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Abstract Based on empirical likelihood method, we construct new weighted estima-
tors of conditional density and conditional survival functions when the interest random
variable is subject to random left-truncation; further, we define a plug-in weighted
estimator of the conditional hazard rate. Under strong mixing assumptions, we derive
asymptotic normality of the proposed estimators which permit to built a confidence
interval for the conditional hazard rate. The finite sample behavior of the estimators
is investigated via simulations too.
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1 Introduction

In medical follow-up or in engineering life-test study, the lifetime variables may not be
completely observable, right-censored or left-truncated data are often encountered. In
this paper we consider the case where the response variable is left-truncated, construct
and study a weighted estimation of the conditional hazard function.
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Let (%;)i=1,...~ be a sample of real random variables (rv) with common unknown
distribution function (df) F. Here the integer N is unknown but deterministic. Let
(Zi)i=1....n a corresponding sample of real random covariate vectors with density
function €(-). The %;s are regarded as the lifetimes of the items under study and are
supposed to be subject to left-truncation which may occur if the time origin of the
lifetime precedes the time origin of the study. Only subjects that fail after the start of
the study are being followed, the others being truncated. We denote by (.%;)i=1....n
the sample of truncation rv with d.f. G. The .7;s are assumed to be independent of the
%;s. Then (%;, ;) are observed only when (% > .7;). Clearly the initial sample is
not completely observed and only n observations (among N) are obtained. We point
out that n is random but known. Such data, arise in many fields such as astronomy,
economics and medical studies (see e.g., Woodroofe 1985). In what follows, we denote
again (if there is no-confusion for the index) {(¥;, T;, X;),1 < i < n},(n € N),
the observed sample from the original N-sample. As a consequence of truncation,
the size of the actually observed sample, n is a Bin(N, i) random variable, with
0 :=P(% > 7). Itis clear that if 8 = 0, no data can be observed and therefore, we
suppose throughout this paper that & > 0. By the strong law of large numbers (SLLN)
we have, as N — oo

-~

0, = % — 0, P—a.s. @))

Since the N is unknown and the n is known (although random), our results would
not be stated with respect to the probability measure PP (related to the N-sample)
but will involve the conditional probability P(-) = P(-|%# > .7) with respect to the
actually observed n-sample. Also E and E will denote the expectation operators under
P and P, respectively.

It is well known that a useful tool in survival analysis (complete or incomplete data)
is the hazard function, which reflects the instantaneous probability that a duration
will end within the next time instant. An increasing hazard rate indicates positive
duration dependence; that is the probability that a spell is completed increases with
the duration between the events. Similarly, a decreasing hazard rate reflects negative
duration dependence. However, in practice the hazard function depends on covariates,
such age, rate of cholesterol.

In the complete data case, unconditional or conditional hazard rates have been
widely studied by many authors. To quote only a few, we cite Collomb et al. (1985),
Sarda and Vieu (1991) and Quintela-del-Rio (2008). When the covariates take their
values in infinite dimensional spaces, Berlinet et al. (2011) studied a non-linear regres-
sion model with functional data as inputs and scalar response, they get a pointwise
estimate of the regression function that maps a Hilbert space onto the real line by a
local linear method and derive its asymptotic mean square error.

For censored data and unconditional case, Lecoutre and Ould Said (1995) studied
the strong consistency of a kernel estimate when the data exhibit a strong mixing con-
dition. Bagkavos (2011a,b) defined a new kernel based local linear estimator of the
hazard rate, he studied its finite sample and asymptotic properties as well as proved
its asymptotic normality. For the conditional case, Lecoutre and Ould Said (1992)
established a pointwise and uniform almost complete convergence of a kernel estima-
tors of density and hazard functions under strong mixing condition. Spierdijk (2008)
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defined a new estimator of the hazard rate by using a ratio of local linear estimators
for the conditional density and survivor function. The resulting hazard rate estimator
has been shown to be pointwise consistent and asymptotically normally distributed
under appropriate conditions. Van Keilegom and Veraverbeke (2001) studied hazard
rate estimation using a nonparametric regression. Recently, Kim et al. (2010) proposed
a new local linear estimator of the hazard rate which is motivated by the ideas of Fan
et al. (1996) and Kim et al. (2005). The asymptotic distribution of the estimator is
derived, and some numerical results have been also given.

For the left-truncated data and parameter case, Zhou (2011) developed a weighted
quantile regression approach. The method leads to a simple algorithm that has been
conveniently implemented with R software. Furthermore, he showed that the pro-
posed estimator is strongly consistent and asymptotically normal under appropriate
conditions and independent and identically distributed (i.i.d.) case. In the nonpara-
metric estimation setting and as far as we know, the previous paper is of Ould Said
and Lemdani (2006), where they built a new Nadaraya—Watson (NW) estimator of
m(x) = E(Y|X = x) and studied its asymptotic properties in the i.i.d. case. Fur-
ther Liang et al. (2009) extended the results of Ould Said and Lemdani (2006) to the
dependent data. For local linear estimators of the regression function and conditional
density function, Liang et al. (2011) and Liang and Baek (2016), respectively, studied
the asymptotic properties of the proposed estimator when the data satisfy the strong
mixing conditions. We point out, that in this case, even we study the density and
survival distribution, it is not possible to deduce the same results for conditional haz-
ard, which is not the case for Nadaraya—Watson and weighted estimation approaches.
Using a weighted estimation, Liang (2012) established the asymptotic normality and
weak consistency of the estimator of the regression function. Furthermore, he made
a comparison study between Nadaraya—Watson, local linear and weighted estimators
by the finite sample performance of the proposed estimators by studying their mean
square errors.

As pointed by Stute (1993), the purely truncated data is completely different to
censored data and then we cannot deduce the results for truncated data from those
obtained in the censored case. As far as we know, estimation of the conditional hazard
function for truncated data based on weighted method has not been studied yet in the
literature. This is the goal of this paper.

The rest of the paper is organized as follows: in Sect. 2 we recall the truncation
framework; the different notations and defining the estimator of the conditional hazard
function are presented in Sect. 3. The assumptions and main results are detailed in
Sect. 4. A simulation study is presented in Sect. 5. Sect. 6 is devoted to the proofs of
the main results.

2 Background for truncation models
In this section, we give the main definitions and results related to the truncation model.
Throughout the paper, the star notation (*) relates to any characteristic function of the

actually observed data. Recall that under random left-truncation, the conditional joint
distribution of an observed (Y, T') (see e.g., Stute 1993), is given by

@ Springer



158 H.-Y. Liang and E. Ould Said

V¥, ) =PY <y, T<t) =P <y, T <t|lY >T)

y
=0 / G(t Au)dF(u),
—00
where ¢ A u := min(¢, u). Then the marginal laws are defined by

F*(y) =9—1/y G(u)dF(u) and G*(t)ze—l/oo G(t Au)dF(u),

—0o0 —00

which are estimated by F*(y) = % S Liyi<yyand GE (1) = % > 1z, respec-
tively, where 14 denotes the indicator function of the set A.

For any d.f. W, define awy = inf {z : W(z) > 0} and by = sup{z: W(z) < 1}, as
the endpoints of the W support. As pointed out by Woodroofe (1985), the d.f.s F and
G can be completely estimated only under the conditions

o]

ag < ar, bGSbF and/ E<OO.
ar

Now, let R(-) be a function defined by R(y) = G*(y) — F*(y) = 0~ 'G(y)[1 — F(y)]
with empirical estimator

I
Ry(y) = Gi(y) = Fy(y7) = = > liri<y<y; fory > ar.
n i=1

Then, the well-known nonparametric estimators of F' and G, originally proposed by
Lynden-Bell (1971), are given by

_ nRy(Y;) — 1 _ Ry (Ty) — 1
Fn(y)—l—i‘llly[ TR } and Gn<z>—i1;£[ BT ]

respectively, assuming no ties among the Y's. Note that Stute and Wang (2008) showed
how to break ties without destroying the product limit structure. Therefore, throughout
we shall assume without loss of generality that there are no ties among the Y's.

