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Abstract In parametric statistics, confidence bands for continuous distribution (quan-
tile) functions may be constructed by unifying the graphs of all distribution (quantile)
functions corresponding to parameters lying in some confidence region. It is then desir-
able that the coverage probabilities of both, band and region, coincide, e.g., to prevent
from wide and less informative bands or to transfer the property of unbiasedness;
this is ensured if the confidence region is exhaustive. Properties and representations of
exhaustive confidence regions are presented. In location-scale families, the property of
some confidence region to be exhaustive depends on the boundedness of the supports
of the distributions in the family. For unbounded, one-sided bounded and bounded
supports, characterizations of exhaustive confidence regions are derived. The results
are useful to decide whether the trapezoidal confidence regions based on the standard
pivotal quantities are exhaustive and may serve to construct exhaustive confidence
regions in (log-)location-scale models.

Keywords Comprehensive convex hull · Confidence band · Confidence region ·
Coverage probability · Location-scale family · Simultaneous confidence intervals

1 Introduction

In applications of parametric statistical models as, for instance, lifetime experiments
in reliability, one is often interested in estimating the unknown cumulative distribution
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function (cdf) of some continuous quantity based on a given data set, rather than in
estimating the underlying parameters themselves. For instance, the task to be solved
might be to derive a random set in the (x, y)-plane formed like a band which con-
tains the entire true cdf with some specified probability. In the literature, these sets
are usually referred to as confidence bands, and several procedures are proposed for
their construction by making use of the assumed parametric structure of the model in
different sense. One method is presented by Kanofsky and Srinivasan (1972) using
so-called Kolmogorov–Smirnov type statistics which are defined as the supremum
norm of the difference of the true and estimated cdf, where the latter is obtained by
plug-in of some estimator for the parameter. If such a statistic then forms a pivotal
quantity, it may serve to construct a confidence band for the true cdf of a desired
level upon choosing respective quantiles of its distribution. The resulting confidence
band is centered around the estimated cdf and has the same vertical width all over the
abscissa, even in the tails of the distribution. Hence, it will include points in the plane
which do not lie on any graph of some cdf being entirely contained in the confidence
band. Thus, this approach will usually require some subsequent procedure to remove
these points from the confidence band. The detailed method along with results for the
normal distribution can be found in the articles of Kanofsky and Srinivasan (1972) and
Srinivasan and Wharton (1973, 1976). The case of the Weibull distribution is studied
by Srinivasan and Wharton (1975).

In this paper, we focus on the approach ofKanofsky (1968a, b) to the construction of
confidence bands for continuous cdfs, which is based on the use of (joint) confidence
regions for the underlying parameters. Here, the confidence band for the true cdf is
obtained by unifying the graphs of all cdfs corresponding to parameters lying in the
confidence region for the true parameter. In contrast to the approach via Kolmogorov–
Smirnov type statistics, the method does not require any ‘cut-away-procedure’ applied
to the resulting confidence band. Moreover, it is evident from the construction that
the confidence band will contain the true cdf at least with the probability that the true
parameter lies in the confidence region. It is then of some interest to guarantee equal
coverage probabilities of both, confidence band and region, which brings along several
pleasant properties as we will point out in Sect. 2.1 in detail. Obviously, this is met if,
with probability 1, no parameter lying outside the confidence region corresponds to a
cdf whose graph is entirely covered by the confidence band, in the case of which the
confidence region is called ‘exhaustive’ (see Kanofsky 1968b). In general, i.e., without
additional structural model assumptions, it will be difficult to decide whether a given
confidence region is exhaustive or not. In the location-scale (l-s) family, however, this
problem is manageable, and there are results in the literature concerning the general
or particular l-s families which are summarized in what follows.

For the l-s family generated by the cdf F , say, Kanofsky (1968b) states that convex
confidence regions will often be exhaustive and that this property depends on the strict
monotonicity of F : for the class of normal distributions with support supp(F) = R =
(−∞,∞), every convex confidence region is exhaustive, whereas this is not generally
the case for distribution families with range parameters as, e.g., the two-parameter
exponential distribution. These two particular l-s families are extensively studied by
Kanofsky (1968a) and Srinivasan et al. (1975), where goodness criteria of confidence
bands are also discussed. Based on some elliptically shaped confidence region, Cheng
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and Iles (1983) construct confidence bands for the cdf in the l-s family, and the normal
and Gumbel distribution are treated in detail. Therein, at the end of Sect. 3.1, it is
stated that the considered confidence region is exhaustive. The proof of this statement,
however, is essentially based on the fact that supp(F) = R (as it is the case for the
two examples), which seems to be a missing assumption, here. The authors, moreover,
discuss the construction of confidence bands for the cdf of the log-normal andWeibull
distributions, which form particular log-location-scale families. In the study by Cheng
and Iles (1988), the method is extended to the construction of one-sided confidence
bands. With a focus on the construction of confidence bands for the quantile function
(qf), Satten (1995) gives geometrical arguments why convex and compact confidence
regions are exhaustive in the l-s family, which require the additional assumption that
supp(F) = R. It is also described how to obtain a confidence band for the cdf from
one for the qf. In Czarnowska and Nagaev (2001, Section 3), confidence bands for
the qf in the l-s family are derived which are obtained from (compact) confidence
regions with minimum Lebesgue measure (among all confidence regions based on
the same pivotal quantity). In case of supp(F) = R, the authors prove that these
(optimal) confidence regions are exhaustive provided that they are convex. Moreover,
they state that if supp(F) has at least one finite boundary point, this conclusion is
not true any longer and the exact confidence level of the band then coincides with
that of a certain convex superset of the (optimal) confidence region. These findings are
illustrated bymeans of the normal, two-parameter exponential and continuous uniform
distribution for which explicit expressions are presented (see Czarnowska and Nagaev
2001, Sections 4–6). Following the approach of Cheng and Iles (1983, 1988), Jeng and
Meeker (2001) compare a variety of confidence bands for the cdf in the l-s family based
on confidence regions obtained from either Wald or likelihood ratio statistics, where
censored data, bootstrap methods and the relation to the corresponding confidence
bands for the qf are also discussed (cf. Escobar et al. 2009). Result 2 in Appendix A,
therein, states that convex confidence regions are exhaustive in the l-s family, where
the assumption supp(F) = R is implicitly used in the proof. Likewise, this additional
assumption is required in the work of Hong et al. (2010) who show that the convex
hull of a compact confidence region is exhaustive in this l-s family (see the proof in
the appendix, therein). Finally, we refer to Frey et al. (2009) for the construction of a
confidence band with minimum area for the cdf of a normal distribution, the method
described may also be applied to other l-s families.

