the common BIC criterion (9) is utilized, the results indicate that EXP
performs well when compared to the alternative methods. The details can be seen in
Table 3. Compare Tables 1 with 3, we can see: (1) EXP/MBIC perform better than
EXP/BIC which indicate that MBIC criteria is more suitable for EXP estimator; (2)
LASSO, ALASSO, SCAD estimation method have the smaller model error under the
BIC criterion; (3)MCP estimator perform better withMBIC than with BIC, the reason
need to be further explained; (4)When n → ∞, all kinds of variable selectionmethods
can identify the correct model consistently and reduce the model error.

6.2 Simulation study II

The example is from Wang et al. (2009). In this example, we consider the situation
where the dimension of the full model and the dimension of the true model are all
diverging. More specifically, we take p = [7n1/4] and the dimension of the true model
to be p0 = [p/3], [t] stands for the largest integer no larger than t . To summarize the
simulation results, we computed the median of the relative model error MRME, the
average model size (i.e. the number of non-zero coefficients), MS, and also the per-
centage of the correctly identified truemodels CM. Intuitively, a better model selection
procedure should producemore accurate prediction results (i.e. smallerMRME-value),
more correct model sizes (i.e. MS ≈ p0) and better model selection capability (i.e.
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Fig. 2 Detailed simulation results with normal ε: MRME (left); MS (middle); CM (right)

larger CM-value). For a more detailed explanation ofMRME,MS and CM, we refer to
Fan and Li (2001) andWang and Leng (2007). The detailed results are reported in Fig.
2. As one can see that the CM-value of EXP/MBIC approaches 100 % quickly, which
clearly confirms the consistency of the MBIC proposed. As a direct consequence, the
MRME-values are consistently smaller and the MS-values approximately equal p0.

6.3 Simulation study III

In this simulation study presented here, we examined the performance of the various
PLS methods for p substantially larger than in the previous studies. In particular, we
took p = 339, n = 500, σ 2 = 5, and β∗ = (2IT37,−3IT37, IT37, 0

T
228), where I k ∈ Rk is

the vector with all entries equal to 1. Thus, p0 = 111. We simulated 200 independent
datasets {(y1, xT1 ), . . . , (yn, xTn )} in this study and, for each dataset, we computed
estimates of β∗. Results from this simulation study are found in Table 4.

Perhaps the most striking aspect of the results presented in Table 4 is that hardly
no method ever selected the correct model in this simulation study. However, given
that p, p0, and β∗ are substantially larger in this study than in the previous simulation
studies, this may not be too surprising. Notice that on average, EXP selects the most
parsimonious models of all methods and has the smaller model error. EXP’s nearest
competitor in terms of model error is ALASSO. This implementation of ALASSO has
mean model error 0.2783, but its average selected model size is 103.5250 larger than
EXP’s. Since p0 = 111, it is clear that EXP underfits in some instances. In fact, all
of the methods in this study underfit to some extent. This may be due to the fact that
many of the non-zero entries in β∗ are small relative to the noise level σ 2 = 5.

6.4 Application

In this section, we apply the EXP regularization scheme to a prostate cancer example.
The dataset in this example is derived from a study of prostate cancer by Stamey
et al. (1989). The dataset consists of the medical records of 97 patients who were
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Table 4 Simulation results for linear regression models of Example 3

Method MRME No. of zeros Proportion of

C IC Under-fit Correct-fit Over-fit

n = 500, σ = 5

LASSO 0.3492 110.2000 24.7450 0.5650 0.0000 0.4350

ALASSO 0.2783 103.5250 6.1250 1.0000 0.0000 0.0000

SCAD 0.3012 106.0400 35.7150 0.9900 0.0000 0.0150

MCP 0.2791 103.3600 8.1100 1.0000 0.0000 0.0900

EXP 0.2792 101.6200 5.0200 1.0000 0.0000 0.0000

Table 5 Prostate cancer data: comparing different methods

Method R2 R2/R2
OLS Variables selected Total times (s)

