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Abstract Wepropose a newpenalty called the doubly sparse (DS) penalty for variable
selection in high-dimensional linear regression models when the covariates are natu-
rally grouped. An advantage of the DS penalty over other penalties is that it provides a
clear way of controlling sparsity between and within groups, separately. We prove that
there exists a unique global minimizer of the DS penalized sum of squares of residuals
and show how the DS penalty selects groups and variables within selected groups,
even when the number of groups exceeds the sample size. An efficient optimization
algorithm is introduced also. Results from simulation studies and real data analysis
show that the DS penalty outperforms other existing penalties with finite samples.
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1 Introduction

Consider the following linear regression model:

y = Xβ∗ + ε, (1)

where y = (y1, . . . , yn)T ∈ R
n is a response vector, β∗ = (β∗

1 , . . . , β∗
p)

T ∈ R
p is a

true regression coefficient vector, X = (X1, . . . , X p) is an n × p design matrix and
ε = (ε1, . . . , εn)

T ∈ R
n is a random error vector. Penalized estimations have received

much attention for variable selection in the model (1), that estimate the true regression
coefficient vector β∗ by minimizing the penalized sum of squares of residuals:

‖y − Xβ‖22/2n +
p∑

j=1

Jλ(|β j |), (2)

where Jλ is a penalty, in which the tuning parameter λ controls sparsity of the fitted
model. The least absolute selection and shrinkage operator (LASSO) (Tibshirani 1996)
has become so popular since it does parameter estimation and variable selection simul-
taneously with the penalty J L

λ (|t |) = λ|t |. On the other hand, the LASSO is known to
selectmore variables than necessary (Zou 2006) unless some strong conditions are pro-
vided (Zhao and Yu 2006; Meinshausen and Yu 2009), and produces unnecessary bias
to zero for large regression coefficients. To improve the LASSO, various non-convex
penalties have been proposed such as the smoothly clipped absolute deviation (SCAD)
penalty, (Fan and Li 2001) dJ S

λ (|t |)/d|t | = min{λ, (aλ − |t |)+/(a + 1)}, a > 2, the
Bridge penalty (Huang et al. 2008), J B

λ (|t |) = λ|t |ν, 0 < ν ≤ 1, and the minimax
concave penalty (MCP) (Zhang 2010), dJ M

λ (|t |)/d|t | = (λ − |t |/a)+, a > 1, where
x+ = x I (x ≥ 0). These non-convex penalties are known to have the oracle property:
asymptotic equivalence to an ideal non-penalized estimator obtained with true pre-
dictive variables only (Fan and Peng 2004; Kim et al. 2008; Zhang 2010). We refer
to Zhang and Zhang (2012) for a well organized review of penalized estimations for
variable selection in high-dimensional linear regression.

In this paper, we consider a case where the p covariates can be decomposed into
K disjoint groups. In this case, the model (1) can be rewritten as

y =
K∑

k=1

Xkβ
∗
k + ε, (3)

where Xk = (Xk1, . . . ,Xkpk ) and β∗
k = (β∗

k1, . . . , β
∗
kpk

)T ∈ R
pk are a n × pk design

matrix and a true regression coefficient vector for the kth group, respectively, satisfying
p = ∑K

k=1 pk .
In high-dimensional linear regression models, it is not uncommon that covariates

are naturally grouped, and hence group selection is of interest. For example, linear
regression models with categorical covariates can be expressed with (3) via groups of
dummyvariables. In nonparametric additivemodels, each component can be expanded
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Doubly sparse penalty 999

by a set of basis functions and the selection of components is equivalent to selecting
groups of basis functions. In practice, selecting both groups and variables within
the selected groups is interesting rather than selecting groups only. An example is a
nonparametric additive model with wavelet basis, where choosing the basis functions
within the selected components is as important as selecting components (Sardy and
Tseng 2004).

There have been some developments in recent years that extend and generalize the
existing penalties to group variable selection problems, by minimizing the following
Lq -norm composite criterion:

∥∥∥∥∥y −
K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n +
K∑

k=1

Jλk (‖βk‖q) (4)

for q ∈ {1, 2}, where λk’s are tuning parameters that control sparsity of groups. For
example, Yuan and Lin (2006) proposed the group LASSO using J L

λk
(|t |) = λk |t | for

λk = λp1/2k and q = 2, which is equivalent to the LASSO when each group consists
of just one covariate. Another example is the L2-normMCP proposed by Huang et al.
(2012). They used the MCP Jλk (|t |) = J M

λk
(|t |) for λk = λp1/2k and q = 2, which

is equivalent to J M
λ (p1/2k |t |) for a = apk . Note that the group LASSO and L2-norm

MCP do not achieve sparsity within the selected groups since they use L2-norm inside
the penalties.

On the other hand, Huang et al. (2009) proposed the group Bridge that selects
groups and variables simultaneously by minimizing a L1-norm composite criterion
where Jλk (|t |) = J B

λk
(|t |) for λk = λpν

k and q = 1, which is equivalent to J B
λk

(|t |) =
J B
λ (pk |t |). The group Bridge is an extension of the Bridge penalty to group variable

selection, including the hierarchical LASSO proposed by Zhou and Zhu (2010) as
a special case for ν = 1/2. Recently, Jiang and Huang (2015) introduced general
L1-norm framework that includes the L1-norm MCP and SCAD as special cases.
For example, the L1-norm MCP uses Jλk (|t |) = J M

λk
(|t |) for λk = λpk and q = 1.

Another example is the L1-norm exponential penalty proposed by Breheny (2015)
where Jλk (|t |) = (λ2/τ){1 − exp(τ |t |/λ)} with an extra tuning parameter τ that
controls the coupling effect.

The Lq -norm composite criterion in (4) can be a special case of the inner–outer
composite criterion introduced by Breheny and Huang (2009):

∥∥∥∥∥y −
K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n +
K∑

k=1

J O
λk

⎛

⎝
pk∑

j=1

J I
γ (|βk j |)

⎞

⎠ ,

where J O
λk

is an outer penalty for group selection and J I
γ is an inner penalty for variable

selection. For example, the group Bridge uses the outer Bridge penalty J O
λk

(|t |) =
J B
λk

(|t |) and the inner LASSO J I
γ (|t |) = γ |t |, where the inner tuning parameter is

fixed with γ = 1. Another example is the group LASSO that uses the same outer
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1000 S. Kwon et al.

penalty as the group Bridge but the inner ridge penalty J I
γ (|t |) = γ |t |2, where the

inner tuning parameter is fixed with γ = 1. Breheny and Huang (2009) proposed the
composite MCP that uses the MCP for both inner and outer penalties where λk = γ

and ak = apkγ /2.
There is another approach for group and variable selection which uses the sum of

two different penalties:

∥∥∥∥∥y −
K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n +
K∑

k=1

JGλk (‖βk‖2) +
K∑

k=1

pk∑

j=1

J Vγ (|βk j |),

where JGλk is a penalty for selection of groups and J Vγ for variables. For example,

the sparse group LASSO of Simon et al. (2013) adds L1-penalty, J Vγ (|t |) = γ |t | to
the group LASSO, JGλk (|t |) = λk |t | = λp1/2k |t | to yield sparsity within the selected
groups. One unique feature of the sparse group LASSO is to use two different tuning
parameters λ and γ to control sparsity between and within groups, which gives a
clearer way of controlling sparsity in practice, although the use of two different tuning
parameters may cause higher computational cost than other methods. We refer to
Huang et al. (2012) for a nice review of penalized approaches for group and variable
selection in linear regression models.

As aforementioned, the L1-norm composite methods such as the group Bridge
and L1-norm MCP can handle sparsity both between and within groups. However, it
is not clear how to control the two sparsity, especially sparsity within groups, since
they fix the inner tuning parameter γ = 1. An exceptional example is the L1-norm
exponential penalty proposed by Breheny (2015) which introduces an extra tuning
parameter to control the coupling effect. However, controlling coupling effect focuses
on how the relevant and irrelevant variables in a group affect to each other rather than
how to distinguish important variables from unimportant ones. Further, these methods
are in lack of theoretical results in high-dimensional linear regression models. This is
partly because they do not have a closed form of the global minimizer or an oracle
estimator that may help us to study asymptotic properties of the global minimizer. On
the other hand, the L2-norm MCP takes an advantage of the existence of the oracle
group estimator in (10), with which it can be shown that it achieves an oracle property
(Huang et al. 2012) in group selectionwhen there is no sparsitywithin groups.Note that
for the compositeMCP, the oracle estimator in (9) can be an intuitive global minimizer
also when there is sparsity within groups. However, the systematic obscurity and lack
of theoretical support still remain with the choice λk = γ and ak = apkγ /2.

In this paper, we propose a new penalized approach for group and variable selection,
using the doubly sparse (DS) penalty. TheDSpenalty is an L1-normcomposite penalty,
with the clipped LASSO proposed by Kwon et al. (2015) as the outer penalty. An
important feature of the DS penalty compared to other L1-norm composite penalties
is that it can separately control sparsity between and within groups separately. Hence,
the principle of selecting groups and variables is much more transparent.
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Doubly sparse penalty 1001

Theoretically, the DS penalized approach achieves a group selection consistency,
allowing the number of groups K to exceed the sample size n, which is common
to other group penalties. However, one benefit of using L1-composite penalties is to
allow the maximum number of variables in signal groups, p∗

max = maxk:‖βk‖1 �=0 pk ,
to exceed the sample size n also which is impossible to other L2-composite penalties
such as the L2-norm MCP.

To our best knowledge, there are no known results of group selection consistency of
other L1-norm composite penalties such as the group Bridge and hierarchical LASSO,
when p > n and both levels of sparsity are assumed. Note that, the sparse group
LASSO requires a strong irrepresentability condition for group selection consistency,
since it selects groups as the group LASSO (Wei and Huang 2010). Hence we believe
the applicability of the DS penalty is much wider than existing methods.

The paper is organized as follows. In Sect. 2, we introduce the DS penalty including
an efficient optimization algorithm. Section 3 gives asymptotic properties and Sect.
4 presents the results from numerical studies including simulation as well as real
data analysis. Concluding remarks and technical details are presented in Sect. 5 and
Appendix, respectively.

