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Abstract In this study, we consider the problem of estimating the tail exponent of
multivariate regular variation. Since any convex combination of a random vector with
a multivariate regularly varying tail has a univariate regularly varying tail with the
same exponent under certain conditions, to estimate the tail exponent of the multi-
variate regular variation of a given random vector, we employ a weighted average of
Hill’s estimators obtained for all of its convex combinations, designed to reduce the
variability of estimation. We investigate the asymptotic properties and evaluate the
finite sample performance of the weighted average of Hill’s estimators. A simulation
study and real data analysis are provided for illustration.

Keywords Tail exponent ·Multivariate regular variation ·Hill’s estimator · Empirical
process theory

1 Introduction

Heavy tail phenomena are frequently observed in many applied fields and is character-
ized by the regularly varying tail of random observations with tail exponent, indicating
the degree of hyperbolic decaying of the tail probability. The estimation of tail expo-
nent has received much attention from researchers during the past decades and many
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estimators have been proposed in the literature: see, for example, Hill (1975), Hall
(1982), Hall and Welsh (1985), Feuerverger and Hall (1999), Drees et al. (2000), and
Gomes et al. (2008). Hill’s estimator is the most popular among those estimators (cf.
Hill 1975). In this study, we consider the problem of estimating the tail exponent of
multivariate regular variation. It is well known that the tail exponent combined with
the spectral measure characterizes the extreme behavior of multivariate observations
(cf. Resnick 1987, Proposition 5.18). In the literature, little attention has been paid to
the tail exponent estimation, compared with the spectral measure estimation, because
the problem can be reduced to a univariate sample problem owing to the fact that the
magnitudes of multivariate observations have a univariate regularly varying tail with
the same tail exponent. However, the problem in the multivariate case deserves more
attention because further information, unavailable in the univariate case, can be used
to accurately estimate the tail exponent. This study is mainly inspired by the fact that
every convex combination of a random vector having a multivariate regularly varying
tail also has a univariate regularly varying tail with the same exponent under certain
conditions. Using this fact, we first obtain Hill’s estimator for each combination, and
then, employ a weighted average of those Hill’s estimators to reduce the variability
of estimation. Below, we investigate the asymptotic properties and evaluate the finite
sample performance of the weighted average of Hill’s estimators.

The remainder of this paper is organized as follows. Section 2 formulates the
weighted average of Hill’s estimators and presents the relevant asymptotic results.
Section 3 implements a simulation study and real data analysis for illustration. Sec-
tion 4 summarizes the results obtained in this study. Section 5 provides the proofs of
the theorems presented in Sect. 2.

2 Main result

Let {U i = (Ui,1, . . . , Ui,d)′ : i ∈ Z} be an i.i.d. sequence of d-dimensional random
vectors definedon aprobability space (�,F , P), (d ∈ N). For brevity,we setU = U0,

S
d−1 := {λ = (λ1, . . . , λd)′ ∈ [0, 1]d : λ1 + · · · + λd = 1},

and

U (λ)
i := λ′U i = λ1Ui,1 + · · · + λdUi,d , for λ ∈ S

d−1.

Let Fλ denote the distribution function of U (λ) and set

bλ(x) := inf{y : Fλ(y) ≥ 1 − x−1},

which is the quantile function of Fλ.
In what follows, we assume that there exist α > 0 and a random vector � such that

for each t > 0,

P(|U | > t x,U/|U | ∈ ·)
P(|U | > x)

v−→ t−α P(� ∈ ·) as x → ∞, (1)
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Tail exponent estimation 947

where | · | is the usual norm in R
d and

v−→ denotes the vague convergence in the
unit sphere [for vague convergence, we refer to Kallenberg (1983)]. In this case, the
distribution function of U is said to have a multivariate regularly varying tail with tail
exponent −α, and the distribution of � is called its spectral measure that represents
the dependency among the components ofU at the extreme level. Particularly, because
it follows from some mild conditions that

P(|U | > t x)

P(|U | > x)
→ t−α,

P(U (λ) > x)

P(|U | > x)

→ α

∫
Aλ

ds

sα+1 P(� ∈ dθ) =: w(λ) as x → ∞, (2)

where Aλ = {(s, θ) : s = |u|, θ = u/|u|, u(λ) > 1} (u(λ) = λ′u), Fλ has a
(univariate) regularly varying tailwith the same tail exponent−α provided thatw(λ) �=
0.

Suppose that U1, . . . ,Un are observed (n ∈ N). Let

Hn(λ, y) := 1

yk

n∑
i=1

(
logU (λ)

i − logU (λ)
(yk+1)

)
+ , λ ∈ S

d−1, y ∈ (0,∞), (3)

where k = kn is a positive integer varying according to sample size n with

k → ∞ and k = o(n) as n → ∞, (4)

and U (λ)
(yk+1) is the �yk +1	th largest order statistic in U (λ)

1 , . . . ,U (λ)
n . Then, Hn(λ, y)

is called Hill’s estimator. For every λ ∈ S
d−1, Hn(λ, y) converges in probability to

1/α as n → ∞ and is asymptotically normal under certain conditions, provided that
w(λ) �= 0 (cf. Hall 1982).

