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Proofs

In this section, the conditions required by Theorems 1, 2, 3 and 4 are listed. They are
not the weakest sufficient conditions, but could easily facilitate the proofs. The proofs of
Theorems 1, 2, 3 and 4 are also presented in this section.

Technical Conditions:

(C1)
(C2)
(C3)

(C4)
(C5)

(C6)
(C7)
(C8)
(C9)
(C10)
(C11)

(C12)
(C13)

nh* — 0 and nh*log(1/h) — oo as n — oo and h — 0.
nh — oo asn — oo and h — 0.

The sample {(X;,Y;),i = 1,...,n} are independently and identically distributed from
f(z,y) with finite sixth moments. The support for z, denoted by 2" € R, is bounded
and closed.

f(z,y) > 0 in its support and has continuous first derivative.

0%0(0, z,y)/00;00;00,] < Myj(z,y), where E(M,j.(z,y)) is bounded for all 4, j, k and
all X,Y.

The unknown functions m;(z), j = 1, ..., k, have continuous second derivative.
07 >0and 7; > 0for j=1,..,k and 25:1 m; =1

E(X?") < oo for some € < 1 — 77! n*7'h — oco.

Iy(x) and I,,(x) are positive definite.

The kernel function K(-) is symmetric, continuous with compact support.

The marginal density f(z) of X is Lipschitz continuous and bounded away from 0. X
has a bounded support 2 .

3K (t) and t*K'(t) are bounded and [ 'K (¢)dt < cc.

Elgg|* < 00, E|qn|* < 0o, where gg and g,, are defined in the proof of Theorem 2.5.
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The next lemma is from Fan and Huang (2005), and will be used throughout the rest of
the proofs.
Lemma 1. Let {(X;,Y;),7 = 1,...,n} be i.i.d random vectors from (X,Y’), where X is a
random vector and Y is a scalar random variable. Let f be the joint density of (X,Y),
and further assume that E|Y|" < oo and sup, [ |y|"f(z,y)dy < oo. Let K(-) be a bounded
positive function with bounded support, satisfying a Lipschitz condition. Then,

n

sup | = S KX — 2)Yi — B{KL(X: — 2)Y}]| = Ol log2(1/)),

n
el i1

given n*~'h — oo, for some € < 1 — 1/r, where 7, = (nh)~1/2.

In order to prove the asymptotic properties of {#,m, &}, we first need to study the
asymptotic property of {7, m, 6'2}, which is the maximum local log-likelihood estimator of
(5).

Define

7y = Vnh{#; — m;} mj = vVnh{m; —m;}, 67 = Vnh{6] — o7}

~ % * ~ 2%

Let #* = (7%, ..., 7t _ )T, m* = (m},...,m})T, and 6% = (6%, ...,57*)T. Furthermore, define
6" = ((m")". (77, (6™)")", B = (7), (&))"
Lemma 2. Suppose that conditions (C2)-(C10) are satisfied, then,

sSup 0 — f_l(x)le_l(x>8n = Op(h2 + T 1Og1/2(1/h))7
e

where S,, is defined in (3). O
Proof of Lemma 2. 3
Since {7, m, 5} maximizes ¢, (7, m, ?) defined in (5), it is easy to see that @ maximizes

607) = WY {0() +7,0°,Y:) — €0(2), YD (X — 1),

1
= 5,0" + 5H*TWne* + 0,([10%]1%), (1)
where
h <~ 00(0(2), Y)) 1 < 0%0(0(x),Y)
=1/— —— = LK (X — = — — LK (X; — 2
Sn \/;; 0 h( i fL‘), Wn n; 8080T h( i IL‘)7 ( )

and the second equality holds by Taylor expansion. It is easy to see that W,, = — f(z)lp(x)+
0p(1), and therefore,

(67 = 5.0° — L F(0)8T Io(0)6" +0,(10° ). 3

By Lemma 1 and assumption (C9), it can be shown that for all x € 27, W,, converges to
—f(x)Ip(z) uniformly. From (3) and assumption (C7) and (C9), we know that —¢(8") is
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convex function defined on a convex open set, when n is large enough. Therefore, by the
convexity lemma (Pollard, 1991),

