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Abstract Normalised generalised gamma processes are random probabilitymeasures
that induce nonparametric prior distributionswidely used in Bayesian statistics, partic-
ularly formixturemodelling.We construct a class of dependent normalised generalised
gamma priors induced by a stationary populationmodel ofMoran type, which exploits
a generalised Pólya urn scheme associated with the prior. We study the asymptotic
scaling for the dynamics of the number of clusters in the sample, which in turn provides
a dynamic measure of diversity in the underlying population. The limit is formalised
to be a positive non-stationary diffusion process which falls outside well-known fami-
lies, with unbounded drift and an entrance boundary at the origin. We also introduce a
new class of stationary positive diffusions, whose invariant measures are explicit and
have power law tails, which approximate weakly the scaling limit.
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84 M. Ruggiero and M. Sordello

1 Introduction

A key aspect in Bayesian nonparametric inference, both from a methodological and
a computational point of view, is the clustering of the observations. Regardless of
whether these represent real quantities of interest or latent features used in intermediate
levels of hierarchies, an often important inferential issue is the estimation of the number
of components underlying the mixture. A Bayesian nonparametric mixture model
typically takes the form

f (y) =
∫

f (y | x)P(dx) (1)

where f (·|x) is a density function for every value of x , and the latent quantity x is
modelled through a random probability measure P . When P is a Dirichlet process
(Ferguson 1973), (1) is the Dirichlet process mixture model introduced by Lo (1984),
which is to date the most popular Bayesian nonparametric approach. The mixture (1)
can be equivalently expressed in hierarchical form by writing

P ∼ P

Xi | P iid∼ P

Yi | Xi
ind∼ f (· | Xi ),

(2)

where P is the prior induced by the random probability measure P on the set of
distributions over the latent space. If P selects almost surely discrete probability
measures, as is the case when P is a Dirichlet process (Blackwell 1973), then the latent
variables Xi will feature ties and can be used to cluster the observations Yi according
to the kernel f (·|Xi ) from which they are generated. For this reason, the number
of distinct values Kn ≤ n in the exchangeable sequence X1, . . . , Xn is sometimes
loosely referred to as the number of clusters.

The implications on inference of the clustering structures induced by the Dirichlet
process, which behave as logarithmic functions of the number of observations (Korwar
and Hollander 1973), have long been the object of extensive investigation. Recent
advances in the field have drawn attention to different clustering behaviours, such
as those induced by Pitman–Yor processes (Pitman 1995; Pitman and Yor 1997),
normalised inverse-Gaussian processes (Lijoi et al. 2005) and normalised generalised
gammaprocesses (Lijoi et al. 2007).Despite the increased generality, these priors stand
out for their tractability among the various generalisations of the Dirichlet process,
and contrast with the latter by inducing clustering structures which behave as power
functions of the number of observation. See the study by Lijoi and Prünster (2010).

Another recent, significant line of research in Bayesian nonparametrics aims at
extending nonparametric priors to accommodate forms of dependence more general
than exchangeability. MacEachern (1999, 2000) proposed a class of so-called depen-
dent processes for modelling partially exchangeable sequences, where observations
are exchangeable conditional on a given set of covariates, but not overall exchange-
able. These are modelled through a collection of random probability measures with
series representation of the form
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Clustering dynamics in generalised gamma populations 85

Pz =
∑
i≥1

pi,zδxi,z ,

where the weights pi,z and/or the atoms xi,z depend on some covariate z, which
can be multidimensional or possibly represent time. See the study by Hjort et al.
(2010) for a review and for recent developments. In particular, the discrete nature of
these dependent priors and their wide applicability to concrete problems call for new
understanding of how the clustering structure depends on the covariate, which is in
turn induced by the type of dependence used for defining pi,z and xi,z .

In this paper, we construct a new class of temporally dependent priors which are
induced by a normalised generalised gamma population model, and investigate the
scaling limit for the dynamics of the number of groups or clusters. Other classes of
dependent normalised random measures have been constructed recently by Griffin
et al. (2013), Lijoi et al. (2014) and Griffin and Leisen (2016). Here, by taking a
different approach, the construction embeds normalised generalised gamma priors in
a temporal environment. We define a dynamic population model of Moran type (see
Section. 3 for details), which can also be seen as the iteration of Gibbs sampling steps
at the level of the latent variables in the hierarchy.We study the rescaling of the induced
number of groups in the population and identify the limit to be a positive, nonstation-
ary diffusion process which seems to fall outside well-known classes. As the use of
stationary components in dependent, the hierarchical model is often desirable and we
formulate a weak approximation of the scaling limit by introducing a new family of
stationary and positive diffusions whose invariant measure is explicit and exhibits a
power law right tail.

