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Abstract Suppose an urn containsm distinct coupons, labeled from 1 tom. A random
sample of k coupons is drawnwithout replacement from the urn, numbers are recorded
and the coupons are then returned to the urn. This procedure is done repeatedly and
the sample sizes are independently identically distributed. Let W be the total number
of random samples needed to see all coupons at least l times (l ≥ 1). Recently, for
l = 1, the approximation for the first moment of the random variable W has been
studied under random sample size sampling scheme by Sellke (Ann Appl Probab,
5:294–309, 1995). In this manuscript, we focus on studying the exact distributions
of waiting times W for both fixed and random sample size sampling schemes given
l ≥ 1. The results are further extended to a combination of fixed and random sample
size sampling procedures.

Keywords Coupon collector’s problems · Dixie cup problems · Finite Markov chain
imbedding

1 Introduction

Pólya (1930) showed that the average waiting time to see all the distinct coupons
at least once (l = 1) is equivalent to the average waiting time of the followingurn
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problem. It starts with m white balls in an urn. A ball is drawn from the urn with
replacement. If the observed ball is white, it will be colored in red and returned to the
urn. Otherwise, the selected ball will simply be returned to the urn without changing
its color. Then the average number of drawings until all m balls are in red equals the
average number of trials to see all the distinct coupons at least once. This problem is
referred as a waiting time problem by Feller (1957). It was pointed out by Ivchenko
(1998) that the coupon collector’s problem is closely related to “number random
allocations” (see Markoff 1912). Further the coupon collector’s problem can also be
viewed as a special case of Dixie cup problem or urn problem, see Newman and Shepp
(1960) and Erdös and Rényi (1961). Since then it has attracted many mathematicians,
probabilitists, computer scientists, and statisticians for its theoretical challenge and
various applications.

For k = 1, let Wm,l be the number of random samples needed to see all m coupons
at least l times. For l ≥ 2, it is often referred as Dixie cup problem (see Newman and
Shepp 1960). They have shown, as m → ∞,

EWm,l = m logm + (l − 1)m log logm + mCl + o(m), (1)

where Cl is a constant, depending on l. For l = 1, Eq. (1) yields the classical result
EWm,1 ∼ m logm +mC1. For given l, Erdös and Rényi (1961) obtained the limiting
distribution for the random variable Wm,l

lim
m→∞ P

(
Wm,l

m
< logm + (l − 1) log logm + x

)
= exp

(
− e−x

(l − 1)!
)

, (2)

for every real x . The problem has been extended to various directions, for example
to name a few, Adler and Ross (2001), Erdös and Rényi (1961), Dawkins (1991) and
Klaassen (1994).

Let Zi be a sequence of i.i.d. random sample size variables defined on the support
{1, 2, · · · , K : K ≤ m}, having common distributionμ = (μ1, . . . , μK ). For μ1 = 1
and μi = 0 for i = 2, . . . , K , this setting is the classical coupon collector’s problem
and EWm,1 = m

∑m
i=1 i

−1. For μk = 1, 1 ≤ k ≤ K , Pólya (1930) made use of
inclusion–exclusion argument to obtain the exact formula forEWm,1 for a fixed sample
size sampling scheme Sk . The formula proposed is somewhat difficult to evaluate, even
formoderatem. The good approximation forEWm,1 is needed formoderate or largem.
For l = 1 and under random sample size sampling scheme Sμ, Sellke (1995) provided
the following formula for approximating the expected waiting time EWm,1(Sμ) by
using Wald’s identity and Markov chain coupling:

EWm,1(Sμ) ≈
∑m−1

i=1
1

(m − i)∑m−1
i=1

pi
(m − i)

+
∑m−1

i=1

(
pi

(m − i)

∑i
j=1

1

(m − j + 1)

)
(∑m−1

i=1
pi

(m − i)

)2 , (3)

where pi = P(Z > i). Sellke (1995) also pointed out that the above approxima-
tion performs very well when the support {1, . . . , K } has a high probability in the
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Coupon collector’s and Dixie cup problems 1131

range {1, . . . ,m/2}. Ivchenko (1998) gave the exact formulae for EWm,1(Sμ) and
Var(Wm,1(Sμ)) by using Polya’s results for fixed sample size cases. Recently, John-
son and Sellke (2010) generalized the partial fraction technique developed by Pólya
(1930) for approximating EWm,1(Sμ). They have shown their approximation agrees
with Eq. (3).

