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Abstract In this paper, we study the uniform tail-probability estimates of a regu-
larized least-squares estimator for the linear regression model. We make use of the
polynomial type large deviation inequality for the associated statistical random fields,
which may not be locally asymptotically quadratic. Our results enable us to verify
various arguments requiring convergence of moments of estimator-dependent statis-
tics, such as the mean squared prediction error and the bias correction for AIC-type
information criterion.

Keywords Moment convergence · Regularized least-squares estimation · Sparse
estimation · Large deviation inequality

1 Introduction

Assume thatwehave a sample {(Xi ,Yi )}ni=1,whereYi ∈ R and Xi = (Xi,1, . . ., Xi,p)
�

∈ R
p, obeying the linear regression model:

Yi = θ�
0 Xi + εi , i = 1, . . . , n, (1)

where θ0 is a p-dimensional true value of parameter contained in the interior of a
compact parameter space � ⊂ R

p and (εi )
n
i=1 represent noises. Through this paper,

the number of variables p is fixed. Though not essential, we suppose that the covariate
X is non-random; usually, {(Xi ,Yi )}ni=1 are standardized from the beginning such a
way that
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1142 Y. Shimizu

n∑

i=1

Yi = 0,
n∑

i=1

Xi, j = 0 and
1

n

n∑

i=1

X2
i, j = 1, j ∈ {1, . . . , p}.

For brevity, we omit the dependence of Xi and Yi on n from the notation so long as
there is no confusion (we use the notation Xin when we emphasize the dependence of
Xi on n). In this paper, we deal with the situation

θ0 = (z0, ρ0) = (z0,1, . . . , z0,p0 , ρ0,1, . . . , ρ0,p1),

where z0,k = 0 and ρ0,l �= 0 for any k ∈ {1, . . . , p0} and l ∈ {1, . . . , p1}; divide the
compact parameter space � = �0 × �1 ⊂ R

p0 × R
p1 such that z0 = 0 ∈ �0 and

ρ0 ∈ �1. We can rewrite the linear regression model (1) to

Yi = z�0 X (z)
i + ρ�

0 X (ρ)
i + εi , i = 1, . . . , n, (2)

where X (z)
i := (Xi,1, . . . , Xi,p0)

� and X (ρ)
i := (Xi,p0+1, . . . , Xi,p0+p1)

�, repre-
senting irrelevant and relevant covariate vectors, respectively. Then, we define the
regularized least-squares estimator (regularized-LSE) θ̂n = (ẑn, ρ̂n) as the minimizer
of the contrast function

Zn(θ) = Zn(z, ρ) :=
n∑

i=1

(Yi − z�X (z)
i − ρ�X (ρ)

i )2 +
p∑

j=1

pn(θ j ) (3)

over �, where pn(·) is a non-random and non-negative function such that pn(0) = 0.
Further conditions on pn will be imposed later on. There is a huge literature on the
sparse linear regression via regularization, where the estimator ẑn of z0 = 0 satis-
fies the sparse consistency P(ẑn = 0) → 1 as n → ∞, while

√
n(ρ̂n − ρ0) has

a non-trivial asymptotic law. The sparse consistency implies that Rnẑn = op(1) for
arbitrary Rn → ∞, for example, sparse-bridge (Radchenko 2005), the smoothly
clipped absolute deviation (SCAD; Fan and Li 2001) and the Seamless-L0 regulariza-
tion (Dicker et al 2012). In Sect. 3, we will refer some asymptotic behaviors of these
regularized estimators.

Let us mention some basic facts concerning the parametric M-estimation. Given a
statistical model indexed by a finite-dimensional parameter θ ∈ � ⊂ R

p, we typically
estimate a true parameter value θ0 ∈ � by a minimum point θ̂n of an appropriate
continuous contrast function Zn : � → R. To assess the asymptotic performance of
θ̂n quantitatively, when

√
n-consistency is concerned, we look at the statistical random

fields

Mn(w; θ0) := Zn

(
θ0 + w√

n

)
− Zn(θ0), (4)

where w ∈ R
p. As is well known, the weak convergence of Mn to some M0 over

compact sets, the identifiability condition on M0, and the tightness of the scaled
estimator ŵn := √

n(θ̂n − θ0) make the “argmin” functional continuous for Mn :
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Moment convergence of regularized estimator 1143