It can be anticipated that the tail exponent can be more accurately estimated by
averaging Hn(λ, y) with respect to a suitable weight function of λ. More precisely,
for ϕ ∈ � and y > 0, where � is the class of signed measures ϕ on S

d−1 with
ϕ(Sd−1) = 1, we consider

Hn(ϕ, y) :=
∫
Sd−1

Hn(λ, y)ϕ(dλ). (5)

In fact, Dematteo and Clémençon (2016) introduced an estimator similar to Hn(ϕ, y).
They considered a convex linear combination of componentwise Hill’s estimators,
proved an asymptotic normality result for their estimator, and addressed the problem
of selecting the optimal λ that would minimize the mean squared error.

Below, we investigate the asymptotic property of Hn(ϕ, y) under the regularity
conditions:

A1 For every λ ∈ S
d−1, Fλ is continuous. There exist γλ < 0, Cλ > 0 and

Dλ ∈ R\{0} such that
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948 M. Kim, S. Lee

F̄λ(x) := 1 − Fλ(x) = Cλx−α
(
1 + Dλxγλ + xγλ	λ(x)

)
, (6)

where 	λ(x) is differentiable in x such that

sup
λ∈Sd−1

|	λ(x)| = o(1), sup
λ∈Sd−1

∣∣∣∣∂	λ

∂x
(x)

∣∣∣∣ = o(x−1) as x → ∞.

Moreover, λ 
→ Dλ and λ 
→ γλ are bounded and away from 0, λ 
→ Cλ is
Lipschitz-continuous, and there exists Mλ ∈ [0,∞) such that

Mλ = lim
n→∞

√
k {bλ(n/k)}γλ . (7)

A2 Let 0 < y < 1 < ȳ < ∞ and

T := S
d−1 × [y, ȳ]. (8)

There exist real-valued functions c1, c2, c3 defined on T × T such that

c1((λ1, y1), (λ2, y2)) = lim
n→∞

n

k
P (Yn(λ1, y1) > 0, Yn(λ2, y2) > 0) ,

c2((λ1, y1), (λ2, y2)) = lim
n→∞

nα2

k
E {Yn(λ1, y1)Yn(λ2, y2)} ,

c3((λ1, y1), (λ2, y2)) = lim
n→∞

nα

k
E {Yn(λ1, y1)I (Yn(λ2, y2) > 0)} ,

where Yn(λ, y) := (logU (λ) − log bλ(n/k) + 1
α
log y)+.

A3 There exists C > 0 such that P(|U | > x) ∼ Cx−α as x → ∞.

Remark 1 (6) is an example of a second-order regular variation with a smooth remain-
der that is uniformly negligible in λ ∈ S

d−1. For the details of this condition, we refer
to Goldie and Smith (1987), Hall (1982), Hall and Welsh (1985) and Feuerverger and
Hall (1999). Under A1–A3 and additional mild conditions, we haveCλ = w(λ)C and

c1((λ1, y1), (λ2, y2)) = α

∫
I (h1(s, θ) ∧ h2(s, θ) > 0)

ds

sα+1 P(� ∈ dθ),

c2((λ1, y1), (λ2, y2)) = α3
∫

(h1(s, θ))+ (h2(s, θ))+
ds

sα+1 P(� ∈ dθ),

c3((λ1, y1), (λ2, y2)) = α2
∫

(h1(s, θ))+ I (h2(s, θ) > 0)
ds

sα+1 P(� ∈ dθ),

where hi (s, θ) = log(sλ′
iθ)− 1

α
logw(λi )+ 1

α
log yi for i = 1, 2. It is readily checked

that

ci ((λ1, y), (λ2, y)) = yci ((λ1, 1), (λ2, 1)) for i = 1, 2, 3 and y > 0. (9)

More explicitly, w(λ) = ∫
(λ′θ)α P(� ∈ dθ), where the integration is taken over the

unit sphere. If α ≥ 1, both w(λ) and Cλ are Lipschitz-continuous.
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Tail exponent estimation 949

In what follows, G denotes a Gaussian process indexed by T with zero mean and
covariance function

V((λ1, y1), (λ2, y2)) := 1

α2
{c2((λ1, y1), (λ2, y2)) + c1((λ1, y1), (λ2, y2))}

− 1

α2
{c3((λ1, y1), (λ2, y2)) + c3((λ2, y2), (λ1, y1))} .

(10)

For a given metric space S, let �∞(S) denote the metric space of all real-valued and
bounded functions defined on S endowed with the uniform metric. For the theory of
weak convergence on these function spaces and further details, we refer to van der
Vaart and Wellner (1996). Below, we present a theorem that describes the asymptotic
behavior of Hn(ϕ, y). Its proof is provided in Sect. 5.

