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Abstract Collapsibility deals with the conditions under which a conditional (on a
covariate W ) measure of association between two random variables Y and X equals
the marginal measure of association. In this paper, we discuss the average collapsi-
bility of certain well-known measures of association, and also with respect to a new
measure of association. The concept of average collapsibility is more general than col-
lapsibility, and requires that the conditional average of an association measure equals
the corresponding marginal measure. Sufficient conditions for the average collapsi-
bility of the association measures are obtained. Some interesting counterexamples are
constructed and applications to linear, Poisson, logistic and negative binomial regres-
sion models are discussed. An extension to the case of multivariate covariate W is
also analyzed. Finally, we discuss the collapsibility conditions of some dependence
measures for survival models and illustrate them for the case of linear transformation
models.

Keywords Average collapsibility · Conditional distributions · Linear and non-linear
regression models · Measures of association · Linear transformation model

1 Introduction

The study of association between two random variables arises in several applications.
Severalmeasures, nonparametric in nature, have been proposed in the literature. Often,
the random variables of interest, say Y and X , may be associated because of their
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1156 P. Vellaisamy

association with another variable W , called a covariate or a background variable. In
this case, we need to investigate the conditional association measure between Y and X
given W , and compare it with the marginal association measure between Y and X . It
is in general possible that the conditional association measure may be positive, while
the marginal association measure may be negative. Such an effect reversal is called the
Yule–Simpson paradox attributed to Yule (1903) and Simpson (1951). When Yule–
Simpson paradox or the effect reversal does not occur, and a conditional measure of
association equals the marginal measure, we say that the measure is collapsible over
the covariate W . Collapsibility is an important issue associated with data analysis,
analysis of contingency tables, causal inference, regression analysis, epidemiological
studies and the design of experiments; see, for example, (Cox andWermuth 2003; Ma
et al. 2006; Xie et al. 2008) for applications and discussions.

There have been several notions of collapsibility, namely simple, strong and uniform
collapsibility. These issues have been addressed in several different contexts such as
the analysis of contingency tables, regression models and association measures; see,
for example, (Bishop 1971; Cox 2003; Cox and Wermuth 2003; Geng 1992; Ma et al.
2006; Vellaisamy and Vijay 2007, 2008;Wermuth 1987, 1989;Whittemore 1978; Xie
et al. 2008). Cox and Wermuth (2003) studied the concept of distribution dependence
and discussed the conditions under which no effect reversal occurs.

We next define the (simple) collapsibility and the uniform collapsibilitywith respect
to the conditional expectation dependence function ∂E(Y |x, w)/∂x [(see Xie et al.
(2008)] and they follow similarly for other measures.

Definition 1 The conditional expectation dependence function ∂E(Y |x, w)/∂x is
said to be homogeneous over W if

∂E(Y |x, w)

∂x
= ∂E(Y |x, w′)

∂x
,

for all x and w′ �= w.

Definition 2 The conditional expectation dependence function ∂E(Y |x, w)/∂x is
said to be simple collapsible over W if

∂E(Y |x, w)

∂x
= ∂E(Y |x)

∂x
, for all x and w,

and uniformly collapsible over W if

∂E(Y |x,W ∈ A)

∂x
= ∂E(Y |x)

∂x

for all x and A, where A is a subset of levelswhenW is nominal, a subset of consecutive
levels (i, i+1, . . . , i+ j)whenW is ordinal, and is an interval whenW is a continuous
random variable.

Observe that the collapsibility of a measure implies the homogeneity and the uni-
form collapsibility implies the collapsibility. In other words, both the collapsibility
and the uniform collapsibility require the condition of homogeneity.
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Collapsibility of some measures and models 1157

Xie et al. (2008) discussed the simple collapsibility and the uniform collapsibility
of the following association measures:

(i)
∂

∂x
E(Y | x) (expectation dependence)

(ii)
∂2

∂x∂y
log f (x, y) (mixed derivative of interaction)

(iii)
∂

∂x
F(y | x) (distribution dependence).

They discussed also the stringency of the above measures for positive associa-
tion, studied the conditions for no effect reversal (after marginalization over W ) and
obtained the necessary and sufficient conditions for uniform collapsibility of mixed
derivative of interaction, among other results. Recently, Vellaisamy (2012) investi-
gated the average collapsibility of distribution dependence and the quantile regression
coefficients. It is shown that average collapsibility is a general concept and coincides
with collapsibility under the condition of homogeneity. In addition, the average col-
lapsibility does not require more stringent conditions than the simple collapsibility
which requires an additional condition of homogeneity and thus restricts the class of
joint distributions.

In the context of contingency tables, the relative risk (rr ) is an important mea-
sure of association which is widely used in economics, epidemiology, sociology and
probabilistic expert systems [see Geng (1992)]. Consider a 2× 2 table corresponding
to binary variables Y and X with pi j as its cell probabilities. The rr is defined as
r = p1|1/p1|2, where for example p1|1 = P(Y = 1|X = 1). Similarly, when we have
a 2×2×2 table with an additional binary covariateW , let r(1) and r(2) denote the rr
corresponding to the levels W = 1 and W = 2, respectively. The three-dimensional
table is collapsible over W with respect to rr if (a) r(1) = r(2) = r∗ (consistency
over W ) and (b) rm = r∗, where rm denotes the rr corresponding to the marginal
2 × 2 table, obtained by summing over the levels of W . Note that consistency is a
rather stronger condition which may not hold in many situations.