Based on the existing literature on confidence bands for the cdf and qf in the l-s
family, there seems to be a need for clarification which confidence regions are indeed
exhaustive guaranteeing equal coverage probabilities of the associated bands, and how
this property depends on the support of F , the specified standard cdf in the family. This
is the main scope of this article, the remaining part of which is organized as follows.

In Sect. 2, the concept of the exhaustive (confidence) set is introduced for a para-
metric family of continuous cdfs. The methodology along with motivational aspects
for the construction of confidence bands for the cdf via confidence regions for the para-
meters is presented (Sect. 2.1). Elementary properties of exhaustive sets are shown
(Sect. 2.2), and a result is established which enables to make use of the findings for the
construction of confidence bands for qfs as well (Sect. 2.3). In Sect. 3, characteriza-
tions of exhaustive sets for the l-s family are derived, where a case distinction turns out
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to be required regarding the boundedness of the supports of the cdfs in the family. An
example is presented first which demonstrates that a (compact and) convex set is not
exhaustive in the l-s family, in general. We then give a rigorous proof of the known fact
that compact and convex sets are exhaustive if the support of the cdfs in the l-s family
is the full real line (Sect. 3.1) and, moreover, provide characterizations of exhaustive
sets subject to the case of one- or two-sided bounded supports (Sects. 3.2 and 3.3).
In Sect. 4, we summarize our findings and illustrate the main results by means of the
standard trapezoidal confidence regions for the l-s parameter.

2 Confidence bands for a continuous cdf based on confidence regions for
the parameters

Let � ⊆ R
k be a non-empty set of parameters (k-dimensional vectors) and F = {Fϑ :

ϑ ∈ �} be a parametric family of continuous cdfs (on R). For ϑ ∈ �, the support of
Fϑ is denoted by supp(Fϑ ) = {x ∈ R : Fϑ (x + δ) > Fϑ (x − δ) ∀δ > 0}. Throughout
the manuscript, we assume that

the mapping ϑ �→ Fϑ (x) on� is continuous for every x ∈ R. (1)

Let X1, . . . , Xn be independent and identically distributed (iid) random variables
with cdf Fϑ for some unknown ϑ ∈ �. We denote by Pϑ the distribution of X =
(X1, . . . , Xn) which is defined on the Borel space (Rn,Bn). The elements of the
sample space (realizations of X) are indicated by small letters x = (x1, . . . , xn).

The aim is now to find a (random) set in the (x, y)-plane based on X which contains
the entire true (unknown) cdf with some given probability. To this end, we follow the
approach of Kanofsky (1968a, b) which is based on the availability of some confidence
region for the underlying parameter ϑ . The general method and related notation is
introduced in the following subsection.

2.1 The method: definitions and motivation

First, a precise definition of a confidence region for Fϑ in the (x, y)-plane and its
(exact) confidence level is required.

Definition 1 (i). A function B : R
n → Pot (R2) = {D : D ⊆ R

2} is called a
confidence region for Fϑ if {x ∈ R

n : graph Fϑ ⊆ B(x)} ∈ Bn for all ϑ ∈ �, where
graph Fϑ = {(x, Fϑ (x)) : x ∈ R} denotes the graph of Fϑ .

(ii). A confidence region B for Fϑ is said to have (exact) confidence level p ∈ (0, 1)
if

Pϑ ({x ∈ R
n : graph Fϑ ⊆ B(x)}) (=)≥ p ∀ϑ ∈ �.

Now, we define the concept of the (confidence) band (see Kanofsky 1968a, b).
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Definition 2 (i). A set B ⊆ R
2 is called a band if {y ∈ R : (x, y) ∈ B} forms an

interval for every x ∈ R.
(ii). A confidence region B for Fϑ is called a confidence band (for Fϑ ) if, for every

ϑ ∈ �, B(x) is a band in the sense of (i) for Pϑ -almost all (Pϑ -a.a.) x ∈ R
n .

If some confidence region for the true parameterϑ is available, an intuitive approach
to the construction of a confidence band for the true cdf Fϑ is to unify the graphs of all
cdfs corresponding to parameters in the confidence region. This method is formalized
in the following definition (cf. Kanofsky 1968a, b).

Definition 3 (i). For C ⊆ �, let

BC =
⋃

ϑ∈C
graph Fϑ =

⋃

ϑ∈C
{(x, Fϑ (x)) : x ∈ R}. (2)

If C is path-connected, i.e., if any two points a, b ∈ C can be joined in C via a
continuous function f : [0, 1] → C with f (0) = a and f (1) = b, BC is said to be
the band based on C .

(ii). Let the confidence region C : R
n → Pot (�) be path-connected, i.e., for every

ϑ ∈ �, C(x) is path-connected for Pϑ -a.a. x ∈ R
n . Then BC : R

n → Pot (R2) :
x �→ BC(x) is said to be the confidence band based on C if it meets the measurability
condition in Definition 1 (i).

The assumption that C (C(x)) is path-connected (for Pϑ -a.a. x ∈ R
n , ϑ ∈ �) in

combinationwith property (1) ensures that BC is, in fact, a (confidence) band according
to Definition 2 (see Kanofsky 1968b).

Let us compare the coverage probabilities of some path-connected confidence
region C , say, with those of the corresponding band BC . By construction, ϑ ∈ C(x)

implies graph Fϑ ⊆ BC(x) for every x ∈ R
n which yields that

P
ϑ̃

({x ∈ R
n : graph Fϑ ⊆ BC(x)}) ≥ P

ϑ̃
({x ∈ R

n : ϑ ∈ C(x)}) (3)

for all ϑ, ϑ̃ ∈ �. In particular, if C has confidence level p ∈ (0, 1), then BC has
confidence level p and may thus be considered a conservative band.

However, there are different reasonswhy onemay also be interested in guaranteeing
that

graph Fϑ ⊆ BC(x) ⇒ ϑ ∈ C(x) for every x ∈ R
n (4)

which then leads to equality in (3). First, without imposing condition (4) it may happen
that, although choosing a suitable (exact) confidence level for C , BC has confidence
level (too) close to 1, so that the method might produce wide and thus less informative
bands for Fϑ which are unusable in applications. Second, provided that condition
(4) is satisfied, the property of unbiasedness of C will transfer to BC (cf. Kanofsky
1968b). Here, C (BC ) is said to be unbiased if for every (false) parameter ϑ 
= ϑ̃ the
P

ϑ̃
-coverage probability of ϑ (graph Fϑ ) in (3) is bounded from above by the (exact)

confidence level ofC (BC ). Furthermore, when constructing confidence regions by use
of pivotal quantities, one is in the desirable situation that the Pϑ -coverage probability
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of ϑ is the same for all ϑ ∈ � as it will be the case for the confidence band and
graph Fϑ if condition (4) is met. Finally, assumption (4) will make the measurability
condition in Definition 3 (ii) superfluous, since the sets {x ∈ R

n : graph Fϑ ⊆ BC(x)}
and {x ∈ R

n : ϑ ∈ C(x)} then coincide, and the latter is a borel set by definition of a
confidence region.

