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Abstract We derive some additional results on the Bienyamé–Galton–Watson-
branching processwith θ -linear fractional branchingmechanism, as studied bySagitov
and Lindo (Branching Processes and Their Applications. Lecture Notes in Statistics—
Proceedings, 2016). This includes the explicit expression of the limit laws in both the
subcritical cases and the supercritical cases with finitemean, and the long-run behavior
of the population size in the critical case, limits laws in the supercritical cases with
infinite mean when the θ process is either regular or explosive, and results regard-
ing the time to absorption, an expression of the probability law of the θ -branching
mechanism involving Bell polynomials, and the explicit computation of the stochastic
transition matrix of the θ process, together with its powers.

Keywords Bienyamé–Galton–Watson-branching process · θ -linear-fractional-
branching mechanism · Population growth · Yaglom limits · Powers of probability
transition matrix

1 Introduction

Recently, in Sagitov and Lindo (2015), a family of branching mechanisms involving
explosions was introduced: the so-called θ -linear-fractional family. It fixes the repro-
duction law of some specific Bienyamé–Galton–Watson-branching processes (Harris
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1076 N. Grosjean, T. Huillet

1963), and it is given in terms of its probability generating function (pgf). This pgf
family has the remarkable invariance under iterated composition property, so that in
principle, the law of the population size at each generation can be computed. This fam-
ily extends the classical linear-fractional model (obtained when θ = 1), whose study
dates back to Schröder, (Harris 1963, p. 9; Schröder 1871). This makes computation
of important statistical quantities of great interest quite explicit. In this construction
θ ∈ [−1, 1], with very special properties for the cases θ ∈ {−1, 0, 1} when θ is an
integer. We shall revisit this θ family and give some additional results, among which:

– the expression of the limit laws in the subcritical cases and supercritical cases with
finite mean, solving respectively the associated Schröder and Poincaré functional
equations;

– the long-run behavior of the population size in the critical case;
– limit laws in the supercritical cases with infinite mean when either the θ process
is regular or explosive;

– information on the time to absorption defined as the infimum of the times to
extinction and explosion;

– an expression of the probability mass distribution of the θ ;
– branching mechanism, alternative to the one given in Proposition 4 of Sagitov and
Lindo (2015), using of Faa di Bruno formulae and Bell polynomials;

– the explicit computation of the stochastic transition matrix of the associated
Bienyamé–Galton–Watson θ -branching processes, together with its powers. This
gives some access to the resolvent of such processes as a key ingredient to compute
passage time statistics, hitting probabilities, etc.

We end up this work by a short section of examples, where the following problem
of concrete interest is addressed: what is the probability that given the θ -branching
process has not yet gone extinct at some given generation, its extinction time be
infinite with a large probability close to 1. We do some computations in the special
cases θ ∈ {−1, 0, 1}.

2 Generalities on Bienyamé–Galton–Watson (BGW)-branching
processes

We start with generalities on such BGW processes, including the case displaying
finite-time explosion (Sagitov and Lindo 2015).

2.1 The pgf approach

Consider a discrete-time Bienyamé–Galton–Watson-branching process (Harris 1963),
whose reproduction law is given by the (sub-)probability law P(M = m) =: π(m),
m ≥ 0 for the number M of offspring per capita. We assume π(0) > 0, so that the
process can go extinct. We let φ(z) = E(zM ) = ∑

m≥0 π(m)zm be the probability
generating function of M and we assume φ(1) ≤ 1.
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Linear-fractional branching processes 1077

With Nn(1) the number of individuals alive at generation n given N0 = 1, we have

E
(
zNn(1)

)
:= E

(
zNn | N0 = 1

)
= φ◦n (z) , (1)

where φ◦n(z) is the nth composition of φ(z) with itself,1. Similarly, if Nn(i) is the
number of individuals alive at generation n given there are N0 = i independent
founders, we clearly get

E
(
zNn(i)

)
:= E

(
zNn | N0 = i

)
= φ◦n (z)i . (2)

We shall also let

τi, j = inf (n ≥ 1 : Nn = j | N0 = i) ,

the first hitting time of state j �= i given N0 = i �= 0.

– If φ(1) < 1, there is a positive probability 1 − φ(1) =: π(∞) that M = ∞
(explosion is made possible even at the first branching step): following Sagitov
and Lindo (2015), we shall speak of an explosive or non-regular process.

– If φ(1) = 1 (regular case), depending on μ := E(M) ≤ 1 [i.e., the (sub-)critical
case] orμ > 1 (supercritical case): the process Nn(1) goes extinct with probability
1 or goes extinctwith probabilityρ < 1,whereρ is the smallest fixed point solution
in [0, 1] to φ(ρ) = ρ, respectively. In the latter case, the distribution of the time
to extinction τ1,0 is given by

P
(
τ1,0 ≤ n

) = P (Nn (1) = 0) = φ◦n (0) ,

and the process explodes with probability ρ := 1−ρ, but not in finite time: only state
{0} is absorbing. Clearly also, if there are i independent founders instead of simply 1

P
(
τi,0 ≤ n

) = P (Nn (i) = 0) = φ◦n (0)i .

– If φ(1) < 1 (explosive case), μ := E(M) = ∞, because there is a positive proba-
bility 1 − φ(1) that M = ∞. Notice that

φ′ (1) = E
(
M · 1{M<∞}

) =
∑

m≥1

mπ (m) ,

if this quantity exists (is finite). If φ(1) < 1, state {∞} should be added to the state-
space N0 = {0, 1, . . .} of Nn(i) and then both states are {0,∞} are absorbing. In this

1 Throughout this work, a pgf will, therefore, be a function φ which is absolutely monotone on (0, 1) with
all non-negative derivatives of any order there, obeying φ(1) ≤ 1.

123



1078 N. Grosjean, T. Huillet

supercritical case, ρ < 1 always, and both the time to extinction τ1,0 and the time to
explosion τ1,∞ of Nn(1) are finite with positive probability, now with

⎧
⎨

⎩

P
(
τ1,0 ≤ n

) = P (Nn (1) = 0) = φ◦n (0) →
n→∞ ρ = P

(
τ1,0 < ∞)

.