Scaling limits of the clustering dynamics for other classes of dependent models
connected with Bayesian nonparametrics have been studied in Ruggiero et al. (2013);
Ruggiero (2014) for the normalised inverse Gaussian and the two-parameter Poisson–
Dirichlet case, respectively. See also Ruggiero and Walker (2009a, b); Mena et al.
(2011); Mena and Ruggiero (2016); Papaspiliopoulos et al. (2016) for different depen-
dent models connected with diffusions processes.

2 Preliminaries on normalised generalised gamma priors

Generalised gamma processes, introduced by Brix (1999), are completely random
measures with generalised gammamean intensity, that is Levy processes with positive
jumps and Levy measure on [0,∞) given by

λ(dt) = e−τ t t−(1+α)

�(1 − α)
dt,

with α ∈ (0, 1) and τ ≥ 0. Lijoi et al. (2007) exploited this construction for proposing
a prior distribution for Bayesian nonparametric mixture modelling. This is obtained
by normalising the jumps of a generalised gamma process via

pi = Ji∑∞
k=1 Jk

,
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86 M. Ruggiero and M. Sordello

where Ji are the jump sizes and
∑∞

k=1 Jk < ∞ almost surely. The resulting random
weights allow to define a discrete random probability measure by writing

P =
∑

i≥1
piδZi ,

where Zi
iid∼ P0 and P0 is a nonatomic probability measure on a Polish space X. The

resulting normalised generalised gamma random probability measure induces a prior
distribution on the space of discrete laws onX, denoted here GG(β, α) for β = τα/α.
This can then be used at the top level of the hierarchy for Bayesian nonparametric
modelling, replacing P with GG(β, α) in (2).

Denote by Kn the number of distinct values X∗
1, . . . , X

∗
Kn

observed in a sample

X1, . . . , Xn with Xi | P iid∼ P . When P ∼ GG(β, α), Lijoi et al. (2007) showed that

P(Kn = k) = eβG(n, k, α)

α�(n)

n−1∑
i=0

(
n − 1

i

)
(−1)iβ i/α�(k − i/α;β), (3)

where�(a; x) is the incomplete gamma function,G(n, k, α) is the generalised factorial
coefficient (see Charalambides (2005))

G(n, k, α) = 1

k!
k∑
j=0

(−1) j
(
k

j

)
(− jα)n

and (a)n = a(a+1) · · · (a+n−1) is the increasing factorial. Furthermore, Kn grows
as nα and

lim
n→∞

Kn

nα
= S a.s., (4)

where S is a random variable on (0,∞) with density

gβ,α(s) = exp{β − (β/s)1/α}α−1s−1−1/α fα(s−1/α),

and where fα is the density of a positive stable random variable of index α. Since S
summarises the asymptotic diversity in terms of number of groups which grows as a
power function of α, the partition associated with generalised gamma priors is said to
have α-diversity S. Cf. Pitman (2006), Definition 3.10.

Normalised generalised gamma priors belong to the larger class of Gibbs-type
priors (Gnedin and Pitman 2006; De Blasi et al. 2015). These can be characterised,
among other ways, in terms of the marginal law of the observations, which is given
by a generalised Pólya urn scheme. More specifically, conditionally on Kn = kn , the
predictive distribution for the observations associated with Gibbs-typemodels is given
by the following generalised Pólya urn scheme:

Xn+1|X1, . . . , Xn ∼ g0(n, kn)P0(·) + g1(n, kn)
kn∑
j=1

(n j − α)δX∗
j
(·). (5)
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Clustering dynamics in generalised gamma populations 87

Here, P0 is as above, and the weights g0(n, kn), g1(n, kn), possibly dependent on other
fixed parameters that characterise the specific model, satisfy

g0(n, kn) + (n − αkn)g1(n, kn) = 1

for all n ≥ 1 and 1 ≤ kn ≤ n. The interpretation of (5) is that g0(n, kn) is the
probability of sampling a previously unobserved value, and g1(n, kn)(n j − α) is the
probability of duplicating the distinct value X∗

j , thus enlarging the associated group
by one unit. Lijoi et al. (2007) showed that in the normalised generalised gamma case,
we have

g0(n, kn) = α
n

∑n
i=0 (

n
i)(−1)iβi/α�(kn+1−i/α,β)∑n−1

i=0 (n−1
i )(−1)iβi/α�(kn−i/α,β)

,

g1(n, kn) = 1
n

∑n
i=0 (

n
i)(−1)iβi/α�(kn−i/α,β)∑n−1

i=0 (n−1
i )(−1)iβi/α�(kn−i/α,β)

