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Abstract We consider a simple yet flexible spline estimation method for quasi-
likelihood models. We approximate the unknown function by B-splines and apply
the Fisher scoring algorithm to compute the estimates. The spline estimate of the
nonparametric component achieves the optimal rate of convergence under the smooth
condition, and the estimate of the parametric part is shown to be asymptotically nor-
mal even if the variance function is misspecified. The semiparametric efficiency of
the model can be established if the variance function is correctly specified. A direct
and consistent variance estimation method based on the least-squares estimation is
proposed. A simulation study is performed to evaluate the numerical performance of
the spline estimate. The methodology is illustrated on a crab study.

Keywords B-spline · Least-squares estimation · Quasi-likelihood model ·
Semiparametric efficiency

1 Introduction

Quasi-likelihood method (Wedderburn 1974; McCullagh 1983; McCullagh and Nelder
1989) is used to model the relationship between an outcome and some covariates in
cases where the exact distributional information is not available. It only requires the
specification of a relationship between the mean and variance of the outcome. Quasi-
likelihood methods have the similar properties to the maximal likelihood methods and
thus are reasonable alternatives if the distribution of the outcome is not fully available.
In parametric quasi-likelihood linear models, it is assumed that the unknown mean
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function is modeled linearly via a known link function. In many practical situations,
however, the underlying relationship between the response and covariates is not ade-
quately fit by a linear function or simple parametric curves. Some components can
be indeed highly nonlinear. The linear assumption may lead to substantial modeling
bias and wrong conclusion. A natural extension of the quasi-likelihood linear models
is to allow some covariates to be linearly associated with the response, with other
covariates being modeled nonlinearly.

The statistical methodology for semiparametric quasi-likelihood estimation has
been extensively discussed in the literature and can be classified into kernel smoothing
(Severin and Staniswallis 1994; Härdle et al. 1998), penalized estimation (Mammen
and van der Geer 1997), and local polynomial fitting (Fan et al. 1995; Fan and Chen
1999; Chen et al. 2006). Splines are well known for their numerical stability and
good approximation to smooth functions, and their application to semiparametric
estimation has been extensively studied, for example, Stone (1986), Kooperberg et al.
(1995), Huang and Liu (2006), Lu et al. (2009), and Hua and Zhang (2012) among
many others. In this manuscript, we consider the spline-based M-estimator for the
unknown function ψ , which can be classified as sieve estimation. In sieve estimation,
instead of maximizing a given criterion function over the whole parameter space, a
sequence of increasing subspaces (sieves) that depend on the sample size n are used
to approximate the large original space such that the resulting estimation problem
becomes computationally less complicated. In spline quasi-likelihood estimation, the
sieves are the classes of cubic B-splines and the original space is the class of bounded
smooth functions.

We approximate the unknown function ψ by a cubic B-spline function:

ψ(z) ≈ ψn(z) =
qn∑

j=1

γ j B j (z).

The attraction of the spline estimation is that after the spline basis functions are
chosen, the approximated function is totally characterized by the spline coefficients
γ = (γ1, . . . , γqn )

ᵀ. The regression parameters β and the spline coefficients γ

can then be estimated simultaneously by maximizing the spline quasi-likelihood
function. Therefore, the computational burden is greatly alleviated and the standard
Newton–Raphson or Fisher scoring method can be effectively adapted to the spline
quasi-likelihood estimation. The proposed B-spline method is easier to implement and
less computationally intensive, compared with the aforementioned existing methods.
The local polynomial fitting method and the kernel estimation method are based on
the profile likelihood, in which there are two (iterative) steps involved in estimating
the regression parameters and the nonparametric function. The obvious extra difficulty
introduced by the penalized likelihood approach is that the smoothing parameters have
to be estimated by some computationally intensive approaches, such as (generalized)
cross-validation. In addition to the preferable numerical properties, the proposed B-
spline method also has some appealing asymptotic features. First, by allowing the
number of knots to increase by the sample size at an appropriate rate, the spline esti-
mate of ψ is uniformly consistent and can achieve the optimal rate of convergence
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under the smooth condition. Second, the estimates of β are asymptotically normal even
if the variance function is possibly misspecified, and the spline-based semiparametric
model can achieve the asymptotic efficiency for β if the variance function is correctly
specified. Finally, a consistent variance estimation method for the estimate of β can
be derived by taking advantage of the spline approximation.

The rest of the paper is organized as follows. The spline quasi-likelihood estimator
and the Fisher scoring algorithm are presented in Sect. 2 . An adaptive knots selection
method is also discussed in Sect. 2. Asymptotic properties of the estimators are studied
in Sect. 3. A direct and consistent variance estimation method is provided in Sect. 4. A
Monte Carlo simulation study and an illustrative example are given in Sect. 5. Finally,
the proofs of asymptotic results are sketched in Sect. 6.

2 Spline quasi-likelihood estimation

2.1 Models

Let {(yi , xi , zi ) : i = 1, . . . , n} denote the independent copies of (y, x, z), where y is a
scalar response variable, x ∈ R

d , and z ∈ R. Denote w = (xᵀ, z)ᵀ and v = (wᵀ, y)ᵀ.
Assume

μ(w;β, ψ) = E(y|w) = F(xᵀβ + ψ(z)), (1)

where F is a known monotone function, β is an unknown d × 1 parameter vector,
and ψ is an unknown function. Assume further that the conditional variance of y
only depends on σ 2V (μ), where σ 2 is an unknown parameter and V (μ) is a known
positive function. Because in practice the information about the variance function is
not always available, we relax the assumption that V (μ) is correctly specified. Thus,
our results may be used in case of model misspecification. Denote τ = (βᵀ, ψ)ᵀ. The
quasi-likelihood function is defined as follows:

Q(τ ) =
n∑

i=1

∫ μi

yi

yi − s

σ 2V (s)
ds, (2)

where μi ≡ μ(wi ; τ ) = F(xᵀ
i β + ψ(zi )).

We assume that z takes values in [a, b], where a and b are finite numbers. Let
Tn = {ti }mn+2l

1 , with

a = t1 = · · · = tl < tl+1 < · · · < tmn+l < tmn+l+1 = · · · = tmn+2l = b,

be a sequence of knots that subdivide the interval [a, b] into mn + 1 subintervals
Ii = [tl+i , tl+1+i ], i = 0, . . . ,mn . The spline of order l ≥ 1 with the knot sequence
Tn is a polynomial of degree l−1 within any subinterval [tl+i , tl+i+1]. A spline of l = 4
is a piecewise cubic polynomial with continuous second order derivative. LetSn(Tn, l)
be the class of splines of order l ≥ 1 with knots Tn . According to Corollary 4.10 of
Schumaker (1981), Sn(Tn, l) can be linearly spanned by spline basis functions, that is,
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for any s ∈ Sn(Tn, l), there exists a set of B-spline basis functions {Bj : 1 ≤ j ≤ qn}
such that s =∑qn

j=1 γ j B j , where qn = mn + l is the number of basis functions.
If ψ(z) is smooth enough, we can approximate ψ(z) by a B-spline function ψn(z) ∈

Sn :

ψ(z) ≈ ψn(z) =
qn∑

j=1

γ j B j (z).

Replacing ψ(z) by ψn(z) in (2), we obtain the spline quasi-likelihood function for
ϑ = (βᵀ, γ ᵀ)ᵀ, namely,

Q(ϑ) =
n∑

i=1

∫ μ̄i

yi

yi − s

σ 2V (s)
ds, (3)

where μ̄i ≡ μ(wi ;ϑ) = F(xᵀ
i β + bᵀ

i γ ) and bi = (B1(zi ), . . . , Bqn (zi ))
ᵀ. The

advantage of this reparametrization is that we can estimate the regression parameters
β and the spline coefficients γ simultaneously, and hence release the computational
burden. Let ϑ̂ = (β̂

ᵀ
, γ̂

ᵀ
)ᵀ be the values that maximize the spline quasi-likelihood

function (3). The spline estimator of ψ(z) is defined as
∑qn

j=1 γ̂ j B j (z).