P
(
τ1,∞ > n

) = P (Nn (1) < ∞) = φ◦n (1) →
n→∞ ρ = P

(
τ1,∞ = ∞)

.
(3)

Thus,ρ andρ are nowalso the probabilities that τ1,0 < ∞ and τ1,∞ < ∞, respectively.
We thus have

⎧
⎪⎪⎨

⎪⎪⎩

P
(
n < τ1,0 < ∞) = ρ − φ◦n (0) ,

P
(
n < τ1,∞ < ∞) = ρ − (1 − φ◦n (1)) = φ◦n (1) − ρ, and,

P (n < τ1 < ∞) = P (0 < Nn (1) < ∞) = φ◦n (1) − φ◦n (0) ,

(4)

where we defined the global absorption time τ1 := τ1,0 ∧ τ1,∞. Clearly also, with
τi := τi,0 ∧ τi,∞

⎧
⎪⎪⎨

⎪⎪⎩

P
(
n < τi,0 < ∞) = ρi − φ◦n (0)i ,

P
(
n < τi,∞ < ∞) = (

1 − ρi
) − (

1 − φ◦n (1)i
) = φ◦n (1)i − ρi , and,

P (n < τi < ∞) = P (0 < Nn (i) < ∞) = φ◦n (1)i − φ◦n (0)i .

(5)

Suppose a supercritical situation for which the extinction probability of Nn(i) is
smaller than 1 (always the case ifφ(1) < 1). Of concrete interest is then the probability
that, given the process Nn(i) has not yet gone extinct at generation n, the extinction
time of the process will be finite, namely

P
(
τi,0 < ∞ | Nn (i) > 0

) = P
(
τi,0 < ∞ | τi,0 > n

)
.

We get

P
(
τi,0 < ∞ | Nn (i) > 0

) = ρi − φ◦n (0)i

1 − φ◦n (0)i
,

and the larger n, the smaller this probability because φ◦n+1(0) > φ◦n(0). There is
thus a value nc of n for which, with probability c close to 1

1 − P
(
τi,0 < ∞ | Nnc (i) > 0

) = 1 − ρi

1 − φ◦nc (0)i
= c ( = say 0.99). (6)

This is the probability that some population with i founders, still alive at generation
nc, will never go extinct.
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Linear-fractional branching processes 1079

2.2 The transition matrix approach

A Bienaymé–Galton–Watson process is a time-homogeneous Markov chain with
denumerable state-space N0 := {0, 1, . . .}. Its stochastic transition matrix is P , with
entries P(i, j) = [z j ]φ(z)i = P(N1(i) = j) (with [z j ]φ(z)i meaning the z j coef-
ficient of the pgf φ(z)i ). When there is explosion and in the supercritical cases, an
interesting problem arises when conditioning Nn either on extinction or on explosion.
This may be understood as follows:

The harmonic column vector h, solution to Ph = h , is given by its coor-
dinates h(i) = ρi , i ≥ 0, because

∑
j≥0 P(i, j)ρ j = φ(ρ)i = ρi . Letting

Dh :=diag(h(0), h(1), . . .), introduce the stochastic matrix Ph given by a Doob
transform (Norris 1998; Rogers and Williams 1994, p. 327): Ph = D−1

h PDh or
Ph(i, j) = h(i)−1P(i, j)h( j) = P(i, j)ρ j−i , i, j ≥ 0. Note h(Nn(i)) = ρNn(i) is a
martingale because E(h(Nn(i))) = φ◦n(ρ)i = ρi = h(i) = h(N0(i)). Then, Ph is
the transition matrix of Nn conditioned on almost sure extinction. Equivalently, when
conditioning Nn on almost sure extinction, one is led to a regular subcritical BGW
process with new branching mechanism φ0(z) = φ(ρz)/ρ, satisfying φ0(1) = 1
and φ′

0(1) = φ′(ρ) < 1. Indeed, φ0(z) = ∑
j≥0 Ph(1, j)z j . Upon iterating, we get

φ◦n
0 (z) = φ◦n(ρz)/ρ.
Similarly, when conditioning Nn on almost sure explosion, one is led to an explo-

sive supercritical BGW process with new Harris–Sevastyanov-branching mechanism
φ∞(z) = [φ(ρ +ρz)−ρ]/ρ, satisfying φ∞(0) = 0 and φ∞(1) = (φ(1)−ρ)/ρ < 1.
Upon iterating, we have φ◦n∞ (z) = [φ◦n(ρ + ρz) − ρ]/ρ.

The second largest eigenvalue of P is γ = φ′(ρ) < 1. The corresponding eigen-
vector u obeys Pu = γ u with u(i) = iρi−1, i ≥ 1, because

∑
j≥1 P(i, j) jρ j−1 =

φ′(ρ)iφ(ρ)i−1 = γ iρi−1. Conditioning Nn on never hitting {0,∞} in the remote
future is given by the Q process with stochastic transition matrix Q = γ −1D−1

u PDu
or Q(i, j) = γ −1u(i)−1P(i, j)u( j) = γ −1ρ j−i i−1P(i, j) j , i, j ≥ 1 (see Lambert
2010; Sagitov and Lindo 2015, Section 6 in the θ -special case].

There are classes of discrete-branching processes forwhich the pgfφ◦n (z) of Nn (1)
is exactly computable, therebymaking the above computations concrete and somehow
explicit.

3 The θ -linear-fractional branching mechanism model (Sagitov and
Lindo 2015)

With |θ | ≤ 1, a, b > 0, and zc ≥ 1, we shall consider the θ -linear-fractional branching
mechanism model, namely

{
φ (z) = zc − (

a (zc − z)−θ + b
)−1/θ

or
(zc − φ (z))−θ = a (zc − z)−θ + b,

(7)

and for those values of zc ≥ 1 and a, b > 0 for which φ is a pgf with φ(1) ≤ 1. The
case θ = 0 will be considered in (11).
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1080 N. Grosjean, T. Huillet

3.1 The boundary cases θ = ±1

The boundary cases θ = ±1 deserve a special treatment that we shall first evacuate.

• When θ = 1, φ(z) = zc − (a(zc − z)−1+b)−1 is an homographic map. Assuming
a + b > 1 and introducing the probabilities p0 = 1/(a + b), q = a/(a + b), with
p0 + q0 = 1 and p + q = 1, this is also (a = q/p0, b = p/p0)

1

zc − φ (z)
= q

p0

1

zc − z
+ p

p0
.

Note φ(zc) = zc but zc is not the convergence radius of φ, which is zc + q/p.
– In the particular case zc = 1, we have the two following interpretations for φ(z) :

Proposition 1 (i) When zc = 1, φ(z) = q0 + p0(qz)/(1 − pz), the classical form
of the simple linear-fractional model. This pgf is the one of a random variable M

obtained as M
d= G · B (equality in law), where B is Bernoulli (p0) distributed,

independent of G, a geometric (1/q) distributed random variable.
(ii)When zc = 1 and if b < 1, we also have

φ (z) = 1 + (1 − z) b−1
a

1 + (1 − z) b
a

,

which can be put in the alternative form

φ (z) = β (β0 + α0z)

1 − α (β0 + α0z)
,

while defining the probabilities α0 = (1− b)/a, α = b and β0 = 1− α0, β = 1− α.
This φ(z) is thus the pgf of the random variable:

M
d=

G∑

k=1

Bk,

where G now is geometric (1/β) distributed, independent of the sequence of indepen-
dent and identically distributed (Bk)k≥1, with B1 Bernoulli (α0) distributed. M is thus
a Bernoulli-thinned version of G in the sense of Steutel and van Harn (1979).