. (6)

for α ∈ (0, 1) and β as above. Furthermore, the generalised gamma model is the only
normalised completely random measure that is also of Gibbs type. See Proposition 2
in Lijoi et al. (2008). The Pitman–Yor process is also a member of the Gibbs family,
in which case these quantities simplify to

g0(n, kn) = θ + αkn
θ + n

, g1(n, kn) = 1

θ + n
(7)

for either α < 0 and θ = |α|m, m ∈ N, or

α ∈ [0, 1), θ > −α. (8)

In this paper, we aim at studying a dynamic version of the α-diversity asymptotic result
(4) for the generalised gamma model, after appropriately extending the distribution
(3) of the number of groups to a temporal framework, through the definition of a
population model based on (5), (6). To this end, we will make use of a recent result
by Arbel et al. (2016), who extend a result contained in the study by Ruggiero et al.
(2013). In particular, they derive the second-order approximation of (6) to be

g0(n, kn) = αkn
n + β

k1/αn
+ o(n−1),

g1(n, kn) = 1
n − β

nk1/αn
+ o(n−2),

(9)

for n → ∞, which allows to avoid, in view of an asymptotic study, a cumbersome
computation with alternating sums and incomplete Gamma functions.

3 A generalised gamma population model and its group dynamics

Ruggiero and Walker (2009b) proposed a discrete construction for a class of two-
parameter Poisson–Dirichlet diffusion models, introduced in Petrov (2009), based on
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88 M. Ruggiero and M. Sordello

the generalised Pólya urn scheme (7). Here, we extend such approach for defining a
stationary generalised gamma population model and derive the scaling limit for the
dynamics of the number of groups (or species) in the population.

Fix n, and let X (n) = (X1, . . . , Xn) be a sample from a generalised gamma model,
with X1 ∼ P0 and Xi |X1, . . . , Xi−1 as in (5) for i = 2, . . . , n. We update X (n)

at discrete times by substituting a uniformly chosen coordinate of the vector with a
replacement from its conditional distribution given the remaining observations. Given
the exchangeability of the sample, and assuming we replace Xi , the new element has
distribution

X ′
i |X (n)

(−i) ∼ g0(n − 1, kn,i )P0(·) + g1(n − 1, kn,i )

kn,i∑
j=1

(n j,i − α)δX∗
j
(·) (10)

where X (n)
(−i) = (X1, . . . , Xi−1, Xi+1, . . . , Xn) is the remaining sample after removing

Xi , kn,i is the number of distinct values in X (n)
(−i) and n j,i is the cardinality of the j th

cluster after removing Xi . Thus, X ′
i is of a new type with probability g0(n − 1, kn,i )

or a copy of an existing type with probability (n − 1− αkn,i )g1(n − 1, kn,i ). In terms
of the population model, copying an existing type is interpreted as a birth, whereby
the offspring takes the parent type in a haploid population. New types are interpreted
as births with mutation, where the mutant type does not depend on the parent type and
is drawn from a pool of infinitely many alleles. Removals are interpreted as deaths,
which here keep the population size constant. The resulting dynamics are those of
a Moran model, which, together with Wright–Fisher models, are among the oldest
approaches to mathematical population genetics. See the studies by Etheridge (2009)
for background, and Feng (2010) for Moran and Wright–Fisher models applied to
infinitely many-allele dynamics, with some connections to Bayesian nonparametrics.
See also the work of Costantini et al. (2016) for a recent Wright–Fisher construction
of the two-parameter Poisson-Dirichlet diffusion.

Denote the Markov chain resulting from the above-described replacements by
X (n)(·) = {X (n)(m),m ∈ N}, and define Kn(·) = {Kn(m),m ∈ N} to be the process
that tracks the number of distinct types in X (n). Note that the dynamics of the Moran
chain X (n) are equivalent to running a random scan Gibbs sampler (Smith and Roberts
1993) on the joint distribution of a generalised gamma sample of size n. This implies
the following.

Proposition 1 Let X (n)(·) = {X (n)(m),m ∈ N}be theMarkov chaindescribedabove,
with transitions determined by replacing a randomly chosen coordinate Xi with a
sample from (10). Then X (n)(·) is stationary.
Proof It follows by adapting the proof of Proposition 4.1 by Ruggiero and Walker
(2009b), which does not depend on the specific form of the urnweights, or equivalently
by the stationarity of the Markov chain generated by a Gibbs sampler on X (n), given
that (10) are the full conditional distributions of the coordinates. 
�

The stationary distribution of X (n)(·) is clearly the joint law of an n-sized sample
from (10). The previous result suggests that the present construction can be natu-
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Clustering dynamics in generalised gamma populations 89

rally embedded in broader Monte Carlo strategies where the distinct values of such
observations represent the latent clusters for the data points.