2.2 Computation of the estimates

Let ξ(w;ϑ) = f (xᵀβ + bᵀγ ), where f is the first derivative of F . Denote
ξi = ξ(wi ;ϑ) and Vi = V (μ̄i ), i = 1, . . . , n. Let Xᵀ = (x1, . . . , xn) and
Bᵀ = (b1, . . . ,bn). Denote V = diag{V1, . . . , Vn} and ξ = diag{ξ1, . . . , ξn}. Let
y = (y1, . . . , yn)ᵀ, μ̄ = (μ̄1, . . . , μ̄n)

ᵀ, and D = (X,B). Some calculation yields the
score vector

∇Q(ϑ) = σ−2DᵀξV−1(y − μ̄)

and the expected information matrix

E(ϑ) = σ−2Dᵀξ2V−1D.

We now give some expressions that will be used in the variance estimation. Let

Dᵀξ2V−1D =
(
Xᵀξ2V−1X Xᵀξ2V−1B
Bᵀξ2V−1X Bᵀξ2V−1B

)
≡
(
E11 E12
E21 E22

)
.

It follows from the formula of block matrix inverse that

(
E11 E12
E21 E22

)−1

=
(
E11 E12

E21 E22

)
=
(

E−1
11.2 −E−1

11.2E12E
−1
22

−E−1
22.1E21E

−1
11 E−1

22.1

)
,
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where E11.2 = E11 − E12E
−1
22 E21 and E22.1 = E22 − E21E

−1
11 E12.

Remark 1 For F(s) = s and V (μ) = 1, the quasi-likelihood function reduces to the
log-likelihood function for normally distributed data. We can explicitly estimate ϑ by

ϑ̂ = (DᵀD)−1Dᵀy. (4)

Remark 2 Let F(s) = exp(s) and V (μ) = σ 2μ, 0 < μ < ∞. For σ 2 = 1, the
quasi-likelihood function becomes the Poisson log-likelihood function. Otherwise,
the resulting likelihood function is the log-likelihood function with data according to
a Poisson distribution with over-dispersion (under-dispersion) parameter σ 2.

Because σ 2 is a nuisance parameter, and the estimation of ϑ is independent of the
estimator of σ 2 and depends only on the first two moments of the outcome, we propose
to estimate σ 2 by the moment estimation method, namely,

σ̂ 2 = 1

n − d − qn

n∑

i=1

(yi − μ̂i )
2

V (μ̂i )
, (5)

where μ̂i = F(xᵀ
i β̂+∑qn

j=1 γ̂ j B j (zi )). The correction term 1/(n−d−qn) is important
for bias adjustment when d + qn is relatively large compared with n.

We apply a modified Fisher scoring method to simultaneously calculate the spline
estimate ϑ̂ . The iterative optimization procedure is described as follows:
Step 1 Use (4) to obtain the initial value ϑ (0).
Step 2 Apply the Fisher scoring method to update ϑ (k) in the kth iteration

ϑ (k) = ϑ (k−1) + [E(ϑ (k−1))]−1∇Q(ϑ (k−1)).

Repeat the iteration until the convergence criterion

‖ϑ (k) − ϑ (k−1)‖ < ε = 10−6

is met.

Remark 3 Step 2 is equivalent to performing iteratively weighted linear regression of
Dϑ + ξ−1(y − μ̄) on D with weight ξ2V−1.

Remark 4 In our simulation study and real data analysis, because the outcome is the
count, we use ϑ̂ = (DᵀD)−1Dᵀ log(1 + y) as the initial value. This approach leads
to good performance for most cases in our numerical study. In some cases where
the algorithm does not converge due to the singularity of the information matrix, the
Levenberg–Marquardt method is applied to remedy the algorithm.
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2.3 Knot selection

It is well known that the performance of spline estimation depends on the selection
of knots sequence Tn . The methodology for selecting the knots of splines has been
extensively discussed in literature, for example, Wahba (1990), Stone et al. (1997),
and Ruppert (2002). We adopt the quantile method (Rosenbeg 1995) and some model
selection criteria, such as Akaike information criteria (AIC), to adaptively select knots.
Assume the true function ψ0 has r th continuous derivative, r ≥ 1. According to
Theorem 2 in Sect. 3, the number of knots is chosen to be of order n1/(1+2r) to achieve
the optimal rate of convergence of ψ̂ . Therefore, we choose the number of inner knots
from a neighborhood of n1/(1+2r), such as

[
0.5Nr , min(4Nr , n1/2)

]
, where Nr =

ceiling(n1/(1+2r)). In our simulation study and real data analysis, r is chosen to be 1.
The optimal number of interior knots, m∗

n , is chosen to minimize the AIC value

AIC(mn) = −2Q(ϑ̂;mn) + 2(mn + l + d),

where l is the order of spline andmn+l is the number of B-spline basis functions. For a
given number of interior knots mn , the interior knots tl+k , k = 1, . . . ,mn , correspond
to the k/(mn +1) quantile of z. The similar method was used in Xue and Liang (2010)
and Lu and Loomis (2013).

3 Asymptotic properties of the estimators

3.1 Assumptions

Denote by τ 0 = (β
ᵀ
0 , ψ0)

ᵀ the true value of τ = (βᵀ, ψ)ᵀ. Let the regression
parameter space � be the interior of some compact set in R

d , and let

� = {ψ : the rth derivative of ψ is Lipschitz on a compact subset �, r ≥ 3}

be the nonparametric space. Let ‖ · ‖ and ‖ · ‖2 be the Euclidean norm of Rd and
L2-norm, respectively. Also let ‖ · ‖∞ denote the supremum norm. Define L2-norm
‖ · ‖2 on � × � as follows:

‖τ 2 − τ 1‖2
2 = ‖β2 − β1‖2 + ‖ψ2 − ψ1‖2

2.

The following regularity conditions are assumed to derive the asymptotic properties
of the spline estimators:

C1. The maximum spacing of the knots is assumed to be O(n−ν), 0 < ν < 1/2.
Moreover, the ratio of maximum and minimum spacing of knots is uniformly
bounded.

C2. The true parameter τ 0 is in the interior of � × �.
C3. The support of z is an interval within � and the second moment of z is finite.
C4. The vector x takes values in a convex set X ⊂ R

d and the fourth moment of x is
finite.
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C5. Let M be a compact set of R such that xᵀβ + ψ(z) ∈ M, for all z ∈ �, ψ ∈ �,
x ∈ X , and β ∈ �, and let F = F(M). The variance function V (μ) is bounded
away from 0 and ∞ on F .

C6. For k = 1, 2, the derivatives ∂kV (μ)/∂μk exist and are bounded on F . For
l = 1, 2, 3, the derivatives ∂ l F(m)/∂ml exist and are bounded on M.

C7. Write ε = y − E(y|w). Given w, ε is sub-Gaussian, that is, for some constants
0 < M1, M2 < ∞, E(exp(|ε|/M1)|w) < M2, almost surely.

C8. For any β = β0, Pr(xᵀβ = xᵀβ0) > 0.

Remark 5 Condition C1 is a mild assumption on knots and is required to derive the
asymptotic consistency and the rate of convergence of τ̂ . Condition C2 is the standard
assumption in semiparametric estimation. Conditions C3–C6 are required for entropy
calculation in the proofs of Theorems 2–4. Here, condition C4 relaxes the restrictive
boundedness assumption of x in the literature. In addition, condition C6 is needed to
guarantee the smoothness of the least favorable direction φ∗ defined in (6). Condi-
tion C7 is essential to calculate the bracketing integral with respect to the Bernstein
norm (van der Vaart and Wellner 1996). Finally, condition C8 is used to establish the
identifiability of the model.