We have μ := E (M) = φ′ (1) = p0/q = 1/a and

{
φ◦n (z) = 1 − (

an (1 − z)−1 + bn
)−1

where
an = an and bn = b

(
1 + a + · · · + an−1

) .

Depending on a > 1, a = 1, or a < 1, the corresponding branching process is
subcritical, critical, or supercritical. In the supercritical case a = q/p0 < 1, the
extinction probability is ρ = q0/p < 1.
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Linear-fractional branching processes 1081

– If now zc > 1, the additional constraints φ(0) ∈ (0, 1) and φ(1) ≤ 1 impose
p0 < q + pzc ≤ p + p0. This family is of interest, because its nth iterate is explicit,
also homographic, with

{
φ◦n (z) = zc − (

an (zc − z)−1 + bn
)−1

where
an = an and bn = b

(
1 + a + · · · + an−1

)
.

(8)

Thus, for instance, if zc > 1, and q + pzc < p + p0

P (n < τ1 < ∞) = φ◦n (1) − φ◦n (0) = an
(an + bnzc) (an + bn (zc − 1))

,

with

P (n < τ1 < ∞) ∼
n→∞

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a−1)2

(a−1+bzc)(a−1+b(zc−1))a
−1
n if a > 1

(a−1)2

b2zc(zc−1)
an if a < 1

1
b2zc(zc−1)

n−2 if a = 1

.

When a = 1 (p0 = q and q0 = p), the tails of τ1 are no longer asymptotically
geometric, rather they are power law with tail index 2.

• When θ = −1, φ(z) = az + zc(1− a) − b is the affine map and, if φ(1) = 1, the
corresponding branching process is the regular death process as each individual can
only either die or survive upon splitting. With π(1) = a, π(0) = zc(1− a) − b =
1 − π(1), φ(z) = π(1)z + π(0) and the corresponding branching process is
subcritical, always, with mean μ = π(1) = a < 1. With πn(0) + πn(1) = 1, we
have

φ◦n (z) = πn (0) + πn (1) z, where πn (1) = π (1)n .

If φ(1) < 1, the corresponding branching process is an explosive process, where
each individual can either die, survive, or give birth to infinitely many descendants on
splitting. The additional constraints φ(0) ∈ (0, 1) and φ(1) < 1 impose π(1) = a ∈
(0, 1), π(0) = zc(1 − a) − b < 1 − π(1) = 1 − a, thus (zc − 1)(1 − a) < b. This
family is of interest, because its nth iterate is again explicit

{
φ◦n (z) = zc − (an (zc − z) + bn) with
an = an and bn = b

(
1 + a + · · · + an−1

) = b 1−an
1−a ,

(9)

and again in the same class of affine maps. With πn(0) + πn(1) < 1, this is also

φ◦n (z)=πn (0)+πn (1) z, where πn (0) = π (0)
1 − an

1 − a
and πn (1) = π (1)n .
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1082 N. Grosjean, T. Huillet

We have

P (Nn (1) < ∞) = πn (0) + πn (1) = π (0)
1 − an

1 − a
+ π (1)n

→
n→∞ →P (N∞ (1) < ∞) := π (0) / (1 − a) < 1.

P(Nn(1) = ∞) is an increasing sequence. The relative rate of approach of P(Nn(1) =
∞) to its limiting value decays geometrically with

P (N∞ (1) = ∞) − P (Nn (1) = ∞)

P (N∞ (1) = ∞)
= an .

Note P(n < τ1 < ∞) = φ◦n(1) − φ◦n(0) = an , an exact geometric distribution.

3.2 The case θ ∈ (−1, 1)

Although we deal here with the case θ ∈ (−1, 1), we, somehow abusively, extend the
range of the parameter set to its boundary whenever it causes no particular problem.

– With θ ∈ (−1, 1), a, b > 0, and zc = sup(z > 0 : φ(z) < ∞) ≥ 1, let us
reconsider φ(z) as defined by (1). Note now φ(zc) ≤ zc (= zc if θ ∈ (0, 1]) and
zc > 1 could produce, φ(1) < 1, the explosion opportunity. This family is of interest,
because its nth iterate is also explicit with (if θ �= 0):

{
φ◦n (z) = zc − (

an (zc − z)−θ + bn
)−1/θ

where
an = an and bn = b

(
1 + a + · · · + an−1

)
,

(10)

and it is in the same class as φ, although for a different set of parameters a, b (an
invariance under iteration property).

The case θ = 0 is defined by continuity from the case θ ∈ (−1, 1)\{0} while
observing

φ (z) = zc − (
a (zc − z)−θ + (1 − a) (zc − ρ)−θ

)−1/θ

→
|θ |→0

→zc − (zc − ρ)1−a (zc − z)a , (11)

with φ (1) < 1 if zc > 1. Notice that if zc = 1, φ (1) = 1 and μ = ∞ (the only
regular case with infinite mean).

There are three cases, depending on μ := E(M) < 1, = 1 or > 1:

• (A): subcritical cases:
(i) If θ ∈ (0, 1], zc = 1, a > 1, b > 0, then μ = a−1/θ < 1. Again, if θ = 1,
φ(z) = q0 + p0qz/(1 − pz) with p0 = 1/(a + b), p = b/(a + b), the classical
form of the 1-fractional model as the composition of a Bernoulli(p0) pgf with the
one of a geometric (p/q) pgf.
(ii) If θ ∈ (−1, 1], zc > 1, a ∈ (0, 1) and b = (1−a)(zc −1)−θ , thenμ = a < 1.
(iii) If θ = −1, zc = 1 and a ∈ (0, 1) , then μ = a < 1.
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Linear-fractional branching processes 1083

• (B): critical case (μ = 1): this situation occurs only when θ ∈ (0, 1], zc = 1,
a = 1, b > 0.

