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Abstract In this paper, we propose a smoothed estimating equation for the difference
of quantiles with two samples. Using the jackknife pseudo-sample technique for the
estimating equation, we propose the jackknife empirical likelihood (JEL) ratio and
establish theWilk’s theorem. Due to avoiding estimating link variables, the simulation
studies demonstrate that JEL method has computational efficiency compared with
traditional normal approximation method. We carry out a simulation study in terms of
coverage probability and average length of the proposed confidence intervals. A real
data set is used to illustrate the JEL procedure.

Keywords Difference of quantiles · Jackknife · Kernel smoothing · Two samples

1 Introduction

The quantile is an attractive statistical measure because of its versatility with robust-
ness against the extreme value. It is defined by F−1(p) = inf{x ∈ R : F(x) ≥ p},
where 0 < p < 1. Motivated by the excellent property of quantiles, the researchers
from different fields proposed many useful methods as their fundamental tools, such
as Value-at-Risk (VaR) in risk management, quantile regression in econometrics, etc.
Csörgo (1987) established the theoretical foundation of a quantile estimation. To over-
come the analytical difficulty in the discreteness of quantile function, Sheather and
Marron (1990) introduced the kernel method to estimate an empirical quantile.
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Inheriting those favorable properties of the quantile, the difference of two quantiles
is used as a supplementary measure for comparing two distributions besides the Q–
Q plot. Kosorok (1999) developed two-sample quantile non-parametric tests for a
variety of empirical distribution functions for censored data and repeated measures
data. However, drawbacks of the asymptotic normal approximation method cannot
be ignored, such as the difficulty in estimating variance and generating symmetric
confidence interval.

The empirical likelihood (EL) is a popular nonparametric methodology. Owen
(1988, 1990, 2001) seminally built up the framework of EL as a new philosophy of
statistics. Chen and Hall (1993) studied the quantile estimation using the EL method.
Qin and Lawless (1994) proposed EL for the general estimating equation incorporat-
ing side information. As an application, Baysal and Staum (2008) developed the EL
inference for the value-at-risk and expected shortfall. However, using the traditional
EL method for the difference of two quantiles, people need to solve multiple nonlin-
ear estimating equations. In order to reduce heavy computational intensity of existing
methods (see Zhou and Jing 2003), we construct the jackknife pseudo-samples and
derive the EL based on those pseudo-samples, i.e., the jackknife EL proposed by Jing
et al. (2009). It is a more feasible method, appreciating its computational efficiency
in the small sample. Wang et al. (2013) develop the JEL method for the high dimen-
sional two-mean problem, while the JEL method for a discrete estimation problem,
such as the difference of two-sample quantiles θ(p) = F−1

1 (p) − F−1
2 (p), needs to

be investigated further.
In order to apply the JEL method for the difference of two-sample quantiles

θ(p), 0 < p < 1, we need to propose a smoothed estimator rather than apply the
classical discrete estimator directly (see Gong et al. 2010; Yang and Zhao 2013).
We propose a smoothed nonparametric estimating equation for θ(p) to solve dis-
crete problems. Using the smooth jackknife empirical likelihood method, confidence
intervals for θ(p) are constructed. The Wilk’s theorem is proved under suitable con-
ditions. Moreover, we obtain the asymptotical results of θ(p), and demonstrate the
computational accuracy using JEL in the small sample.

The rest of the paper is organized as follows. In Sect. 2, we show that the jackknife
empirical log-likelihood ratio for the difference of two quantiles with two samples
is an asymptotically Chi-squared distribution. To illustrate the performance of the
proposed method, the coverage probability and average length of confidence intervals
are reported in Sect. 3. In Sect. 4, we use a real data example to illustrate the proposed
JEL method. Furthermore, we give a discussion in Sect. 5. The proofs are provided in
the Appendix.

2 New procedure

Let X1 and X2 be independent random variables with distribution functions F1(x)

and F2(x), respectively. The difference of quantiles at p can be written as θ(p) =
F−1
1 (p) − F−1

2 (p), where 0 < p < 1 and F−1
j denotes quantile function of Fj (x),

j = 1, 2. Define D{θ(p), p} = F1{θ(p)+F−1
2 (p)}. D

′ {θ(p), p} is the first derivative
of D{θ(p), p} with respect to p.