P

1 1
sup '(Sne* + §G*TWn0*) — [9,0% — 3 f(2)0* T Iy(x)0*]| = 0

ze€X

holds uniformly for all € 2~ and 0" in any compact set. We know that —f~1(z)I, ' (z)S,
is a unique maximizer of (3), and by definition, 8" is a maximizer of (1), then, by Lemma

A.1 of Carroll et al. (1997), sup,c 6 — f @), () S,

0" = f 7 (2)1; " (2)Sh + 0p(1). (4)

. % o .
Since @ maximizes (1),

i=1 60
" 9U(6(x), Y, 206

:h%Z%K}L(X — )+ hy20 Z aaaoT OLO@Y) e, — )+ 0y (3al8 ).
=1

that is, W,0 -+ Op('yn||é*||2) = —S,,. Therefore,
{W, = E(W,)}0" + Op(1a]|07]°) = =Sn = E(W)8" = =S, + f(2)Ip(x)0".  (5)
From (4) and (9), it is easy to show that SUD,e 2 |é*| Op(l)

Op{h? + 7 log"2(1/h)}, thus {W, — E(W,)}6" + 0,(1:[18"[]?) = O, {1 o 10g1/2(1/h)}
Combined with (5), we have

Sup | S + f(@)1o(2)8"| = Op{1* + 7, log"/*(1/m)}.
=

Since f(z) and Iy(z) are bounded and continuous functions in a closed set of 2" and Iy(x)
is positive definite,

sup 6" — f @) IS,
zeX

- Op{h2 + M logl/Q(l/h)}.

Proof of Theorem 1. )
Define 8 = /n(B8 — 3), where 3 maximizes {»(3) in (6). Let

(((X), B,Y;) = log{ ) _ mo(Yilm;(Xi), 07},

Jj=1

Hm(X,). B+ BV Yi) = log{ 3 (x, + 75 [V o(Yilm, (X)o7 + 0"/},



. 2 . . . . ok . .
Since B maximizes (5, it is easy to see that 3 maximizes

k 1 * k *
Z{e )8+ B[V, Vo) — L (X), B,Yi} = AB" + 587 BuB” + 0, (18°]1%),
where A,, = \/72@ 1 X)BY and B, = £ 3" leﬁ(—X,BﬁY) It can be easily seen
that B, = —B + 0,(1) with B E{I3(X)}, therefore, by quadratic approximation lemma,

B =B7A, +0,(1). (6)
Define Ry, =/} S0, PGP (om0 —m(X,), then A, = [} L, HR0GB
Ry, + Op(\/%H'ﬁz —ml%). Let o(X;,Y;) be a k x 1 vector whose elements are the first

k entries of Igl(Xt)%. From assumption (C1), we know that O,{n'/?[y,h? +

1210 2(1/h)]} = 0,(1). By Lemma3, B(X,)~6(X,) = L1~ (X)) ;1 (X;) Tre, 200 e, (x,—
Xi) + Op{ymh? +~2log"?(1/h)}. Since m(X;) — m(X,) = O(X; — X,),

_ ?(m(X;),B,Y;)
3/2 : R 1/272
tzl ; aﬁamT f (XZ)SD(XM n)Kh(Xz Xt) + Op(n h )
= Ry, + O, (n'/?h?).
It can be shown that E[% Sy (”aﬂTTIBYf UXDE(Xi—X)] = Igm(Xy). Let w(X,,Y;) =

Ism (X0)p(X;, Y:), and Rz = —n~1/2 > i @w(X4,Yy), then Ry — Rpg Lt 0, and therefore

\f S (PR (V) + (),

given nh* — 0. Let X = Var{%g)’y) — w(X,Y)}, then Var(A,) = X. Tt can be easily
seen that F(A,) = 0, therefore by (6),

~

V(B —pB) 3 N0, B'SB™).