• (C): supercritical case (∞ ≥ μ > 1): θ ∈ (−1, 1], zc ≥ 1, a ∈ (0, 1), b =
(1 − a)(zc − ρ)−θ where equivalently ρ = zc − ((1 − a)/b)1/θ is the extinction
probability of the process, as the smallest solution in the interval [0, 1] toφ(ρ) = ρ

with ρ ∈ (0, 1). We have a = φ′(ρ) In the supercritical case with zc > 1, then
μ = ∞ because in this case,

φ (1) = zc − (
a (zc − 1)−θ + (1 − a) (zc − ρ)−θ

)−1/θ
< 1,

and M = ∞ with a positive probability.
In general, we have φ′(1) = a(a + b(zc − 1)θ )−(θ+1)/θ = a(a + (1 −

a)( zc−1
zc−ρ

)θ )−(θ+1)/θ which coincides with μ if zc = 1. We conclude that in the super-
critical case with zc = 1

μ =
{∞ if θ ∈ (−1, 0] , a ∈ (0, 1)
a−1/θ if θ ∈ (0, 1] , a ∈ (0, 1)

.

In the first case,

– if θ ∈ (−1, 0), a ∈ (0, 1) then μ = ∞ as a result of finite-time explosion because
φ(1) = 1 − ((1 − a)(1 − ρ)−θ )−1/θ < 1 (explosive case).

– if θ = 0, a ∈ (0, 1), μ = ∞ even though φ(1) = 1 (the only regular case with
infinite mean).

Remarks (i) To the subset of models (A) to (B), we have added the special affine case
θ = −1 with zc = 1 . If zc > 1, the affine model is supercritical withμ = ∞, because
the branching event M = ∞ has a positive probability. The special case θ = 0 is
supercritical with μ = ∞ both when zc = 1 and zc > 1. The special case θ = 1
corresponds to the standard linear-fractional model and its criticality status has been
included in the above classification.

(ii) Due to the invariance under iterated composition of the θ family of pgfs, it
holds that [φ◦n]−1(z) = φ◦(−n)(z): the inverse function of φ◦n(z) simply is φ◦(−n)(z),
obtained while substituting −n to n in φ◦n(z), (a time-reversal property).

4 Limit laws

We shall investigate different limit laws concerning cases (A) to (C).

4.1 Limit laws (subcritical/critical and supercritical with finite mean cases)

• Subcritical case with μ < 1
In the subcritical case, considering the population size, given it is positive, gives
rise to a limiting random variable as the generation number goes to infinity. This
limiting random variable is known as the quasi-stationary Yaglom limit (Yaglom
1947).
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1084 N. Grosjean, T. Huillet

In our context, there are three different cases where this situation can occur:
(A)/(i). In this case, with θ ∈ (0, 1], zc = 1, a > 1, b > 0 and φ(z) =
1 − (a(1 − z)−θ + b)−1/θ , Nn | Nn > 0

d→ N∞ where N∞ is a random variable
with value in N0 = {1, 2, . . .} whose pgf φ∞(z) := E(zN∞) = ∑

l≥1 π∞(l)zl

obeys the Schröder functional equation:

φ∞ (φ (z)) = μφ∞ (z) , φ∞ (z) = 1 − φ∞ (z) , μ = a−1/θ . (12)

Note φ(z) = φ
−1
∞ (μφ∞(z)) and thus φ◦n(z) = φ

−1
∞ (μnφ∞(z)).

Proposition 2 With α = a−1
a+b−1 and β = b

a+b−1 (α + β = 1), we find the pgf of the
Yaglom quasi-stationary limit N∞ as

φ∞ (z) = 1 − 1 − z
(
α + β (1 − z)θ

)1/θ , (13)

obeying φ∞(0) = 0, φ∞(1) = 1 and with mean μ∞ := φ′∞(1) = α−1/θ =
( a−1
a+b−1 )

−1/θ .

If in particular θ = 1

φ∞ (z) = z

1 + β
α

(1 − z)
= αz

1 − βz

is the pgf of a geometric random variable with mean 1+ β/α = 1/α. Thus, π∞(l) =
P(N∞ = l) = αβl−1, l ≥ 1, decays geometrically fast.

Corollary 3 Defining π∞(k) := ∑
l>k π∞(l)

π∞ (k) ∼
k↑∞ − 1


 (−θ)

β

θα1+1/θ k
−(1+θ),

displaying power law tails with index 1 + θ if θ ∈ (0, 1) : N∞ only has moments of
order strictly less than 1 + θ .

Proof If θ ∈ (0, 1), the tail pgf of N∞ is

1 − φ∞ (z)

1 − z
= (

α + β (1 − z)θ
)−1/θ

,

and the proof follows from Tauberian theorem, observing

(
α + β (1 − z)θ

)−1/θ ∼
z↓1μ∞

(

1 − β

αθ
(1 − z)θ

)

.

��
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(A)/(i i). In the subcritical case (A)/(i i), with θ ∈ (−1, 1]\{0}, zc > 1, a ∈ (0, 1),
b = (1 − a)(zc − 1)−θ . Here, with φ(1) = 1 (a regular case)

φ (z) = zc − (
a (zc − z)−θ + (1 − a) (zc − 1)−θ

)−1/θ
and μ = φ′ (1) = a < 1.

(14)
Let h(z) = zc − z = h−1(z), g(z) = z−θ and f (z) = g(h(z)) = (zc − z)−θ . The
above equation is also (Hoppe 1980)

f (φ (z)) = a f (z) + (1 − a) f (1) .

Let us look for an invertible function A(z) with inverse B(x) = A−1(x), such that
φ(z) = B(μA(z)) = B(aA(z)). Combining the two equations, we should have

f ◦ B (aA (z)) = a f (z) + (1 − a) f (1) or

f ◦ B (ax) = a f ◦ B (x) + (1 − a) f (1) ,

leading to an affine solution f ◦B(x) = αx+β withβ = f (1) andα left undetermined
so far. We get

B (x) = f −1 (αx + f (1)) = zc − (αx + f (1))−1/θ

A (z) = B−1 (z) = 1

α

(
(zc − z)−θ − (zc − 1)−θ

)
.

We thus have φ∞(z) = 1− A(z) = 1− 1
α
((zc − z)−θ − (zc − 1)−θ ) with φ∞(1) = 1.

Imposing φ∞(0) = 0 yields α = z−θ
c − (zc − 1)−θ and so

Proposition 4

φ∞ (z) = 1 −
(

(zc − z)−θ − (zc − 1)−θ

z−θ
c − (zc − 1)−θ

)

= 1 − (1 − z/zc)−θ

1 − (1 − 1/zc)−θ
(15)

is the searched pgf of the unique Yaglom limit N∞ in this case study. It has finite mean
φ′∞(1) (and moments) and P(N∞ = k) is asymptotically equivalent to kθ−1z−k

c with
both power law and geometrically decaying factors.

The case θ = 0 is finally obtained by continuity.