123
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Let X1,i , i = 1, . . . , m and X2,i , i = 1, . . . , n be two samples independently
observed from the distribution functions F1(x) and F2(x), respectively. The empir-
ical estimators of distribution functions F1(x) and F2(x) are defined by Fm,1(x) =
1/m

∑m
i=1 I (X1,i ≤ x), Fn,2(x) = 1/n

∑n
i=1 I (X2,i ≤ x), respectively. Let K(p) be

the smooth distribution function which satisfies K(p) = ∫
u≤p w(u)du, where w(u)

is a symmetric density function. We propose a new smooth estimating equation for
the difference of two quantiles

�m,n(p, θ(p)) = 1

m

m∑

j=1

K

{
p − Fn,2(X1, j − θ(p))

h

}

− p,

where h = h(m) > 0 is a bandwidth. In order to develop the JEL method, we need to
overcome the difficulty for analyzing the discrete empirical quantile estimator because
the jackknife variance estimator for a quantile estimator is not consistent (see Miller
1974). Thus, we employ implicit estimating equation motivated by D{θ(p), p} and
kernel smoothing technique to avoid discrete non-parametric quantile estimators. We
assume the following conditions.

C.1. Fj (x) and their first derivatives f j (x), j = 1, 2 are continuous and bounded.
Assume f1{F−1

1 (p)} > 0, f2{F−1
2 (p)} > 0 for a given p ∈ (0, 1);

C.2. D{θ(p), p} and its first derivative D
′ {θ(p), p} are bounded and continuous for

the p in condition C.1.
C.3. m/n → r , where r > 0; h = h(m) → 0, mh2/ logm → ∞, mh4 → 0 as

m → ∞;
C.4. w(u) is a symmetric density function with support [−1, 1] andw

′
(u) is bounded,

continuous for u ∈ [−1, 1].
Condition C.1 is a regular condition in order to derive theorems. Because

D{θ(p), p} and its derivative exist in the following theorems, we need its properties in
condition C.2. Conditions C.3–C.4 are common conditions for both two-sample prob-
lems and kernel methods. We need asymptotic properties of this estimation equation
�m,n{p, θ(p)} to obtain the consistency (Theorem 1) and the asymptotic normality
(Theorem 2).

Theorem 1 Assume conditions C.1–C.4 hold. We have

�m,n(p, θ(p))
P→ 0,

where θ(p) is a true value of the difference of two quantiles at p.

Theorem 2 Under the conditions C.1–C.4, one has

√
m + n�m,n{p, θ(p)} D−→ N {0, σ 2(p)},

where

σ 2(p) = 1 + r

r
(1 − p)p + (1 + r)(1 − p)pD

′ {θ(p), p}2.
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After we establish the asymptotic normality theorem for the kernel estimating equa-
tion of the difference of quantiles, we need the empirical estimator of the variance
σ 2(p) as Sheather and Marron (1990) and Csörgo (1987) did. However, from Theo-
rem 2, due to the complicated variance σ 2(p), normal approximation methods could
not be widely applied in statistical inference regardless of using the smoothed estima-
tor or an equation of the difference of two quantiles. The JEL method is interesting
for the small sample problem because the JEL confidence interval is automatically
adapted by the data set in an asymmetrical manner (Jing et al. 2009; Gong et al. 2010).
First, we propose a procedure to generate jackknife pseudo-sample. Denote

�m,n,i {p, θ(p)} =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
m−1

∑

1≤ j≤m, j 	=i

K

(
p − Fn,2{X1, j − θ(p)}

h

)

− p, if 1 ≤ i ≤ m

1
m

m∑

j=1

K

(
p − Fn,2,m−i {X1, j − θ(p)}

h

)

− p, m + 1 ≤ i ≤ m + n,

where

Fn,2,m−i (y) = 1

n − 1

∑

1≤ j≤n, j 	=i

I (X2, j ≤ y), i = m + 1, . . . , m + n.

