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Proofs

In this section, the conditions required by Theorems 1, 2, 3 and 4 are listed. They are
not the weakest sufficient conditions, but could easily facilitate the proofs. The proofs of
Theorems 1, 2, 3 and 4 are also presented in this section.
Technical Conditions:

(C1) nh4 → 0 and nh2 log(1/h)→∞ as n→∞ and h→ 0.

(C2) nh→∞ as n→∞ and h→ 0.

(C3) The sample {(Xi, Yi), i = 1, ..., n} are independently and identically distributed from
f(x, y) with finite sixth moments. The support for x, denoted by X ∈ R, is bounded
and closed.

(C4) f(x, y) > 0 in its support and has continuous first derivative.

(C5) |∂3`(θ, x, y)/∂θi∂θj∂θk| ≤Mijk(x, y), where E(Mijk(x, y)) is bounded for all i, j, k and
all X, Y .

(C6) The unknown functions mj(x), j = 1, ..., k, have continuous second derivative.

(C7) σ2
j > 0 and πj > 0 for j = 1, ..., k and

∑k
j=1 πj = 1.

(C8) E(X2r) <∞ for some ε < 1− r−1, n2ε−1h→∞.

(C9) Iθ(x) and Im(x) are positive definite.

(C10) The kernel function K(·) is symmetric, continuous with compact support.

(C11) The marginal density f(x) of X is Lipschitz continuous and bounded away from 0. X
has a bounded support X .

(C12) t3K(t) and t3K ′(t) are bounded and
∫
t4K(t)dt <∞.

(C13) E|qθ|4 <∞, E|qm|4 <∞, where qθ and qm are defined in the proof of Theorem 2.5.
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The next lemma is from Fan and Huang (2005), and will be used throughout the rest of
the proofs.
Lemma 1. Let {(Xi, Yi), i = 1, ..., n} be i.i.d random vectors from (X, Y ), where X is a
random vector and Y is a scalar random variable. Let f be the joint density of (X, Y ),
and further assume that E|Y |r <∞ and supx

∫
|y|rf(x, y)dy <∞. Let K(·) be a bounded

positive function with bounded support, satisfying a Lipschitz condition. Then,

sup
x∈X

∣∣∣∣∣ 1n
n∑
i=1

[Kh(Xi − x)Yi − E{Kh(Xi − x)Yi}]

∣∣∣∣∣ = Op(γn log1/2(1/h)),

given n2ε−1h→∞, for some ε < 1− 1/r, where γn = (nh)−1/2.
In order to prove the asymptotic properties of {π̂, m̂, σ̂2}, we first need to study the

asymptotic property of {π̃, m̃, σ̃2}, which is the maximum local log-likelihood estimator of
(5).

Define

π̃∗j =
√
nh{π̃j − πj}, m̃∗j =

√
nh{m̃j −mj}, σ̃2∗

j =
√
nh{σ̃2

j − σ2
j}.

Let π̃∗ = (π̃∗1, ..., π̃
∗
k−1)

T , m̃∗ = (m̃∗1, ..., m̃
∗
k)
T , and σ̃2∗ = (σ̃2∗

1 , ..., σ̃
2∗
k )T . Furthermore, define

θ̃
∗

= ((m̃∗)T , (π̃∗)T , (σ̃2∗)T )T , β = ((π̃)T , (σ̃2∗)T )T .
Lemma 2. Suppose that conditions (C2)-(C10) are satisfied, then,

sup
x∈X

∣∣∣θ̃∗ − f−1(x)I−1θ (x)Sn

∣∣∣ = Op(h
2 + γn log1/2(1/h)),

where Sn is defined in (3).
Proof of Lemma 2.

Since {π̃, m̃, σ̃2} maximizes `1(π,m,σ2) defined in (5), it is easy to see that θ̃
∗

maximizes

`∗n(θ∗) = h
n∑
i=1

{`(θ(x) + γnθ
∗, Yi)− `(θ(x), Yi)}Kh(Xi − x),

= Snθ
∗ +

1

2
θ∗TWnθ

∗ + op(‖θ∗‖2), (1)

where

Sn =

√
h

n

n∑
i=1

∂`(θ(x), Yi)

∂θ
Kh(Xi − x), Wn =

1

n

n∑
i=1

∂2`(θ(x), Yi)

∂θ∂θT
Kh(Xi − x), (2)

and the second equality holds by Taylor expansion. It is easy to see that Wn = −f(x)Iθ(x)+
op(1), and therefore,