Corollary 5 If θ = 0, we get a logarithmic pgf for N∞ as a result of

φ∞ (z) = 1 − (1 − z/zc)−θ

1 − (1 − 1/zc)−θ
→

|θ |→0
→− log (1 − z/zc)

− log (1 − 1/zc)
, (16)

with mean φ′∞(1) = − 1
(zc−1) log(1−1/zc)

> 1.
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1086 N. Grosjean, T. Huillet

(A)/(i i i). In the subcritical case (A)/(i i i) (pure death case with φ(z) = π(0) +
π(1)z and μ = π(1) < 1), Nn | Nn > 0

d→ N∞, where simply N∞ = 1, whose pgf
φ∞(z) := E(zN∞) = z clearly obeys the Schröder functional equation:

φ∞ (φ (z)) = μφ∞ (z) , φ∞ (z) = 1 − z.

Obviously, φ(z) = φ
−1
∞ (μφ∞(z)) and thus φ◦n(z) = φ

−1
∞ (μnφ∞(z)) = 1−μn(1−z)

as required.

• Critical case with μ = 1: This concerns the case (B) when θ ∈ (0, 1], zc = 1,
a = 1, b > 0. We have

φ (z) = 1 − (
(1 − z)−θ + b

)−1/θ

φ◦n (z) = 1 − (
(1 − z)−θ + nb

)−1/θ
.

This is a regular case with φ(1) = 1.

Proposition 6 The process goes extinct with probability 1, but it takes a long time to
do so. Indeed

P
(
τ1,0 > n

) = 1 − φ◦n (0) = (1 + nb)−1/θ ∼ (nb)−1/θ ,

P
(
τi,0 > n

) = 1 − φ◦n (0)i ∼ i (nb)−1/θ , for large n,

with persistent heavy tails, non-geometric.

The pgf of Nn (1) conditioned on Nn (1) > 0 is

φ◦n (z) − φ◦n (0)

1 − φ◦n (0)
,

therefore

E (Nn (1) | Nn (1) > 0) = (1 + nb)1/θ ∼ b1/θn1/θ ,

E (Nn (i) | Nn (i) > 0) ∼ ib1/θn1/θ , for large n,

with slow algebraic growth of order n1/θ in n. A direct computation shows that

φ′′ (z) = b (θ + 1) (1 − z)θ−1

(
1 + b (1 − z)θ

)1/θ+2 .

Because φ′′(1) = 2b < ∞ only when θ = 1, it holds (Harris 1963; Athreya and Ney
1972) that, if θ = 1, E(Nn(1) | Nn(1) > 0) ∼ nb and

P
(
Nn (1)

nb
> x | Nn (1) > 0

)

→
n→∞ →e−x , x > 0.
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• Regular supercritical case with μ < ∞.
In the supercritical case (C) for which μ = a−1/θ < ∞ (zc = 1, θ ∈ (0, 1],
a ∈ (0, 1)), μ−nNn

d→ W , where W ≥ 0 is a random variable with value in
R+ = [0,∞), whose Laplace–Stieltjes transform φW (λ) := E(e−λW ), λ ≥ 0,
obeys the Poincaré functional equation:

φW (μλ) = φ (φW (λ)) . (17)

Note φ(z) = φW (μφ−1
W (z)) and thus φ◦n(z) = φW (μnφ−1

W (z)).

Proposition 7 With α = 1−a
a+b−1 > 0 and β = b

a+b−1 > 0 (β − α = 1), if zc = 1, the
Laplace–Stieltjes transform of the asymptotic growth rate W of μ−nNn is

φW (λ) = 1 − λα1/θ (
βλθ + 1

)−1/θ = ρ + ρ

(

1 −
(
1 + β−1λ−θ

)−1/θ
)

. (18)

The extinction probability is φW (∞) = ρ = 1− ( α
β
)1/θ and W has an atom at r = 0

with mass ρ. We have φW (0) = 1 and the mean of W is μW := −φ′
W (0) = α1/θ .

For general supercritical BGW processes, the limiting W given W > 0 is known
to be infinitely divisible in some but not all cases (Biggins and Shanbhag 1981). We
do not know if W | W > 0 here in (18) is infinitely divisible or not.

Corollary 8 If θ = 1

φW (λ) = 1 − λα (βλ + 1)−1 = λ + 1

βλ + 1
= 1

β
+

(

1 − 1

β

)
1

1 + βλ

is the Laplace–Stieltjes transform of an exponential random variable with an atom at
0 with mass ρ = 1/β and mean ρβ = 1−a

a+b−1 = α. In addition, P(W > r | W >

0) ∼ e−r/β decays exponentially fast.

Furthermore, using Feller (1971, p. 445),

Corollary 9 If θ ∈ (0, 1), φW (λ) ∼ ρ + ρ(1 − β1/θλ) as λ is close to 0, meaning
exponential tails again, now with P(W > r | W > 0) ∼

r→∞ e−r/β1/θ
. As λ is close to

∞, φW (λ) ∼ ρ + ρ(βθ)−1λ−θ , meaning heavy algebraic left tails P(W ≤ r | W >

0)r → 0∼(βθ)−1r/θ/
(1 + θ).

4.2 Limit laws (supercritical with infinite mean cases)

There are two different regimes, depending onμ = ∞ resulting or not fromfinite-time
explosion:
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1088 N. Grosjean, T. Huillet

• Regular case. If zc = 1, the infinite mean case μ = ∞ occurs when θ = 0,
a ∈ (0, 1). In such a case, φ(z) = 1 − (1 − ρ)1−a(1 − z)a and φ(1) = 1 (no
finite-time explosion). With E(1) a standard mean 1 exponential random variable

an log (1 + Nn (1))
a.s.→ W =

{
0 with probability ρ

E (1) with probability ρ
, as n → ∞ (19)

and conditionally given Nn(1) does not go extinct, Nn(1) grows at double exponential
speed.

The pgf of Nn(1) given explosion indeed is

φ◦n∞ (z) = 1 − (1 − z)a
n
,

and the above statement follows from the martingale proof of Hénard (2015, propo-
sition 3.8), adapted to the discrete time context. Similar regular models with infinite
offspring mean were recently studied in Huillet (2016).

Remark It can be checked that, with loga b = log b/ log a and A (z) = 1 −
log1−ρ (1 − z), z < 1,

φ (z) = A−1 (aA (z)) , so that φ◦n (z) = A−1 (
an A (z)

)
. (20)

This is an alternative way to see that such a branching model is ‘integrable’.

