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Abstract This article develops estimators for certain population characteristics using
a judgment post stratified (JPS) sample. The paper first constructs a conditional JPS
samplewith a reduced set size K by conditioning on the ranks of themeasured observa-
tions of the original JPS sample of set size H ≥ K . The paper shows that the estimators
of the population mean, median and distribution function based on this conditional
JPS sample are consistent and have limiting normal distributions. It is shown that the
proposed estimators, unlike the ratio and regression estimators, where they require a
strong linearity assumption, only need a monotonic relationship between the response
and auxiliary variable. For moderate sample sizes, the paper provides a bootstrap
distribution to draw statistical inference. A small-scale simulation study shows that
the proposed estimators based on a reduced set JPS sample perform better than the
corresponding estimators based on a regular JPS sample.

Keywords Reduced set size · Empty cell · Ranking error · Ranked set sample ·
Stratified sample

1 Introduction

In setting, where an abundance of auxiliary information is available, information con-
tent of a simple randomsample can be increased by inducing some additional structures
in the data. One can start with a simple random sample and use available auxiliary
information from additional sample units through a ranking process to determine
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1030 O. Ozturk

the relative position of each measured unit in a small set. This position information
provides a mechanism to create a judgment post stratified (JPS) sample by putting
homogeneous observations together in the same group. A JPS sample in this setting
can be considered a post stratified sample since grouping is performed after a simple
random sample has been collected. The increased efficiency of a JPS sample is then
anticipated from the general theory of the stratified sample in survey sampling designs.

Let Xi , i = 1, . . . , n, be a simple random sample (SRS) from a distribution F . For
the construction of a JPS sample from this SRS, we select additional H − 1 units for
eachmeasured value Xi to construct a set of size H . Units in this set are rankedwithout
measurement with no additional cost to determine the rank of Xi , Ri . The ranking
process is performed without measurement, such as using visual inspection, auxiliary
variables, etc. If ranking is performed based on a visual inspection, the ranker should
be blinded to the actual value of Xi to avoid possible biases in the ranking process.
Throughout this paper, the set of observations Xi , i = 1, . . . , n, with the judgment
rank h is called judgment class h or stratum h, h = 1 . . . , H . The ranking scheme is
called consistent if the equality

F(y) = 1

H

H∑

h=1

F[h:H ](y)

holds, where F[h:H ](y) is the CDF of the h-th judgment order statistics. If the ranking
procedure is perfect, assigning the true ranks to the units,we replace the judgment order
statistics with the usual order statistics in a simple random sample of size H and write
F[h:H ](y) = F(h:H)(y), h = 1, . . . , H . If the ranking procedure is random, assign-
ing the ranks at a completely random fashion, the judgment order statistics become
independent identically distributed random variables and we write F[h:H ](y) = F(y),
h = 1, . . . , H .

JPS sampling has a wide range of applications. A particular example can be found
in allometry study in MacEachern et al. (2004) and Wang et al. (2008). The main goal
in these studies is to estimate themean of log-adjusted brain weight. A JPS sample first
selects a simple random sample of n mammals and measures the brain weights. Each
one of the mammals in this SRS is matched with H−1 randomly selectedmammals to
form a set of size H . The rank of themeasured brain weight in this set is then estimated
by ranking the H mammals based on their intelligence level. Another example is given
in the estimation of the percentage-area-coverage by a chemical spray on apple tree
leaves in Ozturk (2013). In this case, the percentage-area-coverage is computed with
a chemical analysis on the selected simple random sample of n leaves. Each one of the
leaves in this SRS is again matched with H −1 randomly selected additional leaves to
form a set of size H . The rank of each measured leaf in its set is then estimated under
ultra-violet lights to construct the JPS sample. The third example for a special version
of JPS is given in clinical trials to compare the efficacy of three treatments used for the
reversal of anesthesia (Du and MacEachern 2008). In this study, the response variable
is the elapsed time from the treatment administration to completion of the anesthesia
reversal. In this case, the ranks of the subjects in a set of size H are constructed through
the nonlinear covariate variable depth of neuromuscular block at the time of reversal.
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Statistical inference with empty strata in JPS sample 1031

In these examples, the regression estimator and covariance analysis may not be
used since there may not exist a standard measurement for predictor (or auxiliary)
variables. For example, the intelligence level of mammals and light intensity may not
be converted to a numerical measure very easily. JPS sampling, unlike a regression
estimator, does not require a standard measurement for the predictors. It only requires
the relative position of the measured unit in a set which can be obtained from visual
inspection or some other form of ranking process. JPS sampling requires some sort
of monotonic relationship between the ranking variable and response, which is much
weaker than the strong linearity assumption of regression and ratio estimators.

A JPS sample consists of a simple random sample, SRS = (X1, . . . , Xn), and
a rank vector, R = (R1, . . . , Rn), associated with Xi , i = 1, . . . , n, in SRS. Since
the rank vector R is loosely related to SRS, it can be ignored, and a JPS sample
can be treated as a SRS sample. A JPS sample can be considered, conditionally on
the observed rank vector R, as an unbalanced ranked set sample, where the ranks
are strongly attached to the measured observations. A ranked set sample (RSS) of
size n contains n independent judgment order statistics selected from n different sets.
The construction of a RSS sample requires selecting n sets, each of size H . Units
in each set are ranked without measurement. Again the ranking process, as in JPS
sampling, is performed by using a visual inspection or auxiliary variable without
requiring a full measurement. For h = 1, . . . , H , the judgment ranked unit h is
selected for measurement in nh sets so that

∑H
h=1 nh = n. The measured random

variables, X[h] j , j = 1, . . . , nh; h = 1, . . . , H , are then called an unbalanced RSS
sample. Up-to-date references for RSS sampling designs can be found in a recent
review paper in Wolfe (2012) and in a book by (Hollander et al. 2014, Chapter 15).

In recent years, research in JPS sampling drew considerable attention in literature.
Wang et al. (2006) developed a class of estimators for the populationmean based on the
concomitant of multivariate order statistics. Wang et al. (2008) used stochastic order-
ing constraint to construct estimators for the population mean. Frey and Ozturk (2011)
relaxed the assumption of the stochastic ordering constraint. They showed that under
a consistent ranking scheme, the judgment class cumulative distribution functions
(CDF) can be no more extreme than the CDF of true order statistics. This constraint
is weaker than the one used in the stochastic ordering of the judgment order statistics.
In a sequel paper, Frey (2012) combined the constraint in Frey and Ozturk (2011)
with the stochastic constraint of order statistics to produce more efficient estimators
for the population mean and variance. Frey and Feeman (2012, 2013) developed the
optimal estimators within a class of unbiased estimators for the population mean and
variance. Chen et al. (2014), Stokes et al. (2007) and Ozturk (2013) combined rank-
ing information from different sources to develop statistical inference for population
characteristics under a JPS sample.

The research in RSS and JPS indicates that the procedures based on an RSS sample
yield higher efficiencies than the same procedures based on a JPS sample due to the
strong data structure in an RSS sample. Even though a JPS sample is less efficient than
a RSS sample, it still yields higher efficiency than a SRS sample. The loss of efficiency
in a JPS sample can be attributed to the empty strata and unequal judgment class sample
sizes. Let Nh be the number of observations having ranks in the judgment class h, h =
1, . . . , H . The sample size vector N = (N1, . . . , NH ) has a multinomial distribution
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with parameters n and (1/H, . . . , 1/H). For small sample size n, it is highly possible
that some of the judgment class sample sizes would be zero or very close to zero,
creating a highly unbalanced JPS sample. The empty judgment classes not only reduce
efficiency, but may also introduce a bias in the estimator. Dastbaravarde et al. (2016)
constructed classes of unbiased estimators for population moment and variance by
putting weight to each judgment class to account for the empty strata in a JPS sample.
Ozturk (2014) constructed a similar class of estimators for the p-th quantile of a
distribution F . Ozturk (2015) developed distribution free two-sample methods based
on JPS samples. Wang et al. (2012) used the stochastic ordering constraint among
judgment class CDFs to fill-in the empty judgment classes to estimate the CDF of the
underlying distribution.

In this paper, to reduce the impact of the empty judgment classes in a JPS sample,
we create another JPS sample with a reduced set size K ≤ H conditionally on the rank
vector R. In the proposed JPS sample, the ranks of the measured observations Xi , i =
1, . . . , n, are recomputed in a set of size K by conditioning on the rank Ri in the original
JPS sample of the set size H . Use of smaller set size K makes sure that the conditional
JPS sample does not have any empty judgment class and hence improves the efficiency.
Section 2 provides a detailed description for the construction of the JPS sample with
a reduced set size K . This section also constructs a nonparametric estimator for the
parameter θg = E(g(X − b)) for a wide range of choices of real-valued function
g. We show that the estimator is consistent and has limiting normal distribution.
Section 3 considers a special case of the function g to draw inference for the p-th
quantile of F . Section 4 discusses the selection of the optimal reduced set size K to
improve the efficiency of the proposed estimators. Section 5 investigates the bootstrap
variance estimate of estimators and constructs a percentile confidence interval for
θg . Section 6 provides some empirical evidence on the finite sample behavior of the
estimators. Section 7 applies the proposed estimator to 2012United States Department
of Agriculture (USDA) census data to estimate the mean corn production at county
levels. Section 8 provides concluding remarks.