2 Doubly sparse penalty

2.1 Definition and solution

Let a > 0 be a fixed constant. For given λ > 0 and 0 ≤ γ ≤ λ, the DS penalized
estimator is defined as the global minimizer of the DS penalized sum of squared
residuals,

Qλ,γ (β) =
∥∥∥∥∥y −

K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n +
K∑

k=1

J (k)
λ,γ (‖βk‖1), (5)

where the DS penalty is a L1-norm composite penalty for the clipped LASSO (Kwon
et al. 2015): J (k)

λ,γ (0) = 0,

∇ J (k)
λ,γ (|t |) ≡ d J (k)

λ,γ (|t |)/d|t |
= ( − |t |/ak + λ

)
I
{|t | < ak(λ − γ )

} + γ I
{|t | ≥ ak(λ − γ )

}

for |t | > 0 and ak = apk . The clipped LASSO is a continuously differentiable
quadratic spline interpolation of two penalty functions, the MCP and LASSO:

J (k)
λ,γ (|t |) = J M

λ (|t |)I{|t | < ak(λ − γ )
} + (J L

γ |t | + c(k)
λ,γ )I

{|t | ≥ ak(λ − γ )
}
,

where c(k)
λ,γ = ak(λ−γ )2/2. Hence, the clipped LASSO is the same as theMCPwith a

tuning parameter λ for small |t | ≤ ak(λ−γ ), and the LASSOwith a tuning parameter
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Fig. 1 Three penalty functions: the LASSO (dotted) with λ = 1, the MCP (dashed) with (λ, a) = (1, 2)
and the clipped LASSO (line) with (λ, γ, a) = (1, 1/2, 2)

γ for large |t | > ak(λ − γ ). See Fig. 1 that depicts three penalty functions, LASSO,
clipped LASSO and MCP.

When γ = λ, the DS penalty becomes the LASSO so it selects variables as the
LASSO without using group information. When γ = 0, the DS penalty becomes a
L1-norm MCP, which can select groups and variables using a tuning parameter λ.
When 0 < γ < λ, which is new, we will study various properties of the DS penalty.

2.2 Roles of two tuning parameters

Let �λ,γ be the set of all local minimizers of Qλ,γ . Given β ∈ R
p, let A(β) =

L(β) ∪ S(β) = {k : ‖βk‖1 �= 0} and N (β) = {k : ‖βk‖1 = 0} = A(β)c

be the sets of group indices of coefficient vectors that have nonzero and zero L1-
norms, respectively, where L(β) = {k : ‖βk‖1/pk > a(λ − γ )} and S(β) =
{k : 0 < ‖βk‖1/pk ≤ a(λ − γ )}. Let Dkj (β) = −XT

k j (y − Xβ)/n for k ≤ K
and j ≤ pk , which represents the sample covariance between −Xk j and residual
y − Xβ. Similarly, let Dk(β) = −XT

k (y − Xβ)/n for k ≤ K , which represents
the vector of sample covariances of the kth group whose j th element is Dkj (β) for
j ≤ pk . Lemma 1 below directly comes from the first order optimality conditions in
Bertsekas (1999).

Lemma 1 For any β̂ ∈ �λ,γ ,
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Doubly sparse penalty 1003

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Dkj (β̂) = −γ sign(β̂k j ), k ∈ L(β̂), β̂k j �= 0, (6a)

|Dkj (β̂)| ≤ γ, k ∈ L(β̂), β̂k j = 0, (6b)

Dkj (β̂) = −�λ

(‖β̂k‖1/pk
)
sign(β̂k j ), k ∈ S(β̂), β̂k j �= 0, (6c)

|Dkj (β̂)| ≤ �λ

(‖β̂k‖1/pk
)
, k ∈ S(β̂), β̂k j = 0, (6d)

‖Dk(β̂)‖∞ ≤ λ, k ∈ N (β̂), (6e)

for all k ≤ K and j ≤ pk , where �λ(t) = λ − t/a and sign(t) = (t/|t |)I [t �= 0].
The conditions in Lemma 1 show how the two tuning parameters λ and γ work in

the DS penalty. First, the Eq. (6e) shows that λ gives a threshold for group sparsity.
Second, the Eqs. (6a) and (6b) shows that γ gives a threshold for variable sparsity
within selected groups as the LASSO in the region L(β̂), since they are exactly the
first order optimality conditions for the LASSO with tuning parameter γ . Third, the
Eqs. (6c) and (6d) show that the DS penalty behaves like the L1-norm MCP in the
region S(β̂). Note that the events defined by the Eqs. (6c) and (6d) are null events in
the asymptotic sense under some assumptions. Hence, we may simply understand the
DS penalized estimator through the lemma below.

Lemma 2 If β̂ ∈ R
p satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖XT
k (y − Xβ̂)/n‖∞ ≤ λ, ‖β̂k‖1 = 0, (7a)

‖β̂k‖1/pk > a(λ − γ ) ‖β̂k‖1 �= 0, (7b)

XT
k j (y − Xβ̂)/n = γ sign(β̂k j ), ‖β̂k‖1/pk > a(λ − γ ), β̂k j �= 0, (7c)

|XT
k j (y − Xβ̂)/n| ≤ γ, ‖β̂k‖1/pk > a(λ − γ ), β̂k j = 0 (7d)

for all k ≤ K and j ≤ pk , then β̂ ∈ �λ,γ .

The conditions in Lemma 2make us to expect that there is an estimator β̂ that selects
groups and then selects variables within selected groups. The condition (7a) requires
that β̂ excludes the groups whose maximum sample covariances are smaller than λ.
The condition (7b) requires that β̂ includes the groups whose averaged L1-norms of
coefficient vectors are larger than a(λ − γ ). The last two conditions (7c) and (7d)
show that β̂ becomes the LASSO with tuning parameter γ , deleting variables within
selected groups whose sample covariances are smaller than γ . Hence, in contrast to
other existing penalties, the DS penalty provides a clear way of controlling the sparsity
between and within groups, which also shows the roles of two tuning parameters λ

and γ .
An oracle estimator for group and variable selection will be introduced in next

subsection that satisfies these conditions asymptotically, which is an extension of
the existence of an oracle estimator for variables selection. This is similar to the
fundamental idea on the usual oracle property for the model (1) studied by many
researchers (Kim et al. 2008; Zhang 2010; Huang et al. 2012), where the sufficient
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1004 S. Kwon et al.

conditions for a given β̂ to be a local minimizer of (2) are given by

⎧
⎪⎪⎨

⎪⎪⎩

|XT
j (y − Xβ̂)/n| ≤ λ, β̂ j = 0, (8a)

|β̂ j | > aλ, β̂ j �= 0, (8b)

XT
j (y − Xβ̂)/n = 0, |β̂ j | > aλ, (8c)

for all j ≤ p, for a class of nonconvex penalties (Zhang and Zhang 2012; Kim and
Kwon2012).Note that the conditions (8a) and (8b) require that β̂ includes the variables
whose absolute values of coefficients are larger than aλ, and excludes the variables
whose sample covariances are smaller than λ, becoming a least square estimator that
is unbiased as the condition (8c) requires.

2.3 Global minimizer

In high-dimensional linear regression models, the existence of an oracle estimator
plays an important role for the study of the penalized estimator. For example, the
oracle estimator,

β̂
o = argmin

β j=0, j∈{l:β∗
l =0}

‖y − Xβ‖22/2n, (9)

is proven to be the global minimizer of the penalized sum of squares of residuals in
(2) for various penalties such as the SCAD penalty (Kim and Kwon 2012) and MCP
(Zhang 2010), which shows β̂

o
is exactly the global minimizer of the penalized sum

of squares of residuals asymptotically. A similar result in group variable selection can
be found in Huang et al. (2012) with the oracle group estimator,

β̂
o = argmin

‖βk‖1=0,k∈N (β∗)

∥∥∥∥∥y −
K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n, (10)

which asymptotically becomes the global minimizer of the L2-norm composite cri-
terion (4) with the MCP when there is no sparsity within groups. Before introducing
an oracle estimator for the DS penalized criterion in (5), we give sufficient condi-
tions under which the global minimizer of Qλ,γ is unique when p ≤ n. Let λmin(D)

and λmax(D) be the smallest and largest eigenvalues of a given symmetric matrix D.
The following lemma shows an analogous result to Kim and Kwon (2012) for group
variable selection.

Lemma 3 Assume that ρmin = λmin(XTX/n) > 0. If there exists a local minimizer
β̂ ∈ �λ,γ that satisfies S(β̂) = ∅ and

{
mink∈L(β̂)

‖β̂k‖1/pk > (λ − γ )max{a, 1/ρmin},
maxk∈N (β̂)

‖Dk(β̂)‖∞ < (λ − γ )min{aρmin, 1} + γ,
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Doubly sparse penalty 1005

then �λ,γ = {β̂}. Lemma 3 plays a key role when we prove the main theorems in the
next section under a sparsity condition when p > n. Lemma 3 shows that the global
minimizer is unique even when Qλ,γ is non-convex under the non-asymptotic sufficient

conditions: the nonzero coefficients of the estimator are large so that S(β̂) = ∅, but
covariances between current residuals and irrelevant covariates are sufficiently small.

From the optimality conditions in Lemma 2 and 3, it is easy to see that the following
estimator,

β̂
o
(γ ) = argmin

‖βk‖1=0,k∈N (β∗)

⎧
⎨

⎩

∥∥∥∥∥y −
K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n + γ

K∑

k=1

‖βk‖1
⎫
⎬

⎭ , (11)

becomes the unique globalminimizer of Qλ,γ if β̂
o
(γ ) satisfies the sufficient conditions

in Lemma 3. Note that β̂
o
(γ ) is the LASSO for which γ controls sparsity of variables

in the signal groups. In this sense, we refer β̂
o
(γ ) as the oracle LASSO. In practice,

the oracle LASSO is unavailable since the signal groups are unknown. However, we
will show that the oracle LASSO is exactly the DS penalized estimator asymptotically,
if we choose λ to have correct group sparsity. This result also explains roles of the
two tuning parameters λ and γ clearly: after selecting groups by λ, the shrinkage and
selection within the chosen groups are controlled by γ.

2.4 Optimization algorithm

Recall that we estimate β by minimizing Qλ,γ . Let J̃λ,γ (β) = ∑K
k=1 J

(k)
λ,γ

(‖βk‖1
) −

λ‖β‖1. It is easy to see that we can decompose Qλ,γ into a sum of convex and concave
functions as follows.

Qλ,γ (β) = Qvex (β) + Qcav(β),

where Qvex (β) = ‖y − ∑K
k=1 Xkβk‖22/2n + λ‖β‖1 is a convex function, and

Qcav(β) = J̃λ,γ (β) is a continuously differentiable concave function. Hence, we
can find a local minimizer with the convex concave procedure (CCCP) of Yuille and
Rangarajan (2003) or the difference of convex (DC) decomposition procedure of An
and Tao (1997) which are powerful algorithms for nonconvex optimization problems.
For example, we can apply the CCCP as follows. Let ∂ J̃λ,γ (β) be any subgradient of

J̃λ,γ (β) at β. For a given solution β̂
c
, we update the solution by minimizing

∥∥∥∥∥y −
K∑

k=1

Xkβk

∥∥∥∥∥

2

2

/2n + (∂ J̃λ,γ (β̂
c
))Tβ + λ‖β‖1,

which can be solved bymany efficient optimization algorithms for the LASSO such as
themodified least angle regression (Efron et al. 2004) and coordinate descent algorithm
(Friedman et al. 2007). We iterate this procedure until the solution converges. Note
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1006 S. Kwon et al.

that the CCCP always converges to a local minimizer (Sriperumbudur and Lanckriet
2009).