ŵn ∈ argminMn
L−→ argminM0. See, e.g., van der Vaart (1998). Further, when

concerned with moments of ŵn-dependent statistics such as the mean square error,
more than theweak convergence is required. Then, the polynomial type large deviation
inequality (PLDI) of Yoshida (2011), which estimates the tail of L(ŵn) in such a way
that

sup
r>0

sup
n>0

r L P(|ŵn| ≥ r) < ∞ (5)

for a given L > 0, plays an important role. Assume that there exists a random variable

ŵ0 such that ŵn
L−→ ŵ0. Then, the moment convergence

E[|ŵn|q ] → E[|ŵ0|q ], q > 0, (6)

holds if there exists a q ′ > q such that supn>0 E[|ŵn|q ′ ] < ∞. Suppose that the PLDI
(5) holds for some L > q ′. Then, we obtain

sup
n>0

E[|ŵn|q ′ ] = sup
n>0

∫ ∞

0
P(|ŵn|q ′

> s)ds < ∞.

As the results, we get the moment convergence (6) if we ensure the PLDI (5) for
some L > q. Hence, the main purpose of this paper is to derive the PLDI (5) with
ŵn := (

√
nẑn,

√
n(ρ̂n − ρ0)).

We should mention the importance of convergence of moments: asymptotic behav-
ior of expected values of statistics depending on estimators. It especially serves as a
critical tool when, for example, analyzing the mean squared prediction error and the
bias correction for information criteria; see Chen and Ing (2011), Afendras andMarka-
tou (2015a, b), Findley and Wei (2002), Uchida and Yoshida (2001, 2006), Sakamoto
and Yoshida (2004), as well as Yoshida (2011). Let us consider a typical scenario. If
(6) holds with q = 2 and ŵ0 ∼ Np(0, V ) where V is a p × p-diagonal matrix, the
mean squared error of θ̂n can be expressed as:

E
[
|θ̂n − θ0|2

]
= tr(V )

n
+ op

(
1

n

)
,

from which the mean squared prediction error can be established with its theoretical
justification. Also, themoment convergence provides benefits to AIC type information
criteria, which is widely used as a simple and practical estimate of the best model,
and is derived from the bias correction procedures. From the point of view of regular-
ized estimation, AIC is used to select tuning parameters contained in regularization
terms. Recently, Umezu et al (2015) proposed the bias-corrected AIC for non-concave
regularized likelihood estimator of generalized linear model by verifying its moment
convergence, and concluded that the proposed AIC performs well through simulation
studies. In particular, they studied asymptotic behaviors of the estimator including
E[|√nẑn|2] → 0 which cannot be deduced from the sparse consistency, and is needed
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1144 Y. Shimizu

to derive AIC for sparse-type estimations. Convergence of moments for regularized
estimators gives us the validity of AIC for selecting tuning parameters.

This paper is organized as follows. In Sect. 2, we will derive the PLDI (5) for the
regularized-LSE of the linear regression model (2). We will give some examples of
the regularization term in the contrast function (3) in Sect. 3.

For convenience of reference, we end this section with stating Theorem 1 and
Theorem 3(a) of Yoshida (2011), which will play an essential role in our study. We
need to introduce some notation. For any fixed θ0 ∈ �, we define a random function

Yn(θ; θ0) := −1

n

(
Zn(θ) − Zn(θ0)

)
.

Also, let θ �→ Y0(θ; θ0) be a random function. We consider the PLAQ representation
of Mn :

Mn(w; θ0) = �n(θ0)[w] + 1

2
�0(θ0)[w,w] + rn(w; θ0) (7)

for w ∈ {w ∈ R
p : θ0 + w/

√
n ∈ �}, where �n(θ0) ∈ R

p, �0(θ0) ∈ R
p × R

p and
rn(w; θ0) ∈ R are random variables.1 Finally, let α ∈ (0, 1), Un(r, θ0) := {w ∈ R

p :
r ≤ |w| ≤ n(1−α)/2}. We now introduce some conditions:

(A1) ∃ν1 > 0, ∀L > 0, ∃cL > 0 : constant, ∀r > 0,

sup
n>0

P
(

sup
w∈Un(r,θ0)

|rn(w; θ0)|
1 + |w|2 ≥ r−ν1

)
≤ cL

r L
.