`∗n(θ∗) = Snθ
∗ − 1

2
f(x)θ∗T Iθ(x)θ∗ + op(‖θ∗‖2). (3)

By Lemma 1 and assumption (C9), it can be shown that for all x ∈ X , Wn converges to
−f(x)Iθ(x) uniformly. From (3) and assumption (C7) and (C9), we know that −`∗n(θ∗) is
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convex function defined on a convex open set, when n is large enough. Therefore, by the
convexity lemma (Pollard, 1991),

sup
x∈X

∣∣∣∣(Snθ∗ +
1

2
θ∗TWnθ

∗)− [Snθ
∗ − 1

2
f(x)θ∗T Iθ(x)θ∗]

∣∣∣∣ P→ 0

holds uniformly for all x ∈X and θ∗ in any compact set. We know that −f−1(x)I−1θ (x)Sn
is a unique maximizer of (3), and by definition, θ̃

∗
is a maximizer of (1), then, by Lemma

A.1 of Carroll et al. (1997), supx∈X

∣∣∣θ̃∗ − f−1(x)I−1θ (x)Sn

∣∣∣ P→ 0, which also implies that

θ̃
∗

= f−1(x)I−1θ (x)Sn + op(1). (4)

Since θ̃
∗

maximizes (1),

0 =hγn

n∑
i=1

∂`(θ(x) + γnθ̃
∗
, Yi)

∂θ
Kh(Xi − x)

=hγn

n∑
i=1

∂`(θ(x), Yi)

∂θ
Kh(Xi − x) + hγ2nθ̃

∗
n∑
i=1

∂2`(θ(x), Yi)

∂θ∂θT
Kh(Xi − x) +Op(γn‖θ̃

∗‖2),

that is, Wnθ̃
∗

+Op(γn‖θ̃
∗‖2) = −Sn. Therefore,

{Wn − E(Wn)}θ̃∗ +Op(γn‖θ̃
∗‖2) = −Sn − E(Wn)θ̃

∗
= −Sn + f(x)Iθ(x)θ̃

∗
. (5)

From (4) and (9), it is easy to show that supx∈X |θ̃
∗| = Op(1). By Lemma 1, supx∈X |Wn − E(Wn)| =

Op{h2 + γn log1/2(1/h)}, thus {Wn − E(Wn)}θ̃∗ + Op(γn‖θ̃
∗‖2) = Op{h2 + γn log1/2(1/h)}.

Combined with (5), we have

sup
x∈X

∣∣∣−Sn + f(x)Iθ(x)θ̃
∗
∣∣∣ = Op{h2 + γn log1/2(1/h)}.

Since f(x) and Iθ(x) are bounded and continuous functions in a closed set of X and Iθ(x)
is positive definite,

sup
x∈X

∣∣∣θ̃∗ − f−1(x)I−1θ Sn

∣∣∣ = Op{h2 + γn log1/2(1/h)}.

Proof of Theorem 1.
Define β̂

∗
=
√
n(β̂ − β), where β̂ maximizes `2(β) in (6). Let

`(m̃(Xi),β, Yi) = log{
k∑
j=1

πjφ(Yi|m̃j(Xi), σ
2
j},

`(m̃(Xi),β + β∗/
√
n, Yi) = log{

k∑
j=1

(πj + π∗j/
√
n)φ(Yi|m̃j(Xi), σ

2
j + σ2∗

j /
√
n}.
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Since β̂ maximizes `2, it is easy to see that β̂
∗

maximizes

`n(β∗) =
n∑
i=1

{`(m̃(Xi),β + β∗/
√
n, Yi)− `(m̃(Xi),β, Yi} = Anβ

∗ +
1

2
β∗TBnβ

∗ + op(‖β∗‖2),

where An =
√

1
n

∑n
i=1

∂`(m̃(Xi),β,Yi)
∂β

and Bn = 1
n

∑n
i=1

∂2`(m̃(Xi),β,Yi)
∂β∂βT . It can be easily seen

that Bn = −B + op(1) with B = E{Iβ(X)}, therefore, by quadratic approximation lemma,

β̂
∗

= B−1An + op(1). (6)

DefineR1n =
√

1
n

∑n
i=1

∂2`(m(Xi),β,Yi)
∂β∂mT

(m̃(Xi)−m(Xi)), thenAn =
√

1
n

∑n
i=1

∂`(m(Xi),β,Yi)
∂β

+

R1n + Op(
√

1
n
‖m̃ −m‖2∞). Let ϕ(Xt, Yt) be a k × 1 vector whose elements are the first

k entries of I−1θ (Xt)
∂`(θ(Xt),Yt)