2 JPS sample with reduced set size

We consider a judgment post-stratified sample, (Xi , Ri ), i = 1, . . . , n, where n could
be small and the set size H could be relatively large to produce some empty judgment
classes. We note that the relative size of H depends on its potential to generate empty
strata. The set sizes H = 3 and H = 5 could be relatively large for a sample size
of n = 5, but may not be large for sample sizes n = 50 and n = 100. For relatively
large H , sample size(s) of some judgment classes may be zero (Nh = 0) for some
h. In this case, the estimators could be biased and very unstable. To minimize the
impact of the empty judgment classes, we re-evaluate the rank of the measured unit
Xi , conditionally on the original rank Ri , in a smaller set of size K ≤ H so that none
of the sample sizes Nk , k = 1, . . . , K , in the reduced JPS sample is zero.

Let

Si,H = {Xi ,Y1, . . . ,YH−1}
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Statistical inference with empty strata in JPS sample 1033

be a set of size H in which Xi has rank Ri . We consider the probability distribution of
the rank of Xi if we remove the (H −K ) unmeasured Y - observations at random from
this set. Let Si,K = {Xi ,Yt1 , . . . ,YtK−1} be the reduced set and CK |Ri be the rank of
Xi in this reduced set. We assume that the ranking process of the units in the reduced
set is not affected by the absence of some units in the original set. This assumption
basically states that ranking process is consistent for all reduced set sizes K ≤ H ,
and it holds for ranking processes based on concomitant variables and perceived size
ranking model of Dell and Clutter (1972). Under a consistent ranking model, we
compute

ak:K |h = P(CK |Ri=h = k) =

(
h − 1
k − 1

)(
H − h
K − k

)

(
H − 1
K − 1

) , k = 1, . . . , K , (1)

where ak:K |h is the probability that the unit with rank h (Ri = h) in the set Si,H is
assigned the rank k in the reduced set Si,K .

Remark 1 For K = H , P(CK |Ri=h = k) = ak:H |h = 1 if k = h and zero otherwise.
In this case, CK |Ri is a degenerate random variable at h.

For any bounded real-valued function g, we defineWk,Ri ,g(b) = ak:K |Ri g(Xi −b),
−∞ < b < ∞. It is clear that Wk,Ri ,g(b) prorates the original measurement Xi − b to
the k-th strata in the reduced set. By using Eq. (1), under a consistent ranking scheme,
one can establish

E(Wk,Ri ,g(b)) = E(E(Wk,Ri ,g(b)|Ri )) = E(ak:K |Ri )E {(g(Xi − b)|Ri )}

=
H∑

h=1

E {I (Ri = h)} ak:K |h E{g(X[h:H ] − b)}

=
H∑

h=1

(
h − 1
k − 1

)(
H − h
K − k

)

H

(
H − 1
K − 1

) Eg(X[h:H ] − b)

= 1

K

H∑

h=1

(
h − 1
k − 1

)(
H − h
K − k

)

(
H
K

) E{g(X[h:H ] − b)}

= E{g(X[k:K ] − b)}
K

. (2)

The last equality in the above expression follows from the fact that one of the
judgment rank in a set of size H must be assigned to a unit having a judgment rank k
in the reduced set of size K . In a similar fashion, the expected value of ak:K |Ri reduces
to E(ak:K |Ri ) = 1/K under a consistent ranking scheme
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E{ak:K |Ri } =
H∑

h=1

E{I (Ri = h)}

(
h − 1
k − 1

)(
H − h
K − k

)

(
H − 1
K − 1

)

=
H∑

h=1

(
h − 1
k − 1

)(
H − h
K − k

)

H

(
H − 1
K − 1

) = 1/K . (3)

We now propose a new estimator for the parameter θg(b) = Eg(X − b) for a wide
range of choices of the real-valued function g. A natural estimator for θg(b) is given
by

θ̂g,K (b) = 1

dn

K∑

k=1

Ik

∑n
i=1 ak:K |Ri g(Xi − b)∑n

i=1 ak:K |Ri
, (4)

where Ik = 1 if Dk =∑n
i=1 ak:K |Ri > 0, and zero otherwise, and dn =∑K

k=1 Ik .

Theorem 1 Let g(X − b) be a bounded real-valued function on the real line and let
b be a real number.

1. The estimator θ̂g,K (b) in Eq. (4) is a consistent estimator for θg(b) = Eg(X − b)
under any consistent ranking scheme.

2. If
{
E[g(X[h:H ] − b)] + E[g(X[H+1−h:H ] − b)]} /2 = E[g(X − b)] for all h ≤

H, then θ̂g,K (b) is an unbiased estimator for θg(b) = E[g(X − b)].
Even though the estimator is not unbiased for asymmetric distributions, the simula-

tion study (not reported in the paper) under awide range of simulation settings suggests
that the estimator θ̂g,K (b) has a very small bias for moderately skewed distributions.

We now consider the limiting distribution of θ̂g,K (b). It is clear that this esti-
mator is not a sum of independent observations since Xi is prorated to K different
classes. For the asymptotic distribution, we first construct a 2K − 1 dimensional
mean vector of independent random variables and show that it converges to a
multivariate normal distribution with certain covariance structure. We then use a
continuous function to map this vector to our estimator θ̂g,K (b). Let T̄

�
g (b) =

(T̄g,1(b), . . . , T̄g,K (b), T̄g,K+1(b), . . . , T̄g,2K−1(b)), where

T̄g,k(b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

n

n∑

i=1

ak:K |Ri g(Xi − b) 1 ≤ k ≤ K

1

n

n∑

i=1

ak−K :K |Ri K < k ≤ 2K − 1.

(5)

It is clear that T̄ g(b) is the sum (mean) of n independent random vectors, each of
which is 2K − 1 dimensional.
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Statistical inference with empty strata in JPS sample 1035

Lemma 1 Let (Xi , Ri ), i = 1, . . . , n, be a JPS sample constructed under a consistent
ranking scheme from a distribution F having mean μ and variance σ 2. For any
bounded real-valued function g defined on the real line and T̄ g in Eq. (5), as n
increases,

√
n
{
T̄ g(b) − E(T̄ g(b))

}
converges to a 2K − 1 dimensional multivariate

normal distribution with a mean vector of zero and covariance matrix of �,

� =
[

�1,1 �1,2
�2,1 �2,2

]
,

where �1,1 = (σr,s
)
K×K ,�1,2 = (τr,s

)
K×(K−1) ,�2,2 = (γr,s

)
(K−1)×(K−1) ,

σr,s = 1

H

H∑

h=1

ar :K |has:K |h E(g2(X[h:H ] − b))

− 1

K 2 E(g(X[r :K ] − b))E(g(X[s:K ] − b)),

τr,s = 1

H

H∑

h=1

ar :K |has:K |h E(g(X[h:H ] − b)) − 1

K 2 E(g(X[r :K ] − b)),

γr,s = 1

H

H∑

h=1

ar :K |has:K |h − 1

K 2 ,

and E(T̄
�
g (b)) = 1

K

(
Eg(X[1:K ] − b), . . . , Eg(X[K :K ] − b), 1, . . . , 1

)
.

Theorem 2 Let (Xi , Ri ), i = 1, . . . , n, be a JPS sample constructed under a con-
sistent ranking scheme from a distribution F having mean μ and variance σ 2. For
any bounded real-valued function g defined on the real line and θ̂g,K (b) in Eq. (4),
as n goes to infinity, the distribution of

√
n{θ̂g,K (b) − θg(b)} converges to a normal

distribution with mean zero and variance σ 2
θ̂g,K

,

σ 2
θ̂g,K

= σ 2
g − 2

K∑

r=1

(Eg(X[r :K ] − b) − Eg(X − b))2/K

+
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h Eg(X[r :K ] − b)Eg(X[s:K ] − b)

−{E(g(X − b))}2 ,

where σ 2
g = var(g(X − b)) and θg(b) = E(g(X − b)).

If H = K , σ 2
θ̂g,K

reduces to the asymptotic variance of the ranked set sample

estimator of θg

σ 2
θ̂g,H

= σ 2
θ̂g,RSS(H)

= σ 2
g −

H∑

r=1

(Eg(X[r :H ] − b) − Eg(X − b))2/H,
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1036 O. Ozturk

where σ 2
θ̂g,RSS(H)

is the asymptotic variance of θ̂g based on a ranked set sample of set

size H .

Corollary 1 For 1 ≤ K ≤ H, σ 2
θ̂g,K

≤ σ 2
θ̂g,RSS(K )

.

TheCorollary 1 indicates that the asymptotic variance of θ̂g,K based on a JPS sample
estimator of set size K is always smaller than the asymptotic variance of θ̂g,RSS(K )

based on a ranked set sample of set size K .

Corollary 2 If g(x − b) = x, then θg(b) = μ, θ̂g:K (b) = μ̂K and σ 2
μ̂K

reduces to

σ 2
μ̂K

= σ 2 − 2
K∑

r=1

(μ[r :K ] − μ)2/K +
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |hμ[r :K ]μ[s:K ] − μ2

= σ 2
RSS(K ) −

{
K∑

r=1

μ2[r :K ]/K −
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |hμ[r :K ]μ[s:K ]

}
,

where σ 2
RSS(K ) is the variance of the sample mean based on a ranked set sample of set

size K .

The asymptotic variance of the proposed estimator of a population mean is decom-
posed into two pieces. The first piece, σ 2

RSS(K ), is the variance of the sample mean of a
ranked set sample of set size K . The Corollary 1 indicates that the proposed estimator
is asymptotically more efficient than an RSS sample mean estimator of set size K .
Similar result also holds for the point estimator of a population distribution function,
F(t).