The jackknife pseudo-sample is defined as

V̂i {p, θ(p)} = (m + n)�m,n{p, θ(p)} − (m + n − 1)�m,n,i {p, θ(p)}, i = 1, . . . , m + n.

From the jackknife pseudo-sample, the empirical log-likelihood ratio at θ(p) is defined
as

L{p, θ(p)} = sup{∏m+n
i=1 pi : ∑m+n

i=1 pi = 1,
∑m+n

i=1 pi V̂i {p, θ(p)} = 0, pi > 0, i = 1, . . . , m + n}
sup{∏m+n

i=1 pi ,
∑m+n

i=1 pi = 1, pi > 0, i = 1, . . . , m + n} .

Following the standard Lagrange multiplier method, we have

l(p, θ(p)) = −2 log L{p, θ(p)} = 2
m+n∑

i=1

log{1 + λV̂i (p)},

where Lagrange multiplier λ satisfies the equation

m+n∑

i=1

V̂i {p, θ(p)}
1 + λV̂i {p, θ(p)} = 0. (1)

Assuming the conditionsC.1–C.4,we establish theWilks’ theorem for θ(p) as follows.
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Theorem 3 Suppose the conditions C.1–C.4 hold. We have

l{p, θ(p)} D→ χ2
1 ,

where θ(p) is the true value of the difference of quantiles at the fixed p ∈ (0, 1).

Thus, using smoothed JEL method, the asymptotic 100(1− α) % confidence interval
for the difference of two quantiles is as follows

I(p) =
{
θ̃ (p) : l{p, θ̃ (p)} ≤ χ2

1 (α)
}

,

where χ2
1 (α) is the upper α-quantile of χ2

1 .

3 Numerical studies

We carry out a comprehensive simulation study to illustrate our method. The coverage
probabilities and average lengths are studied under various scenarios by the different
values of p and the distribution functions F1 and F2. For scenario A, F1(x) is selected
as a normal distribution function with mean 0.2 and standard deviation 0.5, and F2(x)

is a N (0, 0.52). For scenario B, X1 is simulated from an exponential distribution
function with parameter 1, and F2(x) is a N (1, 0.52). For scenario C, F1(x) and
F2(x) are two exponential distribution functions with parameter 1. In our simulation
studies, we select p = 0.4, 0.6, and sample sizes m and n are chosen as (50, 70), (80,
60), (70, 100), (100, 100), (120, 100) and (150, 150). The data sets are simulated with
1000 repetitions. The bandwidth is determined as h = c ∗ m−1/3, where c is selected
(see Chen et al. 2009) to minimize the mean-squared error. We use the Epanechnikov
kernel function in the simulation study,

w(u) =
{ 3

4 (1 − u2) if |u| ≤ 1
0 otherwise.

θ̂ (p) is the empirical estimator of difference of two quantile from two samples. Recall
that f1 and f2 are two density functions defined before. From properties of the differ-
ence of two quantiles from two independent samples, we have

√
m + n{θ̂ (p) − θ(p)} D→ N (0, σ 2(θ(p))),

where

σ 2(θ(p)) = (1 + r)(1 − p)p

r f 21 {F−1
1 (p)} + (1 + r)(1 − p)p

f 22 {F−1
2 (p)} ,

and f1 and f2 are estimated by the common kernel method. Based on this result, we
construct normal approximation (NA) confidence interval for two-sample difference of
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Table 1 Coverage probability of 95 % confidence interval for the difference of quantiles with two samples
at p

p m n JEL (A) NA (A) JEL (B) NA (B) JEL (C) NA (C)

0.4 50 70 0.953 0.985 0.942 0.970 0.942 0.977

0.4 80 60 0.925 0.950 0.937 0.956 0.941 0.953

0.4 70 100 0.944 0.980 0.943 0.976 0.953 0.981

0.4 100 100 0.933 0.961 0.953 0.965 0.942 0.957

0.4 120 100 0.950 0.960 0.949 0.956 0.944 0.952

0.4 150 150 0.933 0.955 0.944 0.955 0.953 0.960

0.6 50 70 0.932 0.980 0.960 0.952 0.954 0.965

0.6 80 60 0.929 0.944 0.953 0.941 0.942 0.925

0.6 70 100 0.953 0.982 0.950 0.952 0.944 0.960

0.6 100 100 0.946 0.968 0.949 0.947 0.940 0.938

0.6 120 100 0.940 0.954 0.952 0.943 0.939 0.934

0.6 150 150 0.952 0.961 0.954 0.946 0.938 0.935

Table 2 Average length of 95 % confidence interval for the difference of quantiles with two samples at p

p m n JEL (A) NA (A) JEL (B) NA (B) JEL (C) NA (C)