3.2 Semiparametric efficient score and information bound

The efficient score and information bound serve as the benchmark for asymptotic
behavior of β̂. The efficient score and information bound for quasi-likelihood function
presented in the following theorem are derived without specifying the distribution
of outcome variable. Let ‖ f ‖L2 = [∫

� f 2(z)dz
]1/2

denote the L2-norm of square
integrable function f (z) on �. Denote f ∈ L2(�) if ‖ f ‖L2 < ∞.

Theorem 1 Under model (1), the efficient score for β at τ 0 is given by

�∗
β(τ 0; v) = (x − φ∗)�0

−1
0 (y − μ0),

where �0 = f (xᵀβ0 + ψ0(z)), μ0 = F(xᵀβ0 + ψ0(z)), and 0 = Var(y|w). The
least favorable direction φ∗ satisfies

E[(x − φ∗)�2
0

−1
0 h] = 0,

for any h ∈ L2(�) and has a closed form

φ∗(z) = Ex|z[x�2
0

−1
0 |z]

Ex|z[�2
0

−1
0 |z] . (6)

The semiparametric information bound for β at τ 0 is given by

I(β0) = E[�∗
β(v; τ 0)]⊗2 = E[(x − φ∗)⊗2�2

0
−1
0 ],

where a⊗2 = aaᵀ, a ∈ R
d .
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Remark 6 Because f (z) is assumed to be smooth on M, the least favorable direction
φ∗(z) is smooth on � if the true variance function 0 is assumed to be smooth and
positive on F . The smoothness of φ∗(z) is required to derive the asymptotic results of
τ̂ .

For a specific case, assume that the log-likelihood function of y given covariate x
takes the form

�(τ ; v) = σ−2[yθ(w) − b(θ(w))] + c(y, σ 2), (7)

where b(·) and c(·) are known functions and σ 2 is possibly unknown. Note that
E(y|w) = b′(θ) and Var(y|w) = σ 2b′′(θ). Under the canonical link θ = xᵀβ+ψ(z)
and model (1), μ = b′(θ) = F(xᵀβ+ψ(z)). The score function �̇β(τ ; v) is the partial
derivative of �(τ ; v) with respect to β, namely,

�̇β(τ ; v) = ∂�(τ ; v)
∂β

= σ−2[y − b′(θ)]x.

Consider the parametric smooth submodel (β, ψt ), where ψt |t=0 = ψ and
∂ψt/∂t |t=0 = h. Let H ⊂ L2(�) be the class of such h on �. The score operator
for ψ is defined as

�̇ψ (τ ; v)[h] = ∂�(β, ψt ; v)
∂t

∣∣∣∣
t=0

= σ−2[y − b′(θ)]h.

The efficient score for β at τ 0 is given by

�∗
β(τ 0; v) = �̇β(τ 0; v) − �̇ψ (τ 0; v)[ψ∗],

where ψ∗ ∈ Hd minimizes ρ(h) ≡ ‖�̇β(τ 0; v) − �̇ψ (τ 0; v)[h]‖2
2 over Hd . It follows

that

ψ∗(z) = Ex|z[xb′′(θ0)|z]
Ex|z[b′′(θ0)|z] ,

where θ0 = xᵀβ0 + ψ0(z). Under model (7), �0 = b′′(θ0) and 0 = σ 2b′′(θ0), and
hence φ∗ reduces to ψ∗. Therefore, the efficient score function for β at τ 0 is given by

�∗
β(τ 0; v) = y − b′(θ0)

σ 2

(
x − ψ∗)

and the efficient information takes the form of

I(β0) = E[�∗
β(τ 0; v)]⊗2 = σ−2E

[
b′′(θ0)

(
x − ψ∗)⊗2

]
.
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3.3 Asymptotic results

Theorem 2 (Uniform consistency and rate of convergence) Let qn = O(nν), for
1/(2r + 2) < ν < 1/(2r). Suppose conditions C1–C8 hold. Then,

‖τ̂ − τ 0‖2 = Op

(
n− min(rν,(1−ν)/2)

)
.

Consequently, by Lemma 7 of Stone (1986), ‖ψ̂ − ψ0‖∞ = op(1). Furthermore, if
ν = 1/(1 + 2r), Op(n− min(rν,(1−ν)/2)) = Op(n−r/(1+2r)), which is the optimal rate
of convergence in semiparametric regression.

For a single observation v, its log density for τ is given by

Q(τ ; v) =
∫ μ

y

y − s

σ 2V (s)
ds.

In the following we use the similar notations as those in Huang (1996) and Wellner
and Zhang (2007) with the objective function Q(τ ; v). The score function for β is the
vector of partial derivative of Q(τ ; v) with respect to β, namely,

m1(τ ; v) ≡ ∇βQ(τ ; v) =
(

∂Q(τ ; v)
∂β1

, . . . ,
∂Q(τ ; v)

∂βd

)ᵀ
.

Consider the parametric smooth submodel (β, ψt ), where ψt |t=0 = ψ and
∂ψt/∂t |t=0 = h. The score operator for ψ is defined as

m2(τ ; v)[h] = ∂Q(β, ψt ; v)
∂t

∣∣∣∣
t=0

.

Define

m11(τ ; v) = ∇2
βQ(τ ; v), m12(τ ; v)[h] = ∂m1(β, ψt ; v)

∂t

∣∣∣∣
t=0

,

m21(τ ; v)[h] = ∇βm2(τ ; v)[h], m22(τ ; v)[h1, h2] = ∂m2(β, ψt2; v)[h1]
∂t2

∣∣∣∣
t2=0

.

Moreover, for h = (h1, . . . , hd)ᵀ ∈ Hd , denote

m2(τ ; v)[h] = (m2(τ ; v)[h1], . . . ,m2(τ ; v)[hd ])ᵀ,

m12(τ ; v)[h] = (m12(τ ; v)[h1], . . . ,m12(τ ; v)[hd ])ᵀ,

m21(τ ; v)[h] = (m21(τ ; v)[h1], . . . ,m21(τ ; v)[hd ])ᵀ,

m22(τ ; v)[h, h] = (m22(τ ; v)[h1, h], . . . ,m22(τ ; v)[hd , h])ᵀ.
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Let

h∗ = arg min
h∈Hd

E‖m1(τ 0; v) − m2(τ 0; v)[h]‖2
2.

Observe that E{[m1(τ 0; v) − m2(τ 0; v)[h∗]]ᵀm2(τ 0, v)[h]} = 0, for any h ∈ Hd . It
is readily to show that

h∗ = Ex|z[x�0V−1(μ0)|z]
Ex|z[�0V−1(μ0)|z] .

Denote m∗(τ 0; v) = m1(τ 0; v) − m2(τ 0; v)[h∗]. When the variance function is cor-
rectly specified, that is, 0 = σ 2V (μ0), h∗ reduces to φ∗ and m∗(τ 0; v) reduces to
the efficient score function �∗

β(τ 0; v) accordingly. Define A0 = −P[m11(τ 0; v) −
m12(τ 0; v)[h∗]] and B0 = E[m∗(τ 0; v)]⊗2. For a measurable function f , define P f
and Pn f as the expectation of f under the measure P and the empirical measure Pn ,
respectively. The empirical process evaluated at f is defined as Gn = √

n(Pn − P) f .

Theorem 3 (Asymptotic normality) Suppose conditions C1–C8 hold and A0 is non-
singular. Then

n1/2(β̂ − β0) = A−1
0 Gn[m∗(τ 0; v)] + op(1) → N (0,A−1

0 B0A
−1
0 ),

in distribution, as n → ∞. If the variance function is correctly specified, then under
model (1), A0 = B0. The theorem reduces to

n1/2(β̂ − β0) = B−1
0 Gn[�∗

β(τ 0; v)] + op(1) → N (0,B−1
0 ),

in distribution, as n → ∞.

Remark 7 If V (μ) is correctly specified, then B0 = E[(y−μ0)
2�00

−2(x−ψ∗)⊗2]
reduces to I(β0). Therefore, the spline estimator β̂ achieves the semiparametric infor-
mation bound and hence is efficient when the variance function is correctly specified.