To motivate average collapsibility, consider for instance the following 2 × 2 × 2
table:

W
X Y 1 2

1 4 1
1

2 1 4
1 2 2

2
2 3 3

From the above table, we have r(1) = 2 and r(2) = 0.5; hence, the consistency as well
as the collapsibility of rr over W does not hold. In addition, from the marginal table
corresponding toY and X , we have rm = 1.25.However, E(r(W )) = 1

2r(1)+ 1
2r(2) =
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1.25, where we have used the empirical distribution P(W = 1) = P(W = 2) = 1
2 of

W to compute the expectation. Thus, we see that the average collapsibility E(r(W )) =
rm = 1 holds.

In this paper, the average collapsibility of the association measures expectation
dependence and mixed derivative of interaction, studied by Xie et al. (2008), are
investigated in detail. Thesemeasures have connections to linear regression and logistic
regression models. In addition, a new measure of association, namely

(iv)
∂

∂x
log E(Y | x) (log − expectation dependence)

is introduced and its average collapsibility conditions are investigated. This new mea-
sure has a direct application to Poisson and negative binomial regressionmodels. Some
of the results are then extended to the case of multivariate covariate W.

Finally, we consider the collapsibility results for certain survival models. Recently,
Di Serio et al. (2009) discussed the Simpson’s paradox for the survival probability and
hazard rate functions for the survival models, and observed some interesting results.
But, the collapsibility issues have not been addressed in the literature so far. We derive
sufficient conditions for the average collapsibility of survival probability and hazard
rate dependence functions and also apply them to the case of linear transformation
models. Note that the linear transformation models include Cox’s (1972) proportional
hazard rate models and Pettitt’s (1984) proportional odds model as special cases.

2 Average collapsibility of association measures

Let (Y, X,W ) be a random vector, where our interest is mainly on the association
between Y and X , and W is treated as a covariate. We assume for simplicity that X
and W are continuous, unless stated otherwise. Note that Y has a monotone (increas-
ing) regression function of X if E(Y |X = x) is increasing in x or equivalently the
expectation dependence function (EDF) ∂E(Y | X = x)/∂x ≥ 0. We first discuss the
average collapsibility results for the EDF and introduce the following definition.

Definition 3 The conditional expectation dependence function ∂E(Y |x, w)/∂x is
average collapsible over W if

EW |x
(

∂

∂x
E(Y |x,W )

)
= ∂

∂x
E(Y |x), for all x . (1)

The following result gives sufficient conditions for the average collapsibility of
EDF. In the sequel, Y � X and Y � X |W , respectively, denote the independence
of X and Y , and the conditional independence of Y and X given W . We assume
henceforth all the partial derivatives exist and are continuous so that the differentiation
and integration can be interchanged. In addition, for simplicity, we will henceforth
denote E(Y |X = x,W = w) by E(Y |x, w) and similar notations for conditional
distributions/densities.
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Collapsibility of some measures and models 1159

Theorem 1 The conditional EDF measure ∂E(Y |x, w)/∂x is average collapsible
over W if either

(i) E(Y |x, w) is independent of w, or
(ii) X �W

holds.

Remark 1 (i) The condition that E(Y |x, w) is independent of w implies the homo-
geneity of EDF and in this case both uniform collapsibility [Part (a) of Theorem
3.4 of Xie et al. (2008)] and average collapsibility hold. However, when the EDF
is not homogeneous over w, average collapsibility may still hold if (and only if)
X �W , while the simple collapsibility and the uniform collapsibility do not hold
as they require the homogeneity condition.

(ii) Observe also that the condition E(Y |x, w) is independent of w is a weaker
condition than Y � W |X , usually required for other notions of collapsibility.
For example, when W > 0, and (Y |x, w) ∼ U (x − w, x + w), we have
E(Y |x, w) = x for all w. But, the conditional density of (Y |x, w) is

f (y|x, w) = 1

2w
, x − w < y < x + w, (2)

showing that Y and W are not conditionally independent given X .

First, we discuss an application of Theorem 1.

Example 1 Let X1, X2 and X3 be iid N (0, 1) variables. Define now

W = X1; X = X1X2; Y = X1X2 + X1X3,

so that X = WX2 and Y = X + WX3. Then it can be seen that

(X |w) ∼ N (0, w2); (Y |x, w) ∼ N (x, w2).

Hence, E(Y |x, w) = x which is independent of w. By Theorem 1, the average col-
lapsibility ofEDF ∂E(Y |x, w)/∂x holds. Note here that Y andW are not conditionally
independent given X .

We next show that condition (i) or (ii) is only sufficient, but not necessary. Hereafter,
φ(z) and �(z) denote, respectively, the density and the distribution function of Z ∼
N (0, 1).