• Explosive case. If (i) zc > 1 and θ ∈ (−1, 1], a ∈ (0, 1), b = (1 − a)(zc − ρ)−θ

with ρ ∈ (0, 1) or (ii) if zc = 1 and θ ∈ (−1, 0), a ∈ (0, 1) and b = (1 −
a)(1−ρ)−θ , where ρ ∈ (0, 1), then Nn(1) can be infinite even in the first iteration
step (finite-time explosion). What only matters in this context is the time τ1,∞ to
explosion and also τ1 = τ1,0 ∧ τ1,∞, as well as τi . We get

Proposition 10 (i) When θ ∈ (−1, 1], zc > 1, a ∈ (0, 1), b = (1 − a)(zc − ρ)−θ

with ρ ∈ (0, 1), leading to μ = ∞, we have, for instance

P (n < τ1 < ∞) = φ◦n (1) − φ◦n (0) ∼
n→∞

(
1 − a

b

)1+1/θ (
(zc − 1)θ − zθc

)
an,

showing that τ1 is tail equivalent to a geometric random variable. Similarly

P (n < τi < ∞) = φ◦n (1)i − φ◦n (0)i ∼
n→∞ i

(
1 − a

b

)1+i/θ (
(zc − 1)θ − zθc

)
an .

(ii) If zc = 1 and θ ∈ (−1, 0), a ∈ (0, 1) and b = (1−a)(1−ρ)−θ , where ρ ∈ (0, 1),
we have

P (n < τi < ∞) = φ◦n (1)i − φ◦n (0)i ∼
n→∞ −i

(1 − ρ)−(1+i/θ)

θ
an,

still with the tail equivalence to a geometric random variable.

123



Linear-fractional branching processes 1089

5 Powers of the θ -process transition matrix obtained by iteration

So far, we dealt with this θ family of pgfs for the reproduction law. It remains to
compute the probability mass function to which they are associated. A related question
is to compute the stochastic transition matrix of the θ -branching processes together
with its powers in time. We shall now address these points. We shall start with the
cases θ ∈ (−1, 1)\{0} before addressing the special cases θ ∈ {−1, 0, 1}.

5.1 The case θ ∈ (−1, 1)\{0}

• We start with the reproduction law. Let φ(z) = zc − (a(zc − z)−θ + b)−1/θ be
a θ -pgf with φ(z) ≤ 1. We first wish to compute the associate probability mass
distribution: π(k) = [zk]φ(z). Introduce φc(z) := z−1

c φ(zcz), so with φc(z) =
1−(a(1− z)−θ +bzθc )

−1/θ (this operation is meaningful of course only if zc > 1).
φc(z) is a new pgf because φc(1) = z−1

c φ(zc) ≤ 1. We have πc(k) = [zk]φc(z) =
zk−1
c π(k), so one can work with φc as well. We also have φc(z) = f ◦ g(z) with
g(z) = 1− (1− z)−θ and f (z) = 1− (a+bzθc −az)−1/θ . This allows to compute
π(k) by Faa di Bruno formula for the composition of Taylor series. First, we have
π(0) = zc(1 − (a + bzθc )

−1/θ ). By Faa di Bruno formula (Comtet 1970, Tome 1,
p. 149), then

Proposition 11

π (k) = 1

k!zk−1
c

k∑

l=1

fl Bk,l (g•) , k ≥ 1, (21)

where fl are the Taylor coefficients of f (z), Bk,l(g•) is the Bell polynomials in the
indeterminate g• := (g1, g2, . . .), and gks being the Taylor coefficients of g(z). The
Bell polynomials are defined by

Bk,l (g•) = k!
l!

[
zk

]
g (z)l ,

with the boundary conditions

Bk,0 (g•) = B0,l (g•) = 0, k, l ≥ 1 and B0,0 (g•) := 1, and,

Bk,1 (g•) = gk and Bk,k (g•) = gk1 .

This computation of π(k) is in agreement with Proposition 4 of Sagitov and Lindo
but our representation and its proof, inspired from Faa di Bruno formulae and making
use of Bell polynomials, are different. We now list some properties concerning the
coefficients fl and Bk,l(g•). We first recall that (Comtet 1970)

Bk,l (x•) = k!
∗∑ ∏

j≥1

1

c j !
(
x j
j !

)c j
,
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1090 N. Grosjean, T. Huillet

the latter star summations running over the integers c j obeying
∑

j≥1 c j = l and∑
j≥1 jc j = k ≥ l.
We note now that, with [a]l = a(a + 1) · · · (a + l − 1) the ascending factorial

with [a]0 := 1, C = (a + bzθc )
−1/θ and D = (a + bzθc )/a = C−θ /a, f (z) =

1 − C(1 − z/D)−1/θ with Taylor coefficients:

f0 = 1 − C and fl = −C

θ
[1 + 1/θ ]l−1 D

−l = −CD−l [1/θ ]l , l ≥ 1. (22)

For the case g(z) = 1 − (1 − z)−θ , it holds g• = −θ [1 + θ ]•−1 = −[θ ]•. Because
g1 = −θ and gm+1 = gm(m+ θ),m ≥ 1, it follows that the Bell coefficients Bk,l(g•)
for this function g obey a simple 3-term recursion:

Bk+1,l (g•) = −θBk,l−1 (g•) + (k + lθ) Bk,l (g•) , k, l ≥ 1. (23)

For instance, B1,1(g•) = −θ leading to π(1) = f1B1,1(g•) = CD−1, B2,1(g•) =
(1 + θ)B1,1(g•) = −θ(1 + θ), leading to π(2) = 1

2zc
( f1B2,1(g•) + f2B2,2(g•)) =

1
2zc

(1+θ)CD−2(D−1), . . .The formulae (21), (22), and (23) completely characterize
the π(k)s. Bk,l(g•) constitute generalized Stirling numbers studied in Charalambides
and Singh (1988).

Remark If θ = −1/L , where L > 1 is an integer, f (z) = 1 − C(1 − z/D)L is
a polynomial of degree L in z so fl = 0 if l > L which largely simplifies (21).
Furthermore, in this case, gk = L−k ∏k−1

l=1 (l L − 1). If L = 2, gk = 2−2(k−1)(2k −
3)!/(k − 2)!.
• The transition matrix and its powers. We now first wish to compute Pa,b(i, j) =

[z j ]φ(z)i = zi− j
c [z j ]φc(z)i , the transition matrix of the θ -branching process,

where its dependence on the parameters (a, b) has been emphasized. We have
φc(z)i = fi ◦ g(z), still with g(z) = 1 − (1 − z)−θ and now with fi (z) :=
[1 − (a + bzθc − az)−1/θ ]i . So with fi,k , k ≥ 1, the Taylor coefficients of fi (z),
we similarly get

Proposition 12

Pa,b (i, j) = zi− j
c

j !
j∑

k=1

fi,k B j,k (g•) . (24)

We note that fi (z) = hi (f(z)) where hi (z) = (1−C +Cz)i and f(z) := 1− (1−
z/D)−1/θ , so that with hi,l = i !