4 Consistent estimation of standard error

To consistently estimate the standard error of β̂, we need to estimate h∗ =
(h∗

1, . . . , h
∗
d)

ᵀ. We again apply the spline-based sieve method to approximate h∗,
that is, h∗

s ≈ h∗
n,s = ∑qn

j=1 γ j,s B j , where qn may depend on s, s = 1, . . . , d. The
coefficients γ s = (γ1,s, . . . , γqn ,s)

ᵀ can be estimated by minimizing

Pn[m1,s(τ̂ ; v) − m2(τ̂ ; v)[h∗
n,s]]2, (8)

where m1,s(τ̂ ; v) is the sth element of m1(τ̂ ; v). Observe that m2(τ ; v)[h] is a linear
operator for h. Therefore, the optimization problem in (8) is equivalent to a least-
squares problem by solving γ̂ s = (γ̂1,s, . . . , γ̂qn ,s)

ᵀ that minimizes

123



B-spline Quasi-likelihood Models 1109

Pn

⎡

⎣m1,s(τ̂ ; v) −
qn∑

j=1

γ j,sm2(τ̂ ; v)[Bj ]
⎤

⎦
2

.

The estimate of h∗
s is defined as ĥ∗

s = ∑qn
j=1 γ̂ j,s B j . Denote ĥ∗ = (ĥ∗

1, . . . , ĥ
∗
d)

ᵀ.
Standard least-squares calculation leads to

γ̂ s = [mᵀ
2 (τ̂ ; v)[B]m2(τ̂ ; v)[B]]−1mᵀ

2 (τ̂ ; v)[B]m(s)
1 (τ̂ ; v),

where m(s)
1 (τ̂ ; v) is a vector with i th element, m1,s(τ̂ ; vi ), i = 1, . . . , n and

m2(τ̂ ; v)[B] is an n × qn matrix with ( j, k)th entry, m2(τ̂ ; v j )[Bk], j = 1, . . . , n
and k = 1, . . . , qn . Denote Â = −Pn[m11(τ̂ ; v) − m12(τ̂ ; v)[ĥ∗]] and B̂ =
Pn[m1(τ̂ ; v) − m2(τ̂ ; v)[ĥ∗]]⊗2.

Theorem 4 (Variance estimation) Under the same conditions assumed in Theorem 3,
ĥ∗ is a consistent estimate of h∗. Consequently, Â → A0 and B̂ → B0, in probability,
as n → ∞.

Some straightforward calculation leads to

B̂ = Pn

[
m1(τ̂ ; v) − m2(τ̂ ; v)[φ̂∗]

]⊗2 = Ô11 − Ô12Ô−1
22 Ô21,

where

Ô11 = Pn[m1(τ̂ ; v)⊗2], Ô12 = Pn[m1(τ̂ ; v)mᵀ
2 (τ̂ ; v)[B]],

Ô21 = Ôᵀ
12, Ô22 = Pn[m2(τ̂ ; v)[B]⊗2].

Denote Ê11 = Ey|w(Ô11|w), Ê12 = Ey|w(Ô12|w), Ê21 = Êᵀ
12, and Ê22 =

Ey|w(Ô22|w). Corollary 1 shows that the conditional expected information

Ên = Ê11 − Ê12Ê−1
22 Ê21

is a consistent estimator of I(β0). Specifically, with the notations defined in Sect. 2,
I(β0) can be consistently estimated by

Ên = n−1σ̂ 2Ê11

= n−1σ̂ 2
[
Xᵀξ̂

2
V̂−1X − Xᵀξ̂

2
V̂−1B

(
Bᵀξ̂

2
V̂−1B

)−1
Bᵀξ̂

2
V̂−1X

]
. (9)

Here Ê11, ξ̂ , and V̂ represent E11, ξ , and V evaluated at ϑ̂ , respectively.

Corollary 1 Under the same conditions assumed in Theorem 3, if the variance func-
tion is correctly specified, then Ên is asymptotically consistent to I(β0).

The finite sample performance of the variance estimation method is evaluated in
simulation study and the approach is applied in real application.
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5 Simulation study and data analysis

5.1 Simulation

An extensive simulation study is carried out to evaluate the finite sample performance
of the method in this section. In each simulation, we generate n i.i.d. observations
{(yi , xi , zi ) : i = 1, . . . , n} with xi = (xi1, xi2, xi3, xi4)ᵀ. For each subject i , the
data are generated by the following scheme: covariates xi1, xi2, xi3 ∼ N (0, 1), xi4 ∼
B(0.5), and zi ∼ U [0, 1]. The outcome yi is generated from a Poisson distribution
with conditional mean exp(xᵀ

i β0 + ψ0(zi )). For all of generated data, σ 2 = 1, β0 =
(0.5, 0.5, 0.5,−1)ᵀ, and ψ0(z) = 2 × 105z11(1 − z)5 + 104z2(1 − z)10. The efficient
information I(β0) given in Sect. 3 for this simulation setting reduces to

E

[
exp(xᵀβ0 + ψ0(z))

{
x − E[x exp(xᵀβ0)]

E[exp(xᵀβ0)]
}⊗2

]
.

The inverse of asymptotic variance I−1(β0) can be approximated by

⎛

⎜⎜⎝

0.0743 0.0000 0.0000 0.0000
0.0000 0.0743 0.0000 0.0000
0.0000 0.0000 0.0743 0.0000
0.0000 0.0000 0.0000 0.3780

⎞

⎟⎟⎠ .

Thus, the standard error of β̂ can be approximated by n−1/2(0.2725, 0.2725,

0.2725, 0.6148)ᵀ, which is served as the benchmark for variance study.
Cubic B-splines are used to approximate ψ0 in the simulation. The number and

the location of knots Tn are determined according to the AIC criteria and the quantile
method, respectively, as discussed in Sect. 2.3. The proposed B-spline quasi-likelihood
method is compared with the local polynomial quasi-likelihood method and the
penalized quasi-likelihood method. The Monte Carlo sample means, biases, standard
deviations, and mean squared errors of β̂ over 1000 replications for n = 200 or 400
are summarized in Table 1. The standard deviations and the mean squared errors of β̂

for the B-spline fit are almost identical to those for the penalized fit, and are smaller
than those based on the local polynomial method. The results also indicate that the
standard deviations of the estimates for B-spline fit decrease at a rate of n−1/2. In
addition, the B-spline method for estimation of σ 2 works reasonably well. To evalu-
ate the accuracy of the spline estimator of ψ0(z), we compute the estimates of ψ0(z) at
points z = 0.05, 0.15 . . . , 0.95. The pointwise biases, standard deviations, and mean
squared errors of ψ̂(z) are given in Table 2. It shows that the B-spline method and
the penalized method yield similar results, while the local polynomial method demon-
strates the larger biases, standard deviations, and mean squared errors, compared to
its alternatives. The biases, standard deviations, and mean squared errors decrease as
n increases, indicating the consistency of the B-spline estimate. Figure 1 displays the
curve estimates of ψ0 and the corresponding confidence bands over 1000 Monte Carlo
samples for n = 200 or 400. The fitted curves are reasonably close to the true curve,
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Fig. 1 Curve estimates and the corresponding 95 % confidence bands for ψ0(z). The solid curve is the
true mean function; the long dashed curves are B-spline fits; and the dashed curves are the corresponding
2.5 and 97.5 % quantiles, based on 1000 Monte Carlo samples for n = 200 or 400, respectively

demonstrating there is little bias. Moreover, the lower and upper bounds of confidence
bands follow the true function ψ0 pretty closely, indicating little variability of the esti-
mates. When the sample size increases, the variation decreases accordingly. Clearly,
the spline estimators accurately capture the nonparametric feature of ψ0.