Example 2 Suppose (Y |x, w) follows uniform U (0, (x2 + (w − x)2)) so that

F(y|x, w) = y(x2 + (w − x)2)−1, 0 < y < (x2 + (w − x)2) (3)

and E(Y |x, w) = 1
2 (x

2 + (w − x)2). Assume also (W |X = x) ∼ N (x, 1) so that

∂

∂x
f (w|x) = −φ′(w − x) = (w − x)φ(w − x). (4)
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Then
∫

E(Y |x, w)
∂

∂x
f (w|x)dw

= 1

2

∞∫
−∞

(x2 + (w − x)2)(w − x)φ(w − x)dw

= 1

2

[
x2

∞∫
−∞

(w − x)φ(w − x)dw +
∞∫

−∞
(w − x)3φ(w − x)dw

]

= 1

2

[
x2

∞∫
−∞

tφ(t)dt +
∞∫

−∞
t3φ(t)dt

]

= 0, for all x . (5)

Thus, using (34) given in the Appendix, the average collapsibility of EDF over W
holds, but neither condition (i) nor condition (ii) is satisfied.

As another example, one can take X ∼ N (0, 1), (W |x) ∼ N (x, 1) and (Y |x, w) ∼
N (x2 + (w − x)2, 1). Then again (34) is satisfied and hence the average collapsibility
of EDF holds.

An implication of Theorem 1 to linear regression models follows.
Linear regression Consider the following conditional and marginal linear regression
models, respectively (see Xie et al. (2008)):

E(Y |X = x,W = w) =
{

α(w) + β(w)x, ifW is discrete
α + βx + γw, ifW is continuous

and
E(Y |x) = α̃ + β̃x .

Then

∂

∂x
E(Y | X = x,W = w) =

{
β(w), ifW is discrete
β, ifW is continuous

and
∂

∂x
E(Y | x) = β̃.

We say that the regression coefficient β(w) (or β) is simple collapsible if β(w) =
β̃ for all w (or β = β̃). In addition, it is said to be average collapsible if

EW |x (β(W )) = β̃ (or EW |x (β) = β̃), for all x . (6)

Thus, the average collapsibility of EDF reduces to the average collapsibility of regres-
sion coefficients, in the case of linear regression models.
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Remark 2 Vellaisamy andVijay (2007) defined the average collapsibility of regression
coefficients β(w) as EW (β(W )) = β̃ and discussed the conditions under which it
holds. However, the definition of average collapsibility given in (6) is more natural as
it involves the joint distribution of W and X . Note also that EW |x (β(W )) = β̃ for all
x implies EW (β(W )) = β̃, but not necessarily conversely.

Next,we look at the average collapsibility ofmixedderivative of interaction (MDI ).
Since

∂2

∂x∂y
log f (x, y) = ∂2

∂x∂y
log f (y|x), for all xand y, (7)

it follows from Proposition 3.2.1 of Whittaker (1990) that

∂2

∂x∂y
log f (y|x) = 0 for all x and y ⇐⇒ Y � X.

In view of (7), the MDI henceforth stands for ∂2 log f (y|x)/∂x∂y, which motivates
the following definition of average collapsibility.

Definition 4 The conditionalMDI measure ∂2 log f (y|x, w)/∂x∂y is said to be aver-
age collapsible over W if

EW |x
(

∂2

∂x∂y
log f (y|x,W )

)
= ∂2

∂x∂y
log f (y|x), for all (y, x).

It is assumed that log f (y|x) has continuous partial derivatives so that

∂2

∂x∂y
log f (y|x) = ∂2

∂y∂x
log f (y|x) for all (y, x).

The following result provides a set of sufficient conditions for the average collapsibility
of MDI.

Theorem 2 The MDI measure is average collapsible over W if either

(i) Y �W |X, or
(ii) X �W |Y

holds.

Xie et al. (2008) showed that condition (i) or (ii) in Theorem 2 is necessary and
sufficient for uniform collapsibility. The following counterexample shows that they
are only sufficient, but not necessary, for the average collapsibility.

Example 3 Let X > 0 and (W |X = x) ∼ N (x, 1). Assume that

f (y|x, w) = xyx−1(x2 + (w − x)2), 0 < y < (x2 + (w − x)2)−1/x , (8)

which can easily be seen to be a valid density.
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Then

∂2

∂x∂y
log f (y|x, w) = 1

y
= EW |x

(
∂2

∂x∂y
log f (y|x,W )

)
. (9)

Since (W |X = x) ∼ N (x, 1), it follows that the marginal density of (Y |X = x) is

f (y|x) =
∞∫

−∞
f (y|x, w) f (w|x)dw

= xyx−1

⎡
⎣

∞∫
−∞

x2φ(w − x)dw +
∞∫

−∞
(w − x)2φ(w − x)dw

⎤
⎦

= xyx−1(x2 + 1),

which is also a valid density on 0 < y < (x2 + 1)−1/x .

In addition, it follows from (9)

∂2

∂x∂y
log f (y|x) = 1

y
= EW |x

(
∂2

∂x∂y
log f (y|x,W )

)
.

Thus, average collapsibility of MDI holds, although the condition (i) is not satisfied.
Note, however, the condition (ii) is satisfied.

Itwas rather challenging to construct the counterexample 3, as it requires, in addition
to the other conditions, the interchange of log and integration, which holds very rarely.
Observe also that in Example 3,

∂

∂y
log f (y|x, w) = ∂

∂y
log f (y|x), for all (y, x),

which leads to the average collapsibility. This observation leads to the following result
which generalizes Theorem 2 whose proof is immediate.