(i−l)! (1−C)i−lCl (= 0 if l > i) and with f• given from
(22) as fl = −[1/θ ]l D−l , l ≥ 1, by Faa di Bruno formula again

fi,0 = (1 − C)i and fi,k =
k∧i∑

l=1

hi,l Bk,l (f•) . (25)

Note π( j) = Pa,b(1, j) as required. To obtain now Pn
a,b(i, j), the (i, j) entry of the

nth power of Pa,b, we just need to substitute (an = an, bn = b(1+ a + · · · + an−1))

to (a, b), so it simply holds
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Pn
a,b (i, j) = Pan ,bn (i, j) , (26)

taking advantage of the invariance under iteration of the θ family when θ ∈
(−1, 1)\{0}. We note that the dependence on n in Pan ,bn (i, j) is only in the coef-
ficients fi,k in (24), through C and D. To emphasize this point, we shall also write

Corollary 13

Pn
a,b (i, j) = Pan ,bn (i, j) = zi− j

c

j !
j∑

k=1

f (n)
i,k B j,k (g•) , (27)

where f (n)
i,k is obtained from fi,k in (25) while substituting (an = an, bn = b(1+ a +

· · ·+ an−1)) to (a, b) in the expressions of C = (a+ bzθc )
−1/θ and D = (a+ bzθc )/a.

It remains to discuss the special integral cases for θ .

5.2 The case θ = 0

We recall that φ(z) = zc −λ(zc − z)a , where λ = (zc − ρ)1−a and ρ obey φ(ρ) = ρ.
With φc(z) = 1 − λza−1

c (1 − z)a and πc(k) = [zk]φc(z), π(k) = πc(k)/zk−1
c with

πc(k) = −λza−1
c [−a]k/k!. Next, with λc := λza−1

c

φc (z)i = (
1 − λc (1 − z)a

)i = (
1 − λc + λc

(
1 − (1 − z)a

))i = hi ◦ g (z) ,

with g(z) = 1 − (1 − z)a and hi (z) = (1 − λc + λcz)i . With g• = −[−a]• and
hi,k = i !

(i−k)! (1 − λc)
i−kλkc , we thus get similarly

Pa,λ (i, j) = zi− j
c

j !
j∑

k=1

hi,k B j,k (g•) and Pn
a,λ (i, j) = Pan ,λn (i, j) , (28)

where an = an (a ∈ (0, 1)) and λn = λ(1−an)/(1−a). Bj,k(g•) also obey a three
terms recursion of the type (23) with −a substituted to θ . Note π( j) = Pa,λ(1, j) as
required.

5.3 The case θ = 1

With φ(z) = zc − (a(zc − z)−1 + b)−1, we wish to compute π(k) = [zk]φ(z) with
π(0) = zc(a+b−1)/(a+b) in the first place. Introduce φc(z) = z−1

c φ(zcz), so with
φc(z) = 1−(a(1−z)−1+bzc)−1.We haveφc(z) = f ◦g(z)with g(z) := (1−z)−1−1
and f (z) = 1 − (a + bzc + az)−1 = 1 − C(1 + z/D)−1, where C = (a + bzc)−1

and D = (a + bzc)/a. Let fl be the Taylor coefficients of f (z) and gk be the Taylor
coefficients of g(z). By Faa di Bruno formula
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π (k) = 1

k!zk−1
c

k∑

l=1

fl Bk,l (g•) , k ≥ 1,

with gk = k! and f0 = 1 − C and fl = (−1)l−1CD−l l! , l ≥ 1. We have Bk,l(•!) =
(k−1
l−1

) k!
l! , so

π (k) = C

zk−1
c

k∑

l=1

(
k − 1

l − 1

)

(−1)l−1 D−l = CD−1
(
1 − D−1

zc

)k−1

, k ≥ 1. (29)

Next

Pa,b (i, j) = zi− j
c

[
z j

]
φc (z)i .

We have φc(z)i = fi ◦ g(z) still with g(z) = (1 − z)−1 − 1 and now with fi (z) =
[1 − C(1 + z/D)−1]i . Therefore, with fi,k , k ≥ 1, the Taylor coefficients of fi (z)
and with Bj,k(•!) = ( j−1

k−1

) j !
k! , we get similarly

Pa,b (i, j) = zi− j
c

j !
j∑

k=1

fi,k B j,k (g•) . (30)

It remains to compute the fi,ks. We note that fi (z) = hi ( f (z)), where hi (z) =
(1−C−Cz)i and f (z) = (1+ z/D)−1−1, so that with hi,l = i !

(i−l)! (1−C)i−l(−C)l

and with f• given by fl = (−D)−l l!, l ≥ 1, by Faa di Bruno formula again

fi,0 = (1 − C)i and fi,k =
k∧i∑

l=1

hi,l Bk,l ( f•) .

Now, Bk,l( f•) = (−D)−k Bk,l(•!) = (−D)−k
(k−1
l−1

) k!
l! and

fi,k = k! (1 − C)i D−k
k∧i∑

l=1

(−1)k−l
(
i

l

)(
k − 1

l − 1

) (
C

1 − C

)l

. (31)

Exchanging the summation over k and l in (30) and applying the binomial identity
(keeping in mind D−1 = aC)

Pa,b (i, j) = zi− j
c (1 − C)i

(
1 − D−1

) j
i∧ j∑

l=1

(
i

l

)(
j − 1

l − 1

) (
C

1 − C

D−1

1 − D−1

)l

.

(32)
To obtain now Pn

a,b(i, j), (i, j) entry of the nth power of Pa,b, we just need to

substitute (an = an, bn = b(1 + a + · · · + an−1)) to (a, b) in (C, D), so it simply
holds
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Pn
a,b (i, j) = Pan ,bn (i, j) ,

where Pa,b(i, j) is given by (32). The resulting expression generalizes Proposition 2.2
of Klebaner et al. (2007).