Corollary 3 If g(x − b) = I (x ≤ t), then θg,K (b) = F(t), θ̂g,K (b) = F̂K (t) and
σ 2
F̂K

reduces to

σ 2
F̂K

= F(t) {1 − F(t)} − 2
K∑

r=1

(F[r :K ] − F(t))2/K

+
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h F[r :K ](t)F[s:K ](t) − F2(t)

= var(F̂RSS(K )(t)) −
{
1

K

K∑

r=1

F2[r :K ](t)

−
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h F[r :K ](t)F[s:K ](t)
}

≤ var(F̂RSS(K )(t)),

where var(F̂RSS(K )(t)) is the variance of the CDF estimator of a ranked set sample of
set size K .
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3 Quantile inference

In this section, we consider developing inference for the p-th order quantile (ηp) of
distribution F , ηp = inf{x : F(x) ≥ p}. We first consider testing H0 : ηp = η0
against HA : ηp �= η0. It is also possible to construct a test for appropriate one-sided
alternatives. Let g(x − b) = I (X > b) and

Sn(ηp) =
n∑

i=1

1

dn

K∑

k=1

Ikak:K |Ri∑n
j=1 ak:K |R j

{
I (Xi > ηp) − p

}

=
n∑

i=1

wRi (R)
{
I (Xi ≥ ηp) − p

}
, (6)

where

wRi (R) = 1

dn

K∑

k=1

Ikak:K |Ri∑n
j=1 ak:K |R j

.

It is clear that Sn(ηp) is a non-increasing function of ηp; we then reject the null
hypothesis H0 in favor of the alternative hypothesis for the extreme values of Sn(ηp).
The exact null distribution of Sn(η0) is a linear combination of weighted binomial
random variables given the rank vector R = r ,

Sn(η0)|R = r
D=
∑

h=1

w[h](r)Y[h],

where Y[h] =∑n
i=1 I (Ri = h) {I (Xi > η0) − p} and Y[h] has a binomial distribution,

conditionally on the given ranks Ri = h, i = 1, . . . , n, with parameters nh = Nh

and 1 − F[h:H ](η0). Under perfect and random ranking procedures, the exact null
distribution of Sn(η0) is distribution free, but the construction of its probability mass
function is computationally intensive for large sample size n. Under any other ranking
procedure, the exact null distribution of Sn(η0) may depend on the ranking methods
and the underlying distribution.

For large sample sizes, the asymptotic null distribution of Sn(ηp) has a normal
distribution with mean 0 and variance σ 2

Sn
= var(

√
nSn(ηp)). This can be observed

easily from Theorem 2 and Corollary 3 with g(x − p) = I (x > ηp)− p, θ̂g,K (ηp) =
Sn(ηp),

σ 2
Sn = var

{√
nSn(ηp)

} = var
{
F̂RSS(K )(ηp)

}
− 1

K

K∑

r=1

F2[r :K ](ηp)

+
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h{1 − F[r :K ](ηp)}{1 − F[s:K ](ηp)}. (7)

The point estimate of ηp can be obtained from the solution of Sn(η̂p) = 0. Since
Sn(b) = 0 is a non-increasing function of b, the solution always exists, but may not
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1038 O. Ozturk

be unique for small sample sizes. If η̂p is not unique, one may modify the definition
of the estimator to force it to be unique, such as η̂p = inf{ηp : Sn(ηp)) > 0}. The
asymptotic distribution of the estimator based on these two definitions are the same.
To investigate asymptotic behavior of η̂p, we first provide a linear approximation for
Sn(b) in a compact set.

Theorem 3 Let (Xi , Ri ), i = 1, . . . , n, be a JPS sample from a continuous distribu-
tion F having a density function f (y) = d

dy F(y). Assume that f (ηp) > 0. For any
B > 0,

sup
|b|≤B

|√nSn(ηp + b/
√
n) − √

nSn(ηp) − f (ηp)b| = op(1), (8)

where Sn(.) is defined in Eq. (6).

Using Lemma 3 in Ozturk (2012) with appropriate notation, one can show that η̂p

is bounded in probability. Hence, in Eq. (8), we insert η̂p = ηp + b/
√
n and write

√
n(η̂p − ηp) = √

n
Sn(ηp)

f (ηp)
+ op(1).

It is now easy to observe that
√
n(η̂p − ηp) has a limiting normal distribution with

mean zero and variance σ 2
η̂p

= σ 2
Sn

/ f 2(ηp), where σ 2
Sn

is given in Eq. (7).

4 Selection of subset size K

The construction of the reduced sets needs an integer K , K ≤ H . The selection of K
depends on the sample size n. If the sample size n is large, the probability of having
empty strata would be small. In this case, we select K to be large provided that K ≤ H .
Since the probability of having empty strata is a function of sample size n, we provide
a guidance to determine the selection of K . Let Wn(q) be the number of judgment
classes having more than q observations in each class, q = 0, 1. In other words,
Wn(q) = ∑H

h=1 I (Nh > q). In this notation, Wn(0) gives the number of non-empty
judgment classes andWn(1) gives the number of judgment classes having at least two
observations in each class. Since the judgment class sample sizes Nh , h = 1, . . . , H ,
are random variables, Wn(q) has a discrete probability mass function.

Theorem 4 Let (Xi , Ri ), i = 1, . . . , n, be a judgment post stratified sample. The
probability mass function of Wn(q) for q = 0, 1 is given by

P(Wn(q) = K ) = n!
Hn

(
H
K

) q(H−K )∑

j=0

Kn−q j
(
q(H − K )

j

)

(n − q j)!

×

⎡

⎢⎢⎣1 −
K∑

i=1

(
K
i

)
(−1)i−1

iq∑

s=0

(
iq
s

)(
n − q j

s

)
s!(k − i)n−q j−s

kn−q j

⎤

⎥⎥⎦

for q = 0, 1 and K = 1, . . . , H.
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We use Theorem 4 to determine K . For small sample size n, selecting large K
leads to empty judgment classes. Hence, it may inflate the variance and introduce
bias. Selecting a small K is also not desirable, since it reduces the data structure
from a set size H to a set size K and increases the variance of the estimator. To find
a reasonable K , we maximize P(Wn(q) = K ) with respect to K . Let K ∗

q be the
maximizer of P(Wn(q) = K ),

K ∗
q = max

1≤K≤H
P(Wn(q) = K ). (9)

The integer K ∗
0 gives a reduced set size yielding non-empty judgment classes with the

highest probability, but it may still create highly unbalanced JPS sample. For example,
some classes may have just one observation, and the other classes may have a large
number of observations. The integer K ∗

1 gives a reduced set size yielding judgment
classes having at least two observations with highest probability. Hence, it creates a
more balanced sample.

5 Bootstrap inference

We established that the estimators have a normal distribution for large sample sizes.
The rate of convergence is usually very slow due to highly unbalanced nature of the
sample size vector. To draw inference for small sample sizes, the results of Sect. 3
may not be very useful. For finite samples, we construct bootstrap distributions of
the proposed estimators to draw statistical inference. The bootstrap estimators can be
obtained from a plug-in method. Let θ be a statistical functional, θ = T (F). The
bootstrap estimate of θ can be obtained from θ̂ = T (F̂), where F̂ is the empirical
CDF. Let

Y�
i = (Xi , a1:K |Ri , . . . , aK :K |Ri ), i = 1, . . . , n,

be the data set that contains the reduced set structure in a JPS sample. Let F be
the empirical CDF of Y i , i = 1, . . . , n. We generate a bootstrap re-sample, Y∗

i ,
i = 1, . . . , n, from F with replacement. To construct the bootstrap distribution of the
estimator θ̂g:K (b), we generate re-samples Y∗c

i , i = 1, . . . , n, and compute

θ̂∗c
g:K (b) =

K∑

k=1

I ∗c
k

d∗
n

∑n
i=1 a

∗c
k:K |R∗c

i
g(X∗c

i − b)
∑n

j=1 a
∗c
k:K |R∗c

j

, c = 1, . . . ,C.

The bootstrap variance estimate of θ̂g:K (b) is then obtained from

B(θ̂g:K (b)) = 1

C − 1

C∑

c=1

(
θ̂∗c
g:K (b) − θ̄∗

g:K (b)
)2

,

where θ̄∗
g:K (b) is the mean of θ̂∗c

g:K (b), c = 1, . . . ,C .
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1040 O. Ozturk

A (1 − α)100% bootstrap percentile confidence interval is constructed by
(Lα/2, L1−α/2), where La is the ath quantile of θ̂∗

g:K (b) satisfying a = P(θ̂∗
g:K (b) ≤

La |F) for 0 < a < 1. The bootstrap variance estimate of η̂p and confidence interval
of ηp is constructed in a similar fashion.

6 Finite sample properties of the estimators

In this section, we perform a simulation study to investigate the finite sample prop-
erties of the estimator. The simulation study investigates the convergence rate and
efficiency of the estimators. JPS samples are generated from standard normal and log-
normal distributions with set size H = 5, and sample sizes n = 15, 30 and 100. The
quality of ranking information is controlled by the additive perceptual error model
in Dell and Clutter (1972). To determine the judgment rank of an observation Xi in
set Si,H = {Xi ,Y1, . . . ,YH−1}, we generate H independent normal random variable,
ε = (ε1, . . . , εH ), with mean zero and variance τε . Let Zi = (Xi ,Y1, . . . , YH−1) be
an H dimensional independent random vector from distribution F with mean μ and
variance σ 2. We add the vectors Zi and ε to construct the additive model

V i = (V1, V2, . . . , VH ) = (Xi ,Y1, . . . ,YH−1) + (ε1, . . . , εH ).