Theorem 3 The MDI measure is average collapsible over W if either

(i)
∂

∂y
log f (y|x, w) = ∂

∂y
log f (y|x), for all (y, x), or

(ii)
∂

∂x
log f (y|x, w) = ∂

∂x
log f (y|x), for all (y, x)

holds.

Remark 3 (i) Observe that the sufficient conditions given in Theorem 3 are weaker
than the ones given in Theorem 2.
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Collapsibility of some measures and models 1163

(ii) It will be of practical interest to develop certain statistical tests to verify the
conditions (i) and (ii). Indeed, there is not much work devoted to the testing
aspects of collapsibility in general, due to the complexities involved.

Some additional examples for Theorem 3. Let f (y|x, w) be as in Example 3 and
consider, for λ > 0, the tempered normal density

tλ(w|x) = cλ(x)e
−λwφ(w − x), for x > 0, w ∈ R,

where

cλ(x) =
( ∞∫

−∞
e−λwφ(w − x)dw

)−1

= e(x2−(x−λ)2)/2,

that is, tλ(w|x) = φ(w − x +λ). Then the corresponding marginal density of (Y |X =
x) is

fλ(y|x) = xyx−1

⎡
⎣

∞∫
∞

x2φ(w − x + λ)dw +
∞∫

∞
(w − x)2φ(w − x + λ)dw

⎤
⎦

= xyx−1(x2 + λ2 + 1),

which is also a valid density on 0 < y < (x2 + λ2 + 1)−1/x . Thus, the average
collapsibility of MDI holds for the family {tλ(w|x)}, λ > 0, also.

Next, we discuss the connection of Theorem 2 to logistic regression models.
Logistic regression Let Y be a binary variable and consider the following conditional
and marginal logistic regression models (Vellaisamy and Vijay 2007; Xie et al. 2008)
considered in the literature:

log

(
f (1|x, w)

f (0|x, w)

)
=

{
α(w) + β(w)x, ifW is discrete
α + βx + γw, ifW is continuous

and

log

(
f (1|x)
f (0|x)

)
= α̃ + β̃x .

We say the logistic regression coefficient is simple collapsible if

β̃ =
{

β(w) for all w, ifW is discrete
β, ifW is continuous.

In addition, we say β(w) or β is said to be average collapsible if EW |x (β(W )) = β̃,

when W is discrete and EW |x (β) = β̃, when W is continuous.
Since Y is binary, the partial derivative is replaced by the difference between the

adjacent levels of Y [see Cox (2003)] so that
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∂

∂x

(
∂

∂y
log f (y|x, w)

)
= ∂

∂x
(log f (1|x, w) − log f (0|x, w))

= ∂

∂x
log

(
f (1|x, w)

f (0|x, w)

)

=

⎧⎪⎨
⎪⎩

∂

∂x
(α(w) + β(w)x) = β(w), ifW is discrete

∂

∂x
(α + βx + γw) = β, ifW is continuous,

the logistic regression coefficients corresponding to both the cases of W . From The-
orem 2, we now conclude that β(w) or β is average collapsible if (i)Y � W |X or
(i i)X �W |Y holds.

Finally, we discuss a new measure called log-expectation dependence (LED)
between Y > 0 and X , defined by ∂ log E(Y |x, w)/∂x , where it is assumed that
0 < E(Y |x, w) < ∞, for all (x, w). First note that for all x ,

∂

∂x
log E(Y |x) = 0 ⇐⇒ ∂

∂x
E(Y |x) = 0

⇐⇒
∫

y
∂

∂x
(dF(y|x)) = 0

⇐⇒ dF(y|x) = dF(y|x∗) for all y, x and x∗

⇐⇒ Y � X.

In addition, by Theorem 1 of Xie et al. (2008),

∂

∂x
log E(Y |x) ≥ 0 �⇒ ∂

∂x
E(Y |x) ≥ 0 �⇒ ρ(Y, X) ≥ 0,

where ρ(Y, X) is the correlation coefficient between Y and X .
Assume now E(Y |x) �= 0 for all x . Since,

∂

∂x
log E(Y |x) =

∂
∂x E(Y |x)
E(Y |x) ,

we have LED is nonnegative if and only if E(Y |x) is positive (negative) and ED is
nonnegative (nonpositive) for all x . In other words, LED is nonnegative if and only
if E(Y |x) is positive (negative) and nondecreasing (nonincreasing).

Next, we discuss the collapsibility issues for the LED measure and hence the
following definition.

Definition 5 Theconditional LEDmeasure ∂ log E(Y |x, w)/∂x is simple collapsible
over W if

∂

∂x
log E(Y |x, w) = ∂

∂x
log E(Y |x), for all x andw (10)
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Collapsibility of some measures and models 1165

and average collapsible over W if

EW |x
(

∂

∂x
log E(Y |x,W )

)
= ∂

∂x
log E(Y |x), for all x . (11)

Theorem 4 The LED measure is simple collapsible and hence average collapsible
over W if E(Y |x, w) is homogeneous over w.