The results of assessment for the standard error estimation method based on the
conditional expected information given in (9) and the bootstrap method are presented
in Table 3. We found that the coverage probabilities of confidence intervals obtained
from 1000 replications are close to 5 % nominal level for all sample sizes. Moreover,
the averages of estimated standard errors of β̂ based on the conditional expected infor-
mation method are close to the corresponding Monte Carlo standard deviations of β̂

and the asymptotic standard error estimates, indicating that the proposed variance esti-
mation method works reasonably well. These Monte Carlo results provide a numerical
justification of asymptotic results presented in Theorems 3 and 4. The proposed vari-
ance estimation method is superior to the bootstrap method in terms of the mean and
standard deviation of estimated standard errors in our simulation setting. Moreover,
we assess the power of the spline Wald test from 2000 Monte Carlo samples for n
= 200 or 400, respectively. Under the null hypothesis, H0 : βi = β0, i = 1, . . . , 4,

the spline Wald test statistics Ti =
[
(β̂i − β0)/se(β̂i )

]2
follow χ2

1 distribution by

Theorem 3. Here the standard errors se(β̂i ) are estimated by the conditional expected
information. The power is computed as the proportion of hypotheses being rejected
in 2000 replications. The power curves are displayed in Fig. 2. As expected, all power
curves are symmetric around the true parameters and the power increases as the sam-
ple size increases or the effect size increases. Moreover, the sizes of the tests for all
sample sizes are close to the nominal level.
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Fig. 2 Power curves of the B-spline Wald test, based on the conditional expected information method with
2000 duplications. The solid and long dashed curves are estimated powers for n = 200 and 400, respectively

In general, the proposed B-spline approach is a sound and practical method for
moderate sample sizes.

5.2 Data analysis

The proposed B-spline quasi-likelihood model is applied to a data set from a study
of nesting horseshoe crabs (Brockmann 1996; Li 2012). In this study, for each female
crab there was a male crab resident in her nest. The aim of the study is to investigate
factors affecting whether the female crab had any other males (satellites) resident
nearby. The outcome is the number of satellites for each female crab. The covariates
include the female crab’s color (light median, median, dark median, or dark), spine
condition (both good, one worn or broken, or both worn or broken), carapace width in
centimeters, and weight in kilograms. A record with an outlier in weight was excluded.
The data consist of 172 observations with complete information.

Let y denote the number of satellites. Let x1 = (x11, x12, x13)
ᵀ, x2 = (x21, x22)

ᵀ,
and x3 be female crab’s color, spine condition, and carapace width, respectively, and
let z be the weight. We propose the quasi-likelihood model
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Fig. 3 Comparison of B-spline, penalized, and local polynomial estimators of ψ(z) for crab data: solid
line is the B-spline quasi-likelihood estimator; dashed line is the penalized quasi-likelihood estimator; and
long dashed line is the local polynomial quasi-likelihood estimator. The numbers of knots for B-spline and
penalized estimators are 5 and 9, respectively. The locations of knots are chosen by the quantile method. The
smoothing parameter λ for penalized estimation is 0.29, and the bandwidth for local polynomial estimation
is chosen as 0.14

μ(x, z) = E(y|x, z) = F(xᵀβ + ψ(z))

with F(s) = exp(s) and V (μ) = σ 2μ, where x = (xᵀ
1 , xᵀ

2 , x3)
ᵀ and β =

(β1, . . . , β6)
ᵀ. The unknown function ψ is fitted as a cubic B-spline with 5 knots.

The place of knots is determined by the quantile method. The Wald test is employed
for inference of β. The standard errors of β̂ are estimated by the conditional expected
information method. We also consider the local polynomial quasi-likelihood method
and the penalized quasi-likelihood method for purposes of comparison. Table 4 sum-
maries the results of estimated regression parameters and corresponding standard
errors for three methods. The fitted curves from three estimation methods are pre-
sented in Fig. 3. The estimated functions are clearly nonlinear and the female crabs
with higher weights are more likely to have higher number of satellites.

6 Proofs of asymptotic results

6.1 Notations and technical lemmas

Let P be a probability distribution. Define L2(P) = { f : ∫ f 2dP < ∞}. Given two
functions fL and fR , an ε−bracket [ fL , fR] in L2(P) is the set of all functions f with
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fL ≤ f ≤ fR and P( fR − fL)2 < ε2. The bracketing number N[](ε,F , L2(P)) is
the minimum number of ε-brackets needed to cover F . Define the bracketing integral
J[](η,F , L2(P)) = ∫ η

0

[
1 + N[](ε,F , L2(P))

]1/2
dε. In the following, C represents

a positive constant that may vary from place to place.

Lemma 1 For any η > 0 and 0 < ε ≤ η,

log N[](ε, {Q(τ ; v) : τ ∈ � × Sn, ‖τ − τ 0‖2 ≤ η}, ‖ · ‖P,B) ≤ Cqn log(η/ε),

and consequently,

J[](η, {Q(τ ; v) : τ ∈ � × Sn : ‖τ − τ 0‖2 ≤ η}, ‖ · ‖P,B) ≤ Cq1/2
n η,

where ‖ · ‖P,B is the Bernstein norm defined as ‖ f ‖2
P,B = 2P

(
e| f | − | f | − 1

)
in van

der Vaart and Wellner (1996) and qn = mn + l is the number of spline basis functions.

Lemma 2 If conditions C1–C8 hold, then there exist 0 < C1 < C2 such that

C1‖τ − τ 0‖2
2 ≤ P[Q(τ 0; v) − Q(τ ; v)] ≤ C2‖τ − τ 0‖2

2,

for τ in a neighborhood of τ 0.

Lemma 3 (Consistency) If conditions C1–C8 hold, then ‖τ̂ − τ 0‖2 = op(1).

Let

S1(τ ) = Pm1(τ ; v), S2(τ )[h] = Pm2(τ ; v)[h],
S1n(τ ) = Pnm1(τ ; v), S2n(τ )[h] = Pnm2(τ ; v)[h],
Ṡ11(τ ) = Pm11(τ ; v), Ṡ12(τ )[h] = Pm12(τ ; v)[h],
Ṡ21(τ )[h] = Ṡᵀ

12(τ )[h], Ṡ22(τ )[h1, h2] = Pm22(τ ; v)[h1, h2],

and

S2(τ )[h] = Pm2(τ ; v)[h], S2n(τ )[h] = Pnm2(τ ; v)[h],
Ṡ12(τ )[h] = Ṡᵀ

21(τ )[h] = Pm12(τ ; v)[h], Ṡ22(τ )[h, h] = Pm22(τ ; v)[h, h].

Lemma 4 Suppose that the following assumptions hold

B1. ‖β̂ − β0‖ = op(1) and ‖ψ̂ − ψ0‖2 = Op(n−γ ), for some γ > 0.
B2. S1(τ 0) = 0 and S2(τ 0)[h] = 0, for all h ∈ H.
B3. There exists an h∗ = (h∗

1, . . . , h
∗
d)

ᵀ ∈ Hd such that Ṡ12(τ 0)[h]− Ṡ22(τ 0)[h∗, h]
= 0, for all h ∈ H. Moreover, the matrix A0 = −Ṡ11(τ 0) + Ṡ21(τ 0)[h∗] is
nonsingular.

B4. The estimator τ̂ satisfy S1n(τ̂ ) = op(n−1/2) and S2n(τ̂ )[h∗] = op(n−1/2).
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B5. For any δn ↓ 0,

sup
‖β−β0‖≤δn ,‖ψ−ψ0‖2≤Cn−γ

|√n(S1n − S1)(τ ) − √
n(S1n − S1)(τ 0)| = op(1)

and

sup
‖β−β0‖≤δn ,‖ψ−ψ0‖2≤Cn−γ

|√n(S2n − S2)(τ )[h∗] − √
n(S2n − S2)(τ0)[h∗]| = op(1).

B6. For some α > 1 satisfying αγ > 1/2, and for τ with ‖β − β0‖ ≤ δn and
‖ψ − ψ0‖2 ≤ Cn−γ ,

|S1(τ ) − S1(τ 0) − Ṡ11(τ 0)(β − β0) − Ṡ12(τ 0)[ψ − ψ0]|
= o(‖β − β0‖) + O(‖ψ − ψ0‖α

2 )

and

|S2(τ )[h∗] − S2(τ 0)[h∗] − Ṡ21(τ 0)[h∗](β − β0) − Ṡ22(τ 0)[h∗, ψ − ψ0]|
= o(‖β − β0‖) + O(‖ψ − ψ0‖α

2 ).