Theorem 1 Assume that (1) and A1–A3 hold. Then, for ϕ ∈ �,

y
√

k

{
Hn(ϕ, y) − 1

α

}

�
∫
Sd−1

G(λ, y)ϕ(dλ) +
∫
Sd−1

y− γλ
α

+1γλMλDλ

α(α − γλ)
ϕ(dλ), in �∞([y, ȳ]),

(11)

provided that
∫
Sd−1 | γλ Mλ Dλ

α(α−γλ)
|ϕ(dλ) < ∞.

Remark 2 The problem of choosing the tail sample fraction yk/n is important and
difficult in estimating the tail exponent. In the univariate case, this problem is con-
sidered by several authors such as Hall and Welsh (1985), Drees et al. (2000), and
Danielsson et al. (2001). For the multivariate case, an argument similar to that of Hall
(1982) can be established. For simplicity, we assume that γ = γλ does not depend on
λ and take k = �n2ρ/(2ρ+1)	 with ρ = −γ /α. Then, it follows from (9) and (11) that

√
k

{
Hn(ϕ, y) − 1

α

}
� N

(
yρ

∫
Sd−1

γ MλDλ

α(α − γ )
ϕ(dλ),

∫ ∫
Vϕ(dλ1)ϕ(dλ2)

y

)
,

where
∫ ∫

Vϕ(dλ1)ϕ(dλ2) =
∫

λ1∈Sd−1

∫
λ2∈Sd−1

V((λ1, 1), (λ2, 1))ϕ(dλ1)ϕ(dλ2).

Thus, the asymptotic mean squared error is given by

y2ρ
{∫

Sd−1

γ MλDλ

α(α − γ )
ϕ(dλ)

}2

+
∫ ∫

Vϕ(dλ1)ϕ(dλ2)

y
. (12)

Then, if 0 < {∫
Sd−1

γ Mλ Dλ

α(α−γ )
ϕ(dλ)}2 < ∞, we might be able to attain the asymptotic

efficiency by finding y that minimizes the above. However, it is not feasible to estimate
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950 M. Kim, S. Lee

the optimal tail fraction owing to the difficulty in estimating several second-order
parameters and integrating the function V. Here, we do not pursue to deal with this
issue because it is beyond the scope of this study.

Remark 3 Since the performance of Hn(ϕ, 1) depends on ϕ, its choice is also crucial
to estimate α. A simple one is the uniformmeasure ϕunif on Sd−1. However, it does not
guarantee the best performance. The best solution ϕ◦ may be obtained by minimizing
(12) with respect to ϕ ∈ �, where y is fixed as 1. More precisely, we can write

ϕ◦ := arg min
ϕ∈�

{{∫
Sd−1

γ MλDλ

α(α − γ )
ϕ(dλ)

}2

+
∫ ∫

Vϕ(dλ1)ϕ(dλ2)

}
, (13)

provided that the minimizer exists and is unique. Note that if Mλ = 0 for every
λ ∈ S

d−1, (13) is reduced to

ϕ◦ = arg min
ϕ∈�

∫ ∫
Vϕ(dλ1)ϕ(dλ2).

However, this method requires a full knowledge on V, as well as the second-order
parameters, as seen in choosing the optimal tail fraction.

To overcome this difficulty, one can consider using some discrete signed measures,
defined on a fine grid, that approximate ϕ ∈ �. For r ∈ N, we set

{(
t1
r

, . . . ,
td
r

)′
: t1, . . . , td ∈ {0, 1, . . . , r} and t1 + · · · + td = r

}
={λ1, . . . ,λm} ,

(14)

where m = (r+d−1
d−1

)
denotes the number of the grid points, and

ϕdisc(·) =
m∑

i=1

ϕi I(λi ∈ ·),

where ϕ1, . . . , ϕm ∈ R with ϕ1 + · · · + ϕm = 1 (so that ϕdisc ∈ �). In this case,
Hn(ϕdisc, 1) = ∑m

i=1 ϕiHn(λi , 1). Suppose that Mλ = 0 for every λ ∈ S
d−1. Then,

putting


 =
⎛
⎜⎝

V((λ1, 1), (λ1, 1)) · · · V((λ1, 1), (λm, 1))
...

. . .
...