In this model, the rank of V1 is taken as the judgment rank of Xi in set Si,H . The
quality of ranking information is controlled by the correlation coefficient between X
and ε, ρ = corr(X,Y ) = 1√

1+τ 2ε /σ 2
. In the simulation study, we used ρ = 1 for

perfect ranking and ρ = 0.75 for imperfect ranking.
The simulation study considered the estimation of two parameters, mean μ and

median η0.5 of standard normal and log-normal distributions. Tables 1 and 2 present the
simulation results for estimator μ̂K for normal and log-normal distributions, respec-
tively. The probability distribution of Wn(q) in Theorem 4 is given by P0(K ) =
P(Wn(0) = K ) for q = 0 and P1(K ) = P(Wn(1) = K ) for q = 1. The simulation
size is taken to be 5000. The heading Cμ̂(K ) gives the coverage probability of the
bootstrap percentile interval of μ. The simulated and bootstrap variance estimates of
the estimators are given by V (μ̂K ) and B(μ̂K ), respectively. In these simulations, the
bootstrap simulation size is taken to be 500. The relative efficiency of μ̂K with respect
to μ̂K ∗

O
is given by the ratio of mean square errors (MSE)

REK (μ̂) = MSE(μ̂K )

MSE(μ̂K ∗
O
)
, K = 1, . . . , H, K ∗

O =
{
K ∗
1 if n > 30

K ∗
1 − 1 if n ≤ 30,

(10)

where K ∗
1 is given in Eq. (9). The asymptotic variance of the estimator μ̂K for perfect

ranking is given in the last column under the heading A(μ̂K ).
Tables 1 and 2 reveal that the estimators μ̂K are essentially unbiased for the popu-

lation means (μ = 0 for the standard normal distribution and μ = exp(1/2) = 1.649
for the standard log-normal distribution) for all K and sample sizes n = 15, 30, and
100. The efficiency of the estimator μ̂K with respect to μ̂K ∗

1
depends on the sample

size n and the quality of ranking information. Even though the estimator μ̂K ∗
1
always
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Table 1 Mean, variance and efficiency of the mean estimator μ̂K from a standard normal distribution,
H = 5, simulation and bootstrap simulation sizes are 5000 and 500, respectively

n ρ K P0(K ) P1(K ) μ̂K Cμ̂(K ) V (μ̂K ) REK (μ̂) B(μ̂K ) A(μ̂K )

15 1.00 1 0.000 0.000 −0.002 0.916 1.010 2.332 0.933 1.000

15 1.00 2 0.000 0.006 −0.001 0.917 0.525 1.212 0.508 0.522

15 1.00 3 0.005 0.145 −0.004 0.899 0.455 1.051 0.399 0.403

15 1.00 4 0.167 0.530 −0.002 0.896 0.433 1.000 0.399 0.368

15 1.00 5 0.829 0.320 −0.003 0.901 0.589 1.360 0.580 0.361

15 0.75 1 0.000 0.000 −0.001 0.919 1.004 1.375 0.934

15 0.75 2 0.000 0.006 −0.002 0.919 0.720 0.986 0.691

15 0.75 3 0.005 0.145 0.004 0.910 0.691 0.947 0.631

15 0.75 4 0.167 0.530 −0.001 0.900 0.730 1.000 0.644

15 0.75 5 0.829 0.320 −0.003 0.898 0.884 1.211 0.748

30 1.00 1 0.000 0.000 0.001 0.931 0.985 2.234 0.963 1.000

30 1.00 2 0.000 0.000 −0.000 0.929 0.534 1.211 0.515 0.522

30 1.00 3 0.000 0.000 −0.003 0.927 0.426 0.966 0.399 0.403

30 1.00 4 0.006 0.052 0.002 0.924 0.396 0.898 0.370 0.368

30 1.00 5 0.994 0.948 0.001 0.933 0.441 1.000 0.471 0.361

30 0.75 1 0.000 0.000 −0.002 0.938 0.999 1.282 0.964

30 0.75 2 0.000 0.000 0.002 0.930 0.742 0.952 0.713

30 0.75 3 0.000 0.000 0.002 0.933 0.654 0.840 0.646

30 0.75 4 0.006 0.052 0.001 0.926 0.697 0.895 0.638

30 0.75 5 0.994 0.948 −0.002 0.931 0.779 1.000 0.761

100 1.00 1 0.000 0.000 0.001 0.945 1.000 2.663 0.991 1.000

100 1.00 2 0.000 0.000 −0.000 0.941 0.531 1.414 0.521 0.522

100 1.00 3 0.000 0.000 −0.001 0.943 0.407 1.083 0.402 0.403

100 1.00 4 0.000 0.000 −0.001 0.941 0.384 1.023 0.367 0.368

100 1.00 5 1.000 1.000 −0.000 0.943 0.376 1.000 0.374 0.361

100 0.75 1 0.000 0.000 −0.001 0.943 1.027 1.501 0.994

100 0.75 2 0.000 0.000 0.001 0.944 0.720 1.053 0.723

100 0.75 3 0.000 0.000 −0.001 0.938 0.673 0.984 0.659

100 0.75 4 0.000 0.000 −0.001 0.944 0.646 0.944 0.646

100 0.75 5 1.000 1.000 −0.003 0.938 0.684 1.000 0.663

improves μ̂H and μ̂1, it is not uniformly better than μ̂K for all K . For example, for
normal distribution when n = 15, ρ = 0.75, the reduced set size K ∗

1 = 4 maximizes
P(Wn(1) = K ), but μ̂K ∗

1
= 0.730 and μ̂K ∗

1−1 = 0.691. In this case, μ̂K ∗
1−1 has the

smallest variance. Over all, the reduced set size K ∗
O = K ∗

1 appears to be working
reasonably well for moderately large sample sizes( n ≥ 30). For small sample sizes
(n ≤ 30) we suggest using K ∗

O = K ∗
1 − 1 for the reduced set sizes.

Tables 1 and 2 also reveal that the rate of convergence of the estimator is slow for
large values of K . For example, for standard log normal distribution, when n = 15
and K = 1 the simulated variance estimate V (μ̂1) = 4.774 is very close to the
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1042 O. Ozturk

Table 2 Mean, variance and efficiency of themedian estimator μ̂K from a standard log normal distribution,
H = 5, simulation and bootstrap simulation sizes are 5000 and 500, respectively

n ρ K P0(K ) P1(K ) μ̂K Cμ̂(K ) V (μ̂K ) REK (μ̂) B(μ̂K ) A(μ̂K )

15 1.00 1 0.000 0.000 1.650 0.830 4.774 1.518 4.436 4.671

15 1.00 2 0.000 0.006 1.625 0.800 3.429 1.097 2.854 3.566

15 1.00 3 0.005 0.145 1.642 0.792 3.416 1.093 2.723 3.160

15 1.00 4 0.167 0.530 1.623 0.776 3.135 1.000 2.475 2.988

15 1.00 5 0.829 0.320 1.651 0.804 3.832 1.225 3.304 2.939

15 0.75 1 0.000 0.000 1.650 0.838 4.600 1.123 4.312

15 0.75 2 0.000 0.006 1.632 0.833 3.943 0.963 3.343

15 0.75 3 0.005 0.145 1.627 0.824 3.827 0.935 3.121

15 0.75 4 0.167 0.530 1.633 0.818 4.095 1.000 3.122

15 0.75 5 0.829 0.320 1.647 0.809 4.793 1.170 3.775

30 1.00 1 0.000 0.000 1.649 0.876 4.602 1.111 4.425 4.671

30 1.00 2 0.000 0.000 1.641 0.849 3.635 0.878 3.342 3.566

30 1.00 3 0.000 0.000 1.639 0.836 3.184 0.769 2.865 3.160

30 1.00 4 0.006 0.052 1.638 0.833 3.273 0.790 2.801 2.988

30 1.00 5 0.994 0.948 1.651 0.853 4.141 1.000 3.531 2.939

30 0.75 1 0.000 0.000 1.647 0.886 4.446 0.935 4.319

30 0.75 2 0.000 0.000 1.642 0.870 3.974 0.836 3.707

30 0.75 3 0.000 0.000 1.632 0.873 3.574 0.752 3.316

30 0.75 4 0.006 0.052 1.653 0.868 4.250 0.894 3.767

30 0.75 5 0.994 0.948 1.654 0.882 4.753 1.000 4.547

100 1.00 1 0.000 0.000 1.649 0.914 4.720 1.506 4.684 4.671

100 1.00 2 0.000 0.000 1.648 0.902 3.514 1.121 3.455 3.566

100 1.00 3 0.000 0.000 1.646 0.901 3.191 1.018 3.066 3.160

100 1.00 4 0.000 0.000 1.641 0.899 2.936 0.937 2.869 2.988

100 1.00 5 1.000 1.000 1.653 0.908 3.135 1.000 3.127 2.939

100 0.75 1 0.000 0.000 1.649 0.917 4.451 1.155 4.486

100 0.75 2 0.000 0.000 1.647 0.907 4.167 1.081 4.037

100 0.75 3 0.000 0.000 1.645 0.908 3.961 1.028 3.826

100 0.75 4 0.000 0.000 1.645 0.909 3.936 1.021 3.782

100 0.75 5 1.000 1.000 1.647 0.923 3.854 1.000 3.926

asymptotic variance A(μ̂1) = 4.671. On the other hand, when n = 15 and K = 5
there is a big difference between the simulated variance estimate and the asymptotic
variance, V (μ̂5) = 3.832 and A(μ̂1) = 2.939. For large sample size n, n = 100, the
simulated variance estimates and the asymptotic variances are practically equal for all
K = 1, . . . , H . Similar results also hold for standard normal distribution.