The transition probabilities of Kn(m), denoted

pn(k, k
′) = P(Kn(m + 1) = k′|Kn(m) = k)

can be easily derived from the dynamics of X (n). Denote by M1,n the number of types
appearing only once in X (n). Then, the probability of a transition k �→ k + 1 is given
by the probability 1− M1,n/n of not removing a group of size 1, times the probability
g0(n − 1, k) of sampling a new type as a replacement. Similarly, the probability of a
transition k �→ k−1 is given by the probability M1,n/n of removing a singleton, times
the probability (n − 1− α(k − 1))g1(n − 1, k − 1) of duplicating an existing type as
a replacement. Such transitions are not Markov, since M1,n carries more information
than Kn . Following a similar approach to that by Ruggiero (2014), we can exploit
the approximation M1,n ≈ αKn , deduced from Corollary 1 by Lijoi et al. (2007), to
define

pn(k, k
′) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 − αk

n

)
g0(n − 1, k), k′ = k + 1,

αk

n
(n − 1 − α(k − 1))g1(n − 1, k − 1), k′ = k − 1,

1 − p(k, k + 1) − p(k, k − 1), k′ = k,
0, else;

(11)

(note that there is a misprint in eq. (8) of the paper by Ruggiero (2014), which should
be as in (11) with g0, g1 as in (7), i.e. dropping the small o terms, with obvious
modifications to the subsequent proof). Using now (9), we can approximate (11) with

pn(k, k
′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
1 − αk

n

) (
αk

n − 1
+ β

k1/α
+ o(n−1)

)
, k′ = k + 1,

αk

n
(n − 1 − α(k − 1))

(
1

n − 1
− β

(n − 1)(k − 1)1/α
+ o(n−2)

)
,

k′ = k − 1,
1 − p(k, k + 1) − p(k, k − 1), k′ = k,

(12)

and 0 otherwise. Due to the approximation of g0(n, kn) and g1(n, kn), non-
admissible values can arise for certain choices of parameters when kn is close to
the boundary; hence, the probabilities of Kn stepping up or down are intended
as min (pn(k, k + 1), 1) and max (pn(k, k − 1), 0), respectively. Completed by the
boundary conditions pn(1, 0) = pn(n, n + 1) = 0, Kn(m) with transitions (12) is
clearly recurrent on {1, . . . , n}.

Define now S(·) = {S(t), t ≥ 0} as the solution of the stochastic differential
equation

dS(t) = β

S(t)1/α
dt + √

2αS(t)dB(t), (13)
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where B(t) is a standard Brownianmotion. To the best of our knowledge, (13) does not
seem to belong to anywell-known class of diffusions.Wewill first show that S(t) above
is a well-defined diffusion process on [0,∞), it has an entrance boundary at 0 and a
natural boundary at ∞, and it is non-stationary. An entrance boundary at the origin
means that 0 can be the starting point of the process which instantly enters (0,∞) and
never touches the origin again. A natural boundary at∞ is instead attractive, but never
reached. Then, we will show that S(·) is the scaling limit, as n → ∞, of the above-
defined sequence of Markov chains after an appropriate space-time transformation.

Proposition 2 Let S(·) be the solution to (13). Then S(·) is a Feller process, has an
entrance boundary at 0 and a natural boundary at ∞, and it is non-stationary.

Proof Classical Feller theory leads to studying the boundary behaviour of the process
by investigating some functionals of the drift and diffusion coefficients that charac-
terise the process. Here, we highlight the relevant quantities and refer to Karlin and
Taylor (1981), Section 15.6, for further details (see also Etheridge, 2009, Section 3).
Define the scale function

Z(x) =
∫ x

z(y)dy, z(x) = exp

{
−

∫ x 2μ(y)

σ 2(y)
dy

}

and the speed measure

M(x) =
∫ x

m(y)dy, m(x) = 1

σ 2(x)z(x)
.

A standard calculation leads to find

z(x) = eβx− 1
α
, m(x) = 1

2αx
e−βx− 1

α
. (14)

Letting Z(a) = limx→a Z(x) and similarly for M , for α, β as in (6) it is easy to see
that Z(0) = Z(+∞) = M(+∞) = ∞ and M(0) < ∞. Moreover, from


(x) =
∫ x (∫ x

t
z(y)dy

)
m(t)dt, N (x) =

∫ x (∫ x

t
m(y)dy

)
z(t)dt

we deduce 
(0) = 
(+∞) = N (+∞) = ∞ and N (0) < ∞. The second assertion
now follows from Karlin and Taylor (1981), Section 15.6.