Note that the condition of homogeneity of E(Y |x, w) is a weaker condition than
Y�W |X , a condition usually required for othermeasures. In addition, it seems difficult
to obtain other weaker sufficient conditions than the ones given in Theorem 4.

The LEDmeasure has relevance to Poisson and negative binomial (NB) regression
models, seen as follows.
Poisson regression. Consider the Poisson regression model defined by

(Y |X = x,W = w) ∼ Poi(λ(x, w)),

where the mean

E(Y |x, w) = λ(x, w) =
{
eα(w)+β(w)x , ifW is discrete

eα+βx+γw, ifW is continuous.

Then

∂

∂x
(log E(Y |x, w)) =

{
β(w), ifW is discrete

β, ifW is continuous.

Let (Y |x) ∼ Poi(eα̃+β̃x ), the marginal Poisson regression model. Then

log E(Y |x) = α̃ + β̃x; ∂

∂x
log E(Y |x) = β̃.

Hence, by Theorem4, the average collapsibility of Poisson regression coefficientβ(w)

(or β) holds, that is,
EW |x (β(W )) = β̃(or EW |x (β) = β̃)

when λ(x, w) does not depend on w. The latter condition holds when for example
γ = 0 which does not in general mean that Y �W |X .

The following interesting example shows that average collapsibility may hold, even
when E(Y |x, w) depends on w.

Example 4 Let X > 0 and (Y |X = x,W = w) ∼ P(λ(x)w), where λ(x) =
exp(α + βx). Then E(Y |x, w) = λ(x)w and

∂

∂x
log E(Y |x, w) = β = EW |x

(
∂

∂x
log E(Y |x,W )

)
. (12)
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Let now (W |X = x) ∼ G(x, x), the gamma distribution with mean unity. Then it is
known that

(Y |x) ∼ N B

(
x,

x

x + λ(x)

)
,

the negative binomial (NB) distribution with

P(Y = y|x) = 
(y + x)

y! 
(x)

(
x

x + λ(x)

)x (
λ(x)

x + λ(x)

)y

, y = 0, 1, · · · ·

When x = r , an integer, Y denotes the number of failures before r th success in a
sequence of independent Bernoulli trials. Hence,

E(Y |x) = λ(x); ∂

∂x
log E(Y |x) = β. (13)

Thus, from (12) and (13), the average collapsibility holds. Note here the covariatesW
and X are not independent.

Negative binomial regression Suppose in Example 4 we assume in addition that the
unobservable W is independent of X and W ∼ G(θ, θ). Then again

(Y |X = x) ∼ N B

(
θ,

θ

θ + λ(x)

)
; E(Y |x) = λ(x). (14)

Themodel (14) is the usualNB regressionmodel. Thus, the average collapsibility of the
LED function corresponds to that of the NB regression coefficient β. It is interesting
to note that when the unobserved covariate W follows the gamma distribution with
mean unity, the average collapsibility of the NB regression coefficient holds, even
when W and X are not independent (Example 4).
Note, however, in the negative binomial regression,

Var(Y |x) = λ(x)

(
1 + λ(x)

θ

)
> λ(x) = E(Y |x), (15)

unlike the Poisson regression case. Thus, whenever the data exhibit over dispersion
(variance exceeds mean), the negative binomial regression model is more appropriate
than the Poisson regression model for the analysis of data.

3 The multivariate case

In this section, we consider an extension to the multivariate case. The case of multi-
variate response Y may be considered by treating one component at a time (Cox and
Wermuth 2003; Xie et al. 2008) and similarly the covariate X may also be consid-
ered one component at a time, while keeping other components fixed. Therefore, we
consider here only the case of multivariate random vector W = (W1, . . . ,Wp).
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A conditional measure of association, say, ∂
∂x (E(Y |x, w) is simple collapsible over

W if

∂

∂x
(E(Y |x, w)) = ∂

∂x
(E(Y |x)), for all x andw = (w1, . . . , wp).

and average collapsible over W if

EW |x
(

∂

∂x
(E(Y |x,W ))

)
= ∂

∂x
(E(Y |x)), for all x .

The definition of average collapsibility of other measures of association remains the
same, except that W is now a p-variate random vector.

LetW = (W1,W2), whereW1 has q components andW2 has (p−q) components.
We now have the following result for the EDF and MDI and the corresponding
results for LED follow easily when E(Y |x, w) is homogeneous over w.

Theorem 5 The following results hold:

(a) The EDF is average collapsible over W if (i)Y � W1|(X,W2) and (i i)X � W2
hold.

(b) The MDI is average collapsible over W if (i)Y �W1|(X,W2) and (i i)X �W2|Y
hold.

Remark 4 (i) By symmetry, the average collapsibility of MDI holds when X and Y
are interchanged in conditions (i) and (i i) of Part (b) of Theorem 5. In addition,
in view of Theorem 2, the condition (ii) of part (b) can be replaced by Y �W2|X .

(ii) Xie et al. (2008) established the uniform collapsibility of DDF and EDF under
an additional condition of homogeneity of thesemeasures. Thus, average collapsi-
bility holds under less restrictive conditions and hence is applicable to a larger
class of conditional distributions that may arise in practical applications.