The simulation study also investigated the properties of the bootstrap variance esti-
mates and coverage probabilities (Cμ̂(K ∗

O) of the percentile confidence interval of
population mean. For small sample sizes n, n = 15, the bootstrap variance estimate,
B(μ̂K ), slightly under estimates the simulated variance estimates V (μ̂K ). For mod-
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Table 3 Mean, variance and efficiency of the mean estimator μ̃K from a standard normal distribution,
H = 5, simulation and bootstrap simulation sizes are 5000 and 500, respectively

n ρ K P0(K ) P1(K ) μ̃K Cμ̃(K ) V (μ̃K ) REK (μ̃) B(μ̃K ) A(μ̃K )

15 1.00 1 0.000 0.000 −0.004 0.920 1.520 1.761 1.873 1.571

15 1.00 2 0.000 0.006 0.005 0.923 0.985 1.141 1.196 0.982

15 1.00 3 0.005 0.145 0.000 0.910 0.894 1.036 1.086 0.835

15 1.00 4 0.167 0.530 −0.005 0.919 0.863 1.000 0.983 0.785

15 1.00 5 0.829 0.320 −0.003 0.947 1.041 1.206 1.124 0.773

15 0.75 1 0.000 0.000 0.002 0.926 1.527 1.141 1.894

15 0.75 2 0.000 0.006 −0.004 0.922 1.306 0.976 1.548

15 0.75 3 0.005 0.145 0.005 0.920 1.238 0.925 1.488

15 0.75 4 0.167 0.530 0.004 0.913 1.338 1.000 1.538

15 0.75 5 0.829 0.320 −0.006 0.926 1.578 1.179 1.532

30 1.00 1 0.000 0.000 0.000 0.956 1.494 1.591 1.715 1.571

30 1.00 2 0.000 0.000 −0.003 0.928 0.999 1.064 1.151 0.982

30 1.00 3 0.000 0.000 −0.004 0.937 0.845 0.900 1.030 0.835

30 1.00 4 0.006 0.052 0.004 0.936 0.803 0.855 0.974 0.785

30 1.00 5 0.994 0.948 0.001 0.937 0.939 1.000 1.142 0.773

30 0.75 1 0.000 0.000 −0.001 0.963 1.460 1.021 1.706

30 0.75 2 0.000 0.000 0.001 0.937 1.265 0.885 1.485

30 0.75 3 0.000 0.000 0.004 0.939 1.190 0.832 1.417

30 0.75 4 0.006 0.052 0.001 0.933 1.259 0.878 1.436

30 0.75 5 0.994 0.948 −0.003 0.936 1.430 1.000 1.674

100 1.00 1 0.000 0.000 0.001 0.953 1.558 1.907 1.687 1.571

100 1.00 2 0.000 0.000 −0.002 0.941 0.972 1.190 1.098 0.982

100 1.00 3 0.000 0.000 −0.004 0.945 0.841 1.029 0.950 0.835

100 1.00 4 0.000 0.000 −0.000 0.940 0.785 0.961 0.905 0.785

100 1.00 5 1.000 1.000 −0.001 0.941 0.817 1.000 0.936 0.773

100 0.75 1 0.000 0.000 −0.003 0.951 1.587 1.303 1.693

100 0.75 2 0.000 0.000 0.002 0.947 1.247 1.024 1.409

100 0.75 3 0.000 0.000 −0.002 0.938 1.224 1.005 1.340

100 0.75 4 0.000 0.000 0.001 0.946 1.182 0.970 1.330

100 0.75 5 1.000 1.000 −0.003 0.941 1.218 1.000 1.370

erate (n = 30) and large sample sizes (n = 100), both the simulated and bootstrap
variance estimates are close to each other. Similar pattern also appears in the cover-
age probabilities. For smaller sample sizes (n = 15), the coverage probabilities are
smaller than the nominal coverage probability 0.95. The bootstrap confidence intervals
provide reasonable coverage probabilities for the moderate and large sample sizes.

Tables 3 and 4 present the simulation results for the median estimator, μ̃K = η̂0.5,
from standard normal and log normal distributions. Results similar to the ones we
observed in Tables 1 and 2 hold for the median estimators as well. We note that the
median estimators μ̃K appear to have a negligible amount of bias for the population
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Table 4 Mean, variance and efficiency of themedian estimator μ̂K from a standard log normal distribution,
H = 5, simulation and bootstrap simulation sizes are 5000 and 500, respectively

n ρ K P0(K ) P1(K ) μ̂K Cμ̂(K ) V (μ̂K ) REK (μ̂) B(μ̂K ) A(μ̂K )

15 1.00 1 0.000 0.000 1.052 0.918 1.811 1.882 2.818 1.571

15 1.00 2 0.000 0.006 1.030 0.923 1.084 1.126 1.509 0.982

15 1.00 3 0.005 0.145 1.033 0.914 0.973 1.011 1.419 0.835

15 1.00 4 0.167 0.530 1.026 0.891 0.963 1.000 1.321 0.785

15 1.00 5 0.829 0.320 1.044 0.921 1.223 1.271 1.553 0.773

15 0.75 1 0.000 0.000 1.050 0.920 1.732 1.009 2.777

15 0.75 2 0.000 0.006 1.049 0.918 1.620 0.943 2.173

15 0.75 3 0.005 0.145 1.046 0.921 1.645 0.958 2.190

15 0.75 4 0.167 0.530 1.041 0.907 1.718 1.000 2.279

15 0.75 5 0.829 0.320 1.054 0.901 2.119 1.234 2.336

30 1.00 1 0.000 0.000 1.037 0.940 1.685 1.722 2.095 1.571

30 1.00 2 0.000 0.000 1.019 0.933 1.097 1.120 1.306 0.982

30 1.00 3 0.000 0.000 1.018 0.938 0.908 0.927 1.164 0.835

30 1.00 4 0.006 0.052 1.016 0.921 0.893 0.912 1.097 0.785

30 1.00 5 0.994 0.948 1.021 0.938 0.979 1.000 1.310 0.773

30 0.75 1 0.000 0.000 1.031 0.940 1.702 0.968 2.090

30 0.75 2 0.000 0.000 1.021 0.940 1.481 0.842 1.879

30 0.75 3 0.000 0.000 1.020 0.937 1.515 0.862 1.870

30 0.75 4 0.006 0.052 1.015 0.931 1.506 0.856 1.897

30 0.75 5 0.994 0.948 1.028 0.931 1.758 1.000 2.183

100 1.00 1 0.000 0.000 1.008 0.947 1.570 1.960 1.778 1.571

100 1.00 2 0.000 0.000 1.007 0.946 1.022 1.276 1.140 0.982

100 1.00 3 0.000 0.000 1.004 0.938 0.885 1.105 0.981 0.835

100 1.00 4 0.000 0.000 1.004 0.942 0.789 0.985 0.921 0.785

100 1.00 5 1.000 1.000 1.004 0.946 0.801 1.000 0.945 0.773

100 0.75 1 0.000 0.000 1.011 0.945 1.607 1.101 1.816

100 0.75 2 0.000 0.000 1.009 0.945 1.437 0.984 1.667

100 0.75 3 0.000 0.000 1.004 0.939 1.431 0.980 1.597

100 0.75 4 0.000 0.000 1.004 0.943 1.409 0.965 1.586

100 0.75 5 1.000 1.000 1.006 0.943 1.460 1.000 1.681

medians of normal (η0.5 = 0) and log-normal (η0.5 = 1) distributions for all K , n
and ρ. Again inspection of the efficiency values reveals that the selection of K ∗

1 and
K ∗
1 − 1 for μ̃K yields a reasonable estimator for moderately large (n ≥ 30) and small

(n < 30) sample sizes, respectively. The rate of convergence, the bootstrap variance
estimates and the bootstrap coverage probabilities of the median confidence intervals
follow patterns similar to the ones we observed in Tables 1 and 2.

We conduct another simulation study to compare our estimator with its competing
isotonized JPS estimator in Wang et al. (2008) and JPS estimator in MacEachern et al.
(2004). The isotonized (μ̂I ) and JPS (μ̂J ) estimators of population mean are given by
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μ̂I = 1

H

H∑

h=1

X̄∗[h], X̄∗[h] = max
r≤h

min
s≥h

s∑

g=r

ng X̄[g]
nrs

,

nrs =
s∑

g=r

ng and μ̂J = 1

H

H∑

h=1

X̄[h],

where X̄[g] and ng are the sample mean and size for the observations falling in the
judgment class g, g = 1, . . . , H . The simulation study is conducted with set sizes;
H = 2, 3, 4, 5, 10, average judgment class sizes; n̄ = 1, 2, 3, 4, 5, so that the actual
sample sizes are n = Hn̄, and perfect (ρ = 1) and random (ρ = 0) ranking. The JPS
samples are generated fromstandard normal (N (0, 1)), uniform (U (0, 1)) and standard
lognormal (LN (0, 1)) distributions. The number of replications in the simulation is
taken to be 20,000.

Table 5 provides relative efficiencies of the isotonized and JPS mean estimators
with respect to μ̂K ∗

O
,

RE1 = MSE(μ̂I )/MSE(μ̂K ∗
O
), RE2 = MSE(μ̂J )/MSE(μ̂K ∗

O
),

where K ∗
O is defined in Eq. (10). It is clear from Table 5 that the proposed estimator

(μ̂K ∗
O
) is as good as or better than both μ̂I and μ̂J for most n̄ (n̄ > 2) and H (H > 2)

with the exception that μ̂I and μJ are slightly better than μ̂K ∗
O
when H = 2, n̄ ≤ 2

and ρ = 1 for normal and uniform distributions. Another important observation in
Table 5 is that the proposed estimator μ̂K ∗

O
outperforms both μ̂I and μ̂J even if there

is no viable ranking information (ρ = 0).