V((λm, 1), (λ1, 1)) · · · V((λm, 1), (λm, 1))

⎞
⎟⎠ ,

and
(
ϕ◦
1 , . . . , ϕ

◦
m

)′ = {1′
−11}−1
−11, (1 = (1, . . . , 1)′ ∈ R
m), provided that 
 is

not singular, we get

ϕ◦
disc(·) =

m∑
i=1

ϕ◦
i I(λi ∈ ·).
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Tail exponent estimation 951

Then, the asymptotic variance of Hn(ϕdisc, 1) is minimized at ϕdisc = ϕ◦
disc. As an

estimate of 
, one can employ

ĉ1(λi ,λ j ) = 1

k

n∑
l=1

I(Ỹn,l(λi ) > 0, Ỹn,l(λ j ) > 0),

ĉ2(λi ,λ j ) = α̂2

k

n∑
l=1

Ỹn,l(λi )Ỹn,l(λ j ),

ĉ3(λi ,λ j ) = α̂

k

n∑
l=1

Ỹn,l(λi )I(Ỹn,l(λ j ) > 0),

where α̂ = 1/Hn(ϕunif , 1) and Ỹn,l(λ) = (logU (λ)
l − logU (λ)

(k+1))+ for λ ∈ S
d−1 and

l = 1, . . . , n. Then, we obtain

(
ϕ̂1, . . . , ϕ̂m

)′ := {1′
̂−11}−1
̂−11, ϕ̂disc(·) :=
m∑

i=1

ϕ̂i I(λi ∈ ·). (15)

In Sect. 3, we evaluate the performance of Hn(ϕunif) and Hn(ϕ̂disc).
Note that the r determines the grid resolution of (14). Although ϕ◦

disc is closer
to ϕ◦ as the r gets larger, the computation of ϕ̂disc becomes more complicated as
well. Our simulation study, not reported here in details, shows that the performance of
Hn(ϕ̂disc, 1) varies a little according as the (large) r gets increased. Also, it reveals that
Hn(ϕ̂disc, 1) performs reasonably when r ≤ 50 in the case of n = 2000 and d ≤ 3. In
general, it is quite hard finding a rule to choose an optimal r owing to the complexity
in computation. Considering its importance in implementation, we leave this issue as
our future project.

3 Simulation study and real data analysis

3.1 Simulation study

In this subsection, we conduct a simulation study to evaluate the performance of the
proposed estimator in finite samples. Let {U i } be i.i.d. random vectors. Each U i is
assumed to follow an elliptical hyperbolic distribution:

U i ∼ (Z+
1 , . . . , Z+

d )√
V/α

, (Z1, . . . , Zd) ∼ N(0,�), V ∼ χ2(α), (16)

where (Z1, . . . , Zd) and V are independent, and � is a d × d positive definite
matrix. Then, U i have a multivariate regularly varying tail with tail exponent −α.
To evaluate the performance of Hn(ϕ, 1), we consider the mean squared error (MSE),
E{log(αHn(ϕ, 1))}2. For comparison, we consider Hn(ϕunif , 1), Hn(ϕ̂disc, 1), and
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H∗
n = 1

k

n∑
i=1

(
log |U i | − log |U |(k+1)

)
+ , (17)

where |U |(k+1) denotes the (k + 1)th largest order statistic of |U1|, . . . , |Un|. Note
that H∗

n is utilized in Mainik and Rüschendorf (2010). The MSEs are calculated in the
settings as follows:

(i) n = 2000, d = 2, α = 3, and

� =
[

1 0.5
0.5 1

]
.

ϕ̂disc is supported by {( t1
r , t2

r )′ : t1, t2 ∈ {0, 1, . . . , r} and t1+ t2 = r}with r = 10.
(ii) the same setting as in (i) except d = 3 and

� =
⎡
⎣ 1 0.5 0.1
0.5 1 0.5
0.1 0.5 1

⎤
⎦ .

ϕ̂disc is supported by {( t1
r , t2

r , t3
r )′ : t1, t2, t3 ∈ {0, 1, . . . , r} and t1 + t2 + t3 = r}

with r = 10.

Figures 1 and 2 present the square roots of MSE of the estimators and the relative
efficiency of Hn(ϕ̂disc, 1) in setting (i), which indicates the ratio of the MSEs of
Hn(ϕ̂disc, 1) (numerator) relative to those of its counterparts (denominator). It can
be seen that Hn(ϕ̂disc, 1) is the most efficient, among them, at k = 50. Figures 3 and 4
show the same in setting (ii) as Figs. 1 and 2, wherein Hn(ϕ̂disc, 1) also reveals the
best performance at k = 80. All these results confirm the validity of Hn(ϕ̂disc, 1).

3.2 Real data analysis

In this subsection, we conduct a real data analysis. We analyze the negative returns

(X1,1, X1,2), . . . , (Xn,1, Xn,2), n = 2039,

of the stock prices of the Apple and Google from March 2005 to April 2013. Figure 5
shows that the negative returns have some conditional heteroscedasticity. Therefore,
we fit a GARCH(1,1) model to each series, that is,

Xi, j = μ j + Zi, j
√

hi, j ,

hi, j = ω j + φ j {Xi−1, j − μ j }2 + β j hi−1, j , i ∈ Z, j = 1, 2,

where (Zi,1, Zi,2)
′, i ∈ Z are i.i.d. random vectors. We estimate the parameters by

the quasi-MLE μ̂ j , ω̂ j , φ̂ j , β̂ j , j = 1, 2, using a two-sided exponential likelihood
function as inBerkes andHorváth (2004). Then,weobtain the (standardized) residuals:
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Fig. 1 The square roots of the MSEs in setting (i)
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n and Hn(ϕunif , 1) in setting (i)
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Fig. 3 The square roots of the MSEs in setting (ii)

Ẑi, j = {Xi, j − μ̂ j }/ĥ1/2
i, j , i = 1, . . . , n, j = 1, 2,

where ĥi, j are recursively obtained from the equations:

ĥ1, j = ω̂ j , ĥi, j = ω̂ j + φ̂ j {Xi−1, j − μ̂ j }2 + β̂ j ĥi−1, j , i = 2, . . . , n, j = 1, 2.