Then

n1/2(β̂ − β0)=A−1
0 n1/2

Pn[m1(τ 0; v) − m2(τ 0; v)[h∗]]+op(1) → (0,A−1
0 B0A

−1
0 ),

in distribution, as n → ∞, where B0 = P[m1(τ 0; v) − m2(τ 0; v)[h∗]]⊗2 and A0 is
given in assumption B3.

Remark 8 Lemma 1 is used to derive the consistency of τ̂ . The similar entropy cal-
culations are also used to prove Theorems 1–4. Lemma 2 is a key result to derive the
consistency and the rate of convergence of τ̂ . Lemma 3 shows τ̂ is asymptotically
consistent to τ 0. Lemma 4, which is Theorem 6.1 of Wellner and Zhang (2007), is
used to develop the asymptotic normality of β̂. This theorem generalizes the theorem
for the asymptotic normality of semiparametric M-estimators developed by Huang
(1996) to accommodate the quasi-likelihood estimation.

6.2 Proof of Lemma 1

According to the bracketing number calculation in Shen and Wong (1994), for any
η > 0 and ε ≤ η, the logarithm of bracketing number of Sn , computed with L2(P), is
bounded by Cqn log(η/ε). Note that the neighborhood B(η) = {β : ‖β − β0‖ ≤ η}
can be covered by C(η/ε)d balls with radius ε. By the Cauchy–Schwarz inequality,
|xᵀβ t−xᵀβs | ≤ ‖x‖‖β t−βs‖. Theorem 9.23 of Kosorok (2008) yields the bracketing
number of the class {xᵀβ : ‖β − β0‖ ≤ η} is (η/ε)d , up to a constant. Thus, for any
xᵀβ + ψ(z), there exist some βr , for r = 1, . . . ,C(η/ε)d , and brackets

[
ψ L
s , ψ R

s

]
,
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1120 M. Lu

for s = 1, . . . , (η/ε)Cqn , such that xᵀβr − ε ≤ xᵀβ ≤ xᵀβr + ε and ψ L
s ≤ ψ ≤ ψ R

s
with ‖β − βr‖ ≤ Cε and ‖ψ R

s − ψ L
s ‖2 ≤ Cε, and hence

F(xᵀβr − ε + ψ L
s ) ≤ μ ≤ F(xᵀβr + ε + ψ R

s ),

for a monotone and smooth link function F . By the mean value theorem and the
Cauchy–Schwarz inequality as well as the boundedness of first derivative of F ,
‖F(xᵀβr +ε+ψ R

s )− F(xᵀβr −ε+ψ L
s )‖2 can be bounded by Cε. Because Q(τ ; v)

is monotone increasing for μ ≤ y, and monotone decreasing for μ > y, the class
of functions Q(τ ; v) with ‖τ − τ 0‖2 ≤ η can be covered by [AL

r,s, A
R
r,s], where

AL
r,s = ∫ μL

r,s
y

y−s
σ 2V (s)

ds and AR
r,s = ∫ μR

r,s
y

y−s
σ 2V (s)

ds with

μL
r,s = F(xᵀβr − ε + ψ L

s )1[μ ≤ y] + F(xᵀβr + ε + ψ R
s )1[μ > y],

μR
r,s = F(xᵀβr + ε + ψ R

s )1[μ ≤ y] + F(xᵀβr − ε + ψ L
s )1[μ > y].

Therefore, a Taylor expansion and the Cauchy–Schwarz inequality yield P(AR
r,s −

AL
r,s)

2 ≤ Cε2. According to the inequality 2(e|x | − |x | − 1) ≤ x2e|x | and conditions
C3–C7, we have ‖AR

r,s−AL
r,s‖2

P,B ≤ CP(AR
r,s−AL

r,s)
2 ≤ Cε2. This implies Lemma 1.

��

6.3 Proof of Lemma 2

LetM(τ ) = PQ(τ ; v) andMn(τ ) = PnQ(τ ; v). A Taylor expansion yieldsM(τ 0)−
M(τ ) = σ−2(1 − ξ1)P

[
(μ − μ0)

2V−1(μ + ξ1(μ0 − μ))
]
, for some 0 < ξ1 < 1.

Because the variance function V (·) and the first derivative of F(·) are assumed to be
bounded, there exist 0 < C1 < C2 such that

C1d
2
2 (τ , τ 0) ≤ M(τ 0) − M(τ ) ≤ C2d

2
2 (τ , τ 0),

where d2
2 (τ , τ 0) = ‖xᵀ(β − β0) + ψ(z) − ψ0(z)‖2

2. Let g1(x) = xᵀ(β − β0)

and g2(z) = ψ(z) − ψ0(z). Cauchy–Schwarz inequality and law of total expecta-
tion yield {E[g1(x)g2(z)]}2 ≤ Ez[g2

2(z)]Ez[{Ex|z[g1(x)|z]}2]. By the orthogonality
of a conditional expectation, there exists 0 < ξ2 < 1 such that [Eg1(x)g2(z)]2 ≤
ξ2E[g2

1(x)]E[g2
2(z)]. In view of Lemma 25.86 of van der Vaart (2000) and the finite

second moment of x, there exist 0 < C3 < C4 such that

C3‖τ − τ 0‖2
2 ≤ M(τ 0) − M(τ ) ≤ C4‖τ − τ 0‖2

2.

This completes the proof of Lemma 2. ��

6.4 Proof of Lemma 3

We verify the conditions of Theorem 5.7 in van der Vaart (2000) to prove the consis-
tency of τ̂ . Lemma 1 implies that the class of functions Q(τ ; v) with ‖τ − τ 0‖2 ≤ η
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is a Glivenko–Cantelli class. Thus, sup |Mn(τ ) − M(τ )| = op(1), for τ in a neigh-
borhood of τ 0. The first condition of the theorem holds. It follows from Lemma 2
that

sup
‖τ−τ 0‖2≥ε

M(τ ) ≤ M(τ 0) − Cε2 < M(τ 0).

The second condition of the theorem is verified.
According to Jackson’s theorem for polynomials (de Boor 2001), there exists a

spline ψ0,n ∈ Sn of order l ≥ 2 such that ‖ψ0,n −ψ0‖∞ = O(n−rν), for 1/(2r+2) <

ν < 1/(2r). Let τ 0,n = (β
ᵀ
0 , ψ0,n)

ᵀ and μ0,n = F(xᵀβ0 + ψ0,n). Observe that

Mn(τ̂ ) − Mn(τ 0) ≥ Mn(τ 0,n) − Mn(τ 0) = In1 + In2,

where In1 = (Pn − P)[Q(τ 0,n; v) − Q(τ 0; v)] and In2 = P[Q(τ 0,n; v) − Q(τ 0; v)].
Write In1 = n−rν+ε(Pn−P){[Q(τ 0,n; v)−Q(τ 0; v)]/n−rν+ε}, for 0 < ε < 1/2−nν.
As shown in the proof of Lemma 1,Sn is a Donsker class, and so is the class of functions
xᵀβ0 +ψ , for ψ ∈ Sn and ‖ψ −ψ0‖2 ≤ η. Because the function m �→ F(m) has the
bounded first derivative on M, the preservation theorem of Donsker class yields that
the class of functions F(xᵀβ0 + ψ) is also a Donsker class. Moreover, because the
function Q(τ ; v) = ∫ μ

y
y−s

σ 2V (s)
ds is Lipschitz with respect to μ on F , it implies that

the class of functions Q(β0, ψ; v) − Q(β0, ψ0; v) with ψ ∈ Sn and ‖ψ − ψ0‖2 ≤ η

is a Donsker class, and P[Q(τ 0,n; v) − Q(τ 0; v)]2/n−2nν+2ε → 0, as n → ∞. In
view of Lemma 19.24 of van der Vaart (2000), In1 = op(n−rν+εn−1/2) = op(n−2rν).
Lemma 2 implies In2 ≥ −C‖ψ0,n − ψ0‖2∞ = −O(n−2rν). It follows that

Mn(τ̂ ) − Mn(τ 0) > op(n
−2rν) − O(n−2rν) = −op(1).