(A2) �0(θ0) is deterministic and positive-definite.
(A3) ∃χ = χ(θ0) > 0 : non-random, ∃ν = ν(θ0) > 0, ∀θ ∈ �,

Y0(θ; θ0) ≤ −χ |θ − θ0|ν .

(A4) α ∈ (0, 1), ν1 ∈ (0, 1), αν < ν2, β ∈ [0,∞), 1 − 2β − ν2 > 0.
(A5) ∀L > 0, N1 := L(1 − ν1)

−1, N2 := L(1 − 2β − ν2)
−1,

supn>0 E
[
|�n(θ0)|N1

]
< ∞;

supn>0 E
[(

supθ∈� n1/2−β
∣∣Yn(θ; θ0) − Y0(θ; θ0)

∣∣
)N2

]
< ∞.

Theorem 1 [Yoshida (2011), Theorems 1 and 3(a)] Assume [A1]–[A5]. Then, the
estimate (5) holds.2

1 The sign in front of the quadratic term (1/2)�0(θ0)[w, w] is different from the original PLAQ of Yoshida
(2011) since we consider minimization of (4).
2 The uniform (w.r.t. θ0) evaluation is not in our scope here.

123



Moment convergence of regularized estimator 1145

2 Moment convergence

In this section,we discuss themoment convergence of ŵn by checking the conditions of

Theorem 1. In particular, if we have theweak convergence ŵn
L−→ ŵ0 for some random

vector ŵ0, then the moment convergence (6) holds. Let Cn := n−1 ∑n
i=1 Xi X�

i .

Theorem 2 Assume that the linear regression model is (2) and the contrast function
is (3). Suppose the following conditions:

ε1, ε2, . . . are i.i.d. wi th E[εi ] = 0 and ∀k > 0, E[|εi |k] < ∞; (8)

∃δ > 0, ∃C0 > 0, sup
n>0

(
nδ|Cn − C0|

)
< ∞; (9)

sup
n>0

sup
i≤n

|Xin| < ∞; (10)

∃β ∈
(
0,

1

2

)
, ∀K ⊂ R : compact, sup

n>0
sup
a∈K

pn(a)

n1/2+β
< ∞; (11)

∃κ ∈ (0, 2), ∀a �= 0, ∃ca > 0 : constant, ∀b ∈ R,

lim sup
n→∞

∣∣∣pn
(
a + b√

n

)
− pn(a)

∣∣∣ ≤ ca |b|κ . (12)

Then, the PLDI (5) holds with ŵn = (
√
nẑn,

√
n(ρ̂n − ρ0)). Additionally, if we

have the weak convergence ŵn
L−→ ŵ0 for some random vector ŵ0, then the moment

convergence (6) holds.

Proof We will check the conditions of Theorem 1 to conclude (5). Set w = (u, v) ∈
R

p0 × R
p1 . We have the statistical random fields

Mn(w; θ0) = Zn

(
θ0 + w√

n

)
− Zn(θ0)

=
n∑

i=1

{(
εi − w�

√
n
Xi

)2 − ε2i

}
+

p0∑

k=1

pn

( uk√
n

)

+
p1∑

l=1

{
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

}

= −
n∑

i=1

2√
n
εi Xi [w] + 1

2
(2C0)[w,w] + (Cn − C0)[w,w]

+
p0∑

k=1

pn

( uk√
n

)
+

p1∑

l=1

{
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

}
.
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1146 Y. Shimizu

Since ŵn is a minimum point of Mn(w; θ0) and pn is a non-negative function, we
have

P(|ŵn| ≥ r) ≤ P
[
sup

|w|≥r

{ − Mn(w; θ0)
} ≥ −Mn(0; θ0) = 0

]

≤ P
[
sup

|w|≥r

{ n∑

i=1

2√
n
εi Xi [w] − 1

2
(2C0)[w,w] − (Cn − C0)[w,w]

−
p1∑

l=1

(
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

)}
≥ 0

]
.