7 Example

We apply the proposed estimator to 2012 United States Department of Agriculture
(USDA) census data to estimate the mean corn production in bushels at county lev-
els. We downloaded the USDA census data from http://quickstats.nass.usda.gov for
the variable corn production and the number of agricultural land operations in each
county in seven states. These states include California, Arizona, Iowa, Ohio, Florida,
Kansas, Oklahoma and Pennsylvania. We removed the counties where either the corn
production or the number of operations was not reported due to the identifiability
concern of certain operations. We considered 467 counties in these states as our pop-
ulation. Our interest in this population is to estimate the mean corn production (X , in
100,000 bushels) by using the number of agricultural land operations (Y ) as an auxil-
iary variable. The corn production in each county is divided by 100,000 to simplify the
computation. The scatter plot of X and Y variables indicate that the corn production
(X) is highly nonlinear and exponentially decaying with Y . Since regression and ratio
estimators require that X must be linear in Y , we used Y ∗ = 1/

√
Y transformation.

After the transformation, relationship between X and Y ∗ was approximately linear.
The population means of Y ∗ and X are 0.217 and 58.98, respectively. Pearson corre-
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Table 5 Relative efficiency of μ̂K∗
O
with respect to isotonized (μ̂I ) and JPS (μ̂J ) mean estimator, REI =

MSE(μ̂I )/MSE(μ̂K∗
O

), REJ = MSE(μ̂J )/MSE(μ̂K∗
O

)

D H ρ n̄ = 1 n̄ = 2 n̄ = 3 n̄ = 4 n̄ = 5

REI REJ REI REJ REI REJ REI REJ REI REJ

N (0, 1) 2 1.00 1.000 1.000 0.935 0.955 0.866 0.883 0.819 0.833 0.782 0.788

3 1.00 0.890 0.964 0.758 0.836 1.093 1.179 1.061 1.108 1.015 1.041

4 1.00 0.771 0.908 1.067 1.243 0.998 1.112 1.112 1.189 1.075 1.120

5 1.00 0.698 0.865 0.963 1.213 1.105 1.301 1.114 1.230 1.088 1.158

10 1.00 0.878 1.402 1.197 1.976 1.166 1.669 1.088 1.349 0.869 1.000

2 0.00 1.000 1.000 1.085 1.170 1.109 1.207 1.091 1.184 1.070 1.137

3 0.00 1.087 1.084 1.119 1.226 1.043 1.187 1.054 1.199 1.054 1.166

4 0.00 1.117 1.119 1.072 1.206 1.081 1.256 1.018 1.177 1.021 1.154

5 0.00 1.140 1.135 1.102 1.236 1.049 1.244 1.001 1.162 1.004 1.158

10 0.00 1.144 1.169 1.048 1.240 0.971 1.214 0.942 1.160 0.824 1.000

U (0, 1) 2 1.00 1.000 1.000 0.921 0.947 0.843 0.869 0.800 0.814 0.759 0.767

3 1.00 0.917 0.954 0.745 0.813 1.061 1.149 1.020 1.080 0.999 1.035

4 1.00 0.818 0.903 1.021 1.218 0.959 1.098 1.072 1.173 1.058 1.120

5 1.00 0.717 0.859 0.924 1.177 1.062 1.283 1.080 1.239 1.076 1.174

10 1.00 0.822 1.376 1.148 2.104 1.142 1.758 1.063 1.427 0.829 1.000

2 0.00 1.000 1.000 1.085 1.177 1.104 1.213 1.097 1.190 1.070 1.140

3 0.00 1.088 1.083 1.111 1.219 1.042 1.188 1.053 1.176 1.042 1.159

4 0.00 1.118 1.125 1.075 1.196 1.077 1.246 1.021 1.173 1.024 1.151

5 0.00 1.148 1.145 1.094 1.238 1.048 1.234 0.998 1.175 1.007 1.164

10 0.00 1.133 1.164 1.047 1.234 0.977 1.209 0.947 1.161 0.835 1.000

LN (0, 1) 2 1.00 1.000 1.000 1.071 1.078 1.028 1.035 0.956 0.964 0.942 0.945

3 1.00 1.146 1.035 0.928 0.925 1.193 1.213 1.145 1.163 1.103 1.108

4 1.00 1.134 1.011 1.255 1.171 1.233 1.237 1.154 1.167 1.150 1.164

5 1.00 1.202 1.022 1.232 1.196 1.217 1.225 1.180 1.210 1.194 1.211

10 1.00 1.305 1.187 1.379 1.452 1.297 1.348 1.157 1.210 0.977 1.000

2 0.00 1.000 1.000 1.094 1.182 1.125 1.246 1.053 1.174 1.146 1.267

3 0.00 1.112 1.073 1.141 1.334 1.072 1.212 1.037 1.243 1.038 1.247

4 0.00 1.205 1.156 1.087 1.163 1.108 1.293 1.038 1.211 1.032 1.190

5 0.00 1.300 1.140 1.148 1.221 1.108 1.287 1.015 1.179 0.996 1.127

10 0.00 1.209 1.160 1.067 1.266 1.004 1.194 0.961 1.162 0.814 1.000

lation coefficient between X and Y ∗ is 0.289. The histogram of X is strongly skewed
to right. The population variances of Y ∗ and X are 0.020 and 6817.667, respectively.

We performed another simulation study by constructing JPS samples from this pop-
ulation. Simulation parameters are taken to be n̄ = 2, 3, 4, 5, 6, H = 3, 4, 5, 10. The
sample sizes are constructed from n = n̄H . For each simulation parameter combi-
nation, we generated 20,000 JPS samples and computed proposed (μ̂K ∗

O
), isotonized

(μ̂I ), JPS (μ̂J ), regression (μ̂R) and ratio (μ̂Ra) estimators. The ratio and regression
estimators are given by
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Statistical inference with empty strata in JPS sample 1047

Table 6 Biases and relative efficiencies of the estimators of the mean corn production (in 100,000
bushels) of 467 counties in seven states in the USA, REI = MSE(μ̂I )/MSE(μ̂K∗

O
), REJ =

MSE(μ̂J )/MSE(μ̂K∗
O

), RER = MSE(μ̂R)/MSE(μ̂K∗
O

), RERa = MSE(μ̂Ra)/MSE(μ̂K∗
O

), μ̂R and

μ̂Ra are regression and ratio estimators, respectively

n̄ H K ∗
O Bias Efficiency

μ̂K∗
O

μ̂I μ̂J μ̂R μ̂Ra REI REJ RER RERa

2 3 1 −0.236 0.593 −0.123 1.241 2.135 1.136 1.191 1.003 1.429

3 3 2 −0.232 0.190 −0.209 0.876 2.059 1.082 1.182 0.983 1.226

4 3 2 0.267 0.506 0.323 0.892 1.982 1.069 1.164 0.976 1.139

5 3 2 0.030 0.216 0.105 0.728 1.674 1.060 1.146 0.987 1.117

6 3 2 0.126 0.356 0.296 0.705 1.414 1.062 1.140 0.985 1.091

2 4 2 −0.161 0.991 0.068 1.034 2.284 1.135 1.211 1.001 1.283

3 4 2 0.062 0.651 0.209 0.799 1.958 1.125 1.242 0.996 1.178

4 4 3 0.128 0.368 0.206 0.664 1.684 1.063 1.191 0.969 1.096

5 4 3 0.011 0.209 0.106 0.443 1.172 1.046 1.165 0.972 1.050

6 4 3 0.088 0.166 0.041 0.548 1.108 1.031 1.115 0.972 1.042

2 5 2 −0.099 1.015 −0.093 0.824 1.947 1.156 1.244 1.007 1.217

3 5 3 0.086 0.638 0.181 0.729 1.730 1.098 1.224 0.992 1.123

4 5 4 −0.104 0.194 −0.056 0.451 1.201 1.034 1.184 0.952 1.042

5 5 4 0.011 0.182 0.061 0.360 1.008 1.031 1.154 0.962 1.029

6 5 5 0.032 0.107 0.032 0.286 0.770 0.906 1.000 0.858 0.905

2 10 5 −0.213 0.921 −0.096 0.309 1.007 1.135 1.259 0.992 1.086

3 10 8 0.035 0.496 0.053 0.391 0.925 1.017 1.216 0.950 1.003

4 10 9 0.002 0.225 −0.002 0.283 0.681 0.978 1.169 0.942 0.961

5 10 10 0.045 0.164 0.045 0.168 0.460 0.850 1.000 0.817 0.829

6 10 10 −0.001 0.098 −0.001 0.176 0.419 0.876 1.000 0.856 0.861

The integer K ∗
O is defined in Eq. (10)

μ̂Ra =
∑n

i=1 Xi∑n
i=1 Y

∗
i
ȳ∗, μ̂R = X̄ + β̂(Ȳ ∗ − ȳ∗),

where X̄ , Ȳ ∗ are the sample averages of X - and Y ∗-variables, and ȳ∗ is the population
average of Y ∗-variable. The slope parameter β̂ is obtained from the regression fit of
Y ∗ and X .

Table 6 presents the biases and relative efficiencies of the mean estimators. The
relative efficiencies are given as the ratio of MSEs

REI = MSE(μ̂I )

MSE(μ̂K ∗
O
)
, REJ = MSE(μ̂J )

MSE(μ̂K ∗
O
)
,

RER = MSE(μ̂R)

MSE(μ̂K ∗
O
)
, RERa = MSE(μ̂Ra)

MSE(μ̂K ∗
O
)
,
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1048 O. Ozturk

where K ∗
O is defined in Eq. (10). The value of RER greater than 1 indicates that the

proposed estimator has higher efficiency than the regression estimator. It is clear from
Table 6 that the proposed estimator has substantially lower biases and higher efficien-
cies than the ratio estimator. On the other hand, it has smaller bias but comparable
efficiency with respect to regression estimators. We note that regression and ratio esti-
mators require a transformation for the linearity assumption. The proposed estimator
is not affected by nonlinear relationship between response and auxiliary variables and
it does not require a transformation. As long as there exists monotonicity between X
and Y to rank the within set units, the proposed estimator performs fairly well. The
biases of μ̂K ∗

O
, μ̂I and μ̂J are all comparable, but the proposed estimator μ̂K ∗

O
has

higher relative efficiency than the other two estimators μ̂I and μ̂J .