In this manuscript, we use Polya’s coloring technique together with finite Markov
chain imbedding (FMCI) method (see Fu and Koutras 1994 and Fu and Lou 2003) to
study the following events:

(i) the exact distributions of waiting times for coupon collector’s and Dixie cup
problems (l ≥ 1) under fixed sample size sampling schemes Sk and random
sample size sampling schemes Sμ,

(ii) the waiting time distributions to see m′(m′ < m) distinct coupons or to see
m̃(m̃ < m) specified distinct coupons at least once (or l times), and

(iii) the relationship among fixed sample size, random sample size, andmixed sample
size sampling schemes.

As a direct consequence from the method of FMCI, we have also obtained the
mean, variance and moment generating function for the waiting timeWm,l . Examples
and numerical results are also provided to illustrate the theoretical results.

2 Waiting time distributions

2.1 For fixed and random sample size sampling schemes with l = 1 (coupon
collector’s problem)

Let Sk be the fixed sample size k(k = 1, 2, . . . ,m) sampling scheme. The waiting
time random variable Wm,1(Sk), the number of random samples required to observe
all the m distinct coupons at least once (l = 1), is finite Markov chain imbeddable in
the following sense.

Theorem 1 Given m, l = 1, and sampling scheme Sk, there exists a homogeneous
Markov chain {Yt } defined on the state space � = {0, 1, . . . ,m − 1,m = α} with α

as an absorbing state and the transition probability matrix having the form,

Mm,1(Sk) = [Pi j (Sk)] = �\α
α

�\α α[
Nm,1(Sk) Cm,1(Sk)

0 1

]
(4)

where

pi j (Sk) =
⎧⎨
⎩

( i
k− j+i)(

m−i
j−i )

(mk )
for 0 ≤ i ≤ j ≤ m and j − 1 ≤ min(k,m − i),

0 otherwise,
(5)

then, given initial distribution ξ0 = (1, 0, . . . , 0), we have

P(Wm,1(Sk) > n|ξ0) = ξ0N
n
m,1(Sk)1

′. (6)
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Proof It is easy to see that, for given Yt = i (the number of red balls in the urn), the
random variable X , the number of white balls in a sample of size k sampling without
replacement from an urn containing m balls with m − i white and i red balls, has a
hypergeometric distribution HG(m, i, k). Hence, the transition probabilities

pi j (Sk) = P(Yt+1 = j |Yt = i) = P(X = j − i)

are defined by the Eq. (5) and also independent of t . The imbedded chain {Yt } is a
homogeneous Markov chain with the state space � = {0, 1, . . . ,m − 1,m = α} and
statem as an absorbing state α. Throughout the remainder of the manuscript, α is used
as an absorbing state. Note also that the two events are equivalent in the following
way:

{Wm,1(Sk) > n} if and only if {Y1 	= α, . . . ,Yn 	= α} (7)

for n = 1, . . . ,∞. Given an initial distribution ξ0 and the above statement (7), we
have

P(Wm,1(Sk) > n|ξ0) = P(Y1 	= α, . . . , Yn 	= α|ξ0) = ξ0N
n
m,1(Sk)1

′.

This complete the proof of Eq. (6). 
�
By the same token, the following theorem shows that the waiting time random

variable Wm,1(Sμ) based on a random sample size sampling scheme is also finite
Markov chain imbeddable. Further, the relationship between transition probability
matrix Mm,1(Sμ) and the transition probability matrices Mm,1(Sk), k = 1, . . . , K for
fixed sample size sampling schemes are developed.