5.4 The case θ = −1 (Greenwood model)

Here, φ(z) = az+ zc(1−a)−b. We get π(1) = a, π(0) = zc(1−a)−b ≤ 1−π(1).
We have

P (i, j) =
[
z j

]
φ (z)i =

(
i

j

)

π (0)i− j π (1) j ,

and

Pn (i, j) =
[
z j

]
φ◦n (z)i =

(
i

j

)

πn (0)i− j πn (1) j ,

whereπn(1) = π(1)n andπn(0) = π(0) 1−π(1)n

1−π(1) . Both P and Pn have binomial entries

with Pn(i, i) = π(1)ni . If π(0) + π(1) = 1 (the regular case), πn(0) + πn(1) = 1
and Pn is stochastic. If π(0) + π(1) < 1 (the explosive case), πn(0) + πn(1) < 1
and Pn is sub-stochastic. To make it stochastic, we can add state {∞} to the state-
space and assume that it is absorbing. We can thus complete P to make it stochastic
while considering P(i,∞) = 1− ∑i

j=0

(i
j

)
π(0)i− jπ(1) j = 1− (π(0) + π(1))i and

P(∞,∞) = 1. If φ(1) = 1, such regular pure death process was recently consid-
ered byMöhle (2017), revisiting the Greenwood model of infectiousness (Greenwood
1931).

5.5 Resolvent of the θ -linear-fractional processes

With δi, j the Kronecker delta, for i, j ≥ 1, we also obtain the resolvent of Nn (i) as

gi, j (z) := δi, j +
∑

n≥1

zn Pn (i, j) . (33)

In particular

gi,i (z) = 1 +
∑

n≥1

zn Pn (i, i) .

Note gi, j (1) = δi, j + E(
∑

n≥1 1{Nn(i)= j}), the expected value of the time spent on
state j starting from i is the Green kernel.

Proposition 14 Using (27), with Fi,k(z) := ∑
n≥1 z

n f (n)
i,k , we get the following tricky

expression for the resolvent:
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gi, j (z) := δi, j +
∑

n≥1

zn Pan ,bn (i, j) = δi, j + zi− j
c

j !
j∑

k=1

Fi,k (z) Bj,k (g•) . (34)

These quantities are fundamental to compute pgfs of important quantities, such as
passage times. It holds, for example, that E(zτi, j ) = gi, j (z)/g j, j (z), where

τi, j = inf (n ≥ 1 : Nn (i) = j) (35)

is the first passage time to state j �= i of Nn given N0 = i (Norris 1998; Woess 2009).
In particular, P(τi, j < ∞) = gi, j (1)/g j, j (1) are the hitting probabilities of state j
starting from i . Furthermore, with

τ ∗
i,i = inf (n ≥ 1 : Nn (i) = i) , (36)

the first return time to state i of Nn(i), it holds by renewal arguments that E(zτ
∗
i,i ) =

1 − 1/gi,i (z) (Norris 1998). In particular, P(τ ∗
i,i < ∞) = 1 − 1/gi,i (1). Therefore,

for example, the mean return time to state i given τ ∗
i,i < ∞ is

E
(
τ ∗
i,i | τ ∗

i,i < ∞) = g′
i,i (1)

gi,i (1)
(
gi,i (1) − 1

) , (37)

whenever this quantity exists.
Let us briefly sketch what this says for the simplest Greenwood model example

when θ = −1: first, Pn(i, i) = πn(1) j leading to gi,i (z) = 1 + ∑
n≥1 z

nπ(1)ni =
1/(1 − zπ(1)i ). Therefore, E(zτ

∗
i,i ) = zπ(1)i , translating the fact that τ ∗

i,i = 1 with

probability π(1)i , = ∞ with probability 1 − π(1)i (the no return to i event if in the
first step, one of the i founders moved to one of the absorbing states, 0 or ∞). In
addition, in the regular case π(0) = 1 − π(1)

P
(
τi, j < ∞) = gi, j (1) /g j, j (1)

=
(
1 − π (1) j

)
⎛

⎝1 +
∑

n≥1

(
i

j

)
(
1 − π (1)n

)i− j
π (1)nj

⎞

⎠ ,

which, upon developing (1 − π(1)n)i− j and summing over n is Proposition 1.1 and
Theorem 1.2 of Möhle (2017).

6 One illustrative example

As an illustrative application of the previous results, let us look for the value of n for
which a supercritical process as in (C) will nearly never (with large probability c) go
extinct as soon as Nn(i) > 0. It is given by (6)
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c = 1 − ρi

1 − φ◦n (0)i
=: 1 − ε.

When ε is small, it leads to

ρ − φ◦n (0) ≈ ε · 1 − ρi

iρi−1 . (38)

The condition for this Taylor expansion to be valid is given2 by ρ−φ◦n(0) � ρ/(i−1)
or alternatively

ε � ρi

1 − ρi
.

The relation (38) shows that for small ε, having i founders amounts simply to multiply
ε by a factor that only depends on the value of the fixed point ρ and the number i . Let
us now use the explicit form of the supercritical θ -linear-fractional pgfs. In that case,
it holds that

an = (zc − φ◦n (z))−θ − (zc − ρ)−θ

(zc − z)−θ − (zc − ρ)−θ
.

A Taylor expansion of (zc − φ◦n(z))−θ for small ρ − φ◦n(0) yields

−θ
ρ − φ◦n (z)

ρ − zc
≈ an

(

1 −
(
zc − z

zc − ρ

)−θ
)

,

the Taylor expansion validity condition being |ρ −φ◦n(z)| � |(zc −ρ)/θ |. Combined
with the previous result, we get

an ≈ ε · 1 − ρi

iρi
· (−θ)

1 − α

1 − α−θ
,

with α := zc/(zc − ρ) > 1; the validity conditions are

ε � ρi

1 − ρi
and ε � iρi

|θ | (α − 1)
. (39)

This shows that the searched value of n for which a supercritical process as in (C)

will nearly never go extinct is approximately the sum of three terms:

• one, related to the required accuracy, that is the logarithm of ε in base a. In
particular, to have a result ten times more precise, one has to wait | loga(10)| more
steps,

2 It is assumed here that i > 1. If i = 1, the condition on ρ − φ◦n(0) is no longer valid, but the one on ε

still is.
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• one, related to the number i of founders, which also depends on the parameters a
and ρ,

• one, related to the model parameters only, which depends on a, θ , and zc and ρ

through α.

For instance, taking a = 0.63 (so that a5 ≈ 0.1), ρ = 0.7, zc = 1, we get:

• when θ = +1 and i = 1, 9 generations are needed if the population is to survive
with a probability 1 − 10−2. 5 more generations will increase this probability to
1 − 10−3, and another 5 to 1 − 10−4.

• when θ = +1, with an uncertainty ε = 10−4 and eight founders, the time to
wait decreases to 16 generations. With thirteen founders, it decreases further to 13
generations. Notice that ρ19 ≈ 0.001, so one has to be careful not to get out of the
range of (39).

• with one founder and an uncertainty 10−4, 19 generations are needed for θ = 1,
20 generations for the limit θ = 0 and 21 for θ = −1.

In all these special cases, we conclude that if extinction is to occur, it occurs rapidly
or nearly never.
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