We are aiming at deriving necessary and sufficient conditions on the confidence
region for the parameter under which statement (4) is true. For this purpose, we intro-
duce the concept of the exhaustive set (cf. Kanofsky 1968b).

Definition 4 (i). A set C ⊆ � is called exhaustive (for F) if C = C∗, where

C∗ = {ϑ ∈ � : graph Fϑ ⊆ BC }. (5)

(ii). A confidence region C : R
n → Pot(�) is called exhaustive (for F) if, for every

ϑ ∈ �, C(x) is exhaustive for F in the sense of (i) for Pϑ -a.a. x ∈ R
n .

Remark 1 By definition, ∅ and � are exhaustive sets and C ⊆ C∗ (C(x) ⊆ (C(x))∗,
x ∈ R

n), for every set (confidence region) C .

Now, if some confidence region C is path-connected and exhaustive, BC will form
a confidence band satisfying equality in (3) along with the above pleasant properties,
since the statements ϑ ∈ C(x) and graph Fϑ ⊆ BC(x) are then equivalent for P

ϑ̃
-a.a.

x ∈ R
n , ϑ̃ ∈ �. In particular, this is the case if C(x) is path-connected and exhaustive

for all x ∈ R
n . In what follows, it will be convenient to focus on the deterministic

case (pointwise analysis of confidence regions) fading probabilistic aspects into the
background.

2.2 Properties and representations of exhaustive sets

We continue by showing some elementary properties of exhaustive sets, first.

Lemma 1 Let C,Ci ⊆ � for i ∈ I , where I denotes an arbitrary index set. Then
holds:

(i) (C∗)∗ = C∗, i.e., C∗ is exhaustive.
(ii) If C1 ⊆ C2, then C∗

1 ⊆ C∗
2 .

(iii) If Ci is exhaustive for all i ∈ I , then ∩i∈I Ci is exhaustive.
(iv) C∗ = ⋂

D⊇C,D=D∗ D, i.e., C∗ is the smallest exhaustive superset of C.

Proof (i). From formulas (2) and (5) along with Remark 1, we obtain BC = BC∗ and
thus (C∗)∗ = C∗.

(ii). Since C1 ⊆ C2 implies that BC1 ⊆ BC2 , the statement is obvious from formula
(5).

(iii). Statement (ii) togetherwith the assumption yields that
(⋂

i∈I Ci
)∗ ⊆ C∗

j = C j

for all j ∈ I and thus
(⋂

i∈I Ci
)∗ ⊆ ⋂

i∈I Ci . The equality of both sets then follows
by Remark 1.

(iv). With A = ⋂
D⊇C,D=D∗ D, statements (i)–(iii) and Remark 1 yield C∗ ⊆

A∗ = A ⊆ C∗. ��
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On the coverage probabilities of parametric confidence bands 931

Important examples of exhaustive sets are the lower and upper coverings in the
points of the plane, which are introduced in Kanofsky (1968b).

Definition 5 The sets L(x, y) = {ϑ ∈ � : Fϑ (x) ≤ y} and U (x, y) = {ϑ ∈
� : Fϑ (x) ≥ y} are called lower and upper covering in (x, y) ∈ R

2. Moreover,
L = {L(x, y) : (x, y) ∈ R

2} and U = {U (x, y) : (x, y) ∈ R
2} denote the families of

all lower and upper coverings, respectively.

Lemma 2 Every set in L ∪ U is exhaustive.

Proof Let (x, y) ∈ R
2 and L = L(x, y). By Remark 1, L ⊆ L∗. If ϑ /∈ L , then

Fϑ (x) > y which implies that graph Fϑ � BL (see formula (2)) and thus ϑ /∈ L∗.
Hence, L = L∗. Analogously, the statement can be shown for upper coverings. ��

There exists a useful representation of C∗ as the intersection of particular lower
and upper coverings (cf. Kanofsky 1968b).

Lemma 3 Let C ⊆ � be path-connected and compact. Then we have C∗ =⋂
x∈R L(x, Mx ) ∩U (x,mx ) with mx = minϑ∈C Fϑ (x) and Mx = maxϑ∈C Fϑ (x).

Proof First, since C is compact, mx and Mx are well defined in virtue of property (1)
with (x,mx ), (x, Mx ) ∈ BC by formula (2) for every x ∈ R.

Let ϑ ∈ � satisfy Fϑ (x) ∈ [mx , Mx ] for all x ∈ R. Since BC is a band, {y ∈ R :
(x, y) ∈ BC } forms an interval which contains mx and Mx and necessarily the whole
interval [mx , Mx ] for x ∈ R. Hence, (x, Fϑ (x)) ∈ BC for x ∈ R, and, therefore,
ϑ ∈ C∗.

On the other hand, the intersection of coverings is exhaustive by application of
Lemma 2 and Lemma 1 (iii) and contains C and, by Lemma 1 (iv), C∗. ��

From Lemma 3 we immediately obtain the following characterization result.

Corollary 1 Let C ⊆ � be path-connected and compact. Then, C is exhaustive if and
only if (iff) C is an intersection of lower and upper coverings.

Proof If C is of the mentioned form, it is exhaustive by Lemma 2 and Lemma 1 (iii).
Vice versa, if C = C∗, the assertion follows from Lemma 3. ��

2.3 Bands for the qf

In applications, one might also be interested in constructing a confidence band for
the true qf F−1

ϑ (y) = inf{x ∈ R : Fϑ (x) ≥ y}, y ∈ (0, 1), which then provides
simultaneous confidence intervals for all quantiles of the underlying distribution. To
this end, given some path-connected confidence region for the parameters, one may
proceed as in (2) and unify the graphs of all qfs corresponding to parameters lying in
the confidence region. Again, the question arises whether the resulting band for the
qf has the same coverage probabilities and, in particular, the same (exact) confidence
level as the confidence region. This is subject of the following theorem which points
out a useful relation of the bands for the cdf and qf based on the same confidence
region.
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Theorem 1 Let C ⊆ � be path-connected and compact. Moreover, let the support of
Fϑ be a (not necessarily finite) interval for all ϑ ∈ �. Then,

graph F−1
ϑ ⊆ QC ⇔ graph Fϑ ⊆ BC , (6)

where QC =
⋃

ϑ∈C
graph F−1

ϑ =
⋃

ϑ∈C
{(y, F−1

ϑ (y)) : y ∈ (0, 1)}.