Another important quantity is the unknown probability 6, which estimated by (1)
but cannot be calculated since N is unknown. Note that

GO —F1)
- T

o) : 10

forall ap <t < bp. This observation led He and Yang (1998) to propose

Gn(A = Fat7)) _

fn(e) = Ra(1)

: 0y
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as an estimator of 6. Moreover, they showed (see their Corollary 2.5) its P-a.s. con-
sistency in i.i.d. case, that is 6, — 6, P-a.s. as n — oo, while under an ¢-mixing
hypothesis, Ould Said and Tatachak (2009) stated that (see their Lemma 5.2),

6, — 6 — OP( lnlz(n)).

This result was established by Liang et al. (2009) in almost surely case.

In order to discuss the estimation of the conditional hazard function for truncated
data based on the weighted method in more general situation, the observed sample
{(Y;, T;, Xi),1 < i < n}, in the sequel, is assumed to be a stationary «-mixing
sequence. We recall definition of the o¢-mixing sequence.

Definition 1 Let {Z;, i > 1} denotes a sequence of r.v.s. Given an integer n > 1, set
a(n) = sup {|P(A NB)—P(AP(B)|: A e flk(Z), B e f,fin(Z), k e IN} ,

where 9}" (Z) denotes the o-field of events generated by {Zj, i<j< k}. The
sequence is said to be ¢-mixing (or strongly mixing) if the mixing coefficienta(n) — 0
asn — oo.

The o-mixing condition has many practical applications (see e.g., Bradley (2007)
and Dedecker et al. (2007) for more details). The «-mixing has been used in applica-
tions with clustered survival data, see, for instance, Cai and Kim (2003).

3 Estimators

Denote by S(- | x) and f(-| x) the conditional survival function and conditional den-
sity function of Y given X = x, respectively. It is well known that the conditional
hazard function is defined by the ratio between f (y|x) and S(y|x) that is

_ SO
S(ylx)

Alylx)

suchthat S(y|x) > 0.Let H (-) be a probability density function (called kernel) and 0 <
H(-/hg)
hg
Let f(-,-) stand for joint density function of (X, Y), then from formula (12) in
Ould Said and Lemdani (2006) we have

hpw =:hy — 0asn — +4oc. In what follows, we denote by Hj,, (-) :=

Fa,y) =106 f*(x, y) for y > ag. 2)
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Hence, under assumptions (A1) and (A2) in Sect. 4 below, it follows that

9E{KhK<X - x)G—1<Y>[HhH(Y —y) = f01}

/ / 1“)[’1 () - £olo] £ ndsdr
hKhH / / e

§—X
)f( ndsdt = = RK( > )es)ds
:/RK(S)E()C—FhKS) /RH(I)[f(y—i—hHﬂx—l—th)—f(y|x)]dt)ds—>0,

3

hu

where K () is a kernel function and hx := hg , is a sequence of bandwidth which
goes to zero as n tends to infinity. Define H(y) = f Y oo H ()du, analogously as before,
one has

OE[ K (X x)G_l(Y)[H(Yh—;y) ~so]} -0 4

Put f@D(ylx) = 8'F f(ylx)/oxidy/. If f(y|x) is assumed to have (p + 1)th
continuous derivative respect to x, then, in a small neighborhood of x, it can be
approximated by a polynomial function as

fOl)~ fO) + -4+ PO —x)P/pl=Bo+ -+ Bpz — x)P.

Based on the idea of the local polynomial smoother, from (3) the estimator of
(fFOIx), ..., fPO(yx)/p)T, is defined as (,30, .. ,Bp)r which minimizes

n

p
> (B0 =) = X856 ) K (i =06, ). )

i=1 j=0

When p = 0 in (5), the estimator of f(y|x) is the well-known NW type estimator,
defined by

~ . . G, ' (Y)Kpy (Xi—x)
Saw )= wi™ (x) Hyyy (Vi — ) with wi ™ (x) = ———% :
o ; i S G (V) K (X, =)

When p = 11in (5), the local linear (LL) estimator of f(y|x) is
n
FLoOvlx) =D~ wit () Hyy, (Vi — ),
i=1

Kig Xi=0)G, (YD) {sn.2—(Xi —x)s.1)

. 2
Sn, 051,275, 1

LL _
here w;(x) =

)G (X))

ynj = 2 (Xi — x) K (Xi —
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Remark 1 Inview of f(y|x) = f(x, y)/€(x), Ould Said and Tatachak (2007) defined
for the first time the plug-in estimator fNW(y|x) by using the estimators of f(x, y)
and £(x); based on the idea of the local polyn0m1al smoother, Liang and Baek (2016)
constructed the estimators wa(y|x) and fLL (y]x) of f(y|x).

Similarly, from (4) the NW type and LL estimators of S(y|x) are defined, respec-
tively, by

~ " Y, — _ n Yi —
Snw(ylx) = z wi™Y () H ( P y) and Spp(y|x) = Zw}L(x)]H[ (Ty) .
i=1

i=1

From least squares theory, it is easy to see that the LL weights wl!“L (x) satisfy:

> wt) =1 and D (X; — x)wit(x) =0. (©6)

i=1 i=1

Motivated by the information (6), we use the empirical likelihood method to define the
new weighted NW type estimator of f(y|x) for the left-truncation model as follows.
This approach was proposed first by Hall and Presnell (1999) for estimating regression
function under the independent samples and it was used by Hall et al. (1999) for
estimating conditional distribution. We define the empirical likelihood function H =
]_[;‘:1 pi(x), where p1(x), ..., pp(x) are subject to the restrictions:

n n
pitx) =0, > pit) =1 and D (Xi —x)pi () Ky (X =) =0. ()
i=1 i=1
Using Lagrange multipliers, we get Hmax = [[/_; pi (x), where

1 1
Di(x) = — - , i=1,...,n,
pix) = 1+ (X — 1) Knp (X; — 1)

and 7 is the solution of the following equation:

n

Z (Xi —x)Kpy (X; — x)
S T+ n(Xi = x)Kpg (Xi —x)

—0. (8)

The proposed weighted NW type estimators of f(y|x) and S(y|x), respectively, are

~ " ~ " Y —
Fa(ylx) =D Wi (x)Hpy (Yi — y) and Sn<y|x)=2wi(x>H( th)
i=1 i=1

Pi () K (Xi—0)G ' (V)
> B ) Kng (Xj—x)Gy (V)

with w; (x) =
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162 H.-Y. Liang and E. Ould Said

Therefore, we define the following plug-in NW, LL and weighted estimators of
f(y|x) and S(y|x), respectively

~ AwOlx)  ~ Lol ~ Fa(y1x)
A ==, A = =, )\.n = =< .
WO =5 o O =0 MO =5 0m

Remark 2 Although the estimators XNW( y|x) and Xn (y|x) are considered only for
covariate X in univariate case, it is worthy of pointing out that the basic ideas of our
methodology hold for multivariate situations.

4 Assumptions and main results

In the sequel, let C, ¢y and c denote generic finite positive constants, whose values are
unimportant and may change from line to line, and let U (x) represent a neighborhood
of x. A, = O(B,) means |A,| < C|B,|. In order to formulate the main results, we
need the following assumptions.

(AO) ac < ar, bG < bF.

(A1) Both K () and H (-) are symmetric and bounded density functions with compact
support on R, respectively.