∂θ
. From assumption (C1), we know that Op{n1/2[γnh

2 +

γ2n log1/2(1/h)]} = op(1). By Lemma 3, θ̃(Xi)−θ(Xi) = 1
n
f−1(Xi)I

−1
θ (Xi)

∑n
t=1

∂`(θ(Xi),Yt)

∂θ
Kh(Xt−

Xi) +Op{γnh2 + γ2n log1/2(1/h)}. Since m(Xi)−m(Xt) = O(Xi −Xt),

R1n = n−3/2
n∑
t=1

n∑
i=1

∂2`(m(Xi),β, Yi)

∂β∂mT
f−1(Xi)ϕ(Xt, Yt)Kh(Xi −Xt) +Op(n

1/2h2)

= R2n +Op(n
1/2h2).

It can be shown that E[ 1
n

∑n
i=1

∂2`(m(Xi),β,Yi)
∂β∂mT

f−1(Xi)Kh(Xi−Xt)] = Iβm(Xt). Let$(Xt, Yt) =

Iβm(Xt)ϕ(Xt, Yt), and Rn3 = −n−1/2
∑n

j=1$(Xt, Yt), then Rn2 −Rn3
P→ 0, and therefore

An =

√
1

n

n∑
i=1

{∂`(m(Xi),β, Yi)

∂β
−$(Xi, Yi)}+ op(1),

given nh4 → 0. Let Σ = V ar{∂`(θ(X),Y )

∂β
− $(X, Y )}, then Var(An) = Σ. It can be easily

seen that E(An) = 0, therefore by (6),

√
n(β̂ − β)

D→ N(0, B−1ΣB−1).

Proof of Theorem 2.
Define m̂∗ =

√
nh(m̂(x)−m(x)), where m̂(x) maximizes (7). It can be shown that

m̂∗(x) = f(x)−1Im(x)−1Ŝn + op(1), (7)

where

Ŝn =

√
h

n

n∑
i=1

∂`(m(x), β̂, Yi)

∂m
Kh(Xi − x). (8)
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Notice that

Ŝn =

√
h

n

n∑
i=1

∂`(m(x),β, Yi)

∂m
Kh(Xi − x) +

√
h

n
(β̂ − β)

n∑
i=1

∂2`(m(x),β, Yi)

∂m∂βT
Kh(Xi − x) + op(1)

≡Sn +Dn + op(1).

where Sn is defined in (2). Since
√
n(β̂ − β) = Op(1) and 1

n

∑n
i=1

∂2`(m(x),β,Yi)
∂m∂βT Kh(Xi −

x) = −f(x)ITβm(x) + op(1), then Dn =
√
n(β̂ − β)

√
h 1
n

∑n
i=1

∂2`(m(x),β,Yi)
∂m∂βT Kh(Xi − x) =

−
√
hf(x)ITβm(x) + op(1). Thus, from (7), m̂∗(x) = f(x)−1Im(x)−1Sn + op(1). Let Λ(u|x) =

E[
∂`(m(x),β,Y )

∂m |X = u], it can be shown that

E(Sn) =
√
nh[

1

2
f(x)Λ′′(x|x) + f ′(x)Λ′(x|x)]κ2h

2, V ar(Sn) = f(x)Im(x)ν0. (9)

To complete the proof, let ∆(x) = I−1m (x)[1
2
Λ′′(x|x) + f−1(x)f ′(x)Λ′(x|x)]κ2h

2, and ∆m(x)
be a k × 1 vector whose elements are the first k entries of ∆(x), then

√
nh(m̂(x)−m(x)−∆m(x) + op(h

2))
D→ N(0, f−1(x)I−1m (x)ν0).

Proof of Theorem 3.
(i) Assume the latent variables {Zi, i = 1, ..., n} be a random sample from population Z,
then P (Zi = j|Y,θ) = πjφ(Y |mj, σ

2
j )/
∑k

j=1 πjφ(Y |mj, σ
2
j ), and therefore,

log{
k∑
j=1

πjφ(Yi|mj, σ
2
j )} = log{πjφ(Yi|mj, σ

2
j )} − log{P (Zi = j|Y,θ)}. (10)

Given θ(l)(Xi) = (m(l)(Xi),π
(l)(Xi),σ

2(l)(Xi)), for any i = 1, ..., n, P (Zi = j|Yi,θ(l)(Xi)) =

p
(l+1)
ij and

∑k
j=1 p

(l+1)
ij = 1. Therefore, by (10)