Let now Ĉ([0,∞)) be the Banach space of continuous functions on [0,∞) van-
ishing at infinity. Let also

A f (s) = (β/s1/α) f ′(s) + αs f ′′(s) (15)

be the infinitesimal operator corresponding to (13) and define

D = { f ∈ C([0,∞)) ∩ C2((0,∞)) : A f ∈ C([0,∞))}.
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Corollary 8.1.1 in Ethier and Kurtz (1986), together with the second assertion, implies
that {( f, A f ) : f ∈ D ∩ Ĉ([0,∞))} generates a Feller semigroup on Ĉ([0,∞)),
which is the first statement.

The proof is completed by the fact that a stationary distribution must take the form

ψ(x) = m(x)[C1Z(x) + C2] (16)

and the above arguments imply that both constants must vanish. 
�
Given the boundary properties shown in Proposition 2, it follows that, without loss

of generality, we can start S(·) from (0,∞) and take the latter as the state space of the
processes.

The following Theorem, which extends Proposition 3 by Lijoi et al. (2007), shows
that (13) is the scaling limit of the sequence ofMarkov chains {Kn}n≥1 with transitions
(12), in the sense that, as n → ∞, the sequence of appropriately transformed chains

converges in distribution to S(·). To this end, denote by Zn
d→ Z convergence in

distribution, let DA(B) be the Skorokhod space of right-continuous functions from A
to B with left limits, and CA(B) its subspace of continuous functions endowed with
the topology of uniform convergence. Let also �·� be the floor function.
Theorem 1 Let Kn(·) = {Kn(m),m ∈ N} be the Markov chain on N with transition
probabilities as in (12), where α ∈ (0, 1) and β > 0, and define K̃n(·) = {K̃n(t), t ≥
0} by

K̃n(t) = Kn(�n1+αt�)
nα

.

Let also S(·) be as in (13). If K̃n(0)
d→ S(0), then

K̃n(·) d→ S(·) in C[0,∞)([0,∞))

as n → ∞.

Proof Let Un be the semigroup operator induced by (12). Writing n and k in place of
n − 1 and k − 1 for brevity given their asymptotic equivalence, we have

Un f (k) = E[ f (Kn(m + 1))|Kn(m) = k]
= f (k + 1)pn(k, k + 1) + f (k − 1)pn(k, k − 1) + f (k)pn(k, k).

Consider now the spatially rescaled variable and let I denote the identity operator,
leading to

(Un − I ) f

(
kn
nα

)
= E

[
f

(
Kn(m + 1)

nα

)
− f

(
Kn(m)

nα

) ∣∣Kn(m) = kn

]

=
[
f

(
kn + 1

nα

)
− f

(
kn
nα

)]
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×
[(

1 − αkn
n

)(
αkn
n

+ β

k1/αn

+ o(n−1)

)]

+
[
f

(
kn − 1

nα

)
− f

(
kn
nα

)]

×
[

αkn
n

(n − αkn)

(
1

n
− β

nk1/αn

+ o(n−2)

)]
.

A second-order Taylor expansion, together with some standard computation, yields

(Un − I ) f (sn) = n−1−α β

s1/αn

f ′(sn) + n−1−ααsn f
′′(sn) + o(n−1−α)

where sn = kn/nα . Since sn → s from (4), it follows that

n1+α(Un − I ) f (s) → A f (s)

uniformly on (0,∞), for f ∈ D, with A as in (15). Theorem 1.6.5 by Ethier and Kurtz
(1986) now implies that

Un (t/εn) f (s) → U (t) f (s), as n → ∞, ∀ f (s) ∈ Ĉ((0,∞)),

where εn = n−1−α , where U is the Feller semigroup operator corresponding to A.
Then Theorem 4.2.6 of Ethier and Kurtz (1986) in turn implies that

Kn(�n1+αt�)
nα

d→ S(t)

holds in D[0,∞)((0,∞)), provided the weak convergence of the initial distribu-
tions holds on (0,∞). Since the S(t) has null probability of touching the origin
for all t > 0, if the convergence of the initial distributions holds on [0,∞), then
the weak convergence holds in D[0,∞)([0,∞)). The full statement now follows
from the fact that convergence in distribution on D[0,∞)([0,∞)) to an object that
belongs to C[0,∞)([0,∞)) with probability one implies convergence in distribution
on C[0,∞)([0,∞)). 
�

The above Theorem states that the sequence of laws induced by the Markov chains
K̃n(t) on the cadlag space of sample paths D[0,∞)([0,∞)) converges weakly to the
law induced by S(·) onto C[0,∞)([0,∞)). By analogy with (4), the scaling limit S(·)
in (13) can be interpreted as a dynamic measure of diversity in the generalised gamma
population model constructed at the beginning of the present section. Figure 1 shows
some examples of sample paths of (13) for different values of α.
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Fig. 1 Some paths of (13) for different values of α