3 Asymptotic properties

In this section we study statistical properties of the DS penalized estimator when p >

n. For any subset S ⊂ {(k, j) : k ≤ K , j ≤ pk}, defineXS as the n×|S|matrix that is
obtained by combining column vectors Xk j for (k, j) ∈ S. We assume that there exist
nonempty subsets A∗ = {(k, j) : β∗

k j �= 0} and G∗ = {(k, j) : k ∈ A(β∗), j ≤ pk}
that are index sets of true nonzero regression coefficients of variables and groups,
respectively. To study properties of the DS penalized estimator, we need the following
assumptions:

(C1) The randomerrors ε1, . . . , εn are independently and identically distributedmean
zero sub-Gaussian random variables with a positive scale factor σ0 < ∞, that
is, E exp(tεi ) ≤ exp(σ 2

0 t
2/2) for all i ≤ n and t > 0.

(C2) There exist constants α0 > 0 and κmin > 0 such that

φmin(2(α0 + 1)|A∗|) ≥ κmin, (12)

where φmin(m) = min|B|≤m,A∗⊂B λmin(XT
BXB/n) is the lower sparse eigenvalue in

Zhang and Zhang (2012), and

φmax(α0|A∗|)/α0 ≤ (1 − 3
√

φmax(α0|A∗|)/α0κmin)
2/576, (13)

where φmax(m) = min|B|≤m,A∗⊂B λmax(XT
BXB/n) is the upper sparse eigenvalue in

Zhang and Zhang (2012).

Remark 1 (C1) implies that there exist constants c0 > 0 and d0 > 0 such that the
error vector ε satisfies

P
(|aTε| > t

) ≤ c0 exp(−d0t
2/‖a‖22), (14)

for all a ∈ R
n and t > 0. The inequality (12) in (C2) ensures model identifiability

and uniqueness of β̂
o
(γ ) as a local minimizer. In fact, φmin((α0 + 1)|A∗|) ≥ κmin is

sufficient for β̂
o
(γ ) to be one of the local minimizers, which is often referred as the

oracle property. The inequality (13) in (C2) assumes φmax(α0|A∗|)/α0 is bounded,
which is weaker than similar conditions in Bickel et al. (2009) and Meinshausen and
Yu (2009), where it is assumed that φmax(|A∗| + min{n, p}) is bounded. A similar
condition can be found in Wang et al. (2013). From the results in Zhang and Zhang
(2012), (C2) controls the number of nonzero elements of β̂

o
(γ ) up to an order of |A∗|

under the η-null consistency in Zhang and Zhang (2012).
First, we prove that the oracle LASSO is one of the local minimizers of Qλ,γ whose

number of nonzero elements is less than (α0 + 1)|A∗| with probability tending to 1
when p > n. Given an integer s < n, let
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Doubly sparse penalty 1007

�λ,γ (s) = {
β̂ ∈ �λ,γ : ‖β̂‖0 ≤ s

}

be the set of all local minimizers that have s nonzero elements at most. Further, let

ξ∗
λ,γ = m∗−a(λ−γ )−γ

√
(α0 + 1)|A∗|/κ2

min and ζ ∗
λ,γ = λ−γ

√
(α0 + 1)|A∗|/κmin,

where m∗ = min(k, j)∈A∗ |β∗
k j |.

Theorem 1 Assume that (C1) and (C2) hold, then

P
(
β̂
o
(γ ) ∈ �λ,γ ((α0 + 1)|A∗|)

) ≥ 1 − P1 − P2 − P3,

where P1 = c0|G∗| exp(−d0nγ 2/4), P2 = c0(α0 + 1)|A∗| exp
( − d0κminnξ∗2

λ,γ

)
and

P3 = c0(p − |G∗|) exp
( − d0nζ ∗2

λ,γ

)
.

Corollary 1 Assume that (C1) and (C2) hold. If nλ2 → ∞, λ = o(m∗) and nγ 2→∞
then

P
(
β̂
o
(γ ) ∈ �λ,γ ((α0 + 1)|A∗|))→1,

provided that log p = o(nλ2), log |G∗| = o(nγ 2) and γ = o(λ/
√|A∗|) as n→∞.

Remark 2 Theorem 1 and Corollary 1 imply that the oracle LASSO is one of the
local minimizers of Qλ,γ even when p > n under the sub-Gaussian assumption. Note
that the total number of variables in the model, p = ∑K

k=1 pk , is allowed to have an
exponential order of n. For example, suppose there exists a constant m0 > 0 such
that m∗ ≥ m0 > 0 for all n. Then, by letting λ = n−1/3, Corollary 1 holds when
p = exp(nδ0) for some constant 0 < δ0 < 1/3.

Second, we prove that the DS penalized estimator is unique and asymptotically the
same as the oracle LASSO, which is the main result of the paper. The next theorem
and corollary prove that the unique local minimizer in�λ,γ ((α0+1)|A∗|) is the oracle
LASSO with probability tending to 1. Let ξ∗∗

λ,γ = m∗ − max{a, 1/κmin}(λ − γ ) −
γ

√
(α0 + 1)|A∗|/κ2

min and ζ ∗∗
λ,γ = (λ−γ )min{aκmin, 1}−γ (

√
(α0 + 1)|A∗|/κmin −

1).

Theorem 2 Assume that (C1) and (C2) hold, then

P
(
�λ,γ ((α0 + 1)|A∗|) = {β̂o

(γ )}) ≥ 1 − P1 − P2 − P3,

where P1 = c0|G∗| exp(−d0nγ 2/4), P2 = c0(α0 + 1)|A∗| exp
( − d0κminnξ∗∗2

λ,γ

)
and

P3 = c0(p − |G∗|) exp
( − d0nζ ∗∗2

λ,γ

)
.

Corollary 2 Assume that (C1) and (C2) hold. If nλ2 → ∞, λ = o(m∗) and
nγ 2 → ∞ then

P(�λ,γ ((α0 + 1)|A∗|) = {β̂o
(γ )})→1

provided that log p = o(nλ2), log |G∗| = o(nγ 2) and γ = o(λ/
√|A∗|) as n→∞.
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Remark 3 Theorem 2 and Corollary 2 allow |G∗| to have an exponential order of
n, which is impossible for other existing L2-norm composite penalties such as the
L2-norm MCP. For example, suppose there exists a constant m0 > 0 such that m∗ ≥
m0 > 0 for all n. Then, by letting λ = n−1/4 and γ = n−1/3, Corollary 2 holds when
|G∗| = exp(nδ0) for some constant 0 < δ0 < 1/3.

Remark 4 Under similar regularity conditions, Bickel et al. (2009) and Zhang and
Zhang (2012) proved that

‖β̂o
(γ ) − β∗‖22 = Op

(|A∗|(log |G∗|)/n
)
and ‖β̂o

(γ )‖0 = Op(|A∗|).

It is easy to see that the convergence rate is faster than the upper bound Op(|A∗|
(log p)/n) of the LASSO but the variable selection bound is the same. Since the DS
penalized estimator is asymptotically equivalent to the oracle LASSO, we can say
that it improves the LASSO by incorporating group information. In addition, a similar
argument can be applied to the group LASSO. For a given 0 < η < 1, Huang and
Zhang (2010) proved that the group LASSO, β̂

g
, satisfies

‖β̂g − β∗‖22 = Op
({|G∗| + |A(β∗)| log(|A(β∗)|/η)}/n)

and ‖β̂g‖0 = Op(|G∗|)

under the (|A(β∗)|, |G∗|)-strong group sparsity. This shows that the group LASSO is
inferior to the oracle LASSO in both bounds.

Remark 5 When p ≤ n, it is easy to check whether a given solution β̂ satisfies the
conditions in Lemma 3, that is, we can check whether β̂ obtained by the (or any)
algorithm is unique or not. When p > n, we need to check the conditions in Lemma
3 by using κmin in (C2). However, it is impossible to check the conditions in general
since κmin is computationally unavailable, and α0 and |A∗| are unknown. If we assume
that α0 and |A∗| are known, then we can conclude that the solution β̂ is unique or not in
�λ,γ ((α0 + 1)|A∗|) by using a rough estimate of κmin obtained by the way in Section
5 of Kim and Kwon (2012).

4 Numerical studies

4.1 Simulation study

The performance of the proposed DS method is examined using Monte–Carlo simu-
lation. Throughout the simulation study, we use the following model:

y =
K∑

k=1

pk∑

j=1

xk jβ
∗
k j + ε, ε ∼ N (0, σ 2),

where σ = 2. Similar to Huang et al. (2009), we set the covariate vector as follows:

xk j = (zk + wk j )/
√
2, k ≤ K , j ≤ pk .
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Doubly sparse penalty 1009

where z = (z1, . . . , zK )T ∼ NK (0,�) with �k1k2 = 0.4|k1−k2|, k1, k2 ≤ K , and w =
(w11, . . . , wKpK )T ∼ Np(0, I), independently of z. For the true nonzero coefficients,
we set β∗

k j = c/(k × j), j ≤ qk , k ∈ A(β∗), where the constant c > 0 is chosen so
that the signal-to-noise ratio is 10. The sizes of groups are fixed such that p2k = 12
and p2k−1 = 6 for k ≤ K/2, and the first 6 groups are set to be signal groups, that is,
A(β∗) = {1, . . . , 6}. We consider two settings with different degrees of within group
sparsity: qk = pk/3 for Example 1 and qk = 2pk/3 for Example 2. All settings are
replicated 400 times with K ∈ {18, 100} and n ∈ {200, 400}. Hence the total number
of variables is p ∈ {162, 900} and the number of signal variables is |A∗| ∈ {18, 36}.

We compared the DS method with the LASSO, MCP, group LASSO (gLASSO),
group Bridge (gBridge), group MCP (gMCP), group exponential LASSO (gExp). For
comparison, we also considered five different versions of DS method: by fixing γ

as γ = 2λ∗ γ = λ∗, γ = λ∗/2 and γ = 0, where λ∗ is the optimal value of λ in
the LASSO and by choosing an optimal γ ∗ over a sequence of girds. The R package
glmnet, grpreg and grppenalty were used for to implement other estimators.
All the tuning parameters in each method were chosen by using an independent vali-
dation data set of size n/2.