`1(θ) =
n∑
i=1

{
k∑
j=1

log{πjφ(Yi|mj, σ
2
j )}p

(l+1)
ij }Kh(Xi − x)

−
n∑
i=1

{
k∑
j=1

log{P (Zi = j|Y,θ)}p(l+1)
ij }Kh(Xi − x). (11)

Based on the M-step of (8), (9) and (10), we have

n−1
n∑
i=1

{
k∑
j=1

log{π(l+1)
j (x)φ(Yi|m(l+1)

j (x), σ
2(l+1)
j (x))}p(l+1)

ij }Kh(Xi − x)

≥n−1
n∑
i=1

{
k∑
j=1

log{π(l)
j (x)φ(Yi|m(l)

j (x), σ
2(l)
j (x))}p(l+1)

ij }Kh(Xi − x).
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To complete the proof, based on (11), we only need to show

lim sup
n→∞

n−1
n∑
i=1

{
k∑
j=1

log{P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
}p(l+1)

ij }Kh(Xi − x) ≤ 0

in probability. Define

L = n−1
n∑
i=1

{
k∑
j=1

log{P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
}p(l+1)

ij }Kh(Xi − x),

U = n−1
n∑
i=1

log{
k∑
j=1

{P (Zi = j|Yi,θ(l+1)(x))

P (Zi = j|Yi,θ(l)(x))
}p(l+1)

ij }Kh(Xi − x),

then, by Jensen’s inequality, L ≤ U . We complete the proof by showing that U
P→ 0.

Without loss of generality, assume that P (Zi = j|Y,θ(l)(x)) ≥ δ > 0 for some small value δ.

Since E(U) = E{log[
∑k

j=1
P (Zi=j|Yi,θ

(l+1)
(x))

P (Zi=j|Yi,θ
(l)

(x))
P (Zi = j|Yi,θ(l)(Xi))]Kh(Xi − x)}, by similar

argument as in the proof of Theorem 2 and Theorem 3, it can be shown that E(U)→ 0, and
Var(U) = Op((nh)−1). Therefore, by Chebyshv’s inequality, U = op(1), and thus completes
the proof.

(ii) Notice that P (Zi = j|Y,m, β̂) = π̂jφ(Y |mj, σ̂
2
j )/
∑k

j=1 π̂jφ(Y |mj, σ̂
2
j ), P (Zi =

j|Yi,m(l)(Xi), β̂) = p
(l+1)
ij and

∑k
j=1 p

(l+1)
ij = 1, where p

(l+1)
ij is defined in (11). The rest

of the proof is in line with part (i), and thus is omitted here.
(iii) Notice that by fixing m̃(·) = m(l)(·), `∗(π,m(l)(·),σ2) = `2(π,σ

2). Therefore, by
the ascent property of the ordinary EM algorithm,

`∗(π(l+1),m(l)(·),σ2(l+1)) = `2(π
(l+1),σ2(l+1)) ≥ `2(π

(l),σ2(l)) = `∗(π(l),m(l)(·),σ2(l)).

Thus, to complete the proof, we only need to show

lim inf
n→∞

n−1[`∗(π(l+1),m(l+1)(·),σ2(l+1))− `∗(π(l+1),m(l)(·),σ2(l+1))] ≥ 0.

If we fix π̂ = π(l+1) and σ̂2 = σ2(l+1), then by part (ii), lim infn→∞ n
−1[`3(m

(l+1)(x)) −
`3(m

(l)(x))] ≥ 0 in probability for any x ∈ {Xt, t = 1, ..., n}. Therefore,

lim inf
n→∞

n−2
n∑
t=1

f(Xt)
−1[`3(m

(l+1)(Xt))− `3(m(l)(Xt))]

≥ lim inf
n→∞

n−1
n∑
t=1

lim inf
n→∞

n−1f(Xt)
−1[`3(m

(l+1)(Xt))− `3(m(l)(Xt))] ≥ 0.

Since K(·) is symmetric about 0, n−2
∑n

t=1 f(Xt)
−1`3(m

(l)(Xt)) = n−1
∑n

i=1 Γ
(l)
i , where

Γ
(l)
i = n−1

n∑
t=1

f(Xt)
−1 log[

k∑
j=1

π̂jφ(Yi|m(l)
j (Xt), σ̂

2
j )]Kh(Xt −Xi).
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It can be shown that E(Γ
(l)
i |Xi, Yi) = log[

∑k
j=1 π̂jφ(Yi|m(l)

j (Xi), σ̂
2
j )](1+op(1)), and Var(Γ

(l)
i |Xi, Yi) =

Op((nh)−1). The fact that
∑n

i=1E(Γ
(l)
i |Xi, Yi) = `∗(π(l+1),m(l)(·),σ2(l+1)), and

∑n
i=1E(Γ

(l+1)
i |Xi, Yi) =

`∗(π(l+1),m(l+1)(·),σ2(l+1)) completes the proof.
Proof of Theorem 4.