OLS 0.6615 1.0000 All 0.0110

LASSO 0.5867 0.8870 (1, 2, 4, 5,8) 0.0045

ALASSO 0.5925 0.8950 (1, 2, 5) 0.0060

SCAD 0.6194 0.9364 (1, 2, 4, 5) 0.0235

MCP 0.6087 0.9202 (1, 2, 4, 5) 0.0092

EXP 0.6074 0.9184 (1, 2, 5) 0.0210

about to receive a radical prostatectomy. The predictors are eight clinical measures:
log (cancer volume) (lcavol), log (prostate weight) (lweight), age, the logarithm of
the amount of benign prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log
(capsular penetration) (lcp), Gleason score (Gleason) and percentage Gleason score
4 or 5 (pgg45). The response is the logarithm of prostate-specific antigen (lpsa). One
of the main aims here is to identify which predictors are more important in predicting
the response.

The LASSO, ALASSO, SCAD, MCP and EXP are all applied to the data. The BIC
and MBIC are used to select tuning parameters. We also compute the OLS estimate of
the prostate cancer data. Results are summarized in Table 5. The OLS estimator does
not perform variable selection. LASSO selects five variables in the final model, SCAD
and MCP select lcavol, lweight lbph and svi in the final model. While ALASSO and
EXP select lcavol, lweight and svi. Thus, EXP selects a substantially simpler model
than LASSO, SCAD and MCP. Furthermore, as indicated by the columns labeled R2

(R2 is equal to one minus the residual sum of squares divided the total sum of squares)
and R2/R2

OLS in Table 5, the EXP estimator describes more variability in the data than
LASSO and ALASSO, and nearly as much as OLS estimator.

7 Conclusion

In this paper, a new EXP penalty which very closely resembles the L0 penalty is pro-
posed. Themodel selection oracle property is investigated and the EXP is implemented
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by using CD algorithm. Moreover, an MBIC tuning parameter selection method for
EXP is proposed and it is shown that it consistently identifies the correct model.
Numerical studies further endorse our theoretical results and the advantage of our new
methods for model selection.

It would be interesting to extend the results to regularization methods for the gen-
eralized linear models (GLMs) and more general models and loss functions. Also,
motivated by the elastic net (Zou and Hastie 2005) and the adaptive elastic net (Zou
and Zhang 2009), one could consider a mixed penalty involving EXP and an L2-norm
penalty. In this paper, we do not address the situation where p 	 n, in fact, the
proposed EXP method can be easily extended for variable selection in the situation
p 	 n. These problems are beyond the scope of this paper and will be interesting
topics for future research.

Appendix

Proof of Theorem 1 Let αn = √
pσ 2/n and fix r ∈ (0, 1). To prove the Theorem, it

suffices to show that if C > 0 is large enough, then

Qn(β∗) < inf‖μ‖=C
Qn(β∗ + αnμ)

holds for all n sufficiently large, with probability at least 1 − r . Define Dn(μ) =
Qn(β

∗ + αnμ) − Qn(β
∗) and note that

Dn(μ) = 1

2n
(α2

n‖Xμ‖2 − 2αnεTXμ) +
p∑

j=1

{pλ,a(|β∗
j + αnμ j |) − pλ,a(|β∗

j |)}

≥ 1

2n
(α2

n‖Xμ‖2 − 2αnεTXμ) +
∑

j∈K (μ)

{pλ,a(|β∗
j + αnμ j |) − pλ,a(|β∗

j |)},

where K (μ) = { j; pλ,a(|β∗
j +αnμ j |)− pλ,a(|β∗

j |) < 0}. The fact that pλ,a is concave
on [0,∞) implies that

pλ,a(|β∗
j + αnμ j |) − pλ,a(|β∗

j |) ≥ p′
λ,a(|β∗

j + αnμ j |)(|β∗
j + αnμ j | − |β∗

j |)