(A2) (i) The second derivative of £(-) is continuous in U (x) and £(x) > O;

(i) The second partial derivatives of f(-|-) are continuous in U (x) x U (y) and
Fylx) > 0.

(A3) (i) For all integers j > 1, the joint conditional density l’;(-, ) of (X1, Xj11)

exists on R x R and satisfies l;f(sl, $7) < C for (s, 50) € U(x) x U(x);

(i1) For all integers j > 1, the joint conditional density lj(-, ) of (X1, Xjy1,
Y)) exists on R x R x R and satisfies l;f(sl, s2,11) < C for (s1,$2,1) €
Ux) xUx) xU(y);

(i1i) For all integers j > 1, the joint conditional density l;’.‘(~, ) of (X1, Xjy1,
Y;11) exists on R x R x R and satisfies l;’f(sl, s2,1) < C for (s1, 52, 1) €
Ux) x U(x) x U(y);

(iv) For all integers j > 1, the joint conditional density l;f(-, -+, +) of
(X1, Xjy1, 11, Yj_H)existsonRxRxRxRandsatisﬁesl}f(sl, §2, 1, 1) <
C for (s1,5,11,0) € Ux) x U(x) x U(y) x U(y).

(A4) Assumethatnhghy — 00, and that the sequence « (n) satisfies that for positive
integers g, such that g, = o((nhghg)'/?) and lim,— oo (n(hxh )~ ?a(gn)
=0.

(AS) Assume that nhgx — oo, and that the sequence o (n) satisfies that for positive
integers u, such that u, = o((nhx)Y?) and lim,_ oo (n(hg) " HY2a(u,) = 0.

(A6) The second partial derivatives of S(:|-) are continuous in U(x) x U(y) and
S(ylx) > 0.

Remark 3 The condition ag < ap will be needed if we state uniform result which
imply a sufficient rate of convergence of G, (see Lemma 6.3 in Woodroofe (1985)).
Then we have to consider a set of values of ¥; which do not include ag (a uniform rate
for G, is given in Woodroofe (1985) on [a, bg]) with a > ag) thatis ar > ag, thus
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G(Y) = G(arp) > 0, which ensures G, (Y;) # 0 eventually, so the given estimators
are well defined for large n. Assumptions (A1) and (A2) are used commonly in the
literature. Assumption (A3) is mainly technical, which is employed to simplify the cal-
culations of covariances in the proof, the assumption is redundant for the independent
setting. Assumption (A4) implies restrictions when choosing the bandwidth, the con-
ditions in (A4) can be satisfied easily, for example, choose hg = hy = cn~" for some
0 <n < 1/2,g, = (nh% /logn)'/? and assume a(k) = O (k™) for some y > O,
then (A4) automatically holds if y is large enough, specifically y > 2(14+25)/(1—2n)
(note that y can be arbitrarily large if o (k) = 0 (p") for some 0 < p < 1).

PutA;; = [p s K/ (s)ds, Aij = [p v HI (v)dv,o?(y|x) = E(j;()}g;fi,) Jg2 K*(w)H?
(v)dudv.

Proposition 1 Let a(n) = O(n™7Y) for somey > 3, andlet x € Rand y > ar.
Suppose that (A0)—(A4) are satisfied. Ifnh]KH = O(1) for some r > 2, then

~ h2
\/nhKhH{fnw) FOlx) — A21f<2°><y|x) HA21f<°2>(y|x)

+ op(hk + h? >+0p(f nhk\/_ ‘/ )]—>N(o 00> (ylx)).

Proposition 2 Let a(n) = On™Y) for some y > 3, and let x € Rand y > ap.
Suppose that (A0)—(A3) and (A5)—(A6) hold. Set

An(ylx) = GZ(x)]E([H<Yh—;y) _ S(y|x)]2G_1(Y)‘X = x) /R K2(u)du.

Suppose that there exists (y|x) > 0 such that A, (y|x) > e(y|x). If nhx — 0o and
nh}:r = O(1) for some r > 2, then

nhgl2(x) | ~ h2 h?
| Sl = S(r1x) — K Ay SPO (1) — S Ay SO (i)
Ap(ylx) 2 2
1 1 hK 9
h% 4+ h%) + O — £ N(0,1).
+ op(hk +hy) + P(f+nhk+‘/n)]_’ (0,1)

Remark 4 (a) In Proposition 2, though A,(y|x) depends on n, it is bounded. (b)
Under complete data, & = 1 and G(-) = 1, in this case, one can verify that A, (y|x) =
Lx)S(y|x)[1 — S(ylx)] fR K2(u)du, which is a constant.

Proposition 3 Under the assumptions of Proposition 1, if (A6) holds, then Sn y|x) —
S(y|x) in Probability.

Remark 5 In Proposition 3, the conditions in (A2) and (A6) can be weakened, i.e.,
the functions £(-), f@®9(.|-) and §*9 (-|-) are continuous in U (x) and U (x) x U (y),
respectively, may replace the conditions (A2) and (A6) in Proposition 3.
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164 H.-Y. Liang and E. Ould Said

Theorem 1 Under the assumption of Proposition 1, if (A6) holds, then

\/nhKhH{’):n(y|x)—)»(y|x) Asymp.bias + op(h% + h%;) + Op((nhg) ™'/

+ )} % v (o %)
where
h2
Asymp bias = s |5 da s OV + 2H A fOD (1)

oo £ Ay SCO (310 + EHAMS(O 20|}

Remark 6 (a) Under suitable conditions, Liang and Baek (2016) established the fol-
lowing results:

i Fuw o120 — £l ~ K o[ 120 310+ 200t )

h2
~ H A OV +ophk +hip| S N (0,607 01n):

N h2
\/nhKhH{fLL(ym FOlx) — Anf‘”)(ym 2’1A21f<0’2>(y|x>

+ op(h% + i )] 2 N(0,60 (y|x)).

Based on these results, once the asymptotic bias of §Nw(y|x) and §LL(y|x) are
deduced, respectively, as in Proposition 2, one can give asymptotic normality
of ANW (y|x) and ALL(y|x) Though the asymptotic normality of ANw(y|x) and
ALL (y]x) has not been formulated in this paper, from the results above, we can
guess that the estimators 3:" (y]x) and XLL (y]x) have same asymptotic normality,
and both of them are superior to that of the estimator of Skw (y]x) if comparing
their asymptotic mean squared errors.

(b) Put A2(x, y) = %@‘{'J‘) Jw K2(w)du [, H*()dv. Define

A 0 - 1 Xl' — X
La(x) = K( )
! nhg ; G (i) hi
n

. 62 1 X; —x Y —y
s - (S (2)
W) = ; GI(Y) \ hk I

Hence, we obtain a plug-in estimator &,,2(y|x) = A% (x, y)é;z(x) of 8o 2(y|x).

It is well known that the main feature of the asymptotic normality is to get a
confidence intervals, which are given below.
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A weighted estimator of conditional hazard rate 165

Corollary 1 Under the assumptions of Theorem 1, based on the estimators 02( y|x)
and Sn(ylx) of 0a%(y|x) and S(y|x), respectively, we get a confidence interval of
asymptotic level 1 — a for A(y|x)
P 20, (y|x Ul—q20,(y]x
[)anx)_ Ul—a/20n(Y]X) 1—a/20 (¥]X) :|

—,’): X))+ ————=
bl Sy (ylx) " bl Sy (y]x)

where uy_qy )2 denotes the (1 — o /2)-quantile of the standard normal distribution.

5 Simulation study

In this section, we present the results of a simulation study, in which the finite sample
performance of the proposed estimators/):NW (y |x),3:LL (y|x) and/):,, (y|x) of A(y|x) at
x = 0.5 is investigated. In order to obtain an «-mixing observed sequence {X;, ¥;, T;}
after truncation, we generate the observed data as follow.