4 Stationary approximations to the scaling limit

Bayesian nonparametric inference in the presence of temporally structured data usually
tries to use stationary processes as building blocks of a broader model, as one typically
has in mind a certain distributional structure for the marginal states and wants to make
the latter depend on some covariate, such as time. Note that this approach is not
particularly restrictive, as one can still model non-stationary time series starting from
stationary elements used for the construction in different hierarchical levels, in a similar
spirit to hiddenMarkov models (Mena and Ruggiero 2016). It would then be desirable
to have a stationary process describing the dynamics of the number of clusters. As
this is not the case for the dynamics associated to generalised gamma clustering, as
shown in Proposition 2, we devise a weak approximation to the diffusion in Theorem
1 such that any term of the approximating sequence is a stationary diffusion. This will
provide stationary dynamics for the number of groups which are as close as desired to
those induced by a generalised gamma population, with an explicit invariant measure.

It is instructive to construct each term of the sequence of stationary diffusions from a
continuous-time Markov chain, which highlights the underlying dynamics and allows
a comparison with the results of the previous section. For any γ > 0, consider a
continuous-time Markov chain {Kn,γ (t), t ≥ 0} on N with transition rates

λ1 = αk1+γ

n1+αγ
+ β

k1/α
+ o(n−1) = αs1+γ

n1−α
+ β/s1/α

n
+ o(n−1)

from k to k + 1 and

λ2 = αk1+γ

n1+αγ
+ o(n−1) = αs1+γ

n1−α
+ o(n−1)

from k to k − 1. Here, we are still assuming that kn/nα → sn . The following result
mimics Theorem 1 and identifies the scaling limit of the sequence of Markov chains.
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Proposition 3 Let {Kn,γ (t), t ≥ 0} be the above-defined continuous-time Markov
chain with rates λ1 and λ2, and let {K̃n,γ (t), t ≥ 0} be defined as

K̃n,γ (t) = Kn,γ (n1+αt)

nα
.

Let {Sγ (t), t ≥ 0} be the diffusion process on [0,∞) driven by the stochastic differ-
ential equation

dSγ (t) = β

Sγ (t)1/α
dt +

√
2α(Sγ (t))1+γ dB(t). (17)

If K̃n,γ (0)
d→ Sγ (0) then

K̃n,γ (·) d→ Sγ (·) in C[0,∞)([0,∞))

as n → ∞.

Proof The proof proceeds along the same lines of that of Theorem 1. In particular,
the well definedness of the diffusion follows by the same argument for

Aγ f (s) = β

s1/α
f ′(s) + αs1+γ f ′′(s).

with f ∈ Dγ ([0,∞)) and

Dγ ([0,∞)) = { f ∈ C([0,∞)) ∩ C2((0,∞)) : Aγ f ∈ C([0,∞))}.

Letting nowUn,γ be the semigroup corresponding to the Markov chain Kn,γ , we have

(Un,γ − I ) f

(
kn
nα

)
= 1

nα
f ′(sn)(λ1 − λ2) + 1

2n2α
f ′′(sn)(λ1 + λ2) + o(n−1−α)

= n−1−α f ′(sn)
β

s1/αn

+ n−1−α f ′′(sn)αs1+γ
n + o(n−1−α),

and the rest of the proof follows similarly. 
�
We conclude by showing that any process in the class {Sγ (·)}γ>0 is stationary; we

identify the invariant measure and prove that for any sequence γ� → 0, the associated
sequence of diffusions {Sγ�

(·)}γ�
converges in distribution to S(·) in Theorem 1, as

� → ∞. For notational simplicity, we write Sγ (·) in place of Sγ�
(·).

Proposition 4 Let S(·) and Sγ (·) be as in (13) and (17), respectively. For any γ > 0,
Sγ (·) is stationary with invariant measure

ψγ (x) ∝ 1

2αx1+γ
exp

{
− β

1 + αγ
x− 1+αγ

α

}
, x > 0, (18)
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with normalising constantC = 2β(
1+αγ

β
)

1
1+αγ /�(

αγ
1+αγ

), and has an entrance bound-
ary at 0 and a natural boundary at ∞. Moreover, as γ → 0, Sγ (·) converges in
distribution to S(·) on C[0,∞)([0,∞)), provided the initial distributions converge.

Proof Denote by μγ (·) and σγ (·) the drift and diffusion coefficients in (17). Then

zγ (x) = exp

{
−

∫ x 2μγ (y)

σ 2
γ (y)

dy

}
= exp

{
β

1 + αγ
x− 1+αγ

α

}

and

mγ (x) = 1

σ 2
γ (x)zγ (x)

= 1

2αx1+γ
exp

{
− β

1 + αγ
x− 1+αγ

α

}
.