0.4 50 70 0.5088 0.5478 0.6003 0.6263 0.6025 0.6872

0.4 80 60 0.4631 0.4291 0.5279 0.4831 0.5494 0.5358

0.4 70 100 0.4436 0.4577 0.5166 0.5156 0.5242 0.5686

0.4 100 100 0.4040 0.3786 0.4691 0.4272 0.4761 0.4647

0.4 120 100 0.3922 0.3464 0.4437 0.3853 0.4583 0.4216

0.4 150 150 0.3609 0.3080 0.3983 0.3403 0.4066 0.3705

0.6 50 70 0.5108 0.5420 0.8291 0.7314 0.8708 0.8913

0.6 80 60 0.3922 0.4267 0.6954 0.5861 0.7953 0.7136

0.6 70 100 0.4427 0.4535 0.7073 0.6273 0.7496 0.7652

0.6 100 100 0.4060 0.3782 0.6160 0.5294 0.6842 0.6463

0.6 120 100 0.3917 0.3443 0.5809 0.4848 0.6543 0.5895

0.6 150 150 0.3605 0.3062 0.5134 0.4314 0.5790 0.5325

quantiles. The coverage probabilities of JEL and NA in Table 1 is close to the nominal
level 95 %. However, using the normal approximation method, coverage probabilities
perform over-coverage under some small sample cases.

Furthermore, we apply the bisection method to obtain the upper bound and lower
bound of the difference of two quantiles. The average lengths of confidence intervals
are displayed in Table 2. We find that the confidence intervals with larger sample
size have shorter average length. From our results, we find that average lengths with
the JEL method are slightly narrower than that with the NA method at small sample
settings and wider than that with the NA method for large sample sizes in most cases.
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Fig. 1 95 % point-wise JEL confidence intervals for the difference of quantiles from the 24th attribute
spam data, where JEL Upper indicates the upper bound of JEL confidence intervals, JEL Lower indicates
the lower bound of JEL confidence intervals and SEE means the smoothed empirical estimator

4 Data analysis

In this section, we investigate a real data set to illustrate the proposedmethod. The data
set is from the web site of the Center for Machine Learning and Intelligent Systems
at UC, Irvine. It contains 4601 observations with one indicator variable for spam
e-mails, which are the advertisements for products or web sites, make money fast
schemes and pornography. Most of those attributes are measured by percentages of
certain words appearing in the e-mail. In this paper, we focus on the 24th attribute with
zero value of around 60 % observations, which recorded the appearance frequency
of word “money” in every email. We split the “money” attribute into two groups by
the spam indicator variable. The Epanechnikov kernel function is used for the data
analysis as well. Figure 1 shows the point-wise confidence intervals for the difference
of quantiles between the spam group and the non-spam group. Confidence intervals
for the difference of two quantiles are above the x-axis from the 60 % quantile to the
maximum significantly. Thus, the 24th attribute can distinguish the spam observation
from the non-spam observation.

5 Discussion

Motivated by the challenge and importance of the difference of quantiles, we develop
smoothed JEL methods. The main contribution of this paper is to develop an implicit
smoothed estimating equation for the difference of two quantiles and establish the
Wilks’ theorem for the JEL method. The advantage of the proposed JEL method is
that it reduces the number of variables in the optimization and makes the computation
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1066 H. Yang, Y. Zhao

less intensive tremendously. Our simulation studies show this new procedure achieves
the accuracy in terms of coverage probability and average length in most cases. The
proposed JEL inference procedures can be applied to other problems like the low
income proportion, value-at-risk and expected shortfall as well (cf. Yang and Zhao
2015).
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Appendix: Proofs of Theorems