(1) We generate the triplet (X1, Y1, T7) as follows:
Step 1. We simulate e; ~ N (0, 0.5%) and take X| = e1;
Step 2. Let Yy follows from the model Yy = sin(w X )+, wheree; ~ N(O, 0.5%);
Step 3. We simulate 77 ~ N(u, 1), where w is adapted in order to get different
values of 6. If Y| < T1, we reject the datum and go back to Step 2, do this until
Y1 > T). Thus we obtain the observed sample (X1, Y7, T1).

(2) Then we generate the triplet (X7, Y2, T>) as follows:
Step 4. X» is generated by an AR(1) model X, = pX; + ez, where ex ~
N(0,0.5%);
Step 5. Y, follows from the model Y, = sin(wr X7) + &2, where e, ~ N (O, 0.52);
Step 6. We simulate 75 ~ N (u, 1). If Y < T,, we reject the datum and go back
to
Step 5, do this until Y, > T,. Thus we obtain the observed sample (X3, Y2, 7).

By replicating the process (2) above, we generate the observed data (X;, Y;, T;),
i =1,..., n.The generating process shows that X; = pX;_1+e¢;,Y; = sin(w X;)+¢€;
and ¥; > T;, where ¢; ~ N(0,0.5%), & ~ N(0,0.5%) and T, ~ N(u, 1),
here n is adapted in order to get different values of 6. Hence the conditional den-

i 2 . . .
sity function f(ylx) = - \lﬁ exp{— Y ;ino(gf)) }, the conditional survival function

S(ylx) = 1 — (=4 2L Sln”) where ® (u) stands for the standard normal distribution

function, hence A(y|x) = § &li)) . Note that the o-mixing property (see Doukhan

(1994)) of the observable X; 1s immediately transferred to the (X;, Y;, 7;). For the
estimators, we employ the kernel K (x) = H(x) = %(1 —x5)21(Jx|] < 1) based on
M = 500 replications.

5.1 Comparison among /):Nw(ylx),‘):LL(ylx) and ’):,, ylx)

Now we draw random sample with sample size n from the above model. For comparing
the estimators, we compute for each estimator A, p(-|x) of A(:|x) the global mean
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166 H.-Y. Liang and E. Ould Said

Table 1 Minimum GMSEs of/)TNW (y|x), XLL (y|x) and n (y]x) and corresponding optimal bandwidths
for several sample sizes and truncation rates

p 0% n hg  hy  ANw hk  hg L hx  hm o
0.1 30 100 0.63 0.69 0.207 0.61 0.79 0.150 0.46 0.66 0.130
500 0.49 1.12 0.145 0.58 0.73 0.124 0.64 1.11 0.118
60 100 0.60 1.01 0.173 0.53 0.91 0.134 0.72 1.20 0.130
500 0.57 0.98 0.128 0.69 0.84 0.108 0.45 1.02 0.106
90 100 0.50 1.16 0.160 0.74 0.68 0.114 0.51 0.86 0.102
500 0.71 1.14 0.115 0.52 0.96 0.091 0.52 0.81 0.086
0.9 30 100 0.40 0.69 0.403 0.57 0.94 0.268 0.65 0.75 0.252
500 0.55 0.82 0.284 0.64 0.80 0.201 0.64 0.78 0.198
60 100 0.62 0.78 0.373 0.55 1.26 0.250 0.53 0.59 0.249
500 0.53 0.72 0.239 0.71 1.01 0.174 0.44 0.61 0.164
90 100 0.55 1.04 0.336 0.47 0.97 0.233 0.49 0.84 0.214

500 0.50 0.93 0.219 0.57 0.79 0.164 0.53 0.87 0.163

squared errors (GMSE) at x = 0.5 and a grid of bandwidths a@ := hg and b := hy;
the GMSE are defined as

n

M
1 ~ 2
GMSE(a, b) =~ ;;m,bm, 11x) — A(Y, L1x)]°.

The minimal values of GMSE(a, b) along the grid, and the corresponding optimal
bandwidths minimizing the errors, are reported in Table 1.

From Table 1, it can be seen that the minimum GMSE of the estimators decrease
as the sample size, this was expected, since we are moving to situations with more
sampling information; the values of the minimum GMSE of the estimators seems to
be less affected by the truncation proportion for the same sample size. More inter-
estingly, we can appreciate how the estimators XLL(y|x) and A, (ylx), respectively,
based on plug-in LL and weighted methods outperform the estimator anw ( y|x) based
on NW method in all the considered s1tuat10ns the estimators ALL(y|x) and A (y|x)
have similar performance or the estimator A (y|x) performs better slightly than the
estimator iLL(y|x); In addition, Table 1 shows also that as the dependence of the
observations increases, that is, the value of p increases, the minimum GMSE of the
estimators increase for each considered cases.

5.2 Asymptotic normality

In this subsection, we examine how good the asymptotic normality of the estimator
’):n(y|x) is by the normal-probability plots against the normal distribution at (x, y) =
(0.5, 0.5). For the estimator, we choose the bandwidths hgx = hy = n~ Y4 In Figs.
1,2, 3 and 4, we plot the normal-probability plots with different 6, p and sample sizes,
respectively.
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Fig. 1 The normal-probability plots of M (ylx) with 6 ~ 90 % and n = 300. From left to right, p =

0.1, 0.5, 0.9, respectively

From Figs. 1 and 2, it is seen

that the sampling distribution of the estimator fits

reasonably the normal, this fit being better when increasing the sample size otherwise,

and that as the dependence of the

observations increases, the quality of fit decreases.

Figures 3 and 4 show again that the normality in the distribution of the estimators
increases as increasing of the sample size n, and that the estimator’s quality seems to
be less affected by the truncation proportion.
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Normal Probability Plot Normal Probability Plot
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Fig. 2 The normal-probability plots of o (ylx) with 6 ~ 90 % and n = 600. From left to right, p =
0.1, 0.5, 0.9, respectively

5.3 Confidence intervals

In this subsection, we generate the observed data with p = 0.1 and 0.9, and sample
sizes n = 100 and 500, respectively, from the model above. In Table 2, we report the
coverage probabilities (CP) and average lengths (AL) of 95 % confidence intervals of
A(y|x) based on the estimator A, (y|x) for hx = hy =n~Y5 at (x, y) = (0.5, 0.5).

Table 2 shows that the coverage probabilities of the confidence intervals tend to
increase as the sample size n becomes larger, and the average lengths decrease as the
sample size or the no truncation proportion increases.
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Fig.3 The normal-probability plots of o (y]x) with p = 0.1 and n = 300. From left to right, 6 ~ 30, 60,
90 %, respectively

In Fig. 5, we plot the confidence bands of 95 % confidence intervals of A(y|x)
based on the estimator in(y|x) with p = 0.1 forhg = hy = n~1/5 and n = 500 at
x =0.5.

From Fig. 5, it can be seen that the confidence bands become slightly narrow
as no truncation proportion increases, this can be understood since more sampling
information is observed as the values of 6 increase.