Figure 6 presents the time series plot of the residuals, whereas Figs. 7 and 8, respec-
tively, show their and their squares’ correlogram and cross-correlogram. Since the
negative returns are seemingly well filtered out, we view the residuals as i.i.d. ran-
dom vectors. Figure 9 shows the scatter plot of the residuals, wherein several extreme
values are observed, allowing for the existence of a multivariate regularly varying tail.

To deal with extreme financial risk, we project the residuals into the first quadrant
to obtain Ui, j = Ẑ+

i, j , i = 1, . . . , n and j = 1, 2. Now, we estimate the tail exponent
of multivariate regularly varying tail of U i = (Ui,1, Ui,2)

′ by H∗
n , Hn(ϕunif , 1), and

Hn(ϕ̂disc, 1). Here, ϕ̂disc is supported by {( t1
r , t2

r )′ : t1, t2 ∈ {0, 1, . . . , r}and t1 + t2 =
r} with r = 50. Figure 10 exhibits the estimates against tail sample fraction k/n. The
estimates appear to be relatively stable when k ranges from 20 to 70, but the values for
α appear to be slightly different, that is, 1/Hn(ϕunif , 1) and 1/Hn(ϕ̂disc, 1) lie between
3.5 and 4 whereas 1/H∗

n lies between 3 and 3.5. Figures 11, 12 and 13 present the
confidence intervals at level 95 %. Among them, 1/Hn(ϕ̂disc, 1) appears to have the
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Fig. 4 The relative efficiency of Hn(ϕ̂disc, 1) with respect to H∗
n and Hn(ϕunif , 1) in setting (ii)

narrowest one, ranging from 3 to 4.5, which suggests that the negative tail exponent
lies between 3 and 4.5.

4 Conclusion and discussion

In this paper, we considered the estimation of the tail exponent of multivariate regu-
larly varying tail. As an estimator, a weighted average of Hill’s estimators is proposed.
We investigated its asymptotic properties and evaluated its finite sample performance
through a simulation study. As a result, the proposed estimator Hn(ϕ̂disc, 1) appeared
to outperform the classical one in (17). Our real data analysis also confirms the valid-
ity of our method. In fact, it is well known in the literature that many other existing
estimators perform better than Hill’s estimator in estimating the tail exponent of uni-
variate regularly varying tail. This suggests that weighted averages of such estimators
would perform properly in the multivariate case as well. Thus, it would be naturally
interesting to compare their performance with that of our estimator.We leave this issue
as our future project.

5 Proofs

5.1 Preliminary results

In this section, we prove Theorem 1 presented in Sect. 2 using Propositions 1–3 below.
Inwhat follows, we assume that (1), (4), andA1–A3 hold. Further, K denotes a generic
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Fig. 5 Time series plots of the negative returns (%)

positive constant and ‖ · ‖2 = √
E{(·)2}. Below are some preliminary lemmas useful

to prove Theorem 1. The proofs of all the lemmas in this section are provided in the
supplementary material.

Lemma 1 As x → ∞,

bλ(x) = C1/α
λ x1/α

{
1 + Cγλ/α

λ Dλ

α
xγλ/α + o

(
xγλ/α

)}
(18)

uniformly in λ ∈ S
d−1. Thus, (7) holds uniformly in λ ∈ S

d−1.
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Lemma 2 Let F̄λ = 1 − Fλ and Yn(λ, y) = (logU (λ) − log bλ(n/k) + 1
α
log y)+.

Then, for any y0 > 0, as n → ∞,

F̄λ(y−1/α
2 bλ(n/k)) − F̄λ(y−1/α

1 bλ(n/k)) ∼ k

n
(y2 − y1), (19)

E {Yn(λ, y2) − Yn(λ, y1)}2 ∼ 2k

α2n

(
y2 − y1 − y1 log

y2
y1

)
, (20)

E {Yn(λ, y2) − Yn(λ, y1)}3 ∼ 3k

α3n

(
2y2 − y1 − y1

(
log

y2
y1

+ 1

)2
)

(21)

uniformly in λ ∈ S
d−1 and 0 ≤ y1 < y2 ≤ y0.