Proof of Theorem 1 We can decompose �m,n{p, θ(p)} as

�m,n{p, θ(p)} = 1

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

− p − �m{p, θ(p)} + �m{p, θ(p)},

(2)

where

�m{p, θ(p)} = 1

m

m∑

j=1

K

{
p − F2{X j − θ(p)}

h

}

− p. (3)

The Eq. (3) is simplified as follows

�m{p, θ(p)} = 1

m

m∑

j=1

K

{
p − F2{X j − θ(p)}

h

}

− p

=
∫ ∞

−∞
K

{
p − F2{x − θ(p)}

h

}

dFm,1(x) − p

= K

{
p − F2{x − θ(p)}

h

}

Fm,1(x)|∞−∞

−
∫ ∞

−∞
Fm,1(x)dK

{
p − F2{x − θ(p)}

h

}

− p

= 1

h

∫ ∞

−∞
Fm,1(x)w

{
p − F2{x − θ(p)}

h

}

dF2{x − θ(p)} − p

=
∫ 1

−1
Fm,1{F−1

2 (p + uh) + θ(p)}w (u) du − p

=
∫ 1

−1
[Fm,1{F−1

2 (p + uh) + θ(p)} − F1{F−1
2 (p + uh) + θ(p)}

+ F1{F−1
2 (p + uh) + θ(p)} − F1{F−1

2 (p) + θ(p)}]w (u) du

= op(1). (4)
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The above equation is obtained by the Glivenko–Cantelli Theorem of F1 and the
bounded derivative of D{θ(p), p} = F1{F−1

2 (p) + θ(p)}. By Eqs. (10) and (11)
in Gong et al. (2010), we can extend their result in our case, i.e., �m{p, θ(p)} −
�m,n{p, θ(p)} = op(1). Thus, considering Eqs. (3) and (4), we finish the proof about

�m,n{p, θ(p)} P→ 0. (5)

��

Proof of Theorem 2: One has that

√
m + n�m,n{p, θ(p)} =

√
m + n√

m

√
m[�m{p, θ(p)}]

+
√

m + n√
n

√
n[�m,n{p, θ(p)} − �m{p, θ(p)}]. (6)

For the first term of (6), one has

√
m[�m{p, θ(p)}]

=
∫ 1

−1

√
m[Fm,1{F−1

2 (p + uh) + θ(p)} − F1{F−1
2 (p + uh) + θ(p)}]w (u) du

+ √
m

∫ 1

−1
F1{F−1

2 (p + uh) + θ(p)} − F1{F−1
2 (p) + θ(p)}]w (u) du

=
∫ 1

−1
WF1{F−1

2 (p + uh) + θ(p)}w (u) du + √
m

∫ 1

−1
D

′ {θ(p), p}uhw (u) du

+ Op(
√

mh2) = I + I I + Op(
√

mh2), (7)

where WF1(t) = √
m{Fm,1(t) − F1(t)}. Because of the symmetric property of kernel

function, the second term of (7) is equal to zero.
By arguments in pp. 266 and 269 in van der Vaart (2000), the weak convergence of

Fm,1(x) and Fn,2(x) is true.

√
m{Fm,1(x) − F1(x)} ⇒ B1(F1(x)),

√
n{Fn,2(x) − F2(x)} ⇒ B2(F2(x)),

where B1(·) and B2(·) are two independentBrownian bridge on [0, 1]. Thus, B1(F1(x))

and B2(F2(x)) are independent. Due to the Donsker theorem and similar proofs for

equation 9 in Gong et al. (2010), I
D−→ B1(F1{F−1

2 (p) + θ(p)}). Using F−1
1 (p) =

F−1
2 (p) + θ(p), it is clear that

√
m[�m{p, θ(p)}] D−→ B1(p). (8)
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For the second term of Eq. (6), under condition C.1, we adopt the procedure similar
to that in Gong et al. (2010),

√
n[�m,n{p, θ(p)} − �m{p, θ(p)}]
= −

∫ ∞

−∞
WF2(x)w

{
p − F2{x − θ(p)}

h

}

dF1(x) + Op(n
−1/2h−1)

=
∫ 1

−1
WF2{F−1

2 (p)}w(u)D
′ {p, θ(p)}du + Op(n

−1/2h−1)