Theorem 2 Given m, l = 1, and μ = (μ1, . . . , μK ), the waiting time random vari-
able Wm,1(Sμ) is finite Markov chain imbeddable in the sense that there exists a
homogeneous Markov chain {Yt } defined on the state space � = {0, 1, . . . ,m = α}
with transition probability matrix

Mm,1(Sμ) = [ pi j (Sμ) ] =
[
Nm,1(Sμ) Cm,1(Sμ)

0 1

]
,

where

pi j (Sμ) =
K∑

k=1

μk

( i
k− j+i

)(m−i
j−i

)
(m
k

) I (m, i, k) (8)

and

I (m, i, k) =
{
1 for 0 ≤ i ≤ j ≤ m and j − 1 ≤ min(k,m − i),
0 otherwise.

123



Coupon collector’s and Dixie cup problems 1133

Then, given initial distribution ξ0 = (1, 0, . . . , 0),

P(Wm,1(Sμ) > n|ξ0) = ξ0N
n
m,1(Sμ)1′. (9)

Proof Note that the Eq. (8) is a direct consequence of the following equation and
equation (5)

pi j (Sμ) =
K∑

k=1

μk P(Yt+1 = j |Yt = i, Zt = k).

This result (9) follows same arguments as the proof of Theorem 1. This completes
the proof. 
�

In view of above formulae (5) and (8), it can be clearly seen that the essential
transition probability matrix associated with the random sample size sampling scheme
is a weighted sum of essential transition probability matrices of fixed sample size
sampling schemes; i.e.,

Nm,1(Sμ) =
K∑

k=1

μkNm,1(Sk).

Furthermore, let μi = (μi1, . . . , μi K ), i = 1, . . . , d be d random sample size
sampling schemes and Sβ ,β = (β1, . . . , βd) be a linear combination of d random
sample size sampling schemes, then we have

Nm,1(Sβ) =
d∑

i=1

βiNm,1(Sμi ) =
d∑

i=1

K∑
k=1

βiμikNm,1(Sk).

Let S represent a generic sampling scheme with either fixed sample size Sk or
random sample size Sμ, or mixed random sample sizes Sβ . As we have proved above
that the waiting time random variable Wm,1(S) is finite Markov chain imbeddable.
With some simple algebra, it follows directly from the definitions and equations (5)
and (8) that the random variable Wm,1(S) has (see Fu and Lou 2003)

(i) the moment generating function

ϕWm,1(u) = 1 + (eu − 1)ξ0(I − euNm,1(S))−11′ for u ∈ R, (10)

(ii) the mean

EWm,1(S) = ξ0(I − Nm,1(S))−11′, (11)

and
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(iii) the second moment

E[Wm,1(S)]2 = ξ0(I + Nm,1(S))(I − Nm,1(S))−21′. (12)

Note that these characters of the distribution ofWm,1(S) are all in terms of essential
transition probability matrix Nm,1(S) in a very simple form. This is due to the fact
that the imbedded Markov chain {Yt } is completely characterized by its transition
probability matrix.

For large n, the tail probability P(Wm,1(S) > n|ξ0) can be approximated by the
largest eigenvalue of essential transition probability matrix in the following way. Let
1 > γ1 ≥ |γ2| ≥ · · · ≥ ∣∣γq ∣∣ be the q eigenvalues of the essential transition prob-
ability matrix Nm,l(S) and η1, η2, . . . , ηq be the eigenvectors corresponding to the
eigenvalues γ1, γ2, . . . , γq , respectively. It follows that

P(Wm,1(S) > n|ξ0) = ab exp{n[log γ1 + o(1)]}, (13)

where a = η11′ and b = ξ0η
′
1. Based on our experience, the numerical approxima-

tions based on Eq. (13) performs very well. For details and proofs, see Fu and Johnson
(2009).