Tables 1 and 2 display the squared Prediction Error (PE) that is calculated from
independent test data set of size 2n, and the Model Error (ME) calculated as (β̂ −
β)TE(XXT)(β̂ − β) (Fan and Li 2001). The tables also report the number of groups
correctly and incorrectly selected (G.C andG.IC) and the number of variables correctly
and incorrectly selected (V.C and V.IC). Methods are considered to select a group if
at least one coefficient in the group was estimated as non-zero.

First, in Example 1, the LASSO outperforms the gLASSO in terms of PE and ME
although it dose not employ the group structure, and so does the MCP. As expected,
G.IC and V.IC of the LASSO and gLASSO are noticeably large. This indicates that
ignoring group structure results in including many noisy groups and variables, and
becoming inconsistent in group and variable selection. However, the gLASSO often
performs better than the MCP in Example 2 where the group includes many signal
variables, which is analogous to the results of Huang and Zhang (2010). The gLASSO
and MCP are opposite in terms of individual variable selection while the MCP has
small V.IC and large V.C, the gLASSO shows large V.IC and small V.C.

Second, in terms of prediction, the DS methods except the DS with γ = 2λ∗ have
smaller PE andME than other methods for all cases. This shows that a practical choice
of γ ∈ {λ∗, λ∗/2} performs well, which significantly reduces computational cost. The
gBridge often shows the best PE and ME when K = 18 but has large PE and ME
than DS methods when K = 100. We found that the algorithm implemented in R is
often unstable when K = 100. The gMCP performs the worst in PE and ME except
the case when n = 400, for which the gExp performs the worst.

Third, in group selection, the DS methods show the largest G.C and G.IC and the
gBridge has the smallest G.C and G.IC. This implies that the DS methods are denser
than other methods and the gBridge is the most sparse in group selection. The gMCP
has the smallest G.C especially when n = 100 which may a reason for large PE and
ME, and gExp shows the smallest G.IC. In individual variable selection, the gMCP
and gExp show much larger V.IC than the gBridge and DS methods, which shows
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Table 1 Simulation results of Example 1

(K , n) Method PE ME G.C G.IC V.C V.IC

(18,200) Oracle 4.425 (0.017) 0.403 (0.015) 6.0 (0.000) 0.0 (0.000) 18.0 (0.000) 0.0 (0.000)

LASSO 4.937 (0.026) 0.905 (0.025) 6.0 (0.000) 7.1 (0.270) 15.1 (0.120) 24.0 (1.000)

MCP 5.305 (0.045) 1.246 (0.045) 5.9 (0.010) 2.7 (0.190) 10.0 (0.150) 4.2 (0.320)

gLASSO 5.576 (0.038) 1.546 (0.037) 6.0 (0.000) 7.3 (0.250) 18.0 (0.000) 103.4 (2.240)

gBridge 5.080 (0.019) 1.060 (0.013) 5.7 (0.050) 0.3 (0.090) 13.5 (0.110) 12.0 (0.420)

gMCP 5.658 (0.050) 1.611 (0.050) 5.5 (0.060) 2.2 (0.190) 14.9 (0.230) 34.3 (1.230)

gExp 5.203 (0.046) 1.153 (0.044) 5.8 (0.040) 0.8 (0.130) 15.0 (0.160) 21.0 (0.790)

DS3(γ=2λ∗) 5.350 (0.045) 1.266 (0.044) 5.9 (0.010) 1.0 (0.170) 14.3 (0.130) 10.0 (0.420)

DS(γ=λ∗) 4.863 (0.026) 0.838 (0.025) 6.0 (0.000) 2.9 (0.270) 15.0 (0.120) 15.1 (0.670)

DS(γ=λ∗/2) 4.808 (0.027) 0.795 (0.026) 5.9 (0.010) 3.4 (0.230) 14.9 (0.130) 15.1 (0.510)

DS(γ=0) 4.923 (0.033) 0.892 (0.032) 5.9 (0.020) 2.9 (0.220) 14.7 (0.130) 13.4 (0.430)

DS(γ=γ ∗) 4.803 (0.026) 0.785 (0.025) 5.9 (0.010) 3.4 (0.250) 15.0 (0.130) 15.7 (0.620)

(18,400) Oracle 4.198 (0.012) 0.193 (0.008) 6.0 (0.000) 0.0 (0.000) 18.0 (0.000) 0.0 (0.000)

LASSO 4.415 (0.015) 0.402 (0.012) 6.0 (0.000) 7.3 (0.280) 16.4 (0.110) 22.7 (0.830)

MCP 4.524 (0.022) 0.484 (0.020) 6.0 (0.000) 3.0 (0.210) 12.6 (0.150) 4.1 (0.290)

gLASSO 4.754 (0.018) 0.767 (0.015) 6.0 (0.000) 7.8 (0.260) 18.0 (0.000) 107.8 (2.400)

gBridge 4.365 (0.015) 0.344 (0.012) 6.0 (0.000) 0.2 (0.090) 16.5 (0.110) 14.6 (0.810)

gMCP 4.668 (0.019) 0.676 (0.016) 5.9 (0.010) 1.7 (0.170) 17.1 (0.120) 36.8 (0.790)

gExp 4.497 (0.017) 0.489 (0.014) 5.9 (0.010) 0.6 (0.120) 16.5 (0.110) 22.2 (0.780)

DS3(γ=2λ∗) 4.614 (0.022) 0.581 (0.019) 6.0 (0.000) 0.4 (0.090) 16.0 (0.120) 8.4 (0.290)

DS(γ=λ∗) 4.384 (0.015) 0.377 (0.011) 6.0 (0.000) 2.6 (0.300) 16.3 (0.110) 13.8 (0.600)

DS(γ=λ∗/2) 4.354 (0.014) 0.344 (0.010) 6.0 (0.000) 2.9 (0.250) 16.3 (0.120) 14.0 (0.510)

DS(γ=0) 4.387 (0.015) 0.381 (0.011) 6.0 (0.000) 2.6 (0.220) 16.2 (0.110) 13.4 (0.500)

DS(γ=γ ∗) 4.363 (0.014) 0.353 (0.010) 6.0 (0.000) 3.3 (0.280) 16.3 (0.120) 14.8 (0.610)

(100,200) Oracle 4.440 (0.019) 0.407 (0.016) 6.0 (0.000) 0.0 (0.000) 18.0 (0.000) 0.00 (0.000)

LASSO 5.169 (0.035) 1.098 (0.033) 6.0 (0.000) 19.4 (1.200) 14.5 (0.130) 31.9 (1.700)

MCP 5.540 (0.041) 1.482 (0.041) 5.9 (0.030) 4.3 (0.350) 8.6 (0.110) 4.9 (0.370)

gLASSO 5.887 (0.044) 1.846 (0.043) 5.9 (0.010) 17.2 (0.810) 17.9 (0.040) 185.5 (7.470)

gBridge 5.687 (0.048) 1.729 (0.046) 5.2 (0.060) 0.0 (0.020) 11.7 (0.170) 10.1 (0.290)

gMCP 6.041 (0.066) 1.959 (0.066) 5.0 (0.070) 5.9 (0.770) 13.1 (0.270) 39.8 (5.590)

gExp 5.184 (0.045) 1.142 (0.043) 5.7 (0.040) 2.1 (0.300) 14.5 (0.150) 19.0 (0.900)

DS3(γ=2λ∗) 5.994 (0.064) 1.912 (0.063) 5.9 (0.010) 1.1 (0.270) 13.3 (0.160) 7.7 (0.460)

DS(γ=λ∗) 5.005 (0.030) 0.983 (0.029) 5.9 (0.010) 5.6 (0.570) 14.3 (0.130) 14.2 (0.750)

DS(γ=λ∗/2) 4.879 (0.029) 0.835 (0.028) 5.9 (0.030) 8.0 (0.660) 14.2 (0.150) 16.9 (0.810)

DS(γ=0) 4.989 (0.034) 0.927 (0.033) 5.9 (0.030) 7.2 (0.620) 14.0 (0.160) 15.6 (0.760)

DS(γ=γ ∗) 4.887 (0.029) 0.819 (0.028) 5.9 (0.020) 8.2 (0.660) 14.2 (0.140) 17.3 (0.850)

(100,400) Oracle 4.221 (0.012) 0.196 (0.007) 6.0 (0.000) 0.0 (0.000) 18.0 (0.000) 0.0 (0.000)

LASSO 4.554 (0.017) 0.544 (0.014) 6.0 (0.000) 21.5 (1.160) 16.2 (0.090) 36.1 (1.690)

MCP 4.644 (0.021) 0.618 (0.020) 6.0 (0.000) 5.6 (0.370) 11.4 (0.120) 6.2 (0.390)

gLASSO 4.922 (0.022) 0.914 (0.019) 6.0 (0.000) 18.3 (0.710) 18.0 (0.000) 193.4 (6.530)
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Table 1 continued

(K , n) Method PE ME G.C G.IC V.C V.IC

gBridge 4.796 (0.018) 0.663 (0.015) 5.8 (0.030) 0.0 (0.000) 14.4 (0.100) 11.9 (0.270)

gMCP 4.505 (0.026) 0.484 (0.024) 5.9 (0.040) 2.3 (0.430) 16.5 (0.180) 23.2 (1.030)

gExp 4.797 (0.018) 0.781 (0.013) 5.8 (0.000) 5.3 (0.310) 16.0 (0.080) 37.5 (0.780)

DS3(γ=2λ∗) 5.090 (0.030) 1.025 (0.028) 6.0 (0.000) 0.2 (0.070) 15.5 (0.100) 7.3 (0.260)

DS(γ=λ∗) 4.492 (0.017) 0.466 (0.014) 6.0 (0.000) 2.8 (0.540) 16.1 (0.090) 11.9 (0.740)

DS(γ=λ∗/2) 4.388 (0.015) 0.373 (0.012) 6.0 (0.000) 6.7 (0.610) 16.1 (0.090) 16.7 (0.810)

DS(γ=0) 4.425 (0.016) 0.400 (0.012) 6.0 (0.000) 8.7 (0.660) 15.9 (0.090) 19.2 (0.860)

DS(γ=γ ∗) 4.389 (0.015) 0.382 (0.011) 6.0 (0.000) 8.0 (0.660) 16.1 (0.090) 18.2 (0.840)

The numbers in parentheses are corresponding standard errors

Table 2 Simulation results of Example 2

(K , n) Method PE ME G.C G.IC V.C V.IC

(18,200) Oracle 4.897 (0.027) 0.872 (0.026) 6.0 (0.000) 0.0 (0.000) 36.0 (0.000) 0.0 (0.000)

LASSO 5.048 (0.027) 1.009 (0.026) 6.0 (0.000) 7.9 (0.260) 25.5 (0.210) 21.1 (0.980)