In order to further show the global performance of the confidence bands of I ylx),
we, in Fig. 6, plot the confidence bands ofx,, (y]x) forx and y from O to 1 withn = 500,
p =0.1and 0 ~ 30, 90 %, respectively. Clearly, Fig. 6 gives similar performance of
the confidence bands as that in Fig. 5.
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Fig. 4 The normal-probability plots of &y (y|x) with p = 0.1 and n = 600. From left to right, 6 ~ 30, 60,
90 %, respectively

6 Proof of main results
Put ®; = %ZLI wl.j(x) for j = 1, 2 with w; (x) = (X; — x)Kp, (X; — x).

Lemma 1 Let a(n) = O(n~7) for some y > 3. Suppose that (Al) for K, (A2) and
(A3)(i) are satisfied. If nhx — oo and nh}:" = 0(1) for some constant r > 2, then
n = Op((nhg)™'? + hi) and max; <<y [nw; (x)| = op(1).
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Table 2 :Fhe coverage probabilities (CP) and average lengths (AL) of 95 % confidence intervals of A(y|x)
based on A, (y|x) at (x, y) = (0.5, 0.5) for several sample sizes and truncation rates

0 0 (%) n CP AL
0.1 30 100 0.866 0.473
500 0.910 0.290
60 100 0.882 0.426
500 0.912 0.262
90 100 0.896 0.401
500 0.922 0.228
0.9 30 100 0.754 0.566
500 0.852 0.342
60 100 0.822 0.535
500 0.874 0.290
90 100 0.848 0.479
500 0.904 0.279

Proof From (8) it is easy to see that

0 w;i(x) on w?(x)
:’Zi;wnwl-(x) ‘nz wilx) = Z1+nwl(x)

(7102
T 14+ max<j<, [nw; (x)|

—|O1].

If we can prove ®; = 0p(h%< + (hg/n)"/?) and
®2 = hx LOE{G(Y)|X = x}Az + Op((hg/n)'/?) + O(hy). ©)
then from nh g — oo we have

Inl _ o]

< B0 0pthk + b)), 0
1+ maxi<i<, [pwi(x)| = O2 p(hk + (nhg) %) (10)

Since E|h;‘/’wi(x)|’ < oo from (A1) and (A2), max<j<, |w; (x)| = o((nhg)'/")
a.s. from the proof of Lemma 3 in Owen (1990). Therefore, from nh };“’ = 0(1) for
some r > 2 and (10) it follows that

n= Op(hg + (nhg)~'/?)
and max | <j<, [nw; (x)| = Op(hg + (nhg)~'/?) - op((nhi)'/") = op(1).
Next we verify @) = OP(h%< + (hk/n)l/z) and (9). We prove only (9), the eval-

uation related to ®; is similar. Note that ®; = E®; 4+ Op(+/Var(®,)). So, we
need to evaluate E®, and Var(®,). Note that the second derivatives of E(G (Y)|X =
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Fig. 5 Confidence bands of A(y|x) based on )Aun(y|x) with p = 0.1 and n = 500 at x = 0.5. From left to
right, 8 ~ 30, 60, 90 %, respectively
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Fig. 6 Confidence band of Ap (y|x) with p = 0.1. From left to right, 6 ~ 30, 90 %
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= | G(y)f(y|x)dy are continuous with respect to x from (A2). Then, from
[ GO f(ylx)dy p
f*x,y) = 9_1G(y)f(x y) (see (2)) and according to (A1) and (A2) we have

EO, = ZE(Kz( )(X — ) )

= hK/ s2K2(s)0(x + hgs)E(G(Y)|X =x + hgs)ds
R

= hgl()E{G(Y)|X = x}An + O(hy). (11)

Write

Var(©,) = ( ) {ZVar( (
+ ZCOV(K2(th;

i#]
= 021 + Onn.

Jos )

)xi =22, Kz(X;l; 2 -]

In view of (2), from (A1) and (A2) we obtain that
2

on = e (5o =] - (o (5o =)
_ ni; {hs /R 4K4(s)]E(G(Y)|X = x +th)E(x + hgs)ds
6

— 9—2(/ S2K2(5)E(G(Y)|X —x+th)£(x+th)ds) ] — O(hg/n).

(12)
Let& = %Kz( (X — x)2. Then
1
On=—1 2 + 2 [Covi&). (13)

li—jl<the'l  li—jl>lhih]

Fori < j, applying (A1)-(A3) we have
ICOV(&', £l

(2 () (g ox =i )
—[E(K2(XhK Joxi =)
92 6

25 (x + his, x + hgt)dsdt + O(hg) = O(hy).

(14)
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On the other hand, from Lemma 3 it follows |Cov(§;, &;)| < Cla(j — DY (E
|&1%)!/Y and

X, —x
hg

0% 4y
Bl = B[ (S =2) G — o)
h
K

< ezy”hK/R IsK ($)|* €(x + hgs)ds = O(hk),

which, together with (14), gives [Cov(&;, &;)| < C min{h%, [a(j — i)]'—l/Vh}gV}.
Thus from (13) we have ©x = O(hg/n) + O(n~'hy” > a1 7) =
O(hk/n). Then Var(®:) = O(hg/n). Therefore, ©, = hil(OE{G)|X =
x}Ax + Op((hg /m)'/?) 4+ O (h}). o

Proof of Proposition 1 Put £,,(x) = 0 Z?=1 Pi(X)Kpg (X — x)G;l(Yj). Write

) = FOI0) =6,1) -0 D" P0G, Y) Kpy (Xi = ){[Hpyy (Vi = 3) = f(1X)]
i=1

+IFGIXD) = FONI} = 6, U (y1x) + Va (1)1

o~ P — . k ..
Note that p; (x) = % . l+mlu,-(x) = %{ Z'}zl(—nwi @)+ %} for positive
integer k. Write

Un(ylx)

0 [~y | L\ Hiy (Y =) = fOIXD (X —
ZW{E(Gnm)_G(m) . 1+§wi<x)y “( th)

n

+ ; [HhH(Yi —G)E)Y; f(}’|Xi)K(X,'h;)c)

) E_(HhHm Sk FOM (X))

N gE(Hin —Gy(; f(,V|Xi)K(X,-h;x))
_ ni [[HhH(Yi B Y)Gzyf)(ﬂxi)]wi(x)l{(xih; X)

_EEEQHOG—yzlé¥ﬂX0thﬁK(X2;x)X

_ néE([Hmn — ) SO (Xi—xy)

G(Y)) hk

[ Hpy (Y —y) — fOIXDIW?(x) X —x
e G(r) (T
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~ E([HhHm - y)(}—(y{)(y|x,~)]w?(x>K(xih;x))]

- ) w? L
ZZE([HhH(Y J’)G(;:)(ﬂxz)]w, (X)K(X,hK x))

[Hp, (Yi — ) — fFOIXDW3(x)  /X; —x
Z G(Y)(1+nw,<x>> (50

0
= M{Unl(ﬂx) + Un2(Y[x) + Un3(y1%) = Una(y[x) = Uns(y|x) + Une(y]x)

+ Unr(ylx) — UnS(.V|x)}-
In view of (7) we have
n
Va(ylx) = (0/2) D (Xi = )2 f PO GIX) Bi () Ky (Xi — 1) G, (),
i=1
where X l* is between X; and x. Then
Va(ylx)
0 {Z( 1 1 )<Xi—x)2f<2’°>(y|X;’<)K(Xi—x)
" 2 L= \G, (%) T Gy I+ iy (x) hx

X — 02O X i =
+Z[ xG(Y,-) - K(Xth)

i=

RN I XD e -
_E((X X)G{Y) (y|Xl)K(Xth))]

(M ()

)2 £(2.0) *w; L

. ziZI [(X, x) f((;(yi()yl)(l Yw; (x) K(XhK x>
i —x)2f20 Hw; i—

B E((X x) G(y()le w (X)K(XhK x))]

_ 2,0 * _
—UZE((X x)? fG(Y()yIX )wz(X)K( th))

(X; —x)? fEO I XHW? (x) P—x
Z G + nw;(x)] K( hg )}

= 2—{Vn1(yIX) + Vo (1) + Va3 (%) — Vs (y1x) — Vas (y1x) + Vs (y1x) }.
nh[(
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Following the line in Step 1 in the proof of Liang (2012), it is easy to verify that
L,(x) = £(x) + op(1). It suffices to show that