[
Proof of Theorem 2.
Define m* = v/nh(m(z) — m(z)), where m(x) maximizes (7). It can be shown that
(@) = f(2) " Ln(2) 780 + 0p(1), (7)

where

5,/ Z‘% W6 )



Notice that

[Zae D BY) e x s %(3_g>zaf(?ni?éf’mf(h(x—x)+op(1)

=1

=S, + D, + 0,(1).

where S, is defined in (2). Since /n(8 — B) = O,(1) and L Sy % n( X —
v) = ~f(@)I},@) + 0,(1), then Dy = V(B — AVALTL, PIUILZI G, (X, — ) =
—Vhf(@)IF,(x) + 0,(1). Thus, from (7), m*(z) = f(2) " Ln(x) 'S, + 0,(1). Let A(ulz) =
E[%W|X = ul, it can be shown that

E(Sn) = m[%f(fﬂ)/\”(xlx) + (@) (2]2)]r2h?, Var(Sn) = f(2)In(2)10. (9)

To complete the proof, let A(z) = Y (z)[FA"(z|z) + f~(z) f/(x)N (z|z)|reh?, and A, (z)
be a k x 1 vector whose elements are the first & entries of A(z), then
Vnh(r(z) — m(x) — Ap(z) + 0p(h?) S N(0, f (@)1, (2)w).

[
Proof of Theorem 3.
(7) Assume the latent variables {Z;,i = 1,...,n} be a random sample from population Z,
then P(Z; = j|Y,0) = m;¢(Y|m;,07)/ Z] 17T]¢(Y|m], 07), and therefore,

108;{Z7Tj¢(3€|mj70?)} log{m;¢(Yilm;,07)} — log{P(Z: = j|Y,8)}. (10)

Given 6 l)(X) (mO(X;), 7O(X;), 0?D(X;)), for any i = 1,...,n, P(Z; = j|V;, 0V (X;)) =
pljﬂ and Z] D ZéH) = 1. Therefore, by (10)

Z{Zlog{w (Yilmj, 023 VY EG(X, — @)

=1 j=1

> log{P(Z: = jIY,0)}p VK (X — 2). (11)

i=1 j=1

Based on the M-step of (8), (9) and (10), we have

n™Y D T log{r Y (2)p(vim{ Y (2), 07 ()} pl TV G (X — @)

iljl

>n—1z{zlog{w Jo(VilmS (), o3 (@)}l YK (XG — 7).

=1 j=1



To complete the proof, based on (11), we only need to show

= j|v;,0"Y
s 313 e G (X, =) <
i=1 j=1 (]

in probability. Define

_ -1 J‘YueH (7)) (1+1) oy
. Z{Z W gy o =),

S =51V 00 @) e e
Zlg{Z{ z—me Ty 1 HEH =),

then, by Jensen’s inequality, L < U. We complete the proof by showing that U .
Without loss of generality, assume that P(Z; = j|Y,0"(z)) > § > 0 for some small value .
D
Since E(U) = E{log[Z?zl P](jz_]l,y}leo(z)( ))))P(Zi = j1Yi, 0V (X)) Kn(X; — )}, by similar
i=J1¥i,

argument as in the proof of Theorem 2 and Theorem 3, it can be shown that E(U) — 0, and
Var(U) = O,((nh)™!). Therefore, by Chebyshv’s inequality, U = 0,(1), and thus completes
the proof. X

(i) Notice that P(Z; = jlY,m,B) = 7;¢(Y|m;, 0 )/Zle Ti¢(Y|my,63), P(Z; =
iV, m(X,),8) = péﬂ and Z D Z;H) = 1, where p(Jr is defined in (11). The rest
of the proof is in line with part (i ) and thus is omltted here.