Remark 5 Wang et al. (2009) discussed the concept of uniform non-confounding for a
multivariate covariate and obtained sufficient conditions for it to hold. They discussed
also an algorithm which extends Greenland et al. (1999) approach to the multiple
subset of potential confounders. Starting from the sufficient set, say Z , which contains
multiple potential confounders, their algorithm repeatedly deletes non-confounders
from Z as much as possible. In view of the above-mentioned points, it would be of
interest to consider a more general case and derive an iterative procedure for checking
the average collapsibility over a multivariate W , similar to the works of Wang et al.
(2009).

4 Collapsibility results for survival models

In this section, we discuss the collapsibility of some dependence measures that arise in
the context of survival analysis. Let T denote the lifetime and X andY be the covariates
of interest that are associated with T . Suppose our interest is to study the effect of the
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covariate X on T, which arises in several situations. As mentioned in Di Serio et al.
(2009), increasing the value of X may have positive effect on T, for each subgroup
corresponding to another covariate Y, but may have a negative effect where there is no
conditioning on Y. This phenomenon, known as Simpson’s paradox (Simpson 1951)
has been recently investigated by Di Serio et al. (2009) in the context of survival
analysis, with respect to linear transformation models. Let P(T > t + s|T > t, x, y)
and h(t |x, y) = limh→0 P(t < T < t + h|T > t, x, y) be the conditional (on Y )
survival probability and the hazard rate functions. Similarly, let P(T > t+s|T > t, x)
and h(t |x) be the corresponding marginal characteristics based on covariate X alone.

Di Serio et al. (2009) discussed the conditions under which P(T > t + s|T >

t, x, y) is decreasing in x for all y, but P(T > t + s|T > t, x) is increasing in
x . They discussed also the conditions under which h(t |x, y) is increasing in x and
for all y, while h(t |x) is decreasing in x . That is, they discussed the occurrence of
Simpson’s paradox when the lifetime T and the covariates X and Y follow the linear
transformation (LT) model defined by

K (T ) = −βt x X − βt yY + W, (16)

where W � (X,Y ), with special emphasis on Cox’s regression model. Note that the
LT model is more general and includes Cox’s (1972) proportional hazards model, and
Pettit’s (1983) proportional odds model, as special cases. It is of interest to know the
conditions under which the survival probability and hazard rate functions based on a
single covariate X are reasonable especially in the context of another covariate Y. This
study is in a sense complementary to the investigations by Di Serio et al. (2009) who
discussed the conditions under which Simpson’s paradox occurs. In situations where
the covariate Y is not observed, average collapsibility characterizes the conditions
under which the inference based on X alone will on the average be the same as the
one based on both X and Y .
We first formulate the appropriate definitions.

Definition 6 We call ∂P(T > t + s|T > t, x)/∂x and ∂h(t |x)/∂x , respectively,
the survival dependence function and the hazard rate dependence function. Similarly,
∂P(T > t + s|T > t, x, y)/∂x and ∂h(t |x, y)/∂x are called the corresponding
conditional (on Y ) dependence functions.

Definition 7 The conditional survival dependence function ∂
∂x P(T > t + s|T >

t, x, y) is average collapsible over covariate (Y ) if

∂

∂x
P(T > t + s|T > t, x) = E{Y |T>t,x}

(
∂

∂x
P(T > t + s|T > t, x,Y )

)
,

for all (t, s, x) (17)

and the hazard rate dependence function ∂h(t |x, y)/∂x is average collapsible over Y
if

∂

∂x
h(t |x, y) = E{Y |T>t,x}

(
∂

∂x
h(t |x,Y )

)
, for all (t, x). (18)
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First note that, assuming Y is also continuous for simplicity,

P(T > t + s|T > t, x) =
∫

P(T > t + s|T > t, x, y) f (y|T > t, x)dy.

Partial differentiation with respect to x gives us

∂

∂x
P(T > t + s|T > t, x) =

∫ ( ∂

∂x
P(T > t + s|T > t, x, y)

)
f (y|T > t, x)dy

+
∫

P(T > t + s|T > t, x, y))
∂

∂x
f (y|T > t, x)dy

= E{Y |T>t,x}
( ∂

∂x
P(T > t + s|T > t, x,Y )

)

+
∫

P(T > t + s|T > t, x, y))
∂

∂x
f (y|T > t, x)dy.

(19)

Thus, average collapsibility of survival dependence function holds if

∫
P(T > t + s|T > t, x, y))

∂

∂x
f (y|T > t, x)dy ≡ 0, (20)

for all (t, s, x).

Remark 6 Suppose now the average collapsibility holds so that from (19) and (20),
we get

∂

∂x
P(T > t + s|T > t, x) =

∫ {
∂

∂x
P(T > t + s|T > t, x, y)

}
f (y|T > t, x)dy

for all (t, s, x).

Then

∂

∂x
P(T > t + s|T > t, x, y) ≤ 0 for all y and (t, s, x)

implies

∂

∂x
P(T > t + s|T < t, x) ≤ 0 for all (t, s, x),

showing that the characteristic reversal or Simpson’s paradox does not occur.
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Consider next the hazard rate function. Note that

h(t |x) = lim
s→0

∫
P(t < T < t + s|T > t, x, y) f (y|T > t, x)dy

=
∫ (

lim
s→0

P(t < T < t + s|T > t, x, y)

)
f (y|T > t, x)dy

=
∫

h(t |x, y) f (y|T > t, x)dy. (21)

Therefore, as in the case of conditional survival probability,

∂

∂x
h(t |x) = E{Y |T>t,x}

( ∂

∂x
h(t |x,Y )

)

+
∫

h(t |x, y) ∂

∂x
f (y|T > t, x)dy.