For a special case of k = 1, it follows from equation (4) the transition probability
matrix Mm,1(S1) of the imbedded Markov chain {Yt } defined on the state space � =
{0, 1, . . . ,m} corresponding to the waiting time random variable Wm,1(S1) has the
form

Mm,1(S1) = [ pi j (S1) ] =
[
Nm,1(S1) C

0 1

]
, (14)

where for 0 ≤ i ≤ j ≤ m,

pi j (S1) =
⎧⎨
⎩
i/m if j = i,
(m − i)/m if j = i + 1,
0 otherwise.

(15)

It follows from Eqs. (11), (14) and (15), we have the classic result

EWm,1(S1) = ξ0(I − Nm,1(S1))
−11′ = m

(
1 + 1

2
+ · · · 1

m

)
.

For m → ∞, we have

EWm,1(S1) = m logm + mC1 + o(m),

where C1 is so-called Euler’s constant.
In the following, we provide two technique remarks for the direct extensions of

above results.
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Coupon collector’s and Dixie cup problems 1135

Remark 1 With simple modification on the state space, the above result can be
extended to the waiting time random variable Wm,1(S1 : m′) to see m′(1 ≤ m′ ≤ m)

distinct coupons at least once. In this case, the corresponding imbeddedMarkov chain
{Yt } is defined on the state space � = {0, 1, . . . ,m′ − 1,m′ = α} and having the
transition probabilities, for 0 ≤ i ≤ j ≤ m′ ≤ m,

pi j (S1 : m′) =

⎧⎪⎪⎨
⎪⎪⎩

i/m if j = i, i 	= m′,
(m − i)/m if j = i + 1, i 	= m′,
1 if i = j = m′,
0 otherwise.

Remark 2 Let Wm,1(S1 : m̃) be the waiting time to see specifically specified m̃(1 ≤
m̃ ≤ m) distinct coupons at least once. With simple modification of Polya’s argu-
ments, it is easy to see the random variable Wm,1(S1 : m̃) is also finite Markov
chain imbeddable and the imbedded Markov chain {Yt } is defined on the state
space � = {0, 1, . . . , m̃ − 1, m̃ = α} and having the transition probabilities, for
0 ≤ i ≤ j ≤ m̃ ≤ m,

pi j (S1 : m′) =

⎧⎪⎪⎨
⎪⎪⎩

(m − m̃ + i)/m if j = i, i 	= m̃,

(m̃ − i)/m if j = i + 1, i 	= m̃,

1 if i = j = m̃,

0 otherwise.

2.2 Fixed and random sample size sampling schemes with l ≥ 2 (Dixie cup
problem)

For l = 1, Pólya (1930) used two colored balls white and red technique to solve
the coupon collector’s problem. For l ≥ 2, the technique can be extended to involve
l + 1 colors, say colors c0, c1, . . . , cl . Let us consider an urn containing m balls
with mi balls of color ci for i = 0, 1, . . . , l, 0 ≤ mi ≤ m and

∑l
i=0 mi = m. For

i = 0, 1, . . . , l − 1,mi means the number of the balls that have been observed exactly
i times and ml observed at least l times. A random sample of k(1 ≤ k ≤ m) balls is
drawn without replacement from the urn which contains k0, k1, . . . , kl balls of colors
c0, c1, . . . , cl , respectively, where 0 ≤ ki ≤ mi and k0 + k1 + · · · + kl = k. Then ki
balls of color ci are colored in color ci+1 for i = 0, 1, . . . , l − 1 and kl balls of color
cl are kept their color. It follows after the sampling that the urn contains (m0 − k0)
balls of color c0, (m1 − k1 + k0) balls of color c1, . . ., (ml−1 − kl−1 + kl−2) balls of
color cl−1 and (ml + kl−1) balls of color cl . After that, all k balls are then returned to
the urn. The procedure is repeated until all balls in the urn having the same color cl .
The waiting time random variableWm,l(Sk) associated with above sampling scheme is
homogeneous finite Markov chain imbeddable. The homogeneous imbedded Markov
chain {Yt }, induced by the Sk sampling scheme, has the following structure.
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1136 J. Fu, W.-C. Lee