In particular, C is exhaustive for {F−1
ϑ : ϑ ∈ �} iff it is exhaustive for F.

Proof By assumption, we have for every ϑ ∈ � that F−1
ϑ is continuous and coincides

with the usual inverse function of Fϑ restricted to the interval (F−1
ϑ (0+), F−1

ϑ (1−)),
where F−1

ϑ (0+) = limy↘0 F
−1
ϑ (y) and F−1

ϑ (1−) = limy↗1 F
−1
ϑ (y). For ϑ ∈ �, we,

therefore, conclude that

graph F−1
ϑ ⊆ QC

⇔ ∀ y ∈ (0, 1) ∃ ϑ̃ ∈ C : F−1
ϑ̃

(y) = F−1
ϑ (y)

⇔ ∀ y ∈ (0, 1) ∃ ϑ̃ ∈ C : F
ϑ̃
(F−1

ϑ (y)) = Fϑ (F−1
ϑ (y)) (= y )

⇔ ∀ x ∈ (F−1
ϑ (0+), F−1

ϑ (1−)) ∃ ϑ̃ ∈ C : F
ϑ̃
(x) = Fϑ (x) (7)

⇐ ∀ x ∈ R ∃ ϑ̃ ∈ C : F
ϑ̃
(x) = Fϑ (x) (8)

⇔ graph Fϑ ⊆ BC ,

and what is left to show is that (7) implies (8). To this end, we assume statement (7)
to be true. For brevity, let s = F−1

ϑ (0+) and t = F−1
ϑ (1−). Since Fϑ is continuous,

Fϑ (s) = 0 and Fϑ (t) = 1, which implies that Fϑ (x) = 0 for x ≤ s and Fϑ (x) = 1
for x ≥ t . Thus, we have to show that for all x ≤ s (x ≥ t) there exists ϑ̃ ∈ C with
F

ϑ̃
(x) = 0 (F

ϑ̃
(x) = 1). A sufficient condition for this property is the existence of

η, ζ ∈ C with Fη(s) = 0 and Fζ (t) = 1 which is guaranteed by the compactness of
C as we will see in the following.

Let xn , n ∈ N, be a sequence in (s, t) with xn ↗ t for n → ∞. By assumption,
there exists ϑ̃n ∈ C with F

ϑ̃n
(xn) = Fϑ (xn) for all n ∈ N. Since C is compact, there

exists ζ ∈ C and a subsequence ϑ̃nk , k ∈ N, with ϑ̃nk → ζ for k → ∞. Then,

F
ϑ̃nk

(xnk ) = Fϑ (xnk ) → Fϑ (t) = 1 for k → ∞,

and Fζ (t) = lim
k→∞ F

ϑ̃nk
(t) ≥ lim

k→∞ F
ϑ̃nk

(xnk ) = 1,

using property (1). Thus, Fζ (t) = 1. The existence of η ∈ C with Fη(s) = 0 follows
analogously. Hence, the equivalence in (6) is shown from which the last statement of
the theorem is obvious. ��

Theorem 1 allows for using the derived results, in particular those of Sect. 3, for
the construction of confidence bands for qfs as well.
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3 Confidence bands for the continuous cdf in the l-s family

We now turn to the discussion of exhaustive sets in the particular framework of the l-s
family.

Let the statistical model and the sample situation be given as in the beginning of
Sect. 2 along with the assumptions made there. In addition, we assume that � =
R × (0,∞) and that, for ϑ = (μ, σ ) ∈ �,

Fϑ (x) = F

(
x − μ

σ

)
, x ∈ R, (9)

for some continuous cdf F = F(0,1) (independent ofμ and σ ), i.e., F = {Fϑ : ϑ ∈ �}
forms a l-s family. F will be referred to as the standard cdf in F.

Examples of l-s families with a continuous standard cdf are the (univariate) normal
distributions with mean μ and standard deviation σ , the two-parameter exponential
distributions with initial point μ and scale parameter σ , and the (continuous) uniform
distributions with initial pointμ and range σ . We will see that, in each case, the family
of exhaustive sets will be different, and that this finding is connected with the character
of the support of the standard (or any other) cdf in F (see Kanofsky 1968b). Here, the
crucial point is whether supp(F) is (left- or right-) bounded or not, whereas the exact
boundary values themselves, which if they exist may depend on the choice of F , are
not critical to the same extent. Indeed, when F is parametrized as in (9) with standard
cdf F(μ0,σ0), say, the family of the corresponding exhaustive sets may be obtained via
application of the (bijective) parameter transformation (μ, σ ) �→ (μ−μ0σ/σ0, σ/σ0)

to the exhaustive sets for F with standard cdf F (and vice versa). Upon assuming that
the support of the standard cdf F of the l-s family forms an interval, wemay, therefore,
restrict ourselves to the three cases that supp(F) is given by either (−∞,∞), [0,∞),
or [−1, 1]. Note that the case supp(F) = (−∞, 0] can be reduced to the one with
left-bounded support by considering the cdf of −X1 which lies in the l-s family with
standard cdf G(x) = 1 − F(−x), x ∈ R.

Before we give explicit results and characterizations of exhaustive sets in the three
cases, we present an example which highlights that a compact and convex set will not
be exhaustive, in general.