Hence, we will establish the PLDI

sup
r>0

sup
n>0

r L P
[
sup

|w|≥r

{ n∑

i=1

2√
n
εi Xi [w] − 1

2
(2C0)[w,w] − (Cn − C0)[w,w]

−
p1∑

l=1

(
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

)}
≥ 0

]
< ∞ (13)

for any L > 0 to ensure the PLDI (5). We have the PLAQ-like expression which
corresponds to (7) with

�n(θ0) =
n∑

i=1

2√
n
εi Xi ; (14)

�0(θ0) = 2C0; (15)

rn(w; θ0) = −(Cn − C0)[w,w] −
p1∑

l=1

{
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

}
. (16)

According to (8)–(11), we obtain for any θ ∈ �

Yn(θ; θ0) = −1

n

(
Zn(θ) − Zn(θ0)

)

= −1

n

n∑

i=1

[{
εi − (θ − θ0)

�Xi
}2 − ε2i

]
− 1

n

p∑

j=1

{
pn(θ j ) − pn(θ0 j )

}

= 2

n

n∑

i=1

εi Xi [θ − θ0] − Cn[θ − θ0, θ − θ0] − 1

n

p∑

j=1

{
pn(θ j ) − pn(θ0 j )

}

P−→ −C0[θ − θ0, θ − θ0] =: Y0(θ; θ0).
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Moment convergence of regularized estimator 1147

We get Y0(θ; θ0) ≤ −λmin(C0)|θ − θ0|2 where λmin(C0) denotes the minimal eigen-
value of the matrix C0. Apparently, [A2] holds from (9) and (15), and also [A3] holds
with χ = λmin(C0) and ν = 2. Hence, it remains to verify [A1], [A4] and [A5].

First, we will verify [A1]. From (16), we have

|rn(w; θ0)|
1 + |w|2 ≤ |w|2

1 + |w|2 |Cn − C0| + 1

1 + |w|2
∣∣∣

p1∑

l=1

{
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

}∣∣∣.

(17)

Let us fix β, ν2, α ∈ (0, 1) and ξ such that 0∨(1/2−δ) ≤ β < 1/2, 1−2β > ν2 > 2α
and 0 < ξ <

(
2α/(1−α)

)∧1.Note that these parametersmeetβ−1/2+(1−α)ξ/2 <

0. Then for the first term of the right-hand side of (17), we get from (9)

sup
w∈Un(r,θ0)

( |w|2
1 + |w|2 |Cn − C0|

)

= n1/2−β−δ
(
nδ|Cn − C0|

)
sup

w∈Un(r,θ0)

( |w|2
1 + |w|2 n

β−1/2|w|ξ |w|−ξ
)

� nβ−1/2n(1−α)ξ/2r−ξ � r−ξ , (18)

where An � Bn means that supn(An/Bn) < ∞. Next, we will estimate the second
term of the right-hand side of (17). We obtain from (12) that there exists a κ ∈ (0, 2)
such that

1

1 + |w|2
∣∣∣

p1∑

l=1

{
pn

(
ρ0l + vl√

n

)
− pn(ρ0l)

}∣∣∣ � |v|κ
1 + |w|2 � |w|κ−2, w ∈ Un(r, θ0);

note that supw∈Un(r,θ0) |vl |/√n → 0. Since we can take α ∈ (0, 1) such that 2−κ > ξ

(note that 0 < ξ <
(
2α/(1 − α)

) ∧ 1), we get

sup
w∈Un(r,θ0)

|w|κ−2 � r−ξ . (19)

Fix a ν1 ∈ (0, ξ). Then from (17)–(19), we have for any L > 0

sup
n>0

P
(

sup
w∈Un(r,θ0)

|rn(w; θ0)|
1 + |w|2 ≥ r−ν1

)
� 1

r L
.

This means that [A1] holds, and [A4] also holds with taking the parameters as above.
Second, we will verify [A5]. From (14), we define�n(θ0) = ∑n

i=1(2/
√
n)εi Xi =:∑n

i=1 χni . Then, using Burkholder’s inequality and Jensen’s inequality, we obtain for
N1 = L(1 − ν1)

−1 ≥ 2
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1148 Y. Shimizu

sup
n>0

E
[∣∣�n(θ0)

∣∣N1
]

≤ sup
n>0

E
[
max
j≤n

∣∣∣
j∑

i=1

χni

∣∣∣
N1

]

� sup
n>0

E
[ ( n∑

i=1

χ2
ni

)N1/2]

� sup
n>0

E
[ 1

n

n∑

i=1

∣∣εi Xi
∣∣2·N1/2

]

� E
[|ε1|N1

] · sup
n>0

(1
n

n∑

i=1

|Xi |N1
)

< ∞. (20)

The last boundedness of (20) follows from (8) and (10). Moreover, we get for any
θ ∈ �

n∑

i=1

2

n
εi Xi [θ − θ0] − Cn[θ − θ0, θ − θ0] P−→ −C0[θ − θ0, θ − θ0];

1

n

p∑

j=1

{
pn(θ j ) − pn(θ0 j )

} P−→ 0.