≥ p′
λ,a(|β∗

j + αnμ j |)(−αn|μ j |) = −λαn|μ j |
a

e− |β∗
j +αnμ j |

a .

when n is sufficiently large.
Condition (B) implies that

e− |β∗
j +αnμ j |

a ≤ e− ρ
a .
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Thus, for n big enough,

Dn(μ) ≥ 1

2n
(α2

n‖Xμ‖2 − 2αnεTXμ) − Cpλαn

a
e− ρ

a . (15)

By (D),

1

2n
α2

n‖Xμ‖2 ≥ λmin

2
C2α2

n . (16)

On the other hand (D) implies,

1

n
αn|εTXμ| ≤ Cαn√

n
‖ 1√

n
XTε‖ = OP (Cα2

n). (17)

Furthermore, (C) and (B) imply

Cpλαn

a
e− ρ

a = o(Cα2
n). (18)

From (15)–(18), we conclude that if C > 0 is large enough, then inf‖μ‖=C Dn(μ)

> 0 holds for all n sufficiently large, with probability at least 1 − r . This proves the
Theorem 1. ��

To prove Theorem 2, we first show that the EXP penalized estimator possesses the
sparsity property by following lemma.

Lemma 1 Assume that (A)–(D) hold, and fix C > 0. Then

lim
n→∞ P

⎡

⎣ argmin
‖β−β∗‖≤C

√
pσ 2/n

Qn(β) ⊆ {β ∈ R p;βAc = 0
}
⎤

⎦ = 1.

where Ac = {1, . . . , p}\A is the complement of A in {1, . . . , p}.

Proof Suppose that β ∈ R p and that ‖β − β∗‖ ≤ C
√

pσ 2/n. Define β̃ ∈ R p by
β̃Ac = 0 and β̃A = βA. Similar to the proof of Theorem 1, let

Dn(β, β̃) = Qn(β) − Qn(β̃),
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where Qn(β) is defined in (7). Then

Dn(β, β̃)

= 1

2n
‖y − Xβ‖2 − 1

2n
‖y − Xβ̃‖2 +

∑

j∈Ac

pλ,a(|β j |)

= 1

2n
‖y − Xβ̃ − X(β − β̃)‖2 − 1

2n
‖y − Xβ̃‖2 +

∑

j∈Ac

pλ,a(|β j |)

= 1

2n
(β − β̃)

T
XTX(β − β̃) − 1

n
(β − β̃)

T
XT(y − Xβ̃) +

∑

j∈Ac

pλ,a(|β j |)

= Op(‖β − β̃‖
√

pσ 2/n) +
∑

j∈Ac

pλ,a(|β j |). (19)

On the other hand, since the EXP penalty is concave on [0,∞),

pλ,a(|β j |) ≥ p′
λ,a(|β j |)|β j | = λ

a
e− |β j |

a |β j | ≥ λ

a
e− C

√
pσ2/n
a |β j |.

Thus,

∑

j∈Ac

pλ,a(|β j |) ≥ λ

a
e− C

√
pσ2/n
a ‖β − β̃‖. (20)

By (C), it is clear that

lim inf
n→∞

(
λ

a
e− C

√
pσ2/n
a

)
> 0.

and λ
√

n/(pσ 2) → ∞. Combining these observations with (19) and (20) gives
Dn(β, β̃) > 0 with probability tending to 1, as n → ∞. The result follows. ��
Proof of Theorem 2 Taken together, Theorem 1 and Lemma 1 imply that there exist a
sequence of local minima β̂ of (7) such that ‖β̂ −β∗‖ = OP (

√
pσ 2/n) and β̂Ac = 0.