We conclude that Theorem 5.7 of van der Vaart (2000) applies and yields ‖τ̂ −τ 0‖2 =
op(1). ��

6.5 Proof of efficient score and information bound

We derive the efficient score and information bound following Bickel et al. (1993) and
Huang et al. (2007). Consider the model

E(y|w) = gν(w), (10)

where gν(w) is a known function indexed by ν ∈ R
d . Let f (v) be the joint density of

ν. It is assumed that f (v) is smooth and bounded on the support of v. Following the
same arguments as those in Lemma 4 of Huang et al. (2007), we can show that the
efficient score for ν is given by

�∗
ν, f (w, ε) = ∂gν(w)

∂ν
[E(ε2|w)]−1ε, (11)
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1122 M. Lu

where ε = y − E(y|w). Let P = {P(β,ψ, f ) : β ∈ 
, ψ ∈ �, f ∈ L2(P)} denote the
model specified by (1). We follow the notations in Bickel et al. (1993) and define

P1 = {P(β,ψ0, f0) : β ∈ 
}, P2 = {P(β0,ψ, f0) : ψ ∈ �},
P3 = {P(β0,ψ0, f ) : f ∈ L2(P)}, P13 = {P(β,ψ0, f ) : β ∈ 
, f ∈ L2(P)}.

Let Ṗ1, Ṗ2, and Ṗ3 be the tangent spaces of P1, P2, and P3, respectively, and let �̇β be
the score function for β in model P1. According to the project properties [see section
3.4 of Bickel et al. (1993) and appendix A6 of Huang et al. (2007)], the efficient score
for β in model P is given by

�∗
β = �̇β − �(�̇β |Ṗ2 + Ṗ3) = �(�̇β |Ṗ3

⊥
) − �[�(�̇β |Ṗ⊥

3 )|�Ṗ⊥
3
Ṗ2],

where � is a projection operator. Because �(�̇β |Ṗ3
⊥
) is the efficient score function

for β in model P13, (11) applies and yields

�(�̇β |Ṗ3
⊥
) = x�0

−1
0 (y − μ0).

For one-dimensional parametric submodel (β, ψη) with ψη|η=0 = ψ and
∂ψη/∂η|η=0 = h ∈ H, replacing ψ by ψη and applying (11), we can show that

�Ṗ⊥
3
Ṗ2 = {�0

−1
0 (y − μ0)h : h ∈ Hd}.

It follows that

�∗
β = (x − φ∗)�0

−1
0 (y − μ0),

where φ∗ satisfies

E[(x − φ∗)�2
0

−1
0 h] = 0,

for any h ∈ H. By the law of total expectation, the least favorable direction is given
by

φ∗(z) = Ex|z[x�2
0

−1
0 |z]

Ex|z[�2
0

−1
0 |z] .

��

6.6 Proof of rate of convergence

We apply Theorem 3.4.1 of van der Vaart and Wellner (1996) to prove the rate of
convergence of τ̂ . Let θ = xᵀβ + ψ(z). Denote θ0 = xᵀβ0 + ψ0(z) and θn =
xᵀβ0 + ψ0,n(z). Also denote by θ̂ = xᵀβ̂ + ψ̂(z) the estimate of θ0. Define l(θ) =
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σ−2
∫ F(θ)

y (y − s)/V (s)ds and M(θ) = Pl(θ). By the similar entropy calculation to
that in Lemma 1, we can show that, for any η > 0,

J[](η, {l(θ) − l(θn) : ψ ∈ Sn, ‖θ − θn‖2 ≤ η}, ‖ · ‖P,B) ≤ Cq1/2
n η.

Moreover, for any l(θ) − l(θn) with ψ ∈ Sn and ‖θ − θn‖2 ≤ η, the inequality
2(e|x |−|x |−1) ≤ x2e|x | and conditions C3–C7 as well as Cauchy–Schwarz inequality
yield ‖l(θ)− l(θn)‖2

P,B ≤ Cη2. In view of Lemma 3.4.3 of van der Vaart and Wellner
(1996),

P

[
sup

η/2≤‖θ−θn‖2≤η

|Gnl(θ) − Gnl(θn)|
]

≤ Cφn(η)

with φn(η) = q1/2
n η + qn/n1/2. Obviously, φn(η)/η is decreasing in η. Moreover,

because l(θ) is Lipschitz with respect to θ , the consistency of τ̂ and ‖ψ0,n −ψ0‖∞ =
O(n−rν) yield that M(θn) − M(θ̂) = op(1). Therefore, by choosing the dis-
tance dn defined in Theorem 3.4.1 of van der Vaart and Wellner (1996) to be
d2
n (θn, θ̂ ) = M(θn)−M(θ̂), we obtain r2

n [M(θn)−M(θ̂)] = Op(1), where rn satisfies
r2
nφn(1/rn) ≤ n1/2 for every n. It follows that rn = nmin(rν,(1−ν)/2). Lemma 2 implies

that M(θ0)−M(θ̂ ) ≥ C‖τ̂ −τ 0‖2
2 and M(θn)−M(θ0) ≥ −C‖ψ0,n −ψ0‖2∞. Observe

that M(θ0) − M(θ̂) = M(θ0) − M(θn) + M(θn) − M(θ̂). It follows that

C‖τ̂ − τ 0‖2
2 ≤ M(θ0) − M(θ̂) ≤ O(n−2rν) + Op(r

−2
n ) = Op(r

−2
n ).

This yields the rate of convergence of τ̂ . ��

6.7 Proof of asymptotic normality

We verify conditions of Lemma 4 to show the asymptotic normality of β̂. Condition
B1 is valid because of the rate of convergence of τ̂ with γ = r/(1 + 2r), for r ≥ 3.
Condition B2 holds due to the model assumption (1). For condition B3, by applying
for law of total expectation, we have Ex

{
Ex|z[�2

0V
−1(μ0)(x − h∗)]|z} h(z) = 0. It

follows that

h∗ = Ex|z[x�2
0V

−1(μ0)|z]
Ex|z[�2

0V
−1(μ0)|z]

.

The first part of B4 automatically holds because β̂ satisfies the quasi-score function
S1n(τ̂ ) = 0. We only need to verify that S2n(τ̂ )[h∗] = op(n−1/2). According to
Jackson’s theorem for polynomials (de Boor 2001), there exist h∗

n,s ∈ Sn of order
l ≥ 2 such that ‖h∗

s −h∗
n,s‖∞ = O(n−rν), for 1/(2r+2) < ν < 1/(2r), s = 1, . . . , d.

Because (β̂, ψ̂) maximizesPnQ(β, ψ; v) over the region (β̂, ψ̂ +εh), for any h ∈ Sn ,
we have limε↓0

d
dε
PnQ(β̂, ψ̂ + εh; v) = Pnm2(τ̂ ; v)[h] = 0. Therefore, to show
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Pnm2(τ̂ ; v)[h∗
s ] = op(n−1/2), it is equivalent to showing Pnm2(τ̂ ; v)[h∗

s − h∗
n,s] =

op(n−1/2). WritePnm2(τ̂ ; v)[h∗
s −h∗

n,s] = In3+ In4 with In3 = (Pn−P)m2(τ̂ ; v)[h∗
s −

h∗
n,s] and In4 = Pm2(τ̂ ; v)[h∗

s −h∗
n,s]. Some entropy calculation yields, for any η > 0,

J[](η, {m2(τ ; v)[h∗
s − h] : h ∈ Sn, ‖τ − τ0‖2 ≤ η, ‖h∗

s − h‖∞ ≤ η}, ‖ · ‖P,B) ≤ Cq1/2
n η.