Since (a + b)N2 � aN2 + bN2 for any a, b ≥ 0 and N2 = L(1− 2β − ν2)
−1 ≥ 2, we

have

sup
n>0

E
[
sup
θ∈�

(
n1/2−β

∣∣∣
n∑

i=1

2

n
εi Xi [θ − θ0] − Cn[θ−θ0, θ − θ0]+C0[θ − θ0, θ − θ0]

∣∣∣
)N2

]

� sup
n>0

(
n−βN2E

[∣∣∣
n∑

i=1

1√
n

εi Xi

∣∣∣
N2

])
+

{
sup
n>0

(
n1/2−β−δnδ|Cn − C0|

)}N2
< ∞. (21)

Note that the parameter space � is a compact set. Further, we obtain

sup
n>0

sup
θ∈�

[
n1/2−β

∣∣∣
1

n

p∑

j=1

{
pn(θ j ) − pn(θ0 j )

}∣∣∣
]N2

< ∞ (22)

since we assume (11). From (20)–(22), we conclude that [A5] holds. Therefore, the
proof of (5) is complete because we established the PLDI (13). The latter claim of the
theorem is trivial. ��
Remark 1 We could deal with random design (Xi ). Assume for simplicity that (Xi )

and (ε j ) are independent. Then, in order to conclude (5), we need to change (9) and
(10) into (23) and (24), respectively:

∃δ > 0, ∃C0 > 0 : constant, ∀k > 0, sup
n>0

E
[∣∣nδ(Cn − C0)

∣∣k] < ∞. (23)
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Moment convergence of regularized estimator 1149

∀k > 0, sup
n>0

sup
i≤n

E
[|Xin|k

]
< ∞. (24)

The corresponding proofs are entirely analogous to the case of deterministic X . ��

3 Examples

We will give some examples of the regularization term in (3) satisfying the conditions
(11) and (12) in Theorem 2: sparse-bridge (Radchenko 2005), the smoothly clipped
absolute deviation (SCAD; Fan and Li 2001) and the Seamless-L0 regularization
(Dicker et al 2012). From the previous studies, it is known that these regularized esti-
mators θ̂n = (ẑn, ρ̂n) have the sparse consistency P(ẑn = 0) → 1, which concludes
the sparse estimation, and the asymptotic laws of

√
n(ρ̂n−ρ0) under some appropriate

regularity conditions. Also when the number of variables p = pn → ∞ as n → ∞,
the asymptotic behavior of the SCAD and the Seamless-L0 estimators are known, but
once again note that we consider the case that p is fixed.

3.1 Sparse-bridge

In this section, we will focus on the sparse-bridge LSE defined the contrast function
to be

Zn(θ) = Zn(z, ρ) :=
n∑

i=1

(Yi − z�X (z)
i − ρ�X (ρ)

i )2 + λn

p∑

j=1

|θ j |γ , (25)

where λn ≥ 0 denotes the tuning parameter controlling the degree of regularization
together with the bridge index γ ∈ (0, 1). This means pn(·) = λn| · |γ . Denote by
θ̂n = (ẑn, ρ̂n) a minimizer of Zn over a compact parameter space � = �0 × �1 ⊂
R

p0×R
p1 . The asymptotic behavior of θ̂n is studied byRadchenko (2005).He assumed

regularity conditions including that the noises ε1, ε2, . . . are i.i.d. with E[εi ] = 0 and
E[ε2i ] =: σ 2 > 0, Cn → C0 for some C0 > 0 and that n−1 maxi≤n |Xi |2 → 0. Note
that these conditions are satisfied with (8)–(10). Then, he proved the following results:

– The sparse consistency of ẑn :

P(ẑn = 0) → 1 if λn/n
γ /2 → ∞ and λn/n → 0.