0 _
——Up1 (ylx) = Op(n~'7?),

nhg
Juhgha U 2N (0, 9t f 1) Kz(u)Hz(v)dudv) ,
nhg G(y) R2

2
I Ui = Mo p 0 (1) / V2 Hw)dv + o(h2),
nhK 2

0 1 hk
_U == 0 + E)
nh[( n4(y|x) P(nhK«/hH «/nhKhH)

hxh?
Uns(y|x) = Op(h%h3) + op( Jﬁ)

0
nh[(

0 (51x) = O 1 N h2

v ¥) = ,

nh[( n6ty P nhKJnhKhH \/nhKhH

0 hxh? h2
— O(h%h%) + O ek op| -2 ),
T w7 (y]x) = O( o)+ P(m)‘F P(nhK

9 —
i Uns(r1x) = Op((nhg) 32 4 hy),

0 h2 6 h3
_V :O —K . _K 3
Py w1 (Y1) P(ﬁ) Tk Va2 (y|x) = Op | 4/ p

2
I Vo) = Kax)f@o)(ypc) / W2 K (w)du + o(h),

2nhk
0 hk hi 0 h
—V, — +hi /=) —V hy + —K_ 1),
dnhg na(ylx) = ( + ) nhx ns(ylx) = ( x T K
0 h
i Vs = (7"+h‘}<)-

Step 1. We prove v/nhghs - 7o-Un(lx) 5 N(0, 2001 [ k()

Hz(v)dudv).
From (A4), it follows that there exists a sequence of positive integers §,, — oo such
that 8,y = o((nhihp)'/?) and 8, (n(hghp)™")'Pa(gn) — 0. Let wy = [51-]

and p, = [(nhxhg)'/?/8,]. Then

qn/Pn — 0, wpa(gy) — 0, wygn/n — 0, py/n — 0, pn/(l’l/’lKhH)l/2 — 0.
(15)
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_ ki ~+pn—1 ) o Im+qn—1 . Vi _ n . .
Define Xmn = i=ky, Ni> Xmn = Zi:lm Nis Xw,n = Zizw”(p,,+qn)+l Ni with

o [ ha T H (Y= ) = fOIXD) L (Xi —x
=0l G(¥) K(%50)

_E<Hh1-1(Yi —Gy()Y; fO1Xi) K(Xih; X))]

where kyy = (m — 1) (pp+qn) + Lln = m—=D(pp+qu) +pn+1,m=1,..., wy.
Then

9 1 n 1 Wp Wn
Vnhghy - ——Up(lx) =—= D i = — IZ Xomn + D Xon + xw]
nhg v i=1 v m=1 m=1
1
:ZE{S'Q + Sy + 8}

Then it is sufficient to show that

n'ES))? - 0, nT'E(S))? — 0, (16)
0 ’
n_lVar(S;l) — 07 (x, ) K*(w)H?(v)dudv, (17)
G(y) 2

Wy Wn
)Eexp (it Z n_l/Zan) - H Eexp (itn_l/zxmn) — 0, (18)

m=1 m=1

| N

Ane) =~ > Exp, (1 Xmnl > ev/n) — 0 Ve > 0. (19)

m=1

It is easy to see that

Var(n;) = hiat” {E(KZ(X;;;X)[ ! HZ(Yih;}’) B Zf(y|Xi)H(Yi - y)

hg G2(Y;) E hu hu
2001y, Hpy Vi —y) = fOIX) o Xi —x\\7?
+f (ylx’)]_[E( G(Y)) K( hx ))”
B 9/ K2w)H?*(v) f(x + hgu, y + hgv)dudv
e G(y+hpv)
oon / K*(u)H©) f(ylx + hgu) f(x + hgu, y + hgv)dudv
 Jre G(y +hpv)
+9hH/ K2w) f2(y|x + hgu) f (x + hgu, v)dudv
R2 G(U)

— hKhH{hH /R2 K@) H@) f(x + hgu, y + hgv)dudv
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2
- /]R K0S Olx +hgu) fx o+ hu, v)dudv)

0f(x,y)
—_ 77

2 2
GO RZK () H2(v)dudv. (20)

From (A3), fori < j we have

[Cov(ni, nj)| < [E(m;i, nj)| + [En; - Enj|
L Xi—x
h K (35K (H 1 Y- Y —
=0 el e L () ()
GY)NGY) LA} hu hu

- fonon(H2)

_ Lf(le,-)H(Y"h;y) + 101X 101X ]}

2hu [E(HhH(Yi —y) — f()’|Xi)K(Xih;x))]2 — OUhuhy).

+6
hk G(Yi)
In addition, applying Lemma 3 (take p = ¢ = 20y), one can prove that for
i < j,ICov(ni,np| < Cla(j — D'V E[; )V and Epni|* =
O((hghg)~1%=D) Thus

1
- > ICov(ni, n))
n

I<i<j<n

_ o >+ >0 | minfhghg. [ — ]

I<j—i<c, j—izcpt+l

x (hHhK)—(l—l/(lo)/))}
= OD)[eahmh + (hpghg)~ 7V A =IO g @1

where ¢, = [(hghgx)~1=VAD/¢] for some 1 — 1/(10y) < ¢ < y — 11/10.
From (20), (21), according to (15) we have

1 wy lntgn—1 Wy
E(S”) =-2 2, Var(m)+- Z > Cov(niny)
m=1 i=l, m=11,<i<j<ly+q,—1
2
+2 > Covixfy Xjw)
I<i<j<wy,
0( )
= O(wuqn/n) + — Z |[Cov(n;, nj)| — 0,
I<i<j<n
1 "2 _ $ 2
—ES) == > Var(p)+- > Cov(ni. n;) = 0.
n n .
i=wy (pntqn)+1 Wy (Pnt+qn)+1<i<j=<n
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and n~'Var(S)) — %}Cy;) Jz2 K2()H?(v)dudv by wypy/n — 1. Thus (16) and
(17) are proved.
As for (18), according to Lemma 2, from (15) we have

Wn

Wn
‘Eexp (it Z n12y ) H Eexp (itn™ % xyun)
m=1

< léwa(g, +1) — 0.

Finally, we establish (19). Note that max| < <w | Xmn| = O ( Pn/~hihp),whichleads

that for large n, I (| xmn| > /1) = 0by pn//nhghy — 0. Therefore A, (¢) — 0.
Step 2. Observe that

SUPy>q, [Gn(y) — G(Y)
— maxi<i<u [nwi () [I[G(ar) —sup,>,,. 1Ga(y) = G(y)]

0
— U <
nhKI n1 (¥1x)] =0

0 N 1 Hiy i =) = fOIXD] (Xi —x
'nth G(Y)) K( hx )

SUP,», |Gn(y) = GOy
— max<i<y [nw; (NG (@r) = supyy, 1Gu(y) = G

i=1

0
— |V <
P (Va1 (y]x)] 1

0 Z (X; —x>2|f<2v°>(y|xz‘)|K(x,~ =3
Zl’lh[( o G(Yl') /’lK
From (A1) and (A2), itis easyto verity that £ > E{ a2 TOR e (X))

N2 £(2,0) *
= 0(D)and ;2= >0 E{ X0 o1 )lK( =)} = 0(h%), which follow that

0 i |Hpy, (Y —y) — fFO1X3)]

k(25 = ov)
nhg = GYy) hk

21 £2.0) (4, Y
and nhK > Xy —7) le(” OIXDI K(X;’l;x) = Op(h%(). Therefore, in view of Lem-
mas 1 and 4 we have U, (y|x) = Op(n~1/?) and %an(ypc) = Op(n~'2h%).
Similarly

Il 0

— max|<j<p [qw; (x)| nh‘}(

[Hngy (Y = y) = FOIXDNKG — 03 K (22)

. Z G(Y)

= op((nhK>—3/2 + hy),

0
— U <
nhKl n8(YX)] < T
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180 H.-Y. Liang and E. Ould Said

(X; — ) f 2Oy X))

2 Vol = " ’ Z
X
2nhg "N T T maxi iz, w01 20k, G(Y)
X;i—x
3
XK( Ik )

= Op((nhg)™" + h3)h% = Op(n'hg + h}).