Example 1 Let X1, . . . , Xn be iid random variables following the two-parameter
exponential distribution with location parameter μ ∈ R, scale parameter σ > 0, and
cdf Fϑ (x) = 1 − exp{−(x − μ)/σ }, x > μ, where ϑ = (μ, σ ) ∈ � = R × (0,∞).
Denoting by x(1) ≤ · · · ≤ x(n) the ordered components of x, the maximum likelihood
estimator (μ̂, σ̂ ) of (μ, σ ) is given by μ̂(x) = x(1) and σ̂ (x) = (

∑n
i=1 x(i)−nx(1))/n,

where μ̂ and σ̂ are independent (see, e.g., Balakrishnan and Basu 1995, Subsection
6.3.1). We consider the (random) line C : R

n → Pot(�) defined by

C(x) = {
ϑ ∈ � : μ = μ̂(x) − b σ̂ (x) + σ , a σ̂ (x) ≤ σ ≤ b σ̂ (x)

}

for x ∈ R
n , where a and b are fixed numbers with 0 < a < b. For x ∈ R

n , the end
points of C(x) are given by (μL(x), σL(x)) = (μ̂(x) − (b − a)σ̂ (x), aσ̂ (x)) and
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(μU (x), σU (x)) = (μ̂(x), bσ̂ (x)). Since (μ̂ − μ + σ)/σ̂ is continuously distributed,
Pϑ ({x ∈ R

n : ϑ ∈ C(x)}) = 0 for allϑ ∈ �. Now,we introduce the random rectangle
C̃ : R

n → Pot (�) via

C̃(x) = [μL(x), μU (x)] × [σL(x), σU (x)]
=

{
ϑ ∈ � : 0 ≤ μ̂(x) − μ

σ̂ (x)
≤ b − a ,

1

b
≤ σ̂ (x)

σ
≤ 1

a

}
(10)

for x ∈ R
n . By definition, C(x) ⊆ C̃(x) and thus BC(x) ⊆ BC̃(x)

for every x ∈ R
n .

In fact, both bands coincide for every x ∈ R
n as we will demonstrate in the following.

Let (x, y) ∈ BC̃(x)
for some x ∈ R

n . Then, there exists ϑ ∈ C̃(x) with Fϑ (x) = y.
From the structure of Fϑ , it is obvious that F(μ1,σ1) ≥ F(μ2,σ2) if μ1 ≤ μ2 and
σ1 ≤ σ2. Since C(x) is path-connected and property (1) is met, BC(x) is a band so that
{z ∈ R : (x, z) ∈ BC(x)} forms an interval (see Definition 2). Therefore, necessarily,
y = Fϑ (x) ∈ [F(μU (x),σU (x))(x), F(μL (x),σL (x))(x)] ⊆ {z ∈ R : (x, z) ∈ BC(x)}.
Hence, (x, y) ∈ BC(x) and thus BC̃(x)

⊆ BC(x) which yields BC(x) = BC̃(x)
, i.e.,

equality of the bands based on C(x) and C̃(x).
As a consequence, we obtain for ϑ ∈ � that

Pϑ ({x ∈ R
n : graph Fϑ ⊆ BC(x)}) = Pϑ ({x ∈ R

n : graph Fϑ ⊆ BC̃(x)
})

≥ Pϑ ({x ∈ R
n : ϑ ∈ C̃(x)}), (11)

where the latter probability does not depend on ϑ by construction of C̃ via the pivotal
quantities (μ̂−μ)/σ̂ and σ̂ /σ (see (10) andAntle and Bain 1969). Thus, if C̃ has exact
confidence level p ∈ (0, 1), which may be chosen arbitrarily close to 1 by appropriate
choices of a and b, then BC has confidence level p. For instance, by setting a = 0.75
and b = 1.2, (11) yields that BC almost has exact confidence level 0.95, whereas
Pϑ ({x ∈ R

n : ϑ ∈ C(x)}) = 0 for all ϑ ∈ �. Later, we will see that C̃(x) is
exhaustive as the comprehensive convex hull of C(x) for every x ∈ R

n and, hence,
even equality holds true in (11).

3.1 The case supp(F) = R

We start with the case that the support of the standard cdf (and thus of every cdf) in F
is R, which implies that F is strictly increasing. Our aim is to give a formal proof of
that C∗ then coincides with the convex hull of C provided that C is path-connected
and compact. In particular, under these assumptions on C , convexity turns out to be a
necessary and sufficient condition for C to be exhaustive. Former proofs and remarks
on this result can be found in the studies by Kanofsky (1968b), Cheng and Iles (1983),
Czarnowska and Nagaev (2001), and Jeng and Meeker (2001). Beyond that, the role
of the convex hull in this context is discussed by Satten (1995) and Hong et al. (2010).
We give a proof here, since it indicates which arguments will be problematic in the
case, where supp(F) has (at least) one finite boundary point.
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First, it is well known that the lower and upper coverings (see Definition 5) coincide
with particular half-spaces (in R × (0,∞)) under the assumption that F forms a l-s
family.

Definition 6 For a, b, c ∈ R, we introduce a half-space in R
2 as H(a, b, c) ={

(μ, σ ) ∈ R
2 : aμ + bσ ≤ c

}
and the correspondinghalf-space in�via H̃ (a, b, c) =

H(a, b, c) ∩ �.

Lemma 4 For a, b, c ∈ R, we find

H̃(a, b, c) =
{
U (c/a, F(b/a)) for a > 0,

L(c/a, F(b/a)) for a < 0,

and, hence, {∅, �} ∪ {H̃(a, b, c) : a 
= 0, b, c ∈ R} = L ∪ U . (12)

Proof Let a > 0. Since F is strictly increasing, we find

aμ + bσ ≤ c ⇔ c/a − μ

σ
≥ b

a
⇔ Fϑ

( c
a

)
≥ F

(
b

a

)
. (13)

Hence, H̃(a, b, c) = U (c/a, F(b/a)). The statement for a < 0 follows analogously.
These identities then establish the equality in (12). ��

Hence, every lower or upper covering forms a half-space in � but not vice versa.
The following corollary is essential for the subsequent theorem.

Corollary 2 H̃(a, b, c) is exhaustive if a 
= 0.

Proof The statement is obvious from Lemma 4 and Lemma 2. ��
As usual, we define the convex hull ch(C) of a set C as the smallest convex set that

contains C which then suffices the representation ch(C) = ⋂
D⊇C,D convex D. Now,

we give the main result of this subsection.

Theorem 2 Let C ⊆ � be path-connected and compact. Then,

(i) C∗ = ch(C),
(ii) C is exhaustive iff C is convex.

Proof (i). Since C ⊆ C∗ and C ⊆ ch(C), it is sufficient to show that C∗ is convex
and ch(C) is exhaustive (see Lemma 1 (iv)). First, from Lemma 3 and formula (12) in
Lemma 4, C∗ is convex as an intersection of convex sets.