For fixed m and l, we define the state space � of imbedded Markov chain {Yt }:

� =
{
ω=(m1,m2, . . . ,ml) : 0≤mi ≤ m for i = 1, . . . , l and

l∑
i=0

mi = m

}
,

(16)

where m0 = m − ∑l
i=1 mi , (0, 0, · · · , 0) stands as an initial state and (0, . . . , 0,m)

an absorbing state α. For ω = (m1,m2, . . . ,ml) ∈ �, we define

Aω,k =
{
k=(k1, k2, . . . , kl) : 0 ≤ ki ≤ mi for i=0, 1, . . . , l and

l∑
i=0

ki =k

}
.

(17)

Given Yt = ω, Yt+1 is defined the following way: for every k = (k1, k2, . . . , kl) ∈
Aω,k

Yt+1 = 〈ω, k〉 = (m1 − k1 + k0,m2 − k2 + k1,
. . . ,ml−1 − kl−1 + kl−2,ml + kl−1).

(18)

Note that, given ω ∈ �, the random vector k follows a Multi-Hypergeometric
distribution (MHG(m,ω, k)) hence the transition probabilities are:

pω,ω′(Sk) =

⎧⎪⎨
⎪⎩

∏l
i=0

(mi
ki

)
(m
k

) if ω′ = 〈ω, k〉 and k ∈ Aω,k,

0 otherwise.

(19)

Denote Mm,l(Sk) and Nm,l(Sk) be the transition probability matrix and essential
transition probability matrix induced by the Eq. (19), respectively. Then the following
theorem holds.

Theorem 3 The random variable Wm,l(Sk) is finite Markov chain imbeddable and

P(Wm,l(Sk) > n|ξ0) = ξ0N
n
m,l(Sk)1

′. (20)

For a random sample size sampling scheme Sμ, the above Eq. (20) holds with

Nm,l(Sμ) =
K∑

k=1

μkNm,l(Sk)

or

pω,ω′(Sμ) =
K∑

k=1

μk

∏l
i=0

(mi
ki

)
(m
k

) .

To illustrate above theoretical results, we provide the following detailed example
of l = 2 with fixed sample size sampling scheme S1.
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Example 1 Suppose three distinct balls are available and select one ball at a time, in
average, how many random samples are needed to take in order to observe all three
distinct balls at least twice?

The waiting time W3,2(S1) is Markov chain imbeddable. The imbedded Markov
chain {Yt } has the state space

� = {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3) = α}.

Given ω ∈ �, the 10 sets Aω,k are A(0,0),1 = {(0, 0)}, A(1,0),1 = {(0, 0), (1, 0)},
A(0,1),1 = {(0, 0), (0, 1)}, · · · , A(1,1),1 = {(0, 0), (1, 0), (0, 1)}, · · · , A(1,2),1 =
{(1, 0), (0, 1)} and A(0,3),1 = {(0, 1)}. For every ω ∈ �, the k ∈ Aω,1 yields the
transition probabilities

pω,ω′(S1) =
⎧⎨
⎩

∏2
i=0

(mi
ki

)
3

if ω′ = 〈ω, k〉 and k ∈ Aω,1,

0 otherwise.

The transition probability matrix M3,2(S1) has the form

M3,2(S1) =

(0, 0)
(1, 0)
(0, 1)
(2, 0)
(1, 1)
(0, 2)
(3, 0)
(2, 1)
(1, 2)
(0, 3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0
0 0 1/3 2/3 0 0 0 0 0 0
0 0 1/3 0 2/3 0 0 0 0 0
0 0 0 0 2/3 0 1/3 0 0 0
0 0 0 0 1/3 1/3 0 1/3 0 0
0 0 0 0 0 2/3 0 0 1/3 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1/3 2/3 0
0 0 0 0 0 0 0 0 2/3 1/3
0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
N3,2(S1) C3,2(S1)

0 1

]
.