8 Concluding remark

The judgment class sample sizes in a JPS sample form a multinomial random vector.
Hence, it is highly possible that some of its entries become zero. The zero sample size
does not only produce bias, it may also decrease the efficiency of the estimators. To
reduce the impact of the empty judgment classes, we reconstructed a JPS sample with
a reduced set size K , by conditioning on the ranks of the measured observations in
the original JPS sample of the set size H .

We have used the reduced set JPS sample to construct a set of estimators for popula-
tion characteristics for each reduced set size K = 1, . . . , H . These estimators reduce
to SRS estimator for K = 1 and JPS estimator for K = H . The choice of the reduced
set size K in the construction plays an important role in the efficiency of the estimator.
As a general rule, we suggest selecting a set size K so that the probability of having
at least two observations in each of the K set is maximized.

We developed the asymptotic distribution of the reduced set JPS sample estimators.
A simulation study suggested that the convergence rate is slow for large reduced set size
K . We constructed a bootstrap inference for moderate sample sizes. The simulation
study indicates that the bootstrap inferenceworks reasonablywell formoderate sample
sizes.

Acknowledgements The author thanks Professor Jesse Frey who provided the sketch of the proof of the
unbiasedness of the estimator in Theorem 1, and the Editor, Associate Editor and two anonymous referees
for their helpful comments to improve the presentation of the paper.

Appendix

Proof of Theorem 1 For the proof of (i), from Eqs. (2) and (3) and from the law of
large numbers, we write

lim
n→∞

{
1

n

n∑

i=1

ak:K |Ri g(Xi − b)

}
= 1

K
E{g(X[k:K ] − b)} + op(1)
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Statistical inference with empty strata in JPS sample 1049

and

lim
n→∞

{
1

n

n∑

i=1

ak:K |Ri

}
= 1

K
+ op(1).

It is now easy to observe that

lim
n→∞ θ̂g,K =

K∑

k=1

lim
n→∞

(
Ik
dn

)
E{g(X[k:K ] − b)} + op(1)

=
K∑

k=1

E{g(X[k:K ] − b)}
K

+ op(1) = θg + op(1).

For the proof of (ii), without loss of generality assume that H is an even integer
and b = 0. We consider

E(θ̂g,K ) = E
{
E(θ̂g,K |R)

}
=

H∑

h=1

E

{
K∑

k=1

Ikak:K |h Nh

dn
∑H

h=1 ak:K |h Nh

}
E(g(X[h:H ]))

=
H∑

h=1

E(wh)E(g(X[h:H ])) =
H/2∑

h=1

{E(wh)E(g(X[h:H ]))

+ E(wH+1−h)E(g(X[H+1−h:H ]))}.

In a JPS sample, since E(Nh) = E(NH+1−h), the expected weights also preserve
the equality E(wh) = E(wH+1−h). By using the assumption of the theorem and the
symmetry of the expected weights, we write

E(θ̂g,K ) =
H/2∑

h=1

E(wh)
{
E(g(X[h:H ] − b)) + E(g(X[H+1−h:H ] − b))

}

=
H/2∑

h=1

E(wh)E(g(X − b))/2 = E(g(X − b))
H∑

h=1

E(wh) = E(g(X − b)).

This completes the proof. 
�

Proof of Lemma (1) T̄ g(b) is themean of independent random vectors. Hence, central
limit theorem gives the asymptotic normality. The expression E(T̄ g) follows from
Eqs. (2) and (3).We nowcompute the variance and covariances. Forσr,s , 1 ≤ r, s ≤ K ,
we use the conditional covariance given Ri
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1050 O. Ozturk

σr,s = 1

n

H∑

h=1

E

{
n∑

i=1

I (Ri = h)cov(Wr,Ri ,g(b),Ws,Ri ,g(b))|Ri

}

+1

n
cov

{
n∑

i=1

I (Ri = h)E(Wr,Ri ,g(b)|Ri ),

n∑

i=1

I (Ri = h)E(Ws,Ri ,g(b)|Ri )

}

= A + B.

In the above equation the first term reduces to

A =
H∑

h=1

E

(
Nh

n

)
ar :K |has:K |hvar(g(X[h:H ] − b))

= 1

H

∑

h=1

ar :K |has:K |hvar(g(X[h:H ] − b)).

In a similar approach, we have

B = 1

n
cov

{
H∑

h=1

Nhar :K |h E(g(X[h:H ] − b)),
H∑

h=1

Nhas:K |h E(g(X[h:H ] − b))

}

=
H∑

h=1

H∑

h′=1

cov(Nh, Nh′)

n
ar :K |h E(g(X[h:H ] − b))ar :K |h′E(g(X[h′:H ] − b))

=
H∑

h=1

Var(Nh)

n
ar :K |has:K |h(E(g(X[h:H ] − b)))2

+
H∑

h=1

H∑

h′ �=h

cov(Nh, Nh′)

n
E(g(X[h:H ] − b))ar :K |h′E(g(X[h′:H ] − b))

=
H∑

h=1

H − 1

H2 ar :K |has:K |h(E(g(X[h:H ] − b)))2

+
H∑

h=1

H∑

h′ �=h

−1

H2 E(g(X[h:H ] − b))ar :K |h′E(g(X[h′:H ] − b))

= 1

H

H∑

h=1

ar :K |has:K |h(E(g(X[h:H ] − b)))2 − 1

K 2 E(g(X[r :K ] − b))E(g(X[s:K ] − b)).

The second term in the right side of the above expression follows from Eq. (2). Com-
bining expressions A and B, we obtain

σr,s = 1

H

H∑

h=1

ar :K |has:K |h Eg2(X[h:H ] − b) − 1

K 2 E(g(X[r :K ] − b))E(g(X[s:K ] − b)).
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For τr,s , 1 ≤ r ≤ k and 1 ≤ s ≤ K − 1 we compute

τr,s = 1

n
cov

{
n∑

i=1

Wr,Ri ,g(b),
n∑

i=1

as:K |Ri

}

= 1

n
E

{
cov

(
n∑

i=1

Wr,Ri ,g(b),
n∑

i=1

as:K |Ri

)
|R
}

+1

n
cov

{
E

(
n∑

i=1

Wr,Ri ,g(b)|R
)

, E(

n∑

i=1

as:K |Ri )|R
}

= 0 + 1

n
cov

{
H∑

h=1

NhWr,h,g(b),
H∑

h=1

Nhas:K |h)
}

= 1

n

H∑

h=1

H∑

h′=1

cov(Nh, Nh′)ar :K |has:K |h′Eg(X[h:H ] − b)

= 1

H

H∑

h=1

ar :K |has:K |h Eg(X[h:H ] − b) − 1

K 2 Eg(X[r :K ] − b).

Finally, the γr,s , 1 ≤ r, s ≤ K − 1, follows from

γr,s = 1

n
cov

{
n∑

i=1

ar :K |Ri ,
n∑

i=1

as:K |Ri

}

= 1

n
E

{
cov

(
n∑

i=1

ar :K |Ri ,
n∑

i=1

as:K |Ri

)
|R
}

+1

n
cov

{
E

(
n∑

i=1

ar :K |Ri

)
|R, E

(
n∑

i=1

as:K |Ri

)
|R
}

= 0 + 1

H

H∑

h=1

ar :K |has:K |h − 1

K 2 .

The proof is completed. 
�
Proof of Theorem 2 Let Q be a transformation from T̄ g(b) to θ̂g(b)

θ̂g(b) = 1

dn

K∑

k=1

Ik T̄g,k(b)

T̄g,K+k(b)
D= 1

K

K∑

k=1

T̄g,k(b)

T̄g,K+k(b)
= Q(T̄ g(b)),

where T̄g,k(b) is the k th component of vector T̄ g(b) and T̄g,2K (b) = 1 −∑K−1
k=1 T̄g,K+k(b). The second equality in the above equation follows from the fact

that Ik/dn converges in probability to 1/K for k = 1, . . . , K . It is clear that
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1052 O. Ozturk

Q(E(T̄ g(b))) = E(g(X − b)). For notational convenience, let μT = E(T̄ g(b)).
By using a Taylor expansion of Q(T̄ g(b)) around μT we write

√
n
(
Q(T̄ g(b)) − E(g(X − b))

) = 1

K
L�
T

√
n
(
T̄ g(b) − μT

)+ op(1),

where LT is a 2K − 1 dimensional partial derivative vector of Q(μT ),

Lr = d

dμT (r)
Q(μT )

=
{
K r = 1, . . . , K
K
(
Eg(X[K :K ] − b) − Eg(X[r−K :K ] − b)

)
r = K + 1, . . . , 2K − 1,

and μT (r) is the r th component of vector μT . Let L� = (L�
1 , L�

2 ) with L�
1 =

(K , . . . , K ) and L2 = K (Eg(X[K :K ] − b) − Eg(X[1:K ] − b), . . . , Eg(X[K :K ] −
b) − Eg(X[K−1:K ] − b)). It is then easy to see that

√
n
(
Q(T̄ g(b)) − E(g(X − b))

)

converges to a normal distribution with mean zero and variance

σ 2
θ̂g

= 1

K 2 L
�
1 �1,1L1 + 1

K 2 2L
�
1 �1,2L2 + 1

K 2 L
�
2 �2,2L2.