The function zγ (x) behaves essentially as z(x) = z0(x), so Zγ (0) = Zγ (+∞) = ∞.
The function mγ (x), instead, behaves like m(x) = m0(x) in a neighbourhood of
x = 0, but goes to 0 as 1/x1+γ for x → ∞, so Mγ (0) < ∞ and Mγ (+∞) < ∞. We
immediately have 
γ (0) = 
γ (+∞) = ∞. Moreover, Nγ (0) < ∞ and Nγ (+∞) =
∞. The boundary classification then again follows from Karlin and Taylor (1981),
Section 15.6. From (16), we now find that Zγ (x) ≡ ∞ implies C1 = 0, whence
ψγ (x) ∝ mγ (x).

Note now that the infinitesimal generators of Sγ (·) and S(·) satisfy
∣∣Aγ f (s) − A f (s)

∣∣ =
∣∣∣∣ β

s1/α
f ′(s) + αs1+γ f ′′(s) −

(
β

s1/α
f ′(s) + αs f ′′(s)

)∣∣∣∣
= α|(s1+γ − s) f ′′(s)| → 0

uniformly on [0,∞), for f ∈ D0 = D∩C2([0,∞)), as γ → 0. Now,D0 can be easily
shown to be a core for A (cf. Ethier and Kurtz (1986), Section 1.3), i.e. its closure is
such that D0 = D and A|D0 = A (here D0 and D differ for functions with one or two
infinite derivatives at 0). Theorems 1.6.1 and 4.2.5 by Ethier and Kurtz (1986) then
yield

lim
γ→0

Uγ (t) f = U (t) f ∀ f ∈ Ĉ([0,∞))

and

Sγ (·) d→ S(·) as γ → 0

on D[0,∞)[0,∞), provided the initial distributions converge. The rest of the argument
is now analogous to the proof of Theorem 1. 
�

Figure 2 shows the qualitative difference among sample paths of Sγ (·) for decreas-
ing values of γ . Figure 3 shows the convergence of the unnormalised stationary
measures of Sγ (·) to the speed measure m(x) of S(·) (blue curve), which does not
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Fig. 2 Some paths of (17) for different values of γ
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Fig. 3 Convergence of unnormalised stationary densities (16) for γ = 0.1, 0.05, 0.025 (yellow to red) to
the speed measure (14) of (13) (blue), which does not integrate

integrate, for decreasing values of γ (bottom to top); cf. (14) and (18). Here, the
stationary distribution of Sγ (·) has right tail decaying as x−1−γ .

Acknowledgements The authors are grateful to two anonymous referees for helpful comments and to
Pierpaolo De Blasi and Bertrand Lods for useful suggestions. This work was conducted while the second
author was affiliated to the University of Torino and Collegio Carlo Alberto, Italy.

References

Arbel, J., Favaro, S., Nipoti, B., Teh, Y.W. (2016). Bayesian nonparametric inference for discovery proba-
bilities: credible intervals and large sample asymptotics. Statistica Sinica (in press).

Blackwell, D. (1973). Discreteness of Ferguson selections. The Annals of Statistics, 2, 356–358.
Brix, A. (1999). Generalized gamma measures and shot-noise Cox processes. Advances in Applied Proba-

bility, 31, 929–953.
Charalambides, C. A. (2005). Combinatorial methods in discrete distributions. Hoboken, NJ: Wiley.

123



Clustering dynamics in generalised gamma populations 97

Costantini, C., De Blasi, P., Ethier, S. N., Ruggiero, M., Spanò, D. (2016). Wright–Fisher construction of
the two-parameter Poisson–Dirichlet diffusion. arXiv:1601.06064.

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prünster, I., Ruggiero, M. (2015). Are Gibbs-type priors the
most natural generalization of the Dirichlet process? IEEE Transactions Pattern Analysis andMachine
Intelligence, 37, 212–229.

Etheridge, A. M. (2009). Some mathematical models from population genetics. École d’été de Probabilités
de Saint-Flour XXXIX. Lecture Notes in Math. 2012. Berlin, Heidelberg: Springer.

Ethier, S. N., Kurtz, T. G. (1986).Markov processes: characterization and convergence. New York: Wiley.
Feng, S. (2010). The Poisson–Dirichlet distribution and related topics. Heidelberg: Springer.
Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics, 1,

209–230.
Gnedin,A., Pitman, J. (2006). ExchangeableGibbs partitions andStirling triangles. Journal ofMathematical

Sciences, 138, 5674–5685.
Griffin, J. E., Kolossiatis, M., Steel, M. F. J. (2013). Comparing distributions by using dependent normalized

random-measure mixtures. Journal of the Royal Statistical Society. Series B, 75, 499–529.
Griffin, J. E., Leisen, F. (2016). Compound random measures and their use in Bayesian nonparametrics .