Then the expected number of random samples required to observe all three balls at
least twice is

EW3,2(S1) = ξ0(I − N3,2(S1))
−11′ = 9.6398.

3 Numerical results and discussion

First, wewould like to present somenumerical results on distributions and expectations
of both fixed sample size and random sample size sampling schemes in the following
Tables 1 and 2. The computations were done on a DELL desktop using the software
MATLAB�. The CPU time to complete the calculations is from few seconds for l = 1
andm = 10 to less than aminute for l = 3 andm = 20. In the followingwewould like
to provide several technique comments on our method and numerical approximations.
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1138 J. Fu, W.-C. Lee

Table 1 Cumulative distributions of Wm,l (S1) for l = 1, 2, 3 and their first moments and standard devia-
tions

n P(Wm,1(S1) ≤ n) P(Wm,2(S1) ≤ n) P(Wm,3(S1) ≤ n)

m = 10 m = 20 m = 10 m = 20 m = 10 m = 20

20 0.2147 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.4366 0.0000 0.0081 0.0000 0.0000 0.0000

35 0.7675 0.0098 0.2079 0.0000 0.0024 0.0000

40 0.8581 0.0359 0.3858 0.0000 0.0284 0.0000

45 0.9147 0.0875 0.5561 0.0000 0.1093 0.0000

50 0.9491 0.1642 0.6943 0.0000 0.2433 0.0000

75 0.9963 0.6379 0.9657 0.0706 0.8453 0.0001

100 0.9997 0.8865 0.9968 0.4444 0.9806 0.0465

250 1.0000 0.9999 1.0000 0.9992 1.0000 0.9946

300 1.0000 1.0000 1.0000 0.9999 1.0000 0.9994

500 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

E(Wm,l (S1)) 29.2897 71.9548 46.2296 108.6974 61.3661 141.1043

σ(Wm,l (S1)) 11.2110 23.8015 13.3007 27.6896 14.8737 30.6503

Table 2 Expectations of
Wm,1(μ)

a Stands as a discrete uniform
distribution on {1, 2, 3, 4, 5}
b Stands as a binomial
distribution with parameters
n = 4 and p = 1/2

m Z ∼ U(1, 5)a Z − 1 ∼ B(4, 1
2 )b

10 8.7424 8.8933

15 15.4465 15.6048

20 22.7402 22.9075

25 30.4728 30.6484

30 38.5537 38.7365

40 55.5384 55.7336

For large l, the sizes of the state space � and essential transition probability matrix
of imbeddedMarkov chain increase very fast asm → ∞. In this case, the computation
for distribution and expectation of the waiting time W can be problematic.

For a fixed, random, or mixed sample size sampling scheme, the random variable
Wm,l(S) is finiteMarkov chain imbeddable. It follows from same arguments of Eq. (13)
the tail probability P(Wm,l(S) > n|ξ0) can be approximated in terms of the largest
eigenvalue of essential transition probability matrix of imbedded Markov chain.

Based on our experiences of computations, given l, the approximation in Eq. (1) for
the expectation EWm,l(S1) proposed by Newman and Shepp (1960) does not perform
well in the sense that

1

m

[
EWm,l(S1) − m logm − (l − 1) log logm

] → Cl , as m → ∞,

converges to Cl very slowly. For a random sample size sampling scheme Sμ when the
support of μ has a high probability in the range of [m/2, K ], our numerical results
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Coupon collector’s and Dixie cup problems 1139

confirmSellke’s statement that Eq. (3) for approximating expectationEWm,1(Sμ) does
not perform well.

With somemodifications, themethod proposed in thismanuscript could be extended
to handle many urn and birthday related problems. The method could also be extended
to unequal probabilities model.
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