By using Lemma 1, we write

1

K 2 L
�
1 �1,1L1 =

K∑

r=1

K∑

s=1

{
1

H

H∑

h=1

ar :K |has:K |h E
{
g2(X[h:H ] − b)

}

− E
{
g(X[r :K ] − b)

}
E
{
g(X[s:K ] − b)

}

K 2

}

= 1

H

H∑

h=1

E
{
g2(X[h:H ] − b)

}
− {Eg(X − b)}2 = σ 2

g .

Let ds = Eg(X[K :K ] − b) − Eg(X[s:K ] − b), s = 1, . . . , K − 1.

1

K 2 L
�
1 �1,2L2 =

K∑

r=1

K−1∑

s=1

dsτr,s

=
K∑

r=1

K−1∑

s=1

ds

⎡

⎣

⎧
⎨

⎩
1

H

H∑

h=1

αr :K |hαs:K |h Eg(X[h:H ] − b)

⎫
⎬

⎭− Eg(X[r :K ] − b)

K 2

⎤

⎦

=
K−1∑

s=1

ds

{
Eg(X[s:K ] − b)

K
− Eg(X − b)

K

}

=
K−1∑

s=1

{
Eg(X[K :K ] − b) − Eg(X[s:K ] − b)

} { Eg(X[s:K ] − b)

K
− Eg(X − b)

K

}

= −
K∑

s=1

{
Eg(X[s:K ] − b) − Eg(X − b)

}2
/K .
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For the last expression, we consider

1

K 2 L
�
2 �2,2L2 =

K−1∑

r=1

K−1∑

s=1

drdsγr,s

=
K−1∑

r=1

K−1∑

s=1

{
Eg(X[K :K ] − b) − Eg(X[r :K ] − b)

}

× {Eg(X[K :K ] − b) − Eg(X[s:K ] − b)
}
γr,s

=
K∑

r=1

K∑

s=1

{
Eg(X[K :K ] − b) − Eg(X[r :K ] − b)

}

× {Eg(X[K :K ] − b) − Eg(X[s:K ] − b)
}
γr,s

=
K∑

r=1

K∑

s=1

1

H

H∑

h=1

αr :K |hαs:K |h Eg(X[r :K ] − b)Eg(X[s:K ] − b)

−{Eg(x − b)}2 .

This completes the proof. 
�

Proof of Corollary 1 We first rewrite σ 2
θ :K as

σ 2
θ̂g:K

= σ 2
g −

K∑

r=1

(Eg(X[r :K ] − b) − Eg(X − b))2/K −
{

K∑

r=1

(Eg(X[r :K ] − b))2/K

−
K∑

r=1

K∑

s=1

H∑

h=1

ar :K |has:K |h
H

Eg(X[r :K ] − b)Eg(X[s:K ] − b)

}

= σ 2
θ̂g:RSS(K )

−
{

K∑

r=1

(Eg(X[r :K ] − b))2

K

−
K∑

r=1

K∑

s=1

H∑

h=1

ar :K |has:K |h
H

Eg(X[r :K ] − b)Eg(X[s:K ] − b)

}

= σ 2
θ̂g:RSS(K )

− Ad .

We need to show Ad is non-negative. We first consider

Bd =
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h
{
E
(
g(X[r :K ] − b)

)− E
(
g(X[r :K ] − b)

)}2 ≥ 0.
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We re-write expression Bd as

Bd = 2
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h
{
E
(
g(X[r :K ] − b)

)}2

−2
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h
{
E
(
g(X[r :K ] − b)

)} {
E
(
g(X[r :K ] − b)

)}
.

Use of equalities
∑K

s=1 as:K |h = 1 and
∑H

h=1 as:K |h = H/K in the first term of the
above equation reduces Bd to 2Ad

Bd = 2

K

K∑

r=1

{
E
(
g(X[r :K ] − b)

)}2

−2
K∑

r=1

K∑

s=1

1

H

H∑

h=1

ar :K |has:K |h
{
E
(
g(X[r :K ] − b)

)} {
E
(
g(X[r :K ] − b)

)}

= 2Ad ≥ 0.

This completes the proof. 
�

Proof of Theorem 3 Let Un(b/
√
n) = {

Sn(ηp + b/
√
n) − Sn(ηp))/(b/

√
n
}
. By

using conditional expectation given rank vector R, we obtain

E(Un(b/
√
n) =

H∑

h=1

E

{
K∑

k=1

Ik Nhak:K |h
dn
∑H

t=1 Ntak:K |t

}
F[h](ηp) − F[h](ηp + b/

√
n)

b/
√
n

.

For large n, we can write

lim
n→∞ E

{
Ik Nhak:K |h

dn
∑H

t=1 Ntak:K |t

}
= E

{
lim
n→∞

Ik
dn

lim
n→∞

Nhak:K |h
dn
∑H

t=1 Ntak:K |t

}

= 1

K

ak:K |h/H∑H
t=1 ak:K |t/H

= ak:K |h/H.

It is now easy to observe that E(Un(b/
√
n) has a limit at −b f (ηp)

lim
n→∞ E(Un(b/

√
n) =

H∑

h=1

K∑

k=1

ak:K |h
H

lim
n→∞

F[h](ηp) − F[h](ηp + b/
√
n)

b/
√
n

= −b
K∑

k=1

H∑

h=1

ak:K |h
H

f[h](ηp) = −b
K∑

k=1

H

K H
f (ηp) = −b f (ηp).
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We now show that the variance of Un(b/
√
n) converges to zero as n goes to infinity.

Without loss of generality, assume that b > 0 and ηp = 0. In this case,Un(b/
√
n) can

be written as

Un(b/
√
n) =

n∑

i=1

K∑

k=1

Ikak:K |Ri
dn
∑n

j=1 ak:K |R j

I (0 ≤ Xi ≤ b/
√
n).

The variance of Un(b/
√
n) can be written as

Var(Un(b/
√
n) = Var

(
E
{
Un(b/

√
n)|R})+ E

(
Var

{
Un(b/

√
n)|R}) = Dn + Gn .

The expression Dn is given by

Dn = 1

b2

H∑

h=1

H∑

h′=1

(
F[h](b/

√
n) − F[h](0)

) (
F[h′](b/

√
n) − F[h′](0)

)

×
K∑

k=1

K∑

k′=1

Cov

( √
nIk Nhak:K |h

dn
∑H

t=1 Ntak:K |t
,

√
nIk′Nh′ak′:K |h′

dn
∑H

t=1 Ntak′:K |t

)
.

In the above expression, the covariances are all finite and the double sum in the first
term converges to zero as n gets large. Hence, Dn has a limit at 0. In a similar fashion,
Gn can be written as

Gn =
K∑

k=1

H∑

h=1

E

{
I 2k Nha2k:K |h

d2n (
∑H

t=1 Ntak:K |t )2

}
(
F[h′](b/

√
n) − F[h′](0)

)

× {1 − (F[h′](b/
√
n) + F[h′](0)

)}
.

Since the expectation in the above expression has a finite limit, Gn converges to zero
as n goes to infinity. We then conclude that variance Un(b/

√
n) goes to zero as n

approaches to infinity. This establishes the point-wise convergence

√
nSn(ηp + b/

√
n) = √

nSn(ηp) − b f (ηp) + op(1).

The uniform convergence follows from the monotonicity of Sn(b). 
�
Proof of Theorem 4 Wefirst observe that sample size vector N� = (N1, . . . , NH ) has
a multinomial distribution with parameters n and (1/H, . . . , 1/H). The probability
that Wn(q) equals K is

P(Wn(q) = K ) =
(
H
K

)
P(N1 > q, . . . , NK > q, NK+1 ≤ q, . . . , NH ≤ q).

Let

AK ,q = {N1 > q, . . . , NK > q} and BH−K ,q = {NK+1 ≤ q, . . . , NH ≤ q}.
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For a fixed j , we also define Bj,H−K ,q to be the event that each one of the j judgment
classes in set BH−K ,q has exactly q observations. Note that by the definition of the set
BH−K ,q , Bj,H−K ,q = BH−K ,H−K ,q when q = 0. With this new notation we write

P((Wn(q) = K ) =
(
H
K

) q(H−K )∑

j=0

(
q(H − K )

j

)
P(AK ,q |Bj,H−K ,q)P(Bj,H−K ,q).

It is clear that

P(Bj,H−K ,q) = n!
(n − q j)!

(
K

H

)n−q j ( 1

H

)q j

and

P(AK ,q |Bj,H−K ,q) =
∑

n1>q,...,nK>q

(
n − q j

n1, . . . , nK

)
(1/K )n−q j .

Let

AK ,q = {A1:K ,q ∩ · · · ∩ AK :K ,q},

where Ah:K ,q is the event that Nh > q for h ≤ K . By using DeMorgan’s law, we
write

P(AK ,q |Bj,H−K ,q) = 1 − P
(
AC
K ,q |Bj,H−K ,q

)
= 1 − P

(
∪K
h=1A

C
h:K ,q |Bj,H−K ,q

)

= 1 −
K∑

i=1

(
K
i

)
(−1)i−1P

(
AC
1:K ,q ∩ · · · ∩ AC

i :K ,q |Bj,H−K ,q

)
.

(11)

We now evaluate the following conditional probability

P
(
AC
1:K ,q ∩ · · · ∩ AC

i :K ,q |Bj,H−K ,q

)
=

q∑

r1=0

· · ·
q∑

ri=0

(
n − q j

r1, . . . , ri , n − q j − Ti

)

×(1/K )Ti {1 − i/K }(n−q j−Ti ),

where Ti =∑i
y=1 ry . With some algebra, the above equation simplifies to

P
(
AC
1:K ,q ∩ · · · ∩ AC

i :K ,q |Bj,H−K ,q

)
=

iq∑

s=0

(
qi
s

)(
n − q j
s

)
s!(K − i)n−q j−s

K n−q j
.

We complete the proof by putting this expression in (11). 
�
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