– The asymptotic laws of ρ̂n :

(i)
√
n(ρ̂n − ρ0)

L−→ Np1(−λ0B
−1
0 ϒ, σ 2B−1

0 ) if λn/nγ /2 → ∞ and λn/
√
n →

λ0 ≥ 0;
(ii) nλ−1

n (ρ̂n − ρ0)
L−→ −B−1

0 ϒ if λn/
√
n → ∞ and λn/n → 0,

where

ϒ := γ

2
{sgn(ρ0,1)|ρ0,1|γ−1, . . . , sgn(ρ0,p1)|ρ0,p1 |γ−1}
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1150 Y. Shimizu

and B0 is the p1 × p1 submatrix located in the bottom right corner of the matrix
C0. We are concerned here with the moment convergence of ŵn . With regard to the
asymptotic law of the non-zero parameter ρ, we only consider the case (i), where the
asymptotic distribution is non-degenerate. The following Corollary 1 is derived from
Theorem 2.

Corollary 1 Assume that the linear regression model is (2) and the contrast function
is (25), where λn/nγ /2 → ∞ and λn/

√
n → λ0 ≥ 0 for γ ∈ (0, 1). Suppose that we

have (8)–(10). Then, the PLDI (5) holds. In particular, the moment convergence (6)
holds with ŵ0 = (0, v̂0), where L(v̂0) = Np1(−λ0B

−1
0 ϒ, σ 2B−1

0 ).

Proof Apparently, we only need to check the conditions (11) and (12) in Theorem 2
for pn(·) = λn| · |γ . (11) follows easily since for any a ∈ R, we have

pn(a)√
n

= λn√
n
|a|γ � 1

from λn/
√
n → λ0 ≥ 0. We will show (12). When n is large enough, we have for any

a �= 0 and b ∈ R

∣∣∣pn
(
a + b√

n

)
− pn(a)

∣∣∣ = λn

∣∣∣
∣∣a + b√

n

∣∣γ − |a|γ
∣∣∣

� λn√
n
|b| � |b|.

This shows that (12) holds for κ = 1, hence we obtain the PLDI (5). The latter

claim is trivial since we have (
√
nẑn,

√
n(ρ̂n − ρ0))

L−→ (0, v̂0), where L(v̂0) =
Np1(−λ0B

−1
0 ϒ, σ 2B−1

0 ). ��

Remark 2 Here, we briefly mention the case of the bridge-LSE θ̂n defined as the
minimal point of the contrast function

Zn(θ) :=
n∑

i=1

(Yi − θ�Xi )
2 + λn

p∑

j=1

|θ j |γ , (26)

where λn ≥ 0 and γ > 0 satisfy that λn/n(1∧γ )/2 → λ0 ≥ 0; then, we do not have
the sparse consistency. Note that, different from (25), in (26) we do not divide the true
value of parameter θ0 into the zero part and the non-zero part: jointly estimate all the
components. We assume (8)–(10). Then, Knight and Fu (2000) proved the following
asymptotic behavior of θ̂n .

– Consistency:

θ̂n
P−→ θ0 if λn/n → 0.
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– Asymptotic laws:

ŵ0 = √
n(θ̂n − θ0)

L−→ argmin (V0) if λn/n
(1∧γ )/2 → λ0 ≥ 0,

where for W ∼ Np(0, σ 2C0),

V0(w) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2W [w] + C0[w,w] + γ λ0

p∑

j=1

w j sgn(θ0 j )|θ0 j |γ−1 (γ > 1),

−2W [w] + C0[w,w]
+λ0

p∑

j=1

{
w j sgn(θ0 j )I (θ0 j �= 0) + |w j |I (θ0 j = 0)

}
(γ = 1),

−2W [w] + C0[w,w] + λ0

p∑

j=1

|w j |γ I (θ0 j = 0) (γ < 1).

Let ŵ0 = argmin(V0). We can derive the PLDI for the bridge-LSE by making use of
the argument similar to the proof of Theorem 2. In particular, for every continuous
f : Rp → R of at most polynomial growth, E[ f (ŵn)] → E[ f (ŵ0)]. See (Masuda
and Shimizu 2014, Section 2) for details. ��

3.2 SCAD

The SCAD-LSE (Fan and Li 2001) is defined as the minimum point of the contrast
function (3), where

pn(θ j ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

nλn|θ j | (|θ j | ≤ λn),

−n(θ2j − 2τλn|θ j | + λ2n)

2(τ − 1)
(λn < |θ j | ≤ τλn),

n(τ + 1)λ2n
2

(|θ j | > τλn).