Step 3. From (A1) and (A2) we have

0 6 . Hp, (Yi —y) — f1X:) i—X
E n3(y|X)_M§E( G K( Ix ))

_ //K(u)H(v)ax +hLF O + hvlx + hgu)
— flx + hgu)ldudv
hHeoof“’ 2 (y]x) / v?H (v)dv + o(h?),

S Vaalyl) = zethE((Xl ‘x)GJ(”Z)O)WlX?‘)K( =)
= %E(x)f(z’o)(ﬂx)/M2K(u)du +o(h}).
Similarly
% E([HhH(Y G(yg(lei)]wi(X)K(X;l; x))

i=1

(X — 1)K -
Z% { Z(m : [ﬁH(Yth)_mei)]}

_ / / K2 H@)E( + hg ) Lf O + holx + hx) — £(v]x + hgu)ldudy

hKZHJ( ) f© 2)(y|x)/ W2 K2 (u)du/v H@)dv + o(hgh%),

- Y; — ) — fOIX)Iw?( i—
X%iﬂE([HhH : G(Yi)yx 5 X)K( th))
(X X;x L
Z% { G(Y)) : [ﬁH(Yth)—f(le,-)]}

= //u2K2(u)H(v)£(x +hgw)f (v + hgvlx + hgu) — f(ylx + hgu)ldudv

@ Springer



A weighted estimator of conditional hazard rate 181

2
— h—HE(x)f(O’z)(ylx)/usz(u)du/vzH(v)dv—i—o(h%,),
_ (2,0) * _
ZE((X x)2 0 (y|x: )wz(x)K( x)) o).
G(Y:) hi

Therefore, from Lemma 1 we obtain that

6 Wiy (') fOD (310 Az Aay hih

——Ups(y|x) = Op

nhg 2 L(x)p(x) nhg
+ op(h%h3),

0 W hZ, ()2 FOD(yx)AZ A hxh?

——Un(yl) = = SO 2 A +0p( - H)

nhx 2 L(x)u?(x)A3, Jnhyx

h2
Wi hZ) + op| =2 ),
+0P( K H)+ P(nhK
0 h2
IR v h3 i S
dnhg ns(Y|x) = ( K+\/M)

Step 4. Note that Var ([Hh”(Y"_y)g{Yglx")](Xi s KZ(X;’;:C )) =0

/N
The
=
\-/
o
=3
=%
=¥
=

i <],

G(¥)
iy (Y =) = FOIX X =) s (Xj - ))
G(Yj) hi
=Cmin {n, fa(j = 1P ichm) O (e hin)?]

Cov ([HhH(Yi —y) = fOIX)HIX; —X)K2 (Xi —x) ’
hg
X

Then, similarly to the argument as in (21) we have

Var( 0 Z (Hy (Vi = ) = FOIXDTwi) (Xi —x))
nhy G(Y,) hx

i=1

RS [Hiy (Yi =) = FOIXDIXi —x) ., (Xi—x
= i [;V”( G(Y) . ( i ))

+ Cov ([Hin ) ;(J;f)ylxi>]<xi ) (Xh;x) |
=y

[HhH<Yj—y)—f<y|xj>]<xj—x)Kz(Xf—x))}_0( ! )
G(Y)) hi -~ \nhghu )
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Similarly

n SN Vo2 o
Var 0 Z [Hpy (Yi —y) — fOIXi)]w; (X)K (Xz x) —0 ( 1 ) 7
nhg = G(Y)) hg nhghy

0 <~ Xi =02 fPO0XH  (Xi—x\Y_ [
Var(znhK 2" Gm «(550)) =)

0 ~ Xi—x0)?fEO0XHwix)  (Xi—x\\ _
Var(znhK,; Y € (%57))=0

Therefore, from Lemma 1 we have

0 1 hk 0
—_— x)=0 + , \% X) =
. na (¥]x) P(nth m) ik 2 (y|x)

5 o ) = 0 1 N h%
- x) = ,
I’lh[{ noty P nhK\/nhKhH \/nhKhH

0 hg [hg
_ £ h2
I Vaa(ylx) = ( + . )
O

Proof of Proposition 2. Let the definition of £,(x) be same as that in the proof of
Proposition 1, and we define %,;(-) and #,;(-) as in U,;(-) and V,;(-) by replacing

Hy, (Y — y) and f(-) with H(Y’ ) and S(-), respectively. Thus we write

S (ylx) = S(ylx)
1
T 0,(x) nhg

{%nl(ypc) + 02/n2(y|x) + 02/;13()’|x) - 02/n4(y|x) - %nS(y|x)

+ U n6(y|x) + U1 (V|x) — Ung(¥1X)} + —— - =——{ V1 O10) + Va2 (y1x)

1 0
y(x) 2nhg
+ Va3 (1x) = Fna(y1x) = Fas(y1x) + Y (y1) ).

Following the line in the proof of Proposition 1, it is easy to verify the following facts

0
—— U1 (yx) = Op(n™1?), ——Ug(y|x) = Op((nhg) > + 1),
l’lh[( nh[(

0 h3 0 3
—, =op| £ Pl =],
e n1(y]x) P(ﬁ) Tk P2 (ylx) = .
— h2 =,
ik 4(ylx) = ( + " )
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h2
2nh Va5 (ylx) = Op (h%( + W) and Znh Yo (ylx) = Op (hn—K + hé}() .

Next we need only to prove that

0 Ua(y1x) 5 N(0. 1)
P — n 'x 9 b
Sk Ao Y
0 h2
i (1) = Hz(x>s<°2)<y|x) / v H (v)dv + o(h%)),
0 hK 2,0) 2
S Ok = S0 SO / K (u)du + o(h%),
0 B 1 hi 0 o hehy o5
e "4(y'x)‘0P(nhK+m)’ o lsO) = o (ol i)

0 Lyl = O ( 1 N h% )
- X) = ,
nhg noty r nhx/nhx  /nhg

o —0 (h2 2, + h%’)
o 2010 = Op(Wihiy + ).

Step 5. We verify m%ﬂ(ﬂﬂ —9> N(O, 1). From (AS), it follows that

there exists a sequence of positive integers ¢, — oo such that ¢,u, = o((nh K)l/ 2)
and ¢, (n(hg) ™" ?a(uy) — 0. Let m, = [;-25-1and v, = [(nhg)'/?/,]. Then

wn /Uy — 0, T (y) — 0, Tyttn/n — 0, vy/n — 0, v,/(nhg)'* — 0.