D−→ B2(F2{F−1
2 (p)})D

′ {p, θ(p)},
= B2(p)D

′ {p, θ(p)}, (9)

where WF2(t) = √
n{Fn,2(t) − F2(t)}. Combining (7), (8), (9) and the independence

of B1(F1(x)) and B2(F2(x)), one has that

√
m + n�m,n{p, θ(p)} D−→ N (0, σ 2(p)). (10)

��

Before we prove Theorem 3, we need to obtain the asymptotic normality of jack-
knife estimator and the consistency of jackknife variance estimator. Those asymptotic
properties are given in Lemmas 1 and 2.

Lemma 1 Suppose conditions C.1–C.4 hold. We have

√
m + n

{
1

m + n

m+n∑

i=1

V̂i {p, θ(p)}
}

D→ N {0, σ 2(p)},

where σ 2(p) is defined in Theorem 2.

Proof of Lemma 1: First, we introduce some properties of Fn,2,−i as follows:

Fn,2,−i (X j ) − Fn,2(X j ) = 1

n − 1
{Fn,2(X j ) − I (Yi ≤ X j )} = Op

(
1

n − 1

)

, i = 1, . . . , n

(11)

and

n∑

i=1

{Fn,2,−i (X j ) − Fn,2(X j )} = 0,
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because

Fn,2,−i (X j ) − Fn,2(X j )

= 1

n − 1

n∑

k=1,k 	=i

I (Yk ≤ X j ) − 1

n

n∑

k=1

I (Yk ≤ X j )

= 1

n − 1

⎧
⎨

⎩

n∑

k=1,k 	=i

I (Yk ≤ X j ) −
n∑

k=1

I (Yk ≤ X j )

⎫
⎬

⎭
+

(
1

n − 1
− 1

n

) n∑

k=1

I (Yk ≤ X j )

= 1

n − 1
{Fn,2(X j ) − I (Yi ≤ X j )}. (12)

For the pseudo-sample, based on equation (16) in Gong et al. (2010) and Eqs. (11)
and (12), one has that

{
1

m + n

m+n∑

i=1

V̂i {p, θ(p)}
}

= 1

m + n

m∑

i=1

⎧
⎨

⎩

m + n

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}
⎫
⎬

⎭

− m + n − 1

(m + n)(m − 1)

m∑

i=1

⎧
⎨

⎩

m∑

j=1, j 	=i

K

{
p − Fn,2{X j − θ(p)}

h

}
⎫
⎬

⎭
− p

+
m+n∑

i=m+1

⎧
⎨

⎩

1

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

−m + n − 1

(m + n)m

m∑

j=1

K

{
p − Fn,2,m−i {X j − θ(p)}

h

}
⎫
⎬

⎭

= 1

m + n

⎡

⎣
m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

+ n

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}
⎤

⎦

+ m + n − 1

(m + n)m

m+n∑

i=m+1

m∑

j=1

[

K

{
p − Fn,2{X j − θ(p)}

h

}

−K

{
p − Fn,2,m−i {X j − θ(p)}

h

}]

− p

= 1

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

− p + Op

{
mn

(m + n)(n − 1)2h

}

. (13)
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Using (10) and (13), it is clear that

√
m + n

{
1

m + n

m+n∑

i=1

V̂i {p, θ(p)}
}

= √
m + n�m,n{p, θ(p)} + op(1)

D−→ N (0, σ 2(p)). (14)

��

In order to obtain the Wilks’ theorem for the JEL procedure, we need to check the
consistency of jackknife pseudo-sample variance in addition to Eq. (14). Define the
pseudo-sample variance

v2m,n{p, θ(p)} = 1

m + n

m+n∑

i=1

{

V̂i {p, θ(p)} − 1

m + n

m+n∑

i=1

V̂i {p, θ(p)}
}2

.

Lemma 2 Under the conditions C.1–C.4, one has that

v2m,n{p, θ(p)} P→ σ 2(p).