Part (i) of the theorem follows immediately.
To prove part (ii), observe that on the event { j; β̂ j �= 0} = A, we must have

β̂A = β∗
A + (XT

AXA)
−1

XT
Aε − (n−1XT

AXA)
−1

p′
A,

where p′
A = (p′

λ,a(β̂ j )) j∈A
. It follows that

√
nBn(n

−1XT
AXA/σ 2)

1/2
(β̂A − β∗

A)

= Bn(σ
2XT

AXA)
−1/2

XT
Aε − nBn(σ 2XT

AXA)
−1/2

p′
A,
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whenever { j; β̂ j �= 0} = A. Now note that conditions (A)–(D) imply

‖nBn(σ 2XT
AXA)

−1/2
p′

A‖ = OP (

√
np/σ 2 λ

a
e− ρ

a ) = oP (1),

Thus,

√
nBn(n−1XT

AXA/σ 2)
1/2

(β̂A − β∗
A) = Bn(σ

2XT
AXA)

−1/2
XT

Aε + oP (1).

To complete the proof of (ii), we use the Lindeberg–Feller central limit theorem to
show that

Bn(σ
2XT

AXA)
−1/2

XT
Aε → N (0, G), (21)

in distribution. Observe that

Bn(σ
2XT

AXA)
−1/2

XT
Aε =

n∑

i=1

ωi,n,

where ωi,n = Bn(σ 2XT
AXA)

−1/2
xi,Aεi .

Fix δ0 > 0 and let ηi,n = xTi,A(XT
AXA)

−1/2
BT

n Bn(XT
AXA)

−1/2
xi,A Then

E[‖ωi,n‖2; ‖ωi,n‖2 > δ0]
= ηi,n E[ε2i /σ 2; ηi,nε2i /σ 2 > δ0]
≤ ηi,n E(|εi/σ |2+δ)

2/(2+δ)
P(ηi,nε2i /σ 2 > δ0)

δ/(2+δ)

≤ η
1+δ/2+δ
i,n δ−1

0 E(|εi/σ |2+δ)
2/(2+δ)

.

Since
∑n

i=1 ηi,n = tr(BT
n Bn) → tr(G) < ∞ and since (E) implies

max
1≤i≤n

ηi,nλmin(n
−1XTX)λmax(BT

n Bn) max
1≤i≤n

1

n

p∑

j=1

x2i j → 0,

we must have

n∑

i=1

E[‖ωi,n‖2; ‖ωi,n‖2 > δ0]

≤ δ−1
0 E(|εi/σ |2+δ)

2/(2+δ)
n∑

i=1

η
1+δ/(2+δ)
i,n

≤ δ−1
0 E(|εi/σ |2+δ)

2/(2+δ)
tr(BT

n Bn) max
1≤i≤n

η
δ/(2+δ)
i,n

→ 0.
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Thus, the Lindeberg condition is satisfied and (21) holds. ��

Proof of Theorem 3 Suppose we are on the event { j; β̂∗
j �= 0} = A. The first order

optimality conditions for (7) imply that

β̂∗
A = (XT

AXA)
−1

XT
A y − n(XT

AXA)
−1

p′
A(β̂∗),

where p′
A(β) = (p′

λ,a(β j )) j∈A
. Thus,

‖y − Xβ̂∗‖2

= εT{I − XA(XT
AXA)

−1
XT

A}ε + n2 p′
A(β̂∗)T(XT

AXA)
−1

p′
A(β̂∗)

= εT{I − XA(XT
AXA)

−1
XT

A}ε + oP (σ 2).

Now let β̂ = β̂(λ, a) be a local minimizer of (7) with (λ, a) ∈ � and let Â = { j; β̂ j �=
0}. Note that

‖y − Xβ̂‖2

= yT{I − X Â(XT
Â
X Â)

−1
XT

Â
}y + n2 p′

Â
(β̂)

T
(XT

Â
X Â)

−1
p′

Â
(β̂)

= (XA\ Âβ∗
A\ Â

+ ε)
T{I − X Â(XT

Â
X Â)

−1
XT

Â
}(XA\ Âβ∗

A\ Â
+ ε)

+ n2 p′
Â
(β̂)