Thus, the average collapsibility (over Y ) of hazard rate function holds if

∫
h(t |x, y) ∂

∂x
f (y|T > t, x)dy ≡ 0 for all (t, x). (22)

The following result provides general sufficient conditions for the average collapsi-
bility.

Theorem 6 The conditional survival dependence function ∂P(t > t + s|T >

t, x, y)/∂x is average collapsible over Y if

(i)
P(T > t + s|x, y)
P(T > t |x, y) is homogeneous over y, or

(i i) Y � X |T .

Observe also that the condition (T � Y |X) implies (i), but not conversely.
The next result for the hazard rate dependence function can be proved in a similar

manner and hence the proof is omitted.

Theorem 7 The conditional hazard rate dependence function ∂h(t |x, y)/∂x is aver-
age collapsible over Y if

(i) h(t |x, y) is homogeneous over y or (ii) Y � X |T holds.

Application to linear transformation models

Let the failure time T and the covariates X and Y follow the well-known linear trans-
formation (LT) model [see Di Serio et al. (2009)] defined by

K (T ) = βt x X − βt yY + W, (23)
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whereW � (X,Y ). Di Serio et al. (2009) discussed the conditions under which Simp-
son’s paradox occurs for the conditional survival probability and the conditional hazard
rate, where (T,Y, X) follow (23). They showed the model is more general and reduces
to Cox’s (1972) proportional hazard rate models when W ∼ FW (t) = 1 − exp(−et )
(Gumbel-type) and Pettitt’s (1984) proportional odds model when W ∼ FW (t) =
et/(1 + et ) (logistic), where t ∈ R.

First, we discuss an extension of Cochran (1938) result to the LT model. Observe
first that LT model can also be viewed as a regression model with

E(K (T )|X,Y ) = μW − βt x X − βt yY, (24)

where μW = E(W ) is the mean of W. It is of interest first to know the conditions
under which the marginal model E(K (T )|X) is also an LT model. Since,

E(K (T )|X) = EY |X (μW − βt x X − βt yY )

= μW − βt x X − βt y E(Y |X), (25)

we see that E(K (T )|X) is linear if and only if E(Y |X) is also linear. Suppose

K̃ (T ) = α̃t x − β̃t x X + W̃ ,

where W̃ � X , is the marginal LT model. Then

E(K̃ (T )|X) = μW̃ + α̃t x − β̃t x X (26)

is the marginal LT regression model. Assume now

E(Y |X) = αyx + βyx X, (27)

the linear regression of Y on X. Substitution of (27) into (25) leads to

E(K̃ (T )|X) = (μW − αyxβty ) − (βt x + βt yβyx )X. (28)

A comparison of the coefficients in (26) and (28) yields

α̃t x = μW − μW̃ − βt yαyx (29)

and
β̃t x = βt x + βt yβyx , (30)

which give us the relationships between the coefficients of the conditional and the
marginal LT models. Observe that the result (30) is similar to Cochran (1938) result
for linear regression coefficients.

Definition 8 The regression coefficient βt x is said to be simple collapsible over Y if
β̃t x = βt x .
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Note from (30) the simple collapsibility of βt x holds if βyx = 0. Since βyx =
Cov(Y, X)/V (X), it is clear that βyx = 0 holds if Cov(Y, X) = 0, that is, when X
and Y are uncorrelated.
Finally, an application of Theorem 6 follows.

Example 5 Let (T, X,Y ) follow LT model defined by

K (T ) = −βt x X − βt yY + W, (31)

where W � (X,Y ). In this case, we have,

P(T > t + s|T > t, x, y) = P(T > t + s|x, y)
P(T > t |x, y)

= FW (K (t + s) + βt x x + βt y y)

FW (K (t) + βt x x + βt y y)
, (32)

which follows from equation (7) of Di Serio et al. (2009).
Suppose now W ∼ E(λ), the exponential distribution with mean λ−1. Then

P(T > t + s|x, y)
P(T > t |x, y) = e−λ(K (t + s) + βt x x + βt y y)

e−λ(K (t) + βt x x + βt y y)

= e−λ(K (t + s) − K (t)),

which does not depend on y.Hence, by Part (i) of Theorem1, the average collapsibility
of conditional survival dependence function ∂P(T > t + s|T > t, x, y)/∂x holds.