MCP 6.107 (0.060) 1.999 (0.059) 5.9 (0.020) 3.6 (0.260) 12.8 (0.210) 5.5 (0.470)

gLASSO 5.486 (0.037) 1.450 (0.035) 6.0 (0.000) 7.0 (0.260) 36.0 (0.000) 81.9 (2.330)

gBridge 4.964 (0.036) 0.913 (0.035) 5.7 (0.040) 0.4 (0.090) 25.7 (0.250) 9.6 (0.620)

gMCP 5.669 (0.044) 1.599 (0.044) 5.4 (0.070) 2.3 (0.190) 28.9 (0.550) 20.9 (0.950)

gExp 5.219 (0.045) 1.151 (0.044) 5.8 (0.040) 1.1 (0.150) 26.9 (0.360) 12.0 (0.540)

DS3(γ=2λ∗) 5.415 (0.048) 1.306 (0.046) 6.0 (0.000) 1.2 (0.170) 23.8 (0.220) 6.8 (0.340)

DS(γ=λ∗) 4.954 (0.027) 0.904 (0.025) 5.9 (0.010) 3.0 (0.280) 25.1 (0.230) 10.5 (0.530)

DS(γ=λ∗/2) 4.906 (0.027) 0.873 (0.025) 5.9 (0.010) 3.4 (0.230) 24.9 (0.230) 10.7 (0.440)

DS(γ=0) 5.014 (0.031) 0.982 (0.031) 5.9 (0.020) 3.2 (0.220) 24.3 (0.220) 9.9 (0.380)

DS(γ=γ ∗) 4.897 (0.026) 0.865 (0.024) 5.9 (0.010) 3.4 (0.250) 24.8 (0.230) 10.9 (0.510)

(18,400) Oracle 4.408 (0.015) 0.414 (0.011) 6.0 (0.000) 0.0 (0.000) 36.0 (0.000) 0.0 (0.000)

LASSO 4.501 (0.015) 0.488 (0.012) 6.0 (0.000) 8.0 (0.270) 28.3 (0.210) 21.1 (0.860)

MCP 4.857 (0.023) 0.840 (0.020) 6.0 (0.000) 3.7 (0.200) 16.9 (0.220) 4.9 (0.280)

gLASSO 4.729 (0.018) 0.746 (0.014) 6.0 (0.000) 7.3 (0.280) 36.0 (0.000) 84.9 (2.650)

gBridge 4.434 (0.015) 0.418 (0.011) 5.9 (0.010) 0.3 (0.060) 27.1 (0.210) 9.9 (0.420)

gMCP 4.699 (0.024) 0.683 (0.021) 5.9 (0.020) 1.7 (0.160) 33.2 (0.310) 20.1 (0.700)

gExp 4.524 (0.018) 0.517 (0.015) 5.9 (0.010) 0.7 (0.130) 30.1 (0.270) 12.2 (0.470)

DS3(γ=2λ∗) 4.680 (0.023) 0.664 (0.020) 6.0 (0.000) 0.7 (0.110) 27.1 (0.210) 6.8 (0.270)

DS(γ=λ∗) 4.461 (0.015) 0.451 (0.011) 6.0 (0.000) 2.5 (0.280) 28.0 (0.210) 10.2 (0.480)

DS(γ=λ∗/2) 4.428 (0.015) 0.402 (0.011) 6.0 (0.000) 2.9 (0.250) 27.9 (0.220) 10.5 (0.450)

DS(γ=0) 4.451 (0.015) 0.432 (0.011) 6.0 (0.000) 3.0 (0.220) 27.8 (0.220) 10.2 (0.410)

DS(γ=γ ∗) 4.433 (0.014) 0.419 (0.011) 6.0 (0.000) 3.1 (0.250) 27.9 (0.210) 10.7 (0.460)

(100,200) Oracle 4.978 (0.026) 0.968 (0.024) 6.0 (0.000) 0.0 (0.000) 36.0 (0.000) 0.0 (0.000)

LASSO 5.334 (0.034) 1.268 (0.032) 6.0 (0.000) 20.3 (1.250) 23.7 (0.270) 30.1 (1.860)

MCP 6.659 (0.065) 2.498 (0.064) 5.8 (0.030) 6.0 (0.370) 10.1 (0.140) 6.6 (0.410)
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Table 2 continued

(K , n) Method PE ME G.C G.IC V.C V.IC

gLASSO 5.782 (0.041) 1.728 (0.040) 5.9 (0.010) 16.3 (0.800) 35.8 (0.110) 158.8 (7.510)

gBridge 5.544 (0.037) 1.810 (0.034) 5.3 (0.050) 0.1 (0.010) 20.3 (0.310) 5.7 (0.190)

gMCP 5.993 (0.050) 2.031 (0.049) 4.9 (0.080) 4.7 (0.410) 24.7 (0.530) 19.1 (0.910)

gExp 5.233 (0.044) 1.180 (0.043) 5.7 (0.040) 2.5 (0.320) 25.5 (0.300) 12.2 (0.670)

DS3(γ=2λ∗) 6.152 (0.062) 2.202 (0.061) 5.9 (0.010) 1.5 (0.400) 21.2 (0.260) 5.9 (0.550)

DS(γ=λ∗) 5.149 (0.030) 1.119 (0.028) 5.9 (0.010) 5.7 (0.590) 23.2 (0.260) 11.6 (0.780)

DS(γ=λ∗/2) 5.006 (0.028) 0.961 (0.027) 5.9 (0.020) 8.0 (0.590) 22.9 (0.260) 14.0 (0.730)

DS(γ=0) 5.140 (0.038) 1.084 (0.037) 5.8 (0.030) 7.8 (0.640) 22.3 (0.270) 13.5 (0.780)

DS(γ=γ ∗) 5.020 (0.029) 1.009 (0.027) 5.9 (0.020) 8.1 (0.630) 22.9 (0.260) 14.1 (0.780)

(100,400) Oracle 4.421 (0.014) 0.390 (0.010) 6.0 (0.000) 0.0 (0.000) 36.0 (0.000) 0.0 (0.000)

LASSO 4.656 (0.017) 0.639 (0.015) 6.0 (0.000) 22.5 (1.160) 28.0 (0.190) 33.7 (1.710)

MCP 5.212 (0.027) 1.200 (0.026) 6.0 (0.000) 6.6 (0.380) 13.9 (0.140) 7.2 (0.390)

gLASSO 4.878 (0.021) 0.882 (0.018) 6.0 (0.000) 17.2 (0.680) 36.0 (0.000) 165.8 (6.190)

gBridge 5.028 (0.018) 0.746 (0.015) 5.5 (0.030) 0.0 (0.000) 21.4 (0.190) 7.1 (0.190)

gMCP 4.529 (0.027) 0.515 (0.024) 5.9 (0.040) 2.9 (0.420) 29.9 (0.350) 14.3 (0.890)

gExp 4.794 (0.017) 0.789 (0.013) 5.7 (0.010) 5.3 (0.340) 31.0 (0.220) 22.9 (0.590)

DS3(γ=2λ∗) 5.200 (0.030) 1.196 (0.028) 6.0 (0.000) 0.2 (0.090) 26.0 (0.190) 5.3 (0.240)

DS(γ=λ∗) 4.582 (0.017) 0.572 (0.013) 6.0 (0.000) 3.3 (0.450) 27.6 (0.190) 9.5 (0.630)

DS(γ=λ∗/2) 4.469 (0.015) 0.469 (0.011) 6.0 (0.000) 6.8 (0.550) 27.6 (0.190) 13.7 (0.710)

DS(γ=0) 4.491 (0.017) 0.485 (0.012) 6.0 (0.000) 8.1 (0.620) 27.3 (0.180) 14.9 (0.780)

DS(γ=γ ∗) 4.461 (0.015) 0.456 (0.011) 6.0 (0.000) 7.1 (0.610) 27.6 (0.190) 14.0 (0.770)

The numbers in parentheses are corresponding standard errors

they select groups well but fail to exclude irrelevant variables in the selected groups.
The gBridge often shows the best performance when K = 18 but too sparse when
K = 100. On the other hand, the DS methods has slightly smaller V.C than others
but much smaller V.IC for all cases, which shows the DS methods perform better than
other methods in variable selection.

To sum up, the DS methods and gBridge compete with each other, showing the
best performance in all measures, and in detail, the gBridge is the best when K = 18
but the DS methods is the best when K = 100. As a practical choice of γ in the DS
methods, we recommend to use a fixed constant for reducing computational cost, such
as γ ∈ {λ∗, λ∗/2} in the simulation. Too large γ such as γ = 2λ∗ does not work well
and thus we recommend to use γ = λ∗/2 in practice.

4.2 Ways of tuning parameter selection

The performance of penalized estimation depends on the choice of tuning para-
meters. We construct several theorems and corollaries that can be used to develop
some guide lines for choosing tuning parameters of the DS. For example, motivated
by the universal regularization parameter proposed by Zhang (2010), we may set

123



Doubly sparse penalty 1013

λ = σ {(2/n) log p}1/2 when ε is a Gaussian random variable with mean 0 and known
variance σ 2. This works as a method of group selection since the DS method is group
selection consistent. However, such a choice may performs bad in practice unless the
sample size is sufficiently large. Hence, we need to develop practical ways of selecting
tuning parameters that produce reasonable finite sample performance.

For this issue, we consider four different ways of tuning parameter selection. The
first method is to use independent validation sets as in our simulation studies assuming
that the whole sample size is moderately large. For comparison, we consider two ways
where the sample size of validation sets are 4n and n/2, which are denoted by V4n
and Vn/2. The second method is the k-fold cross validation and we consider k = 5
that is denoted by CV5. The use of validation sets and cross validation are based on
prediction accuracy hence often produce slightly overfitted models (Wang et al. 2007,
2009), but the most practical ways of tuning parameter selection. The other method
is the high-dimensional BIC criterion as in Wang et al. (2013) when σ 2 is unknown:
BICW = log(σ̂ 2) + {Cn(log p)/n}M̂ , where σ̂ 2 = ‖y − Xβ̂‖2/n, Cn is a sequence
diverges slowly, for example we use Cn = log(log n) in this study, and M̂ is the
number of variables included in the model.