Note that (19) is a compact expression of

lim
n→∞ sup

λ∈Sd−1
sup

0≤y1<y2≤y0

∣∣∣∣∣
n

k

F̄λ(y−1/α
2 bλ(n/k)) − F̄λ(y−1/α

1 bλ(n/k))

y2 − y1
− 1

∣∣∣∣∣ = 0.
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Fig. 7 The ACFs and CCFs of the residuals

Also, (20) and (21) can be rewritten similarly.

5.2 Weak convergence of the auxiliary processes

Define the �∞(T )-valued processes

Ln(λ, y) := 1√
k

n∑
i=1

{(
logU (λ)

i − log y− 1
α bλ(n/k)

)
+

−E
(
logU (λ)

i − log y− 1
α bλ(n/k)

)
+

}
,

Mn(λ, y) := 1√
k

n∑
i=1

{
I
(
U (λ)

i > y− 1
α bλ(n/k)

)
− P

(
U (λ)

i > y− 1
α bλ(n/k)

)}
,

where T is defined in (8). Below,we establish theweak convergence of these processes.
To this end, we investigate the asymptotical tightness.
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Fig. 8 The ACFs and CCFs for the squares of the residuals

Putting

fn(u;λ, y) =
√

n

k
I
(
u(λ) > y− 1

α bλ(n/k)
)

,

gn(u;λ, y) =
√

n

k

(
log u(λ) − log y− 1

α bλ(n/k)
)

+

where u(λ) = λ1u1 + · · · + λdud , we rewrite

Ln(λ, y) = 1√
n

n∑
i=1

{gn(U i ;λ, y) − Egn(U i ;λ, y)} ,

Mn(λ, y) = 1√
n

n∑
i=1

{ fn(U i ;λ, y) − E fn(U i ;λ, y)} .
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Fig. 9 The scatter plot of the residuals

The Estimates of the Tail exponent
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Fig. 10 The estimates of 1/H∗
n , 1/Hn(ϕunif , 1), and 1/Hn(ϕ̂disc, 1)
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The estimates of H_n^*
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Fig. 11 The estimates of 1/H∗
n and confidence intervals at level 95 %

The estimates of H_n(varphi_unif , 1 )
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Fig. 12 The estimates of 1/Hn(ϕunif , 1) and confidence intervals at level 95 %

123



962 M. Kim, S. Lee

The estimates of H_n(varphi_disc , 1 )
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Fig. 13 The estimates of 1/Hn(ϕ̂disc, 1) and confidence intervals at level 95 %

Lemma 1 implies that there exist 0 < w < w̄ < ∞ and n0 ∈ N, such that

w <
y(n/k)

{bλ(n/k)}α < w̄ for all y ∈ [y, ȳ], λ ∈ S
d−1 and n ≥ n0. (22)

We express

f ∗
n (u) =

√
n

k
I

(
|u| >

( n

w̄k

) 1
α

)
, g∗

n(u) =
√

n

k

(
log |u| − log

( n

w̄k

) 1
α

)
+

,

and for a > 0,

sn(u;λ, w, a) =
√

n

k

{
I (|u| > a) + I

(
|u| ≤ a, u(λ) >

( n

wk

) 1
α

)}
,

ln(u;λ, w, a) =
√

n

k
I

(
|u| ≤ a, u(λ) >

( n

wk

) 1
α

)
,

s′
n(u;λ, w, a) = g∗

n(u)I (|u| > a) +
√

n

k
I(|u| ≤ a)

(
log u(λ) − log

( n

wk

) 1
α

)
+

,

l ′n(u;λ, w, a) =
√

n

k
I(|u| ≤ a)

(
log u(λ) − log

( n

wk

) 1
α

)
+

.
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We provide several lemmas for proving the asymptotical tightness of Ln(λ, y) and
Mn(λ, y). The following is used to verify Proposition 1.

Lemma 3 For any λ ∈ S
d−1 and y ∈ [y, ȳ],

fn(u;λ, y) ≤ f ∗
n (u), gn(u;λ, y) ≤ g∗

n(u) for all u,

and limn→∞ ‖ f ∗
n (U)‖2 and limn→∞ ‖g∗

n(U)‖2 exist and are finite and strictly posi-
tive. Further, for any η > 0, we have

lim
n→∞E{ f ∗

n (U)}2I( f ∗
n (U) > η

√
n)=0 and lim

n→∞E{g∗
n(U)}2I(g∗

n(U)>η
√

n)=0.

Let ε > 0 and b|U | (x) = inf
{
z : P(|U | > z) ≤ x−1

}
. Note that for ε > 0,

n

k
P

(
|U | > b|U |

(
2n

ε2k

))
≤ ε2

2
.

Also, we define

b(n, ε) := b|U |
(
2n

ε2k

)
,

and, similarly, b′(n, ε) as the minimum constant a satisfying

E
{
g∗

n(U)
}2 I(|U | > a) ≤ ε2

2
.

Then, we get the following two lemmas, which will be used to verify Lemma 6.