In the following, we show that C̃ = ch(C) is exhaustive. By definition, C̃ is
convex, and it is, moreover, a compact subset of�, sinceC is compact (see Rockafellar
1970, Theorem 17.2, p. 158). The separation theorem (see Rockafellar 1970, Corollary
11.4.1, p. 98) then yields that, for everyϑ = (μ, σ ) ∈ R

2\C̃ , there exists aϑ , bϑ , cϑ ∈
R, and εϑ > 0 in such a way that

aϑ μ̃ + bϑ σ̃ + εϑ < cϑ < aϑ μ + bϑ σ − εϑ ∀ (μ̃, σ̃ ) ∈ C̃ . (14)
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If aϑ = 0, we switch to another separating line with ãϑ > 0 as follows. Since C̃
is bounded, there exists a constant M > 0 with |μ̃| ≤ M for all (μ̃, σ̃ ) ∈ C̃ . For
ãϑ = min{εϑ/M, εϑ/|μ|} > 0, where εϑ/0 = ∞, we obtain that

ãϑ μ̃ + bϑ σ̃ ≤ ãϑ M + bϑ σ̃ ≤ bϑ σ̃ + εϑ

and bϑ σ − εϑ ≤ bϑ σ − ãϑ |μ| ≤ ãϑ μ + bϑ σ, (15)

and, hence, using (14) with aϑ = 0,

ãϑ μ̃ + bϑ σ̃ < cϑ < ãϑ μ + bϑ σ ∀ (μ̃, σ̃ ) ∈ C̃ . (16)

From (14) and (16), we, therefore, have the representation

C̃ = C̃ ∩ � =
⋂

ϑ∈R2\C̃ : aϑ 
=0

H̃(aϑ , bϑ , cϑ ) ∩
⋂

ϑ∈R2\C̃ : aϑ=0

H̃(ãϑ , bϑ , cϑ ),

and C̃ is exhaustive by application of Lemma 1 (iii) and Corollary 2.
(ii). The equivalence follows directly from statement (i). ��
As an example, Theorem 2 may directly be applied to the standard confidence

region considered in the work of Kanofsky (1968a) for the parameter (μ, σ ) of the
normal distribution which is convex and thus exhaustive.

3.2 The case supp(F) = [0,∞)

We continue by considering the case that the support of F is given by the non-negative
real axis on which F then strictly increases. As in Sect. 3.1, our aim is to establish
the relation of C and C∗ and to derive a necessary and sufficient condition for C to be
exhaustive under the assumption thatC is path-connected and compact.With regard to
the latter, Example 1 has shown that convexity alone does not fill this role. However, by
utilizing the concept of the comprehensive set, wewill present a characterization result
on exhaustive sets in what follows, which still admits a simple geometric description.

First, we identify the half-spaces which correspond to lower and upper coverings
in the actual case.

Lemma 5 For a, b, c ∈ R, we find

H̃(a, b, c) =
{
U (c/a, F(b/a)) for a > 0, b > 0,

L(c/a, F(b/a)) for a < 0, b ≤ 0,

and, hence,

{∅, �} ∪ {H̃(a, b, c) : a, b > 0, c ∈ R or a < 0, b ≤ 0, c ∈ R} = L ∪ U . (17)
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Proof Let a > 0 and b > 0. Since F is strictly increasing on [0,∞) and b/a > 0, the
equivalences in (13) remain true and thus H̃(a, b, c) = U (c/a, F(b/a)). For a < 0
and b < 0, we have again b/a > 0 and, hence,

aμ + bσ ≤ c ⇔ c/a − μ

σ
≤ b

a
⇔ Fϑ

( c
a

)
≤ F

(
b

a

)
, (18)

which means that H̃(a, b, c) = L(c/a, F(b/a)). Moreover, the equivalences in (18)
are also true if a < 0 and b = 0, so that H̃(a, 0, c) = L(c/a, 0). From these findings
then follows the identity in (17). ��

When comparing representations (12) and (17), we notice that less half-spaces
correspond to lower or upper coverings in the actual case. Inspecting the proof of
Lemma 5, this finding is connected with the reverse implication in the last equivalence
in (13) and (18), respectively, which fails if a and b do not have the same sign and
thus F(b/a) = 0. We give a sufficient condition for a half-space in� to be exhaustive
when supp(F) = [0,∞).

Corollary 3 H̃(a, b, c) is exhaustive if a > 0 and b ≥ 0 or a < 0 and b ≤ 0.

Proof If a > 0 and b > 0 or a < 0 and b ≤ 0, the statement follows directly from
Lemma 5 and Lemma 2. Hence, let a > 0 and b = 0. Moreover, let ϑ = (μ, σ ) ∈
H̃(a, 0, c)∗. In particular, graph Fϑ ⊆ BH̃(a,0,c) then implies that for every x > c/a

there exists some ϑ x = (μx , σx ) ∈ H̃(a, 0, c) with F((x − μ)/σ) = Fϑ (x) =
Fϑ x (x) = F((x − μx )/σx ) > 0, since μx ≤ c/a. Thus, μ ≤ c/a and, therefore,
ϑ ∈ H̃(a, 0, c), i.e., H̃(a, 0, c) is exhaustive. ��

We introduce the concept of the comprehensive set in the following definition (cf.
Peters 2015, p. 379).

Definition 7 A set C ⊆ R
2 is said to be comprehensive if x ≤ z ≤ y with x, y ∈ C

implies that z ∈ C , where ≤ is used in componentwise sense.

In analogy to the convex hull, the comprehensive convex hull cch(C) of a set C is
defined as the smallest comprehensive and convex set that contains C . Since arbitrary
intersections of comprehensive sets are again comprehensive, cch(C) coincides with
the intersection of all both comprehensive and convex supersets of C . In Figure 1, an
example of a comprehensive and convex set is depicted along with the comprehensive
convex hull of an ellipse.

In preparation for the main result of this subsection, we prove two lemmas.

Lemma 6 Let C ⊆ R
2, C+ = {η ∈ R

2 : ∃ ϑ ∈ C with ϑ ≤ η}, and C− = {ζ ∈ R
2 :

∃ ϑ ∈ C with ϑ ≥ ζ }. Then the following properties hold true:

(i) If C is convex, then C+ and C− are comprehensive and convex, and cch(C) =
C+ ∩ C−.

(ii) If C is compact, then C+ and C− are closed.
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938 F. Mies, S. Bedbur

Fig. 1 Example of a comprehensive and convex set (left-hand side) and the comprehensive convex hull of
an ellipse (right-hand side)

Proof (i). Let η, η̃ ∈ C+ and α ∈ [0, 1]. Then there exist ϑ, ϑ̃ ∈ C with η ≥ ϑ

and η̃ ≥ ϑ̃ . Since C is convex, we obtain αη + (1 − α)η̃ ≥ αϑ + (1 − α)ϑ̃ ∈ C .
Therefore, αη+ (1−α)η̃ ∈ C+ so thatC+ is shown to be convex. From the definition
of C+, it is obvious that x ≤ z ≤ y with x, y ∈ C+ implies that z ∈ C+. Hence, C+
is comprehensive. In the same way, it can be shown that C− is comprehensive and
convex.