τ > 2 is an additional tuning parameter. Let the minimizer be θ̂n = (ẑn, ρ̂n), and
(8)–(10) hold. Then, under some conditions including

λn → 0,
√
nλn → ∞, (27)

they proved the sparse consistency and the asymptotic law of ρn :

√
n(ρ̂n − ρ0)

L−→ Np1(0, I−1
p1 (ρ0)),

where Ip1(ρ0) = Ip1(0, ρ0) denotes the p1 × p1 Fisher information matrix knowing
z0 = 0.
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Let us take λn ∼ nβ−1/2, where β is the same as in the proof of Theorem 2. This
meets (27). Now, we will show (11) and (12). First, we establish (11). Obviously, we
only need to consider the case λn < |θ j | ≤ τλn . When n is large enough, we have
nθ2j /n

β+1/2 � nλ2n/n
β+1/2 ∼ n1+2β−1−β−1/2 = nβ−1/2 � 1, hence (11) holds. To

ensure (12), we use

p′
n(θ j ) = λnn

{
I (θ j ≤ λn) + (τλn − θ j )+

(τ − 1)λn
I (θ j > λn)

}
, θ j > 0,

where (x)+ = max(0, x). When n is large enough, for any a > 0 and b ∈ R

∣∣∣pn
(
a + b√

n

)
− pn(a)

∣∣∣ ≤ |b|√
n

∫ 1

0

∣∣∣p′
n

(
a + b√

n
t
)∣∣∣dt

∼ λn
√
n|b|

∫ 1

0
I
(
a + b√

n
t ≤ λn

)
dt

+ √
n|b|

∫ 1

0

[τλn − {a+(b/
√
n)t}]+

τ − 1
I
(
a+ b√

n
t>λn

)
dt

� |b|.

Similarly, we get the same estimate for a < 0. As the results, it is possible to take λn
ensuring (6), where ŵ0 = (0, v̂0) and L(v̂0) = Np1(0, I−1

p1 (ρ0)).

3.3 Seamless-L0

The Seamless-L0 regularization (Dicker et al 2012), which approximates the (techni-
cally unpleasant due to its discontinuity at the origin) L0-loss, is given by

Zn(θ) = Zn(z, ρ) :=
n∑

i=1

(Yi − z�X (z)
i − ρ�X (ρ)

i )2 + 2nλn

log 2

p∑

j=1

log
( |θ j |
|θ j |+τn

+1
)
,

where τn > 0 is an additional tuning parameter. Let the minimizer be θ̂n = (ẑn, ρ̂n)
and (8)–(10) hold. Then, under some conditions including

λn = O(1), λn
√
n → ∞, τn = O(n−3/2), (28)

Dicker et al (2012) proved the sparse consistency and the asymptotic law of ρ̂n :

√
n(ρ̂n − ρ0)

L−→ Np1(0, σ
2B−1

0 ),

where B0 is the same as in Sect. 3.1.
Let us take λn ∼ nβ−1/2 and τn ∼ n−3/2, where β is the same as in the proof

of Theorem 2. This meets (28). Now, we will show (11) and (12) for pn(·) =
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(2nλn/ log 2) log{| · |/(| · | + τn) + 1}. (11) follows easily since pn/n1/2+β �
n1+β−1/2−1/2−β = 1. To ensure (12), we make use of the equation

| log(1 + x) − log(1 + x ′)| =
∣∣∣
∫ 1

0

ds

1 + x ′ + (x − x ′)s
(x − x ′)

∣∣∣

where x, x ′ > 0. When n is large enough, for any a > 0 and b ∈ R

∣∣∣pn
(
a + b√

n

)
− pn(a)

∣∣∣ = 2nλn

log 2

∣∣∣ log
( |a + b/

√
n|

|a + b/
√
n|+τn

+ 1
)

− log
( |a|
|a|+τn

+ 1
)∣∣∣

� nλn

∣∣∣
a + δ

a + δ + τn
− a

a + τn

∣∣∣ (δ := b/
√
n)

= nλn
|(a + δ)(a + τn) − a(a + δ + τn)|

(a + δ + τn)(a + τn)

= nλn
τn|δ|

(a + δ + τn)(a + τn)

∼ nβ−3/2|b| � |b|.

Similarly, we get the same estimate for a < 0. As the results, it is possible to take the
tuning parameters ensuring (6), where ŵ0 = (0, v̂0) and L(v̂0) = Np1(0, σ

2B−1
0 ).
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