_ kv, —1 . / _ Ln+up—1 ) " — n . 1
Define Smn - i=km Di> Smn = z i =l @i Tpn T Zi:nn(“n"t‘vtl)'f‘l @i with

1 HE=Y) = SOIX) X —x
@i =0y hKAnmx)[ sy (5

H(G=Y) = SOIX) - X —
_E( : G(Y)) - K(Xth))]

where ky, = (m — D) (uy, +v,)+ 1,0, = m—Du, +vy)+v, +1,m=1,...,m,.
Then

nhg hn(ylx) = {Zsmn+25mn+s o) = %{THTJH,:”}-

m=1

Since 0 < e(y|x) < A, (y|x) < C, from (A1) and (A2) we have

2 K2 (X -
Var(w;) = hKAQ(W) {E( G2(§/I;) [H(Y Hy)—S(yIXi)]2
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HCRD = SOIXD) X, —
B G

G(Yy)
__ 9 K2 (u) r—y 2
A Jr2 G@) [H( h >_ S(y|x+hK”)] S+ hgu, t)dudt
+ O(hg)
_ 0€(x) Y—y 2 B R
- An(y|x)E([H( hn )—S(W)] G (Y)‘X—X)/RK (u)du
+o(l) — 1.

Then, following similar line as Step I in the proof of Proposition 1, one can prove
thatn'E(T}))?> — 0,n"'E(T)")? — 0, Ay(e) = 2 37 B2 1(|&mn| > ey/n) —

0 Ve >0, n’lVar(T,;) — 1 and

Ty Ttn
[Eexp (it D0~ 6un) = [] Eexp (itn™" )| — 0.
m=1

m=1

Step 6. From (A1), (A2) and (A6) we have

S(y|X;) -
% w3 (ylx) = —Z ( G(Y)y K(Xth))

:/K(M)E(x+h,<u)du/[ (t_ ) S(y|x+h1<u)]
hu
X f(tlx + hgu)dt
- / K ()e(x + hKu)(/ HWIS( + harolx + hgu)
— S(ylx +hKu)]dU)du
2
= hTHE(x)S(O’z)(yM)/vzH(v)dv + o(h3)),

(X; —x)2S@0(y|x¥) i—
(O (1

I w3 (ylx )_ﬁ

h’<15(x)s<2 0)(y|x)/u K (u)du + o(h%).

Similarly

n

Y;l;y) _ S()’|Xi)]wi(x)K(Xi - x))

>
nhKl - G(T)) hk

_oKE=N Ly
_ ;%E{(X ’2(’;_)( Ik )[H(Y’th) — Se1x]}
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_ / WK @yt + ) / HWIS(y + hrvl + hiw) — Syl + hwldv) du

hgh?
= %l’(x)S(o’z)(ypc)/usz(u)du/vzH(v)dv—l—o(hKh%,),

o <o JAHEEY) - SGIX)IwX () x; —

nhi & ( = G(Y) K( th))
—x)2K3(X=x o

-l () e

= /usz(u)Z(x + hKu)(/ HWI[S» + hyv|x +hgu) — S(y|x + hKu)]dv)du

2
= %Hz(x)s@»”(ym/usz(u)du/v2H(v)du+o(h§,).

Therefore, from Lemma 1 we obtain that

0 hKh%—I 2,2 6 2,2 %1
_ =0 + h%h _ = Op\l hvhs, + — ).
nhK nS(y|X) P(m K=H ) nhK %7(y|x) P K™H nhK

Step 7. Following the argument as for Var(z;) in Step 5, for positive integers [/

and [/, we have

HM—S X)I(X; — h i —

nl2h G(Y;) hx

and applying Lemma 3, for i < j we have

k]

[HCE) = SOIXDIX: — 0" K" ()
> G

[H(EEE) = SGIX )X, — 0 K2 (5
G(Y;)

< Comin {242, — i) VORI

(23)

Then
o L HEEY) = SGIXDIwi(x) X, —
Var(nhK s h G(Yi) ( hK x))
2 _n [HE=Y) — S(y|X)]1(X; — x) i —
= nfh4 [‘: Var( i G(;') - KZ(XhK x))
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Lioyy i i~ i —
+%Cov([m i) Z(élf (X x)Kz(xhKX)’
[HEL) - S(IX )X, — x) o
()] = o)

T Var(nZK Zl [HC) —Gfgx,-)]w?(x)l((x;;x)) _ O(n;K).

Therefore, from Lemma 1 we have

o) = Op (),

I’ll’lK «/l’lh[(

0 1 h2
— =0 + XK ).
i 6 (V%) P(nh;( e rh,()

Proof of Proposition 3. From the proof of Proposition 2 we write

S (y1x) — S(y|x)
1

=3 c——{ U (Y1%) + U2 (V|x) + Un3(y1x) — Una(Y)x) — Uns(y1x)
n(x) nhg
0
+ Un(y1x) + U1 (y|x) — Uns(y1x) } + RS m{%l(ylx) + V2 (yx)

+ Va3 (10) = Yna(y1x) = Fas(y1x) + Y (y1x) ).

The proof of Proposition 2 shows that

0 ) 0
_%}1j(y|x):01)(1) for.] = 1735745""8; _%I(Y|x) ZOP(I)
nhg nhg

forl=1,2,...,6.

Therefore, it suffices to prove that %%,,z(y |x) — 0 in Probability.
From (22) and (23) it follows that

Var(% n2(y|x))

- H(’—Hy) —S(ylXi) i =
:(%)Z{Z\m( : G(Y) : K(Xth))

i=1
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S Cor (H( o) —S(y1 X, )K(xi “1y) H(E) - S(y|xj>K(xj =

vy G(Yi) hk G(Y;)) hk
J
1 0 \? 2 . q1=1/(10y) 5, 1/(10y)
ZO(E)—%Z(”}ZZ) Z mm{hk,[a(]—l)] /( V)hK y}—>0.
I<i<j<n
(24)
Therefore - h 2 (y|x) — 0 in Probability. O

Proof of Theorem 1. It is easy to see that

T (10) = A1) = S, IO F %) = F1x) = A0S (v1x) — ST}

From the proof of Propositions 2 and 3 it follows that

S0k = SOk =17 1(x>[ K Ay SO0 (yl) + 2” A2SO2(y1)
0 1 1 hk
f hg +hi) + Op(—=+ — +,/—).
o 2010 | op i + i+ Op (5

(24) in the proof of Proposition 3 gives that 4;—%2(y|x) = Op ((nhg)~'/?). There-
fore

5010 = 5010 = 17 [ M A 20510 + ZH A2 SO (y10)]

+op(hk + h3) + Op((nhg)~'7?).

Proposition 1 shows that

—~ h2
\/nhKhH{fmm FOlx) — A21f<2°><y|x> HA21f<“>(y|x>

+op(hy + )+0p(ﬁ nhw— Ty )}iwv (0.00% 1)

Therefore

Vnhghy {/):,,(y|x) — A(y|x) — Asymp.bias + Op(h2 + h2 7))+ OP((nhK) 172

002(y|x)).

+ e ki)' P)} = N (0.5

O
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7 Appendix

Lemma 2 (Fan and Yao (2003), Proposition 2.6, p. 72) Let V1, ..., V,, be a-mixing
and complex-valued random variables measurable with respect to the o-algebra

3‘:»]1.1,...,%{:", respectively, with 1 <ij < j1 < - < jm <n, ij+1 —j1 = w>1
and P(IV;| < 1) = 1forl,j =1,2,...,m. Then |E(HT=1 Vi) —H’};l EVj| <

16(m — Da(w), where 555 =o{Vj,a <i < b} and a(w) is the mixing coefficient.

Lemma 3 (Hall and Heyde (1980), Corollary A.2, p. 278) Suppose that X and Y are

random variables such that E|X|P < oo, E|Y|9 < oo, where p,q > 1, p~ ' 447! <

1. Then

1—p71—q71
|[EXY — EXEY| §8||X||p||Y||q{ sup |P(AﬂB)—P(A)P(B)|}
A€o (X),Beoa(Y)

Lemma 4 (Liang et al. (2011), Lemma 5.4) Suppose that a(k) = O (k™) for some
y > 3, and that (A0) holds. Then SUP >4 |G, (y) — G(y)| = Op(n=17?).
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