Tables 3 and 4 present the simulation results, where the simulation settings are the
same as those used for Tables 1 and 2, and we only consider the case when K = 100
and n = 400 for comparison. It is easy to see that the models based on the V4n always
show the smallest PE and ME for all the methods, which is reasonable since the error
is a straightforward estimate of the test error. The BICW produces the worst results
having slightly larger PE than the other criteria butmuch largerME.However, in group
and individual variable selection, all themethods havemuch small G.IC andV.ICwhen
the BICW is used while G.C and V.C are slightly less than other criteria. Hence, the
BICW seems to be the best in group and variable selection although it produces higher
PE and ME, while other criteria show similar performance producing denser models
than the BICW . We note that, among the methods, the DS methods have the smallest
PE andMEwhen γ ∈ {λ∗/2, γ ∗} for almost all cases, regardless of the criteria, and all
the methods are quite invariant to the choice of tuning parameter selection when they
are based on the prediction. The Vn/2 and CV5 show the second and third performance
in PE and ME but the difference is not substantial compared with the V4n . This shows
that the Vn/2 and CV5 are simple but practical criteria. Further, we note that the V2/n
and CV5 perform similar to each other for all the methods, which indicates that one
may use small validation sets instead of the cross validation to reduce computational
cost. To sum up, we recommend to use the BICW for selection and Vn/2 or CV5
for prediction, and the DS methods based on these criteria perform quite well with
γ ∈ {λ∗/2, λ∗}.

4.3 Real data analysis

We analyze two real data sets:

• Ozone data: The Ozone data are popular real data set, which has been analyzed in
the literatures including Breiman and Friedman (1985) and Lin and Zhang (2006).
The data set is available from theR library ‘mlbench’ including short descriptions
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Table 3 Comparison of tuning parameter selection methods in Example 1

Method PE ME

BICW V4n Vn/2 CV5 BICW V4n Vn/2 CV5

gLASSO 7.161 4.915 4.922 4.955 2.636 0.901 0.914 0.950

gBridge 5.164 4.694 4.796 4.762 0.597 0.462 0.663 0.785

gMCP 5.021 4.484 4.505 4.525 0.951 0.459 0.484 0.492

gExp 6.129 4.747 4.797 4.918 2.159 0.735 0.781 0.872

DS3(γ=2λ∗) 5.304 5.088 5.090 5.093 1.223 1.025 1.025 1.047

DS(γ=λ∗) 4.774 4.485 4.492 4.498 0.675 0.465 0.466 0.486

DS(γ=λ∗/2) 4.729 4.375 4.388 4.398 0.624 0.367 0.373 0.371

DS(γ=0) 4.681 4.407 4.425 4.436 0.617 0.387 0.400 0.408

DS(γ=γ ∗) 4.700 4.367 4.389 4.409 0.618 0.360 0.382 0.376

Method G.C G.IC

BICW V4n Vn/2 CV5 BICW V4n Vn/2 CV5

gLASSO 4.89 6.00 6.00 6.00 0.00 19.54 18.32 16.12

gBridge 5.43 5.93 5.93 5.39 0.00 0.00 0.00 0.12

gMCP 5.72 5.99 5.99 5.99 0.00 1.74 2.35 0.79

gExp 4.29 5.84 5.80 5.62 0.10 5.54 5.38 3.44

DS3(γ=2λ∗) 5.93 6.00 6.00 6.00 0.00 0.29 0.29 0.21

DS(γ=λ∗) 5.96 6.00 6.00 6.00 0.01 2.91 2.83 2.11

DS(γ=λ∗/2) 5.95 6.00 6.00 6.00 0.03 6.33 6.78 4.86

DS(γ=0) 5.98 6.00 6.00 6.00 0.07 7.60 8.75 5.33

DS(γ=γ ∗) 5.96 6.00 6.00 6.00 0.05 6.68 8.07 4.90

Method V.C V.IC

BICW V4n Vn/2 CV5 BICW V4n Vn/2 CV5

gLASSO 13.60 18.00 18.00 18.00 27.20 204.00 193.56 174.54

gBridge 14.71 16.39 14.39 15.05 8.37 11.88 11.85 10.80

gMCP 14.32 16.47 16.47 16.37 8.70 21.81 23.19 19.38

gExp 10.05 16.22 16.04 15.36 14.49 37.77 37.47 34.31

DS3(γ=2λ∗) 14.36 15.48 15.49 15.43 5.55 7.37 7.29 7.18

DS(γ=λ∗) 14.93 16.12 16.09 16.06 6.87 12.10 11.98 11.35

DS(γ=λ∗/2) 14.86 16.10 16.07 16.09 6.86 16.22 16.68 14.85

DS(γ=0) 15.09 15.97 15.97 15.96 6.99 17.81 19.20 15.04

DS(γ=γ ∗) 14.93 16.07 16.05 16.08 6.73 16.67 18.19 14.88

of 3 categorical and 9 continuous independent variables for the dependent vari-
able ‘daily maximum one hour average ozone reading’. We drop the variable
‘temperature of measured at El Monte, CA’ since it has too many missing
values and exclude 36 observations including missing values. We keep all the
categorical variables except ‘day of week’.
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Table 4 Comparison of tuning parameter selection methods in Example 2

Method PE ME

BICW V4n Vn/2 CV5 BICW V4n Vn/2 CV5

gLASSO 7.054 4.870 4.878 4.906 2.551 0.869 0.882 0.917

gBridge 5.004 4.476 5.028 4.967 0.915 0.645 0.746 0.707

gMCP 5.140 4.510 4.529 4.550 1.009 0.504 0.515 0.535

gExp 6.074 4.769 4.794 4.951 1.880 0.749 0.789 0.888

DS3(γ=2λ∗) 5.648 5.199 5.200 5.210 1.499 1.196 1.196 1.193

DS(γ=λ∗) 5.047 4.574 4.582 4.585 0.965 0.565 0.572 0.574

DS(γ=λ∗/2) 4.964 4.456 4.469 4.473 0.872 0.451 0.469 0.466

DS(γ=0) 4.933 4.479 4.491 4.503 0.872 0.467 0.485 0.493

DS(γ=γ ∗) 4.946 4.445 4.461 4.478 0.880 0.449 0.456 0.480

Method G.C G.IC

BICW V4n Vn/2 CV5 BICW V4n Vn/2 CV5

gLASSO 4.81 6.00 6.00 6.00 0.00 18.50 17.28 15.60

gBridge 5.14 5.89 5.49 5.54 0.00 0.00 0.00 2.36

gMCP 5.62 6.00 5.99 6.00 0.00 2.19 2.88 1.14

gExp 4.29 5.80 5.74 5.48 0.16 5.90 5.34 3.66

DS3(γ=2λ∗) 5.78 6.00 6.00 5.99 0.00 0.23 0.23 0.15

DS(γ=λ∗) 5.90 6.00 6.00 6.00 0.01 2.83 3.31 2.24

DS(γ=λ∗/2) 5.92 6.00 6.00 6.00 0.02 6.10 6.82 5.07

DS(γ=0) 5.94 6.00 6.00 6.00 0.03 7.62 8.13 5.57

DS(γ=γ ∗) 5.93 6.00 6.00 6.00 0.02 6.32 7.14 5.23

Method V.C V.IC

BICW V4n Vn/2 CV5 BICW V4n Vn/2 CV5

gLASSO 26.56 36.00 36.00 36.00 13.28 176.64 165.84 151.98

gBridge 24.11 28.40 21.39 26.99 5.09 7.07 7.06 20.88

gMCP 23.93 29.56 29.96 29.12 5.24 13.06 14.25 11.24

gExp 18.58 31.41 31.03 29.82 8.11 23.84 22.89 19.93

DS3(γ=2λ∗) 22.47 26.01 26.04 25.95 3.89 5.24 5.29 5.24

DS(γ=λ∗) 23.91 27.67 27.64 27.62 4.56 8.96 9.53 8.42

DS(γ=λ∗/2) 24.16 27.68 27.59 27.61 4.56 12.89 13.71 11.86

DS(γ=0) 24.20 27.34 27.27 27.23 4.56 14.47 14.94 12.21

DS(γ=γ ∗) 23.96 27.64 27.55 27.54 4.46 13.07 14.02 12.00

• TRIM data: We use the data set in Scheetz et al. (2006), which consists of gene
expression levels of 18, 975 genes obtained from 120 rats. The main objective of
the analysis is to find genes that are correlated with the TRIM32 gene, known to
cause Bardet–Biedl syndrome. As was done Huang et al. (2008), we first select
3000 genes with the largest variance in expression levels and then choose top 100
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genes that have the largest absolute correlation with TRIM32 among the selected
3000 genes.

Consider a linear regression model with K predictive variables for the analysis:

y = wTα + ε, (15)

wherew = (w1, . . . , wK )T andα ∈ R
K is a regression coefficient. A problemof using

the linear model is that the relation of wk to y may not be linear, in particular when
the empirical distribution of wk is highly skewed. An alternative approach is to use an
additive model. For the kth component wk , let −∞ < ck0 < ck1 < · · · < ckpk < ∞
be a given increasing sequence of pk real numbers such that the support of wk is
covered in [ck0, ckpk ]. Then we have an additive model with piecewise linear bases:

y = β0 +
K∑

k=1

pk∑

j=1

βk j xk j (wk) + ε, (16)

where xk1(wk) = wk and xk j (wk) = (wk − ck( j−1))+ for 2 ≤ j ≤ pk . The DS
penalty can delete unnecessary components and at the same time delete unnecessary
bases inside each component, which is new for the additive model.

We consider the estimators in the simulation studies for the additive model (16),
and then add two more estimators for comparison, the LASSO andMCP for the linear
model (15), denoted by LASSO0 and MCP0. We only consider the DS methods with
γ ∈ {λ∗, λ∗/2} which perform well as shown in the simulations, and compare two
ways of selecting tuning parameters, the BICW and CV5. We let pk be either 5 or 9,
and ck j are selected so that the numbers of observations in (ck( j−1), ck j ] are roughly
equal, and then we transform all the continuous variables into pk new variables.

Tables 5 and 6 present averages of prediction errors (PE), numbers of selected
groups (#G) and variables (#V), based on 100 random partitions: training (70%) and
test (30%). First of all, the estimated models from the additive model show smaller
PE than those from the linear model for all cases. The models selected by the BICW

tend to include less groups and variables than CV5, which may cause low prediction
accuracies for all the methods. We notice that the gLASSO shows the largest PE and
#V for all cases, and selects the null model for TRIM data when the BICW is used.