Proof of Lemma 2: For 1 ≤ i ≤ m,

V̂i {p, θ(p)}

= m + n

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

− m + n − 1

m − 1

m∑

j=1, j 	=i

K

{
p − Fn,2{X j − θ(p)}

h

}

− p

= m + n − 1

m − 1
K

{
p − Fn,2(Xi − θ(p))

h

}

− n

m(m − 1)

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

− p

and

V̂ 2
i {p, θ(p)}

=
[

m + n − 1

m − 1
K

{
p − Fn,2(Xi − θ(p))

h

}]2
+

⎡

⎣ n

m(m − 1)

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}
⎤

⎦

2

− 2(m + n − 1)n

m(m − 1)2
K

{
p − Fn,2(Xi − θ(p))

h

} m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

+ p2

− 2p

⎡

⎣m + n − 1

m − 1
K

{
p − Fn,2(Xi − θ(p))

h

}

− n

m(m − 1)

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}
⎤

⎦ .
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By the similar argument in Gong et al. (2010), one has

1

m + n

m∑

j=1

V̂ 2
i {p, θ(p)} P−→ r + 1

r
p(1 − p). (15)

For m + 1 ≤ i ≤ m + n, one has that

V̂i {p, θ(p)}

= m + n − 1

m

m∑

j=1

[

K

{
p − Fn,2{X j − θ(p)}

h

}

− K

{
p − Fn,2,m−i {X j − θ(p)}

h

}]

+ 1

m

m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

− p,

and

V̂ 2
i {p, θ(p)} =

{
m + n − 1

m

}2
⎡

⎣
m∑

j=1

K

{
p − Fn,2{X j − θ(p)}

h

}

−K

{
p − Fn,2,m−i {X j − θ(p)}

h

}]2
+ op(1) =

{
m + n − 1

m

}2

×
⎡

⎣
m∑

j=1

w

{
p − Fn,2{X j − θ(p)}

h

}
Fn,2{X j − θ(p)} − Fn,2,m−i {X j − θ(p)}

h

⎤

⎦

2

+ op(1).

Under condition C.1, we follow the argument which is similar to Gong et al. (2010),

1

m + n

m+n∑

j=m+1

V̂ 2
i {p, θ(p)} = m + n

nh2

n∑

i=1

m∑

j=1

m∑

l=1

{Fn,2(X j

− θ(p))Fn,2(Xl − θ(p)) − Fn,2{X j − θ(p)}I (Yi ≤ Xl − θ(p))

− Fn,2(Xl − θ(p))I (Yi ≤ X j − θ(p)) + I (Yi ≤ X j − θ(p))I (Yi ≤ Xl − θ(p))}
w

(
p − Fn,2{X j − θ(p)}

h

)

w

(
p − Fn,2(Xl − θ(p))

h

)

+ op(1)

= m + n

nh2

∫ ∞

−∞

∫ ∞

−∞
{Fn,2(x1 ∧ x2 − θ(p)) − Fn,2(x1 − θ(p))Fn,2(x2 − θ(p))}

w

(
p − Fn,2(x1−θ(p))

h

)

w

(
p−Fn,2(x2−θ(p))

h

)

dFm,1(x1)dFm,1(x2) + op(1)

= m + n

nh2

∫ 1

−1

∫ 1

−1
{F2{F−1

2 (p − u1h) ∧ F−1
2 (p − u2h)}
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− F2{F−1
2 (p − u1h)}F2{F−1

2 (p − u2h)}}
w (u1) w (u2) dF1{F−1

2 (p − u1h) + θ(p)}dF1{F−1
2 (p − u2h) + θ(p)} + op(1)

= m + n

n

∫ 1

−1

∫ 1

−1
p(1 − p){D

′ {p, θ(p)}}2w(u1)w(u2)du1du2

= m + n

n
p(1 − p){D

′ {p, θ(p)}}2 + op(1). (16)

Thus, based on Eqs. (15) and (16),

1

m + n

m+n∑

j=1

V̂ 2
i {p, θ(p)} P−→ σ 2(p).

From Eqs. (5) and (13),

v2m,n{p, θ(p)} P→ σ 2(p).

��
Proof of Theorem 3: Combining Lemmas 1 and 2, we can easily prove Theorem 3 by
the standard arguments in Owen (1990). The details of the proof are omitted. ��
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