Since β̂ has faster convergence rate than m̂(·), m̂(·) has the same asymptotic properties as
if β were known. Therefore, in the following proof, we study the property of m̂(·) assuming
β to be known.

Define ∂`(θ(Xi),Yi)
∂θ

= qθi,
∂2`(θ(Xi),Yi)

∂θ∂θT
= qθθi and similarly, define qmi, qmmi and so on. Let θ̃

be the estimator under H1 (Huang et al., 2013), and m̂ be the estimator under H0 (model
(1). From previous proof, we have

θ̃(Xi)− θ(Xi) =
1

n
f−1(Xi)I

−1
θ (Xi)

n∑
t=1

qθtKh(Xt −Xi)(1 + op(1)), (12)

m̂(Xi)−m(Xi) =
1

n
f−1(Xi)I

−1
m (Xi)

n∑
t=1

qmtKh(Xt −Xi)(1 + op(1)). (13)

By (12) and (13), we can obtain that

n∑
i=1

`(θ̃(Xi), Yi)−
n∑
i=1

`(θ(Xi), Yi) = { 1

n

∑
i,l

qTθif
−1(Xl)I

−1
θ (Xl)qθlKh(Xi −Xl)

+
1

2n2

∑
i,j,l

qTθif
−2(Xl)I

−1
θ (Xl)qθθlI

−1
θ (Xl)qθjKh(Xi −Xl)Kh(Xj −Xl)}(1 + op(1)),

n∑
i=1

`(m̂(Xi), Yi)−
n∑
i=1

`(m(Xi), Yi) = { 1

n

∑
i,l

qTmif
−1(Xl)I

−1
m (Xl)qmlKh(Xi −Xl)

+
1

2n2

∑
i,j,l

qTmif
−2(Xl)I

−1
m (Xl)qmmlI

−1
m (Xl)qmjKh(Xi −Xl)Kh(Xj −Xl)}(1 + op(1)),

and so,

T =
1

n

∑
i,l

[qTθiI
−1
θ (Xl)qθl − qTmiI−1m (Xl)qml]f

−1(Xl)Kh(Xi −Xl) +
1

2n2

∑
i,j,l

[qTθiI
−1
θ (Xl)qθθl

×I−1θ (Xl)qθj − qTmiI−1m (Xl)qmmlI
−1
m (Xl)qmj]f

−2(Xl)Kh(Xi −Xl)Kh(Xj −Xl)

≡Λn +
1

2
Γn.

By similar argument as Fan et al. (2001), it can be shown that under conditions (C9)-(C12),
as h→ 0, nh3/2 →∞,

Λn =
2k − 1

h
K(0)Ef(X)−1 +

1

n

∑
l 6=i

[qTθiI
−1
θ (Xl)qθl − qTmiI−1m (Xl)qml]f

−1(Xl)Kh(Xi −Xl) + op(h
−1/2),

Γn = −(2k − 1)

h
Ef(X)−1

∫
K2(t)dt− 2

n

∑
i<j

[qTθiI
−1
θ (Xi)qθj − qTmiI−1m (Xi)qmj]f

−1(Xi)

×Kh ∗Kh(Xi −Xj) + op(h
−1/2).
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Therefore, T = µn +Wn/2
√
h+ op(h

−1/2), where µn = (2k−1)|X |
h

[K(0)− 0.5
∫
K2(t)dt],

Wn =

√
h

n

∑
i 6=j

{qTθiI−1θ (Xj)[2Kh(Xi −Xj)−Kh ∗Kh(Xi −Xj)]f
−1(Xj)qθj

− qTmiI−1m (Xj)[2Kh(Xi −Xj)−Kh ∗Kh(Xi −Xj)]f
−1(Xj)qmj}.

It can be shown that Var(Wn)→ ζ, where ζ = 2(2k−1)Ef−1(X)
∫

[2K(t)−K ∗K(t)]2dt.
Apply Proposition 3.2 in de Jong (1987), we obtain that

Wn
D→ N(0, ζ),

and completes the proof.
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