Among thegroup andvariables selectionmethods, theDSmethods have the smallest
PE and the gBridge is the second best for both cases. The DS methods produce denser
models than the others for TRIM data, and the difference is much clearer when we
use CV5. However, for Ozone data, the gMCP and gExp selects much more variables
than the gBridge and DS methods especially when we use CV5. For example, the
gMCP and gExp include about 7 and 5 variables in each selected group, while the DS
methods include 2 variables only, keeping better PE. For the reference, we give partial
fits of the 9 selected variables by the DS with γ = λ∗/2 based on the CV5 for Ozone
data in Fig. 2. Further, we note that the DS methods are less sensitive to the choice
of tuning parameter selection method as observed in the simulation studies than the
other methods. Based on these results, we conclude that the additive model is a useful
alternative to the linear model, and the DS penalty is well suited for this model.
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Table 5 Results for Ozone data

pk Method BICW CV5

PE #G #V PE #G #V

5 LASSO0 20.867 (0.249) 5.7 (0.101) 5.9 (0.133) 20.341 (0.225) 7.2 (0.064) 8.6 (0.159)

MCP0 21.008 (0.257) 3.7 (0.098) 3.7 (0.111) 20.812 (0.256) 4.9 (0.161) 5.3 (0.228)

LASSO 17.103 (0.229) 8.8 (0.150) 16.2 (0.415) 15.697 (0.211) 10.8 (0.038) 27.5 (0.455)

MCP 17.664 (0.245) 7.9 (0.170) 11.5 (0.275) 17.265 (0.214) 9.4 (0.145) 16.3 (0.571)

gLASSO 21.139 (0.463) 4.8 (0.203) 24.6 (1.065) 16.143 (0.201) 9.5 (0.096) 49.7 (0.549)

gBridge 16.973 (0.234) 5.3 (0.103) 12.5 (0.254) 16.363 (0.226) 6.7 (0.116) 16.3 (0.332)

gMCP 20.033 (0.253) 3.2 (0.101) 10.8 (0.543) 16.916 (0.230) 6.7 (0.132) 32.4 (0.627)

gExp 17.320 (0.254) 5.4 (0.094) 15.1 (0.336) 16.569 (0.204) 6.3 (0.120) 19.7 (0.486)

DS(γ=λ∗) 16.636 (0.230) 6.8 (0.137) 12.1 (0.223) 15.843 (0.212) 8.8 (0.161) 18.0 (0.496)

DS(γ=λ∗/2) 16.807 (0.237) 7.0 (0.142) 12.3 (0.242) 16.068 (0.224) 8.6 (0.155) 17.4 (0.549)

9 LASSO0 20.867 (0.249) 5.7 (0.101) 5.9 (0.133) 20.341 (0.225) 7.2 (0.064) 8.6 (0.159)

MCP0 21.008 (0.257) 3.7 (0.098) 3.7 (0.111) 20.812 (0.256) 4.9 (0.161) 5.3 (0.228)

LASSO 17.387 (0.230) 8.4 (0.168) 15.5 (0.480) 16.080 (0.230) 10.7 (0.050) 27.0 (0.813)

MCP 17.880 (0.267) 7.8 (0.156) 11.6 (0.268) 17.631 (0.297) 8.8 (0.187) 14.9 (0.582)

gLASSO 25.087 (0.610) 3.8 (0.159) 32.4 (1.362) 17.257 (0.240) 8.6 (0.134) 74.0 (1.148)

gBridge 16.798 (0.251) 5.4 (0.091) 13.4 (0.257) 16.641 (0.241) 5.9 (0.109) 15.3 (0.382)

gMCP 22.413 (0.296) 1.5 (0.116) 5.2 (0.661) 18.357 (0.268) 5.0 (0.143) 35.9 (1.282)

gExp 19.112 (0.275) 4.1 (0.130) 12.2 (0.662) 17.583 (0.255) 5.7 (0.117) 26.2 (0.991)

DS(γ=λ∗) 16.844 (0.243) 6.8 (0.134) 11.9 (0.262) 16.151 (0.231) 8.6 (0.155) 18.1 (0.595)

DS(γ=λ∗/2) 16.981 (0.243) 7.1 (0.137) 12.4 (0.271) 16.362 (0.246) 8.3 (0.158) 16.7 (0.565)

The numbers in parentheses are corresponding standard errors

Table 6 Results for TRIM data

pk Method BIC CV5

PE #G #V PE #G #V

5 LASSO0 0.577 (0.015) 0.6 (0.117) 0.6 (0.117) 0.368 (0.008) 12.6 (0.363) 12.6 (0.363)

MCP0 0.442 (0.011) 2.3 (0.100) 2.3 (0.100) 0.433 (0.010) 3.6 (0.163) 3.6 (0.163)

LASSO 0.586 (0.014) 0.5 (0.119) 0.5 (0.119) 0.354 (0.009) 20.0 (0.570) 23.3 (0.744)

MCP 0.553 (0.032) 6.5 (0.445) 6.7 (0.479) 0.435 (0.013) 5.2 (0.253) 5.2 (0.256)

gLASSO 0.613 (0.013) 0.0 (0.000) 0.0 (0.000) 0.383 (0.008) 20.2 (0.610) 101.2 (3.050)

gBridge 0.430 (0.012) 1.9 (0.107) 2.7 (0.168) 0.430 (0.151) 2.7 (0.128) 4.0 (0.211)

gMCP 0.457 (0.012) 1.5 (0.086) 1.7 (0.119) 0.483 (0.015) 2.9 (0.247) 9.9 (1.335)

gExp 0.445 (0.011) 2.8 (0.180) 3.4 (0.249) 0.413 (0.015) 6.1 (0.201) 8.6 (0.331)

DS(γ=λ∗) 0.420 (0.010) 3.3 (0.153) 3.3 (0.156) 0.356 (0.008) 11.8 (0.535) 12.3 (0.596)

DS(γ=λ∗/2) 0.415 (0.011) 4.0 (0.233) 4.1 (0.235) 0.396 (0.010) 9.6 (0.769) 10.1 (0.880)

9 LASSO0 0.577 (0.015) 0.6 (0.117) 0.6 (0.117) 0.368 (0.008) 12.6 (0.363) 12.6 (0.363)

MCP0 0.442 (0.011) 2.3 (0.100) 2.3 (0.100) 0.433 (0.010) 3.6 (0.163) 3.6 (0.163)

LASSO 0.595 (0.014) 0.4 (0.096) 0.4 (0.096) 0.368 (0.010) 20.6 (0.587) 24.9 (0.825)
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Table 6 continued

pk Method BIC CV5

PE #G #V PE #G #V

MCP 0.560 (0.033) 5.2 (0.399) 5.3 (0.420) 0.434 (0.011) 5.4 (0.318) 5.4 (0.322)

gLASSO 0.613 (0.013) 0.0 (0.000) 0.0 (0.000) 0.407 (0.010) 20.8 (0.801) 187.1 (7.204)

gBridge 0.430 (0.010) 1.5 (0.077) 2.1 (0.129) 0.425 (0.011) 2.0 (0.104) 3.0 (0.194)

gMCP 0.462 (0.012) 1.6 (0.087) 1.7 (0.105) 0.481 (0.020) 2.2 (0.136) 7.9 (1.097)

gExp 0.464 (0.012) 2.2 (0.146) 2.5 (0.187) 0.435 (0.016) 5.3 (0.211) 8.2 (0.447)

DS(γ=λ∗) 0.426 (0.011) 4.1 (0.188) 4.3 (0.190) 0.357 (0.008) 12.8 (0.671) 13.5 (0.761)

DS(γ=λ∗/2) 0.405 (0.011) 4.9 (0.213) 5.1 (0.216) 0.379 (0.010) 11.6 (0.794) 12.6 (0.958)

The numbers in parentheses are corresponding standard errors
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Fig. 2 Partial fits on selected variables of ozone data when pk = 9: month (month), temperature measured
(tem), inversion base temperature (ibt), visibility measured (vis), pressure gradient (dpg), pressure height
(vh), inversion base height (ibh), humidity (hum), wind speed (wind)

5 Concluding remarks

There are two regularization parameters λ and γ in the DS penalty, and it may be
computationally demanding to select them simultaneously. For this issue, we can
consider an alternative: choosing λ by using the CV or BIC-type criteria after fixing γ .
Although we did not pursue theoretical properties further in this paper, the DSmethod
performs quite well according to these two steps once a γ is given appropriately. We
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recommend, for example, to use a γ around the optimal λ∗ that is obtained from the
LASSO in practice.

Wehave shown empirically that the additivemodelwith sparse penalties is a promis-
ing alternative to linearmodels. However, the choice of the number of knots, pk , should
be done carefully. When pk is too small, the model may not capture the functional
relation properly. On the other hand, when pk is too large, the corresponding design
matrix may not be well posed. We leave the optimal choice of pk as future work.
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Appendix

Without loss of generality, we assume that the covariates are standardized so that
XT
k jXk j/n = 1 for all k ≤ K and j ≤ pk . Further, we use β̂

o
instead of β̂

o
(γ ) for

simplicity.

Proof of Lemma 1. From the first order optimality conditions (Bertsekas 1999), the
necessary conditions follow directly. ��
Proof of Lemma 2. It suffices to show that there exists a δ > 0 such that Qλ,γ (β) ≥
Qλ,γ (β̂) for all β ∈ B(β̂, δ), where B(β̂, δ) = {β : ‖β − β̂‖1 ≤ δ}. From the

convexity of the sum of squared residuals, Qλ,γ (β) − Qλ,γ (β̂) ≥ ∑K
k=1 χk , where

χk = Dk(β̂)T(βk − β̂k) + J (k)
λ,γ (‖βk‖) − J (k)

λ,γ (‖β̂k‖).

First, consider cases where k ∈ L(β̂). Let δk = ‖β̂k‖1−apk(λ−γ ) then ‖βk‖1/pk >

a(λ − γ ) for all βk ∈ B(β̂k, δk). Hence, the first and second conditions in Lemma 1
imply

χk ≥ −γ (‖βk‖1 − ‖β̂k‖1) + γ (‖βk‖1 − ‖β̂k‖1) = 0.

Next, consider cases where k ∈ N (β̂). Let δk = min{ωk, a(λ − γ )}, where ωk =
2a(λ − ‖Dk(β̂)‖∞). Then ‖βk‖1 < ωk for all βk ∈ B(β̂k, δk), which implies

χk ≥ ( − ‖Dk(β̂)‖∞ − ‖βk‖1/2a + λ
)‖βk‖1 ≥ 0.

Hence Qλ,γ (β) ≥ Qλ,γ (β̂) for all β ∈ B(β̂,mink≤K δk),which completes the proof.
��
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Proof of Lemma 3. Assume that there exists another local minimizer β̃ ∈ �λ,γ and

β̃ �= β̂. Let βh = β̃ + h(β̂ − β̃) = hβ̂ + (1 − h)β̃ for 0 < h < 1, then we have

‖y − Xβh‖22−‖y − Xβ̃‖22 = −2nhD(β̂)T(β̃ − β̂) + (h2−2h)(β̃−β̂)TXTX(β̃ − β̂),

by using the equality,

‖y − Xβ‖22 − ‖y − Xβ̂‖22 = 2nD(β̂)T(β − β̂) + (β − β̂)TXTX(β − β̂),

for any β ∈ R
p. Hence, it follows that

Qλ,γ (βh) − Qλ,γ (β̃) ≤ h
K∑

k=1

χk(h) + h2(β̃ − β̂)T(XTX/n)(β̃ − β̂)/2,

where

χk(h) = −Dk(β̂)T(β̃k − β̂k) − ρmin‖β̃k − β̂k‖22 + {
J (k)
λ,γ (‖βh

k‖1) − J (k)
λ,γ (‖β̃k‖1)

}
/h.