T
(XT

Â
X Â)

−1
p′

Â
(β̂)

= (β∗
A\ Â

)
TXA\ Â

T{I − X Â(XT
Â
X Â)

−1
XT

Â
}XA\ Âβ∗

A\ Â

+ 2εT{I − X Â(XT
Â
X Â)

−1
XT

Â
}XA\ Âβ∗

A\ Â

+ εT{I − X Â(XT
Â
X Â)

−1
XT

Â
}ε

+ n2 p′
Â
(β̂)

T
(XT

Â
X Â)

−1
p′

Â
(β̂).

Thus, if A\ Â = �, then

‖y − Xβ̂‖2

≥ ‖y − Xβ̂∗‖2 + (β∗
A\ Â

)
TXA\ Â

T{I − X Â(XT
Â
X Â)

−1
XT

Â
}XA\ Â

β∗
A\ Â

+ 2εT{I − X Â(XT
Â
X Â)

−1
XT

Â
}XA\ Âβ∗

A\ Â
+ OP (pσ 2)

≥ ‖y − Xβ̂∗‖2 + nrρ2 + OP (σρ
√

n) + OP (pσ 2)

= ‖y − Xβ̂∗‖2 + nrρ2(1 + oP (1))
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where 0 < r < λmin(n−1XTX) is a positive constant. Furthermore, whenever

‖y − Xβ̂‖2 − ‖y − Xβ̂∗‖2 > 0, we have

MBIC(β̂) − MBIC(β̂∗)

= log

(
‖y − Xβ̂‖2

‖y − Xβ̂∗‖2
)

+ log

(
n − p0
n − p̂0

)
+ Cn log(n)

n
( p̂0 − p)

≥ 1 − ‖y − Xβ̂∗‖2

‖y − Xβ̂‖2
+ log

(
n − p0
n − p̂0

)
+ Cn log(n)

n
( p̂0 − p)

≥ 1

‖y − Xβ̂‖2
[(

1 − 2Cn p log(n)

n

)
‖y − Xβ̂‖2 − ‖y − Xβ̂∗‖2

]

≥ 1

‖y − Xβ̂‖2
[OP (σ 2Cn p log(n)) + nrρ2(1 + oP (1))],

where p̂0 = | Â|. By Condition (B’), it follows that

lim
n→∞ P

{
inf{MBIC(β̂); A\ Â �= �} > MBIC(β̂∗)

}
= 1. (22)

It remains to consider β̂, where A is a proper subset of Â. Suppose that A\ Â. Then

‖y − Xβ̂‖2 = εT{I − X Â(XT
Â
X Â)

−1
XT

Â
}ε + n2 p′

Â
(β̂)

T
(XT

Â
X Â)

−1
p′

Â
(β̂)

and

log

(
‖y − Xβ̂‖2

‖y − Xβ̂∗‖2
)

≥ log

⎛

⎝
εT{I − X Â(XT

Â
X Â)

−1
XT

Â
}ε

‖y − Xβ̂∗‖2

⎞

⎠ .

Since

εT{I − X Â(XT
Â
X Â)

−1
XT

Â
}ε − ‖y − Xβ̂∗‖2

= εTX Â(XT
Â
X Â)

−1
XT

Â
ε − εTXA(XT

Â
XA)

−1
XT

Aε + oP (σ 2)

it follows that

log

⎛

⎝
εT{I − X Â(XT

Â
X Â)

−1
XT

Â
}ε

‖y − Xβ̂∗‖2

⎞

⎠ = OP (( p̂0 − p0)/n).

Thus,

MBIC(β̂) − MBIC(β̂∗) ≥ ( p̂0 − p0)(Cn log(n)/n − OP (1/n)).
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We conclude that

lim
n→∞ P

{
inf{MBIC(β̂); A ⊂ Â} > MBIC(β̂∗)

}
= 1. (23)

Combining this with (22) proves the proposition. ��
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