Lemma 4 For any w0 > 0, there exist n1 ∈ N and K1 > 0 such that for ε > 0,
n ≥ n1, λ ∈ S

d−1, and 0 < w1 < w2 < w0,

‖sn(U;λ, w2, b(n, ε)) − ln(U;λ, w1, b(n, ε))‖22 ≤ K1(w2 − w1) + ε2

2
,

‖s′
n(U;λ, w2, b′(n, ε)) − l ′n(U;λ, w1, b′(n, ε))‖22 ≤ K1(w2 − w1) + ε2

2
.

Lemma 5 Let y, w1, w2 > 0, λ,λ∗ ∈ S
d−1 and A > 0, such that

	1 = w
− 1

α

1 (n/k)
1
α − y− 1

α bλ (n/k) > 0, 	2 = y− 1
α bλ (n/k) − w

− 1
α

2 (n/k)
1
α > 0,

|λ − λ∗| ≤ 	1 ∧ 	2

A
.

Then, for each u, we have

ln(u;λ∗, w1, A) ≤ fn(u;λ, y) ≤ sn(u;λ∗, w2, A),

l ′n(u;λ∗, w1, A) ≤ gn(u;λ, y) ≤ s′
n(u;λ∗, w2, A).
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Define

[h1, h2]
f := {(λ, y) : h1(u) ≤ fn(u;λ, y) ≤ h2(u) for each u}

which is an ε-bracket when ‖h2(U) − h1(U)‖2 ≤ ε is satisfied. Then, N f
[] (ε ; n) is

defined as the minimum number of ε-brackets needed for covering T . N g
[](ε ; n) is

analogously defined.
The following two lemmas are needed to verify Proposition 1.

Lemma 6 It holds that

lim
δ→∞ lim sup

n→∞

∫ δ

0

√
log N f

[] (ε ; n)dε = 0 (23)

and

lim
δ→∞ lim sup

n→∞

∫ δ

0

√
log N g

[](ε ; n)dε = 0. (24)

Lemma 7 It holds that

lim
δ→0

lim sup
n→∞

sup {‖ fn(U;λ1, y1) − fn(U;λ2, y2)‖2 : |(λ1, y1) − (λ2, y2)|<δ}=0

(25)

and

lim
δ→0

lim sup
n→∞

sup {‖gn(U;λ1, y1)−gn(U;λ2, y2)‖2 : |(λ1, y1) − (λ2, y2)|<δ}=0.

(26)

Proposition 1 (i) {Mn(λ, y)} and {Ln(λ, y)} are asymptotically tight in �∞(T ) and
thus converge weakly to the Gaussian processes with zero mean function and
covariance functions c1 and c2/α2, respectively.

(ii) Moreover, the weak limits have continuous versions.

Proof From Lemmas 3, 6 and 7, we can see that all the conditions in Theorem 2.11.23
of van der Vaart and Wellner (1996) are fulfilled. Hence, (i) follows from the fact that

lim
n→∞E{Mn(λ1, y1)Mn(λ2, y2)} = c1((λ1, y1), (λ2, y2))

and

lim
n→∞E{Ln(λ1, y1)Ln(λ2, y2)} = 1

α2 c2((λ1, y1), (λ2, y2)).
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To prove (ii), we retrieve the proof of Lemma 7. Suppose that λ1 �= λ2. Take

ε = (6K 3
0 |λ1 −λ2|)

1
2+2/α . Then, there exists K1 > 0, not depending on λ1,λ2, y1, y2,

such that

lim sup
n→∞

‖ fn(U;λ1, y1) − fn(U;λ2, y2)‖22 ≤ ε2 +
{
5ε2

6
+ K0

∣∣∣∣ y1
Cλ1

− y2
Cλ2

∣∣∣∣
}

≤ K1

(
|λ1 − λ2|

2
2+2/α + |y1 − y2| + |Cλ1 − Cλ2 |

)
.

Thus, letting M∞ denote the weak limit of {Mn}, we get

‖M∞(λ1, y1) − M∞(λ2, y2)‖22 ≤ K1

(
|λ1 − λ2|

2
2+2/α + |y1 − y2| + |Cλ1 − Cλ2 |

)
.

Since M∞ is Gaussian, there exists ν > 0 such that

E |M∞(λ1, y1) − M∞(λ2, y2)|ν ≤ K |(λ1, y1) − (λ2, y2)|d+1 ,

where K does not depend on λ1,λ2, y1, y2. If λ1 = λ2, we directly obtain the above
inequality from (19). Hence, M∞ has a continuous version (cf. Problem 2.2.9 of
Karatzas and Shreve 1991). We can also prove the same for {Ln} in a similar fashion.
This completes the proof. ��

5.3 The proof of Theorem 1

Define

Wn(λ, y) = √
k

{
logU (λ)

(yk+1) − log bλ

(
n

yk

)}
.

Below, we provide a lemma to show the connection between Wn(λ, y) and Mn(λ, y),
which is useful to prove Propositions 2 and 3. Proposition 1 plays a crucial role to
prove this lemma.