Moreover, in view of conditions C3–C7 and the inequality 2(e|x | − |x |− 1) ≤ x2e|x |,
we can show that ‖m2(τ ; v)[h∗

s − h]‖2
P,B ≤ C‖h∗

s − h‖2∞ ≤ Cη2, for ‖τ − τ 0‖2 ≤ η

and ‖h − h∗
s ‖∞ ≤ η. Therefore, Lemma 3.4.3 of van der Vaart and Wellner (1996)

applies and yields

E

[
sup

‖τ−τ 0‖2≤η,‖h∗
s−h‖∞≤η

|(Pn − P)m2(τ ; v)[h∗
s − h]|

]
= o(n−1/2).

It follows that In3 = op(n−1/2). Moreover, Cauchy–Schwarz inequality and condi-
tions C3–C7 yield

I 2
n4 ≤ C‖τ̂ − τ 0‖2

2‖h∗
s − h∗

n,s‖2∞ = Op(n
−2r/(1+2r))Op(n

−2r/(1+2r)).

The last equality holds because of the rate of convergence of τ̂ . Thus, condition B4
holds. To verify condition B5 is equivalent to showing Gn[m1(τ̂ ; v) − m1(τ 0; v)] =
op(1) and Gn[m2(τ̂ ; v)[h∗] − m2(τ 0; v)[h∗]] = op(1). We only show the second
equation because the proof of the first equation is similar. Using the similar arguments
to those in the proof of condition B4, we can show that, for any η > 0,

J[](η, {m2(τ ; v)[h∗
s ] − m2(τ0; v)[h∗

s ] : τ ∈ � × F , ‖τ − τ0‖2 ≤ η}, ‖ · ‖P,B) ≤ Cq1/2
n η,

s = 1, . . . , d. Furthermore, for anym2(τ ; v)[h∗
s ]−m2(τ 0; v)[h∗

s ] with ‖τ−τ 0‖2 ≤ η,
mean value theorem and Cauchy–Schwarz inequality yield

P
[
m2(τ ; v)[h∗

s ] − m2(τ 0; v)[h∗
s ]
]2 ≤ C‖τ − τ 0‖2

2‖h∗
s ‖2∞ ≤ Cη2.

Therefore, in view of Lemma 3.4.3 of van der Vaart and Wellner (1996), (Pn −
P)[m2(τ̂ ; v)[h∗

s ] − m2(τ 0; v)[h∗
s ]] = op(n−1/2), and hence condition B5 holds.

Finally, condition B6 holds with α = 2 by applying for a Taylor expansion and the
Cauchy–Schwarz inequality as well as conditions C3–C7. We conclude that Lemma
4 applies and yields the asymptotic normality of β̂. ��

6.8 Proof of variance estimation

Denote ρs(τ , h) = [m1,s(τ ; v) − m2(τ ; v)[h]]2, s = 1, . . . , d. We first show that
‖ĥ∗

s − h∗
s ‖2 → 0, in probability, as n → ∞. According to Jackson’s theorem for

polynomials (de Boor 2001), there exist h∗
n,s ∈ Sn with order of l ≥ 2 such that
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‖h∗
s − h∗

n,s‖∞ = O(n−rν), for 1/(2r + 2) < ν < 1/(2r). Because ĥ∗
s minimize

ρs(τ̂ , h), for all h ∈ Sn , we have Pnρs(τ̂ , ĥ∗
s ) ≤ Pnρs(τ̂ , h∗

n,s). It implies that

Pn[ρs(τ̂ , ĥ∗
s ) − ρs(τ̂ , h∗

s )]
≤ (Pn − P)[ρs(τ̂ , h∗

n,s) − ρs(τ̂ , h∗
s )] + P[ρs(τ̂ , h∗

n,s) − ρs(τ̂ , h∗
s )].

By some entropy calculation, it is readily to show that, for any η > 0,

Ls = {ρs(τ , h) − ρs(τ , h∗
s ) : β ∈ �,ψ, h ∈ Sn, ‖τ − τ 0‖2 ≤ η, ‖h − h∗

s ‖2 ≤ η}

are Glivenko–Cantelli classes. It implies that (Pn − P)[ρs(τ̂ , h∗
n,s) − ρs(τ̂ , h∗

s )] =
op(1). Moreover, continuous mapping theorem and dominated convergence theorem
yield P[ρs(τ̂ , h∗

n,s)−ρs(τ̂ , h∗
s )] = op(1). It follows that Pn[ρs(τ̂ , ĥ∗

s )−ρs(τ̂ , h∗
s )] ≤

op(1). In view of Glivenko–Cantelli theorem, we have (Pn − P)ρs(τ̂ , h∗
s ) = op(1).

Hence,

Pnρs(τ̂ , ĥ∗
s ) ≤ (Pn − P)ρs(τ̂ , h∗

s ) + Pρs(τ̂ , h∗
s ) + op(1)

= Pρs(τ̂ , h∗
s ) + op(1). (12)

Continuous mapping theorem and dominated convergence theorem as well as the con-
sistency of τ̂ yield P[ρs(τ̂ , ĥ∗

s )−ρs(τ 0, ĥ∗
s )] → 0 and P[ρs(τ̂ , h∗

s )−ρs(τ 0, h∗
s )] →

0. It follows that

0 ≤ P[ρs(τ 0, ĥ
∗
s ) − ρs(τ 0, h

∗
s )] = op(1) + P[ρs(τ̂ , ĥ∗

s ) − ρs(τ̂ , h∗
s )]

≤ op(1) − (Pn − P)ρs(τ̂ , ĥ∗
s ).

The last inequality holds due to (12). In view of Glivenko–Cantelli theorem, (Pn −
P)ρs(τ̂ , ĥ∗

s ) = op(1). It follows that P[ρs(τ 0, ĥ∗
s ) − ρs(τ 0, h∗

s )] = op(1). By the
uniqueness of h∗

s , the event ‖ĥ∗
s − h∗

s ‖2 ≥ ε is the subset of the event P[ρs(τ 0, ĥ∗
s ) −

ρs(τ 0, h∗
s )] > 0 and the latter approaches to 0, in probability, as n → ∞. This implies

that ‖h∗
s − ĥ∗

s ‖2 = op(1).
Next we show the consistency of Â and B̂. Denote ρ1(τ ,h) =

[m1(τ ; v) − m2(τ ; v)[h]]⊗2 and ρ2(τ ,h) = m11(τ ; v) − m21(τ ; v)[h]. By some
entropy calculation, we can similarly show that

�i = {ρi (τ ,h) : β ∈ 
, ψ ∈ Sn,h ∈ Sd
n , ‖τ − τ 0‖2 ≤ η, ‖h − h∗‖2 ≤ η}

are Glivenko–Cantelli classes, i = 1,2. In view of Glivenko–Cantelli theorem,
(Pn − P)ρi (τ̂ , ĥ∗) = op(1). Hence, continuous mapping theorem and dominated
convergence theorem yield

B̂ − B0 = (Pn − P)ρ1(τ̂ , ĥ∗) + P[ρ1(τ̂ , ĥ∗) − ρ1(τ 0,h∗)] = op(1),

Â − A0 = (Pn − P)ρ2(τ̂ , ĥ∗) + P[ρ2(τ̂ , ĥ∗) − ρ2(τ 0,h∗)] = op(1).

This completes the proof of Theorem 4. ��
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6.9 Proof of Corollary 1

Denote Ô = Ô11 − Ô12Ô−1
22 Ô21. Using the similar arguments to those in the proof

of Theorem 4, we can show that

Ô − B0 = (Pn − P)ρ1(τ̂ , φ̂
∗
) + P[ρ1(τ̂ , φ̂

∗
) − ρ1(τ 0,φ

∗)] = op(1).

Some entropy calculation and law of large numbers yield that Ê → B0, in probability,
as n → ∞. ��
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