It is left to show that cch(C) = C+ ∩ C−. First, C+ ∩ C− is comprehensive and
convex as the intersection of two comprehensive and convex sets, and it contains C ,
by definition of C+ and C−. Thus, cch(C) ⊆ C+ ∩C−. Now, let η ∈ C+ ∩C−. Then
there exist ϑ, ϑ̃ ∈ C ⊆ cch(C) with ϑ ≤ η ≤ ϑ̃ . Hence, η ∈ cch(C), since cch(C) is
comprehensive and convex.

(ii). LetC be compact and ηn ∈ C+, n ∈ N, with ηn → η. Then there exist ϑn ∈ C ,
n ∈ N, with ηn ≥ ϑn . Since C is compact, there exist ϑ ∈ C and a subsequence ϑnk ,
k ∈ N, with ϑnk → ϑ . Hence, η = limk→∞ ηnk ≥ limk→∞ ϑnk = ϑ ∈ C which
yields that η ∈ C+. By the same arguments, it follows that C− is closed. ��
Lemma 7 For C ⊆ R

2, cch(C) = cch(ch(C)).

Proof SinceC ⊆ ch(C) ⊆ cch(ch(C)) and cch(ch(C)) is comprehensive and convex,
we obtain that cch(C) ⊆ cch(ch(C)). On the other hand, we have that C ⊆ cch(C)

and cch(C) is convex. Thus, ch(C) ⊆ cch(C). Since cch(C) is comprehensive and
convex, cch(ch(C)) ⊆ cch(C). ��

By analogy with Theorem 2, we state the main result of this subsection.

Theorem 3 Let C ⊆ � be path-connected and compact. Then,

(i) C∗ = cch(C),
(ii) C is exhaustive iff C is comprehensive and convex.

Proof (i). As in the proof of Theorem 2, it suffices to show that C∗ is comprehensive
and convex, and cch(C) is exhaustive, since C ⊆ C∗ and C ⊆ cch(C). First, from
Lemma 3 and formula (17) in Lemma 5, C∗ can be represented as the intersection

123



On the coverage probabilities of parametric confidence bands 939

of half-spaces H̃(a, b, c) with a, b > 0 or a < 0, b ≤ 0, which are easily seen to
be comprehensive. Thus, C∗ is comprehensive and convex as the intersection of both
comprehensive and convex sets.

What is left to show is that cch(C) is exhaustive. To this end, let C̃ = ch(C). Appli-
cation of Lemma 7 in combination with Lemma 6 (i) then leads to the representation
cch(C) = cch(C̃) = C̃+ ∩ C̃−, where C̃+ and C̃− are convex (and comprehensive).
Since C̃ is compact as the convex hull of a compact set (see Rockafellar 1970, Theorem
17.2, p. 158), C̃+ and C̃− are closed by application of Lemma 6 (ii). Then, application
of the separation theorem by Rockafellar (1970), Corollary 11.4.1, p. 98, on set C̃+
ensures that for every ϑ = (μ, σ ) ∈ R

2 \ C̃+, there exist a+
ϑ , b+

ϑ , c+
ϑ ∈ R, and ε+

ϑ > 0
such that

a+
ϑ μ̃ + b+

ϑ σ̃ + ε+
ϑ < c+

ϑ < a+
ϑ μ + b+

ϑ σ − ε+
ϑ , ∀ (μ̃, σ̃ ) ∈ C̃+. (19)

Since (μ̃, σ̃ ) ∈ C̃+ implies that (μ̃ + k, σ̃ ) ∈ C̃+ and (μ̃, σ̃ + k) ∈ C̃+ for all k ≥ 0,
we obtain from (19) that a+

ϑ ≤ 0 and b+
ϑ ≤ 0 must necessarily be true. Moreover, we

may assume that a+
ϑ < 0 which can be seen as follows. Suppose that a+

ϑ = 0. Since C̃
is bounded, there exists a constant M+ < 0 with μ̃ ≥ M+ for all (μ̃, σ̃ ) ∈ C̃+. Then,
by setting ã+

ϑ = max{ε+
ϑ /M+,−ε+

ϑ /|μ|} < 0, where ε+
ϑ /0 = ∞, we may follow

similar arguments as in (15) and (16) in the proof of Theorem 2 to obtain the desired
separating line.

Likewise and by the same arguments, the separation theorem yields that for every
ϑ = (μ, σ ) ∈ R

2 \ C̃−, there exist a−
ϑ , b−

ϑ , c−
ϑ ∈ R, and ε−

ϑ > 0 such that

a−
ϑ μ̃ + b−

ϑ σ̃ + ε−
ϑ < c−

ϑ < a−
ϑ μ + b−

ϑ σ − ε−
ϑ , ∀ (μ̃, σ̃ ) ∈ C̃−,

with a−
ϑ > 0 and b−

ϑ ≥ 0, and we finally arrive at the representation

cch(C) = cch(C) ∩ � = (C̃+ ∩ �) ∩ (C̃− ∩ �)

=
⋂

ϑ∈R2\C̃+
H̃(a+

ϑ , b+
ϑ , c+

ϑ ) ∩
⋂

ϑ∈R2\C̃−
H̃(a−

ϑ , b−
ϑ , c−

ϑ ),

so that cch(C) is exhaustive using Lemma 1 (iii) and Corollary 3.
(ii). The statement is obvious from (i). ��
For later use in Sect. 3.3, we state the following corollary.

Corollary 4 Let C ⊆ R
2 be path-connected and compact. Then, there exists a family

H(ai , bi , ci ), i ∈ I , of half-spaces in R
2 with ai > 0, bi > 0 or ai < 0, bi < 0 for

all i ∈ I and cch(C) = ⋂
i∈I H(ai , bi , ci ).

Proof By inspecting the proof of Theorem 3, it is obvious that cch(C) admits a rep-
resentation as the intersection of half-spaces H(ai , bi , ci ) with ai > 0, bi ≥ 0 or
ai < 0, bi ≤ 0 for all i ∈ I . Moreover, since C is compact, one may follow similar
arguments to those used there to show that every half-space H(ai , 0, ci ) with ai > 0
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(ai < 0) of this intersection may be replaced by H(ai , bi , ci ) with an appropriate
bi > 0 (bi < 0). ��

Theorem 3 may directly be applied, e.g., to show that the standard confidence
region discussed in the work of Srinivasan et al. (1975) for the parameter (μ, σ ) of
the two-parameter exponential distribution is exhaustive.