Lemma 8 For any K > 0, we have that Wn(λ, y) > ζ if and only if Mn(λ, y) >

αyζ +oP (1) as n → ∞, where the oP (1) terms are negligible uniformly in (λ, y) ∈ T
and ζ ∈ [−K , K ].
Proposition 2 (i) {Wn(λ, y) : (λ, y) ∈ T } is asymptotically uniformly equicontinu-

ous.
(ii) Moreover, the weak limit of {yWn(λ, y)} is identical to that of {α−1Mn(λ, y)}.
Proof Since {Mn} is asymptotically tight, owing to Lemma 8,

sup
(λ,y)∈T

|yWn(λ, y)| = OP (1). (27)
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Let ε > 0 and K > 0 and take

−K = ζ0 < ζ1 < · · · < ζm = K

with ε/4 < ζi − ζi−1 < ε/2 for i = 1, . . . , m. Then, if we put

An(K ) =
{

sup
(λ,y)∈T

|yWn(λ, y)| < K

}
,

Bn(δ) =
{
sup

δ

|y1Wn(λ1, y1) − y2Wn(λ2, y2)| > ε

}
, δ > 0,

where supδ is taken over |(λ1, y1) − (λ2, y2)| < δ, An(K ) ∩ Bn(δ) implies

m⋃
i=1

⋃
|(λ1,y1)−(λ2,y2)|<δ

{y1Wn(λ1, y1) < ζi−1, y2Wn(λ2, y2) ≥ ζi }

=
m⋃

i=1

⋃
|(λ1,y1)−(λ2,y2)|<δ

{Mn (λ1, y1) < αζi−1 + oP (1), Mn (λ2, y2)

≥ αζi + oP (1)}
⊂

⋃
|(λ1,y1)−(λ2,y2)|<δ

{
|Mn (λ1, y1) − Mn (λ2, y2)| ≥ αε

4
+ oP (1)

}
,

where the oP (1) terms are negligible uniformly in λ1,λ2, y1, y2. Thus, owing to the
asymptotical uniformly equicontinuity of {Mn}, we get

lim
δ→0

lim sup
n→∞

P(Bn(δ)) ≤ lim
δ→0

lim sup
n→∞

P(Bn(δ) ∩ An(K )) + lim sup
n→∞

{1 − P(An(K ))}
= lim sup

n→∞
{1 − P(An(K ))} .

Then, by letting K → ∞, we can see that (i) holds owing to (27). Since (ii) can be
directly derived from Lemma 8, the proposition is established. ��

The following is useful to prove Proposition 3.

Lemma 9 For any K > 0,

n

yk
E

(
logU (λ) − log bλ

(
n

yk

)
− ζ

α
√

k

)
+

= 1

α
− ζ

α
√

k
+ γλDλMλ√

kα(α − γλ)
y−γλ/α

+ o

(
1√
k

)

uniformly in ζ ∈ [−K , K ] and (λ, y) ∈ T .

Now, we are ready to provide the asymptotic property of Hn(λ, y).
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Proposition 3 The process

(λ, y) 
→ y
√

k

{
Hn(λ, y) − 1

α
− γλDλMλ√

kα(α − γλ)
y−γλ/α

}

converges weakly to a Gaussian process with zero mean and covariance function V
(presented in (10)) in �∞(T ).

Proof According to Lemma 9, for any K > 0,

Ln

(
λ, ye−ζ/

√
k
)

= y
√

k

{
1

yk

n∑
i=1

(
logU (λ)

i − log bλ

(
n

yk

)
− ζ

α
√

k

)
+

− 1

α
+ ζ

α
√

k
− γ DλMλ√

kα(α − γλ)
y−γλ/α

}

+ oP (1)

uniformly in ζ ∈ [−K , K ] and (λ, y) ∈ T . Since sup(λ,y)∈T |Wn(λ, y)| = OP (1) (cf.
Proposition 2), it holds that

Ln

(
λ, ye−αWn(λ,y)/

√
k
)

= y
√

k

{
Hn(λ, y) − 1

α
− γλDλMλ√

kα(α − γλ)
y−γλ/α

}

+ yWn(λ, y) + oP (1)

uniformly in (λ, y) ∈ T . Moreover, since {Ln} is asymptotically uniformly equicon-
tinuous, we get

y
√

k

{
Hn(λ, y) − 1

α
− γλ DλMλ√

kα(α − γλ)
y−γλ/α

}
= Ln(λ, y) − yWn(λ, y) + oP (1)

(28)

uniformly in (λ, y) ∈ T . Now that {Ln(λ, y) − yWn(λ, y)} converges weakly to
the weak limit of {Ln(λ, y) − α−1Mn(λ, y)} due to Lemma 8, the proposition is
established. ��
Proof of Theorem 1 The theorem is readily established by Proposition 3 and the map-
ping theorem in Theorem 1.3.6 of van der Vaart and Wellner (1996). ��
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