Note also in the above example,

P(T > t |x, y) = e−λ(K (t) + βt x x + βt y y),

showing that T and Y are not conditionally independent.
In addition, for the model (31) and fW (w) = λe−λw, for w > 0, we have

h(t |x, y) = fW (K (t) + βt x x + βt y y)

FW (K (t) + βt x x + βt y y)
K ′(t)

= λK ′(t),

which is homogeneous over y. Using Part (i) of Theorem 7, the average collapsibility
of conditional hazard rate dependence ∂h(t |x, y)/∂x also holds.
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APPENDIX: Proofs

Proof of Theorem 1 Note that

∂

∂x
E(Y |x) = ∂

∂x

∫
E(Y |x, w) f (w|x)dw

=
∫ [

∂

∂x
E(Y |x, w)

]
f (w|x)dw +

∫
E(Y |x, w)

∂

∂x
f (w|x)dw

= EW |x
(

∂

∂x
E(Y |x,W )

)
+

∫
E(Y |x, w)

∂

∂x
f (w|x)dw. (33)

Hence, average collapsibility holds if and only if

∫
E(Y |x, w)

∂

∂x
f (w|x)dw = 0, for all x . (34)

Assume now condition (i) holds so that

E(Y |x, w) = h(x), for all x and w, (say).

Then
∫

E(Y |x, w)
∂

∂x
f (w|x)dw = h(x)

∫
∂

∂x
f (w|x)dw

= h(x)
∂

∂x

∫
f (w|x)dw

= 0, for all x .

The average collapsibility follows from (34).
Assume next condition (i i) holds. Then obviously,

∫
E(Y |x, w)

∂

∂x
f (w|x)dw = 0, for all x,

and so average collapsibility holds again. ��
Proof of Theorem 2 Since

∂2

∂x∂y
log f (y|x) = ∂

∂x

(
∂
∂y f (y|x)
f (y|x)

)
, (35)

average collapsibility of MDI holds if and only if

EW |x

(
∂

∂x

(
∂
∂y f (y|x,W )

f (y|x,W )

))
= ∂

∂x

(
∂
∂y f (y|x)
f (y|x)

)
for all (y, x). (36)
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Note that condition (i) implies

f (y|x, w) = f (y|x) �⇒ ∂

∂y
f (y|x, w) = ∂

∂y
f (y|x), for all (y, x, w).

Thus, Eq. (36) holds.
Observe also that

∂2

∂x∂y
log f (x, y) = ∂

∂y

(
∂
∂x f (x |y)
f (x |y)

)
,

which is the same as equation (35) with x and y interchanged. Thus, the condition (i i)
also implies the average collapsibility of MDI. ��
Proof of Theorem 4 Let

E(Y |x, w) = h1(x) for all x andw. (37)

Then

E(Y |x) = EW |x (E(Y |x,W )) = EW |x (h1(x)) = h1(x). (38)

Thus, from (37) and (38),

E(Y |x) = E(Y |x, w), for all x andw,

and hence simple collapsibility holds.
In addition, since

∂

∂x
log E(Y |x, w) = ∂

∂x
log E(Y |x),

the average collapsibility also holds. ��
Proof of Theorem 5 (a): Observe that

EW |x
(

∂

∂x
E(Y |x,W )

)

=
∫

w2

∫
w1

(
∂

∂x
E(Y |x, w)

)
dF(w1, w2|x)

=
∫

w2

∫
w1

(
∂

∂x
E(Y |x, w1, w2)

)
dF(w1|x, w2) dF(w2|x)

=
∫

w2

(∫
w1

∂

∂x
E(Y |x, w2) dF(w1|x, w2)

)
dF(w2|x)(∵ Y �W1|(X,W2))

=
∫

w2

(
∂

∂x
E(Y |x, w2)

)
dF(w2|x)
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= EW2|x
(

∂

∂x
E(Y |x,W2)

)

= ∂

∂x
E(Y |x), for all x,

using X �W2 and condition (i i) of Theorem 1.
(b): Note that

EW |x
(

∂2

∂x∂y
log f (y|x,W )

)

=
∫

w2

(∫
w1

∂2

∂x∂y
log f (y|x, w1, w2) dF(w1|x, w2)

)
dF(w2|x)

=
∫

w2

(∫
w1

∂2

∂x∂y
log f (y|x, w2) dF(w1|x, w2)

)
dF(w2|x)(∵ Y �W1|(X,W2))

=
∫

w2

(
∂2

∂x∂y
log f (y|x, w2)

)
dF(w2|x)

= EW2|x
(

∂2

∂x∂y
log f (y|x,W2)

)

= ∂2

∂x∂y
log f (y|x), for all x and y,

which follows using X �W2|Y and condition (i i) of Theorem 2. ��
Proof of Theorem 6 Integrating the left-hand side of (20) by parts, we get

∫
P(T > t + s|T > t, x, y)

∂

∂x
f (y|T > t, x)dy

=
[
P(T > t + s|T > t, x, y)

∂

∂x
F(y|T > t, x)

]∞
−∞

−
∫

∂

∂y
P(T > t + s|T > t, x, y)

∂

∂x
F(y|T > t, x)dy

= −
∫

∂

∂y
P(T > t + s|T > t, x, y)

∂

∂x
F(y|T > t, x)dy.

Hence, (20) holds if either

∂

∂y
P(T > t + s|T > t, x, y) = ∂

∂y

( P(T > t + s|x, y)
P(T > t |x, y)

)
≡ 0, for all (t, s, x, y),

(39)
or

∂

∂x

(
F(y|T > t, x)

)
≡ 0, for all (t, x, y). (40)

Note that Eqs. (39) and (40), respectively, holdwhen conditions (i) and (ii) are satisfied.
The result now follows. ��
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