(4ii) Notice that by fixing m(-) = mW (), £*(w, mY(-),0?) = ly(w, 0?). Therefore, by
the ascent property of the ordinary EM algorithm,

E*(W(Hl),m(l)(-),0'2(l+1)) _ EQ(ﬂ_(l—H)’aj(l—&—l)) > 62(7T(l)’0_2(l)) _ é*(w(l),m(“(-),ag(”).
Thus, to complete the proof, we only need to show

lim inf n = [0* (2D m D (1)

n—oo

’UQ(ZH)) _ €*<ﬂ_(z+1)’ m(z)<-)7 02(z+1))] > 0.

wHD and 6% = o2+Y)| then by part (i), liminf, . n ' [ls(mD (z)) —
0

l5(m® m))] > 0 in probability for any = € {X;,t = 1,...,n}. Therefore,

fim infn” Zf (X))~ [la(m ™D (X)) = £5(mO (X))

n—o0

>liminfn ™! Z lim inf n=' f(X,) " ls(mUY (X)) — L5(mY(X,))] > 0.
n—oo
Since K(-) is symmetric about 0, n=2 3" | f(X,) " Us(m®D (X)) = nt 7 TW, where

‘1Zth 1logZ7T]¢Y|m (X0), 6 KR(X; — X).

7j=1



It can be shown that E(FZ@ 1 X5, Y;) = log[Z? 1 ﬁjgb(Y|m(l)( X;),07)](140,(1)), and Var(FEl)|XZ~, Y;) =
0,((nh)™1). The fact that 3.7 | B(T'W|X,,V;) = () mO (), 2+)) and 32", BTV|X,, ;) =
(D D () g2+ completes the proof. O
Proof of Theorem 4.
Since 3 has faster convergence rate than 7in(-), m(-) has the same asymptotic properties as
if 8 were known. Therefore, in the following proof, we study the property of m(-) assuming
3 to be known.
Define W = Qpi, % = qpp; and similarly, define ¢,,;, ¢nm: and so on. Let 0
be the estimator under H; (Huang et al., 2013), and m be the estimator under H, (model
(1). From previous proof, we have

B(X) —6(X) =/ (X)I; (X) Y anku(Xe— X)(1 +0,1), (12
(X) — m(X) = S DL (X0 Y anEa(Xo - X)L +o,(1). (13)

By (12) and (13), we can obtain that

Zﬂ (O(x Ze ={- qu o (X))@ En (X = X))

+53 Zq o ' (X0 gon Ty " (X0)0s 50 (Xi — X)) K (X5 = X0)}(1+ 0,(1),

iam(m Y) - ﬁ;a ={- Zq,m (X)X = X))

+5 Z G o (X0 Gt 1, (X0) g B (X = X0 (X = X)) H(L + 0,(1)),
and so,

1 1
= ;[Qezf XD o — Gl (X0 @il fH XD K (X3 — X)) + 5 572 ;[%J (X1)go01
xIy (XI)QGJ Ui Lo (X0) @t L (X0 i) 72 (X)) K (X — X)) K (X — X))
=A, —Fn.
+ 2

By similar argument as Fan et al. (2001), it can be shown that under conditions (C9)-(C12),
as h — 0, nh%/? = oo,

Ay = 2SR RO)BFCO™ L S M (X — a0l (0K (X0 = X0) + 0y (h772),
11
ro_ <2’f—1 / K20yt — 2 S labTy (X0 — dhel (X7 (X)

z<]

x K % Kp(Xi — X;) 4 0,(h™Y?).



Therefore, T = 11, + W, /2Vh + 0,(h"1/?), where p, = ZE=DIZLK(0) — 0.5 [ K2(t)dt],

W, = g > Aaady (X REW(X; — X;) = Kp o+ Ki(Xi = X)|f 7 (X;) a5
2]
— i L (X5 2KR(Xi — X;) — K * Kn(Xs — X511 (X)) Gy -

m

It can be shown that Var(W,,) — ¢, where ¢ = 2(2k—1)Ef (X)) [[2K(t) — K = K (t)]dt.
Apply Proposition 3.2 in de Jong (1987), we obtain that

W, 3 N(0,0),

and completes the proof. O
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