Journal of the Royal Statistical Society. Series B (in press).
Hjort, N. L., Holmes, C. C., Müller, P., Walker, S. G. (Eds.). (2003). Bayesian nonparametrics. Cambridge:

Cambridge University Press.
Karlin, S., Taylor, H. M. (1981). A second course in stochastic processes. New York: Academic Press.
Korwar, R. M., Hollander, M. (1973). Contribution to the theory of Dirichlet processes. The Annals of

Probability, 1, 705–711.
Lijoi, A., Prünster, I. (2010). Models beyond the Dirichlet process. In N. L. Hjort, C. C. Holmes, P. Müller,

S. G.Walker (Eds.), Bayesian nonparametrics (pp. 80–136). Cambridge: Cambridge University Press.
Lijoi, A., Mena, R. H., Prünster, I. (2005). Hierarchical mixture modeling with normalized inverse-gaussian

priors. Journal of the American Statistical Association, 472, 1278–1291.
Lijoi,A.,Mena,R.H., Prünster, I. (2007). Controlling the reinforcement inBayesian non-parametricmixture

models. Journal of the Royal Statistical Society. Series B, 69, 715–740.
Lijoi, A., Prünster, I., Walker, S. G. (2008). Investigating nonparametric priors with Gibbs structure. Sta-

tistica Sinica, 18, 1653–1668.
Lijoi, A., Nipoti, B., Prünster, I. (2014). Bayesian inference with dependent normalized completely random

measures. Bernoulli, 20, 1260–1291.
Lo, A. Y. (1984). On a class of Bayesian nonparametric estimates: I. Density estimates. The Annals of

Statistics, 12, 351–357.
MacEachern, S. N. (1999). Dependent nonparametric processes. In ASA Proceedings of the Section on

Bayesian Statistical Science. Alexandria, VA: American Statistical Association.
MacEachern, S.N. (2000). Dependent Dirichlet processes. Technical Report, Department of Statistics, Ohio

State University, Columbus.
Mena, R. H., Ruggiero,M. (2016). Dynamic density estimation with diffusive Dirichlet mixtures.Bernoulli,

22, 901–926.
Mena, R. H., Ruggiero, M., Walker, S. G. (2011). Geometric stick-breaking processes for continuous-time

Bayesian nonparametric modelling. Journal of Statistical Planning and Inference, 141, 3217–3230.
Papaspiliopoulos, O., Ruggiero, M., Spanò, D. (2016). Conjugacy properties of time-evolving Dirichlet and

gamma random measures. Electronic Journal of Statistics (to appear).
Petrov, L. (2009). Two-parameter family of diffusion processes in theKingman simplex.Functional Analysis

and its Applications, 43, 279–296.
Pitman, J. (1995). Exchangeable and partially exchangeable random partitions. Probability Theory and

Related Fields, 102, 145–158.
Pitman, J. (1996). Some developments of the Blackwell-MacQueen urn scheme. In T. S. Ferguson, L. S.

Shapley, J. B. MacQueen (Eds.), Statistics, Probability and Game Theory. Institute of Mathematical
Statistics Lecture Notes-Monograph Series, 30. Hayward, CA: Institute of Mathematical Statistics.

Pitman, J. (2006). Combinatorial Stochastic Processes. Lecture Notes in Mathematics, 1875. Berlin:
Springer.

Pitman, J., Yor, M. (1997). The two-parameter Poisson–Dirichlet distribution derived from a stable subor-
dinator. The Annals of Probability, 25, 855–900.

Ruggiero, M. (2014). Species dynamics in the two-parameter Poisson–Dirichlet diffusion model. Journal
of Applied Probability, 51, 174–190.

123

http://arxiv.org/abs/1601.06064


98 M. Ruggiero and M. Sordello

Ruggiero, M., Walker, S. G. (2009a). Bayesian nonparametric construction of the Fleming–Viot process
with fertility selection. Statistica Sinica, 19, 707–720.

Ruggiero, M., Walker, S. G. (2009b). Countable representation for infinite-dimensional diffusions derived
from the two-parameter Poisson–Dirichlet process. Electronic Communications in Probability, 14,
501–517.

Ruggiero, M., Walker, S. G., Favaro, S. (2013). Alpha-diversity processes and normalized inverse-Gaussian
diffusions. The Annals of Applied Probability, 23, 386–425.

Smith, A. F. M., Roberts, G. O. (1993). Bayesian computation via the Gibbs sampler and related Markov
chain Monte Carlo methods. Journal of the Royal Statistical Society. Series B, 55, 3–23.

123


	Clustering dynamics in a class of normalised generalised gamma dependent priors
	Abstract
	1 Introduction
	2 Preliminaries on normalised generalised gamma priors
	3 A generalised gamma population model and its group dynamics
	4 Stationary approximations to the scaling limit
	Acknowledgements
	References