First, consider cases where k ∈ L(β̂). If k ∈ N (β̃) then,

χk(h) = Dk(β̂)Tβ̂k − ρmin‖β̂k‖22 + J (k)
λ,γ (h‖β̂k‖1)/h

= −
∑

β̂k j �=0

γ sign(β̂k j )β̂k j − ρmin‖β̂k‖22 + λ

≤ ‖β̂k‖1(−ρmin‖β̂k‖1/pk + λ − γ ) < 0,

from the condition ‖β̂k‖1/pk > (λ − γ )/ρmin. If k ∈ L(β̃) then,

χk(h) < −Dk(β̂)T(β̃k − β̂k) + {
J (k)
λ,γ (‖βh

k‖1) − J (k)
λ,γ (‖β̃k‖1)

}
/h

≤ γ (‖β̃k‖1 − ‖β̂k‖1) + γ (‖β̂k‖1 − ‖β̃k‖1) = 0,

unless β̃k = β̂k . If k ∈ S(β̃), we have

sup
k∈S(β̃)

{
ρmin‖β̃k‖1/pk + ∇ Jλ,γ (‖β̃k‖1)

} ≤ max
{
λ, ρmina(λ − γ ) + γ

}
,

which implies

χk(h) ≤ γ (‖β̃k‖1 − ‖β̂k‖1) − ρmin‖β̃k − β̂ j‖22 + ∇ Jλ,γ (‖β̃k‖1)(‖β̂k‖1 − ‖β̃k‖1)
≤ (‖β̂k‖1 − ‖β̃k‖1)

{ − γ − ρmin(‖β̂k‖1 − ‖β̃k‖1)/pk + ∇ Jλ,γ (‖β̃k‖1)
}

≤ (‖β̂k‖1 − ‖β̃k‖1)
{ − ρmin‖β̂k‖1/pk + max

{
λ − γ, ρmina(λ − γ )

}}
< 0,
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unless ‖β̃k‖1 = ‖β̂k‖1. Second, consider cases where k ∈ N (β̂). It is easy to see that

χk(h) ≤ ‖Dk(β̂)‖∞‖β̃k‖1 − ρmin‖β̃k‖22 + {
J (k)
λ,γ (‖βh

k‖1) − J (k)
λ,γ (‖β̃k‖1)

}
/h

≤ ‖β̃k‖1
{‖Dk(β̂)‖∞ − ρmin‖β̃k‖1/pk − ∇ Jλ,γ (‖β̃k‖1)

}
< 0,

unless ‖β̃k‖1 = 0, since

inf
k∈A(β̃)

{
ρmin‖β̃k‖1/pk + ∇ Jλ,γ (‖β̃k‖1)

} ≥ min
{
λ, aρmin(λ − γ ) + γ

}
.

Hence, we finally have
∑K

k=1 χk(h) < 0, unless ‖β̃k‖1 = ‖β̂k‖1 for all k ≤ K . This
implies that there exists a δ > 0 sufficiently small such that Qλ,γ (βh)−Qλ,γ (β̃) < 0

for all h ∈ (0, δ) unless ‖β̃k‖1 = ‖β̂k‖1 for all k ≤ K . Hence, β̂ is the unique local
minimizer. ��

Proof of Lemma 1. Let Ao = {(k, j) : β̂o
k j �= 0}. From Lemma 2, it suffices to show

that P(E1 ∩ E2 ∩ E3) ≥ 1 − P1 − P2 − P3, where

E1 = {|Ao ∪ A∗| ≤ (α0 + 1)|A∗|
}
,

E2 = {
mink∈A(β∗)‖β̂o

k‖1/pk > a(λ − γ )
}
,

E3 = {
maxk∈N (β∗)‖Dk(β̂)‖∞ < λ

}
.

First consider the event E1. From Corollary 2 of Zhang and Zhang (2012),
we have F ⊂ E1 provided that φmax(α0|A∗|)/α0 ≤ ηmin/36, where F ={
maxk∈A(β∗) ‖XT

k ε/n‖∞ ≤ γ /2
}
and

ηmin = inf
υ∈R|G∗|:‖υ Ac∗‖1≤3‖υ A∗‖1

{
(|A∗|/n)‖XT

G∗XG∗υ‖∞/‖υ‖1
}

is the cone invertible factor in Ye and Zhang (2010). On the other hand, inequality (7)
of Zhang and Zhang (2012) proves ηmin ≥ δ2min/16, where

δmin = inf
υ∈R|G∗|:‖υ Ac∗‖1≤3‖υ A∗‖1

{
(1/

√
n)‖XG∗υ‖2/‖υ A∗‖2

}

is the restricted eigenvalue in Bickel et al. (2009) that satisfies δmin ≥ √
κmin(1 −

3
√

φmax(α0|A∗|)/α0κmin). Hence, (C2) implies that F ⊂ E1 and

P(Ec
1) ≤ P(Fc) ≤

∑

k∈A(β∗)

pk∑

j=1

P
(|XT

k jε/n| > γ/2
)

≤ c0|G∗| exp(−d0nγ 2/4) = P1.
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Second, consider the event E2. From the first order optimality conditions (Rosset and
Zhu 2007), β̂

o
satisfies

XT
k j (y − Xβ̂

o
)/n = γ sign(β̂o

k j ), β̂o
k j �= 0,

|XT
k j (y − Xβ̂

o
)/n| ≤ γ, β̂o

k j = 0,
(17)

for all (k, j) ∈ G∗. Let S = Ao ∪ A∗ and β̂
o
S be the vector that consists of elements

β̂o
k j for (k, j) ∈ S. On the event E1, (C2) implies

β̂
o
S − β∗

S = �−1
S {−XT

S(y − XSβ̂
o
S)/n + XT

Sε/n}, (18)

where �S = XT
SXS/n. Let uk j be a vector of length |S| ≤ (α0 +1)|A∗| whose unique

nonzero element that corresponds to β∗
k j is 1 and the others are 0. Then, from (18), we

can write

β̂o
k j − β∗

k j = uTk j (β̂
o
S − β∗

S) = ηk j + vTk jε,

where ηk j = −uTk j�
−1
S XT

S(y − XSβ̂
o
S)/n and vk j = XS�

−1
S uk j/n. Note that

|ηk j | ≤ ‖uk j‖2‖XT
S (y − XSβ̂

o
S)/n‖2/κmin ≤ γ

√|S|/κmin

and

‖vk j‖22 = uTk j�
−1
S XT

SXS�
−1
S uk j/n2 ≤ 1/(nκmin).

From (C1), it is easy to see that

PE1

(|β̂o
k j − β∗

k j | ≥ ‖β∗
k‖1/pk − a(λ − γ )

) ≤ P
(|ηk j | + |vTk jε| ≥ m∗ − a(λ − γ )

)

≤ P
(|vTk jε| ≥ m∗ − a(λ − γ ) − γ

√|S|/κmin
)

≤ c0 exp
( − d0κminnξ∗2

λ,γ

)
,

where PE1(A) = P(E1 ∩ A). Hence, by using the triangular inequality ‖β̂o
k‖1 ≥

‖β∗
k‖1 − ‖β̂o

k − β∗
k‖1, we have

PE1

(
Ec
2

) ≤
∑

k∈A(β∗)
PE1

(‖β̂o
k − β∗

k‖1/pk ≥ ‖β∗
k‖1/pk − a(λ − γ )

)

≤
∑

(k, j)∈S
P
(|β̂o

k j − β∗
k j | ≥ ‖β∗

k‖1/pk − a(λ − γ )
)

≤ c0(α0 + 1)|A∗| exp
( − d0κminnξ∗2

λ,γ

) = P2. (19)
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Third, consider the event E3. From (18), we can write

XT
k j (y − XSβ̂

o
S)/n = XT

k j (XSβ
∗
S − XSβ̂

o
S + ε)/n = ζk j + wT

k jε,

for all (k, j) ∈ S, where ζk j = XT
k jXS�

−1
S XT

S (y−XSβ̂
o
S)/n

2, wk j = (I−�S)Xk j/n

and �S = XS(XT
SXS)

−1XT
S . Note that from (17),

|ζk j | = |XT
k jXS�

−1
S XT

S (y − XSβ̂
o
S)/n

2|
≤ ‖�−1/2

S XT
SXk j/n‖2‖�−1/2

S XT
S(y − XSβ̂

o
S)/n‖2

≤ ‖�SXk j/
√
n‖2‖�−1/2

S XT
S(y − XSβ̂

o
S)/n‖2

≤ γ
√|S|/κmin

and ‖wk j‖22 = XT
k j (I − �S)Xk j/n2 ≤ ‖Xk j‖22/n2 = 1/n. Hence, from (C1),

PE1

(
Ec
3

) ≤
∑

k∈N (β∗)

pk∑

j=1

P
(|XT

k j (y − Xβ̂
o
)/n| ≥ λ

)

≤
∑

k∈N (β∗)

pk∑

j=1

P
(|wT

k jε| ≥ λ − γ
√|S|/√κmin

)

≤ c0(p − |G∗|) exp
( − d0nζ ∗2

λ,γ

) = P3. (20)

Hence, using P(E1∩E2∩E3) ≥ 1−P(Ec
1)−P(E1∩Ec

2)−P(E1∩Ec
3), we complete

the proof. ��
Proof of Lemma 2. Suppose that there is another local minimizer β̃ ∈ �λ,γ ((α0 +
1)|A∗|) such that β̂o �= β̃. Let S = {(k, j) : β̃k j �= 0}∪ Ao ∪ A∗. By replacingX with

XS in the proof of Lemma 3, we can see that if β̂
o
satisfies conditions in Lemma 3

then β̂
o = β̃. Since |S| ≤ 2(α0 + 1)|A∗|, we have λmin(XT

SXS/n) ≥ κmin from (C2).
Hence it suffices to show that

PE1

(
min

k∈A(β∗)
‖β̂o

k‖1/pk ≤ max{a, 1/κmin}(λ − γ )
) ≤ P2

PE1

(
maxk∈N (β∗)‖Dk(β̂

o
)‖∞ < min

{
λ, aκmin(λ − γ ) + γ

}) ≤ P3,

which is similar to proofs of (19) and (20) in the proof of Theorem 1. ��
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