3.3 The case supp(F) = [−1, 1]

We finally consider the case that the support of F is given by the interval [−1, 1].
As in the preceding subsections, we are aiming in deriving a simple representation of
C∗ and in finding a necessary and sufficient condition for C to be exhaustive, when
C is assumed to be path-connected and compact. We will see that the concept of the
comprehensive convex hull in combination with an orthogonal transformation will be
suitable for this purpose, and, again, geometric interpretations will be near at hand.

In the present case, the lower and upper coverings are given by the following half-
spaces in �.

Lemma 8 For a, b, c ∈ R,

H̃(a, b, c) =
{
U (c/a, F(b/a)) for a > 0, −a < b ≤ a,

L(c/a, F(b/a)) for a < 0, a < b ≤ −a,

and {∅, �} ∪ {H̃(a, b, c) : a > 0,−a < b ≤ a, c ∈ R

or a < 0, a < b ≤ −a, c ∈ R} = L ∪ U . (20)

Proof Let a > 0 and−a < b ≤ a. Since F is strictly increasing on [−1, 1] and−1 <

b/a ≤ 1, the equivalences in (13) remain true and thus H̃(a, b, c) = U (c/a, F(b/a)).
For a < 0 and a < b ≤ −a, we have −1 ≤ b/a < 1, and the equivalence in (18)
holds true, so that H̃(a, b, c) = L(c/a, F(b/a)). The identity in (20) is then obvious.

��
We directly turn to the main result in the actual case.

Theorem 4 Let C ⊆ � be path-connected and compact, and let

O = 1√
2

(
1 1

−1 1

)

denote the orthogonal matrix corresponding to a left-hand rotation (of a row vector)
by 45 degrees. Then,

(i) C∗ = cch(CO)O′ ∩ �,
(ii) C is exhaustive iff CO is comprehensive and convex.

Here, the apostrophe denotes transposition, and CO = {ϑO : ϑ ∈ C}.
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Proof (i). Let the families H2 and H3 of half-spaces in R
2 be defined as

H2 = {H(a, b, c) : a ≥ 0, b > 0, c ∈ R or a < 0, b ≤ 0, c ∈ R}
H3 = {H(a, b, c) : a > 0,−a < b ≤ a, c ∈ R or a < 0, a < b ≤ −a, c ∈ R}.

For every half-space H in R
2 then follows that

H ∈ H3 ⇔ H O ∈ H2, (21)

since H(a, b, c) =
{
(μ, σ ) ∈ R

2 : (μ, σ )OO′
(
a

b

)
≤ c

}

=
{
(μ, σ ) ∈ R

2 : (μ, σ )O′
(
a

b

)
≤ c

}
O′.

and with (ã, b̃)′ = O′(a, b)′ = (a − b, a + b)′/
√
2

(ã ≥ 0, b̃ > 0 or ã < 0, b̃ ≤ 0) ⇔ (a > 0,−a < b ≤ a or a < 0, a < b ≤ −a).

Now, from Lemma 3 and Lemma 8, there exists a family Hi , i ∈ I , of half-spaces
in R

2 with Hi ∈ H3 for all i ∈ I and C∗ = ⋂
i∈I (Hi ∩ �) = (⋂

i∈I Hi
) ∩ �. Thus,

C∗ O =
(

⋂

i∈I
Hi O

)
∩ �O, (22)

where statement (21) ensures that Hi O ∈ H2 for all i ∈ I . Evidently, all half-
spaces inH2 are comprehensive and convex, so that

⋂
i∈I Hi O is comprehensive and

convex as the intersection of comprehensive and convex sets. Since CO ⊆ C∗O ⊆⋂
i∈I Hi O by Remark 1 and formula (22), we obtain cch(CO) ⊆ ⋂

i∈I Hi O, and,
hence, cch(CO) ∩ �O ⊆ C∗O which is equivalent to cch(CO)O′ ∩ � ⊆ C∗.

On the other hand,C is path-connected and compact and so isC O, sinceO induces
a continuous mapping. Hence, by application of Corollary 4, there exists a family of
half-spaces Hi , i ∈ I , with Hi ∈ H2 for all i ∈ I , such that cch(C O) = ⋂

i∈I Hi ,
and, hence,

cch(C O)O′ ∩ � =
(

⋂

i∈I
Hi O′

)
∩ � =

⋂

i∈I
(Hi O′ ∩ �).

From (21), we have that Hi O′ ∈ H3 for all i ∈ I , and thus Hi O′ ∩ �, i ∈ I , is
exhaustive by application of Lemma 8. Consequently, cch(CO)O′ ∩ � is exhaustive
by Lemma 1 (iii). SinceC ⊆ cch(CO)O′∩�, we finally obtainC∗ ⊆ cch(CO)O′∩�

from Lemma 1 (iv).
(ii). If CO is comprehensive and convex, statement (i) directly yields that C is

exhaustive. Vice versa, if C is exhaustive, then we obtain from statement (i) that C =
C∗ = cch(CO)O′ ∩�. SinceC is a compact subset of (the open set)� = R×(0,∞),
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Fig. 2 Graphical illustration of the result of Theorem 4 (i): a set C ⊆ � is left-hand rotated by 45 degrees,
then the comprehensive convex hull is formed and rotated backwards, and the intersection of the resulting
set with � finally gives C∗

Fig. 3 Graphical illustration of the standard trapezoidal confidence regions C = {(μ, σ ) ∈ R × (0, ∞) :
a ≤ (μ̂ − μ)/σ ≤ b, c ≤ σ̂ /σ ≤ d}, c, d > 0, in case of the normal distribution with a < 0 < b (left) and
two-parameter exponential distribution with a = 0 < b (middle) being both exhaustive. For the uniform
distribution (mean and half range parametrization), the trapezoid is not exhaustive and the confidence level
of the band is given by that of the indicated area (right)

this already implies that cch(CO)O′ ⊆ � and thus C = cch(CO)O′. Hence, CO is
comprehensive and convex. ��

In Figure 2, the finding of Theorem 4 (i) is illustrated, which is applicable, for
instance, to the uniform distribution with standard cdf F(x) = (x+1)/2, x ∈ [−1, 1],
i.e., with parametrization Fμ,σ (x) = (x − μ + σ)/(2σ), x ∈ [μ − σ,μ + σ ], where
μ is the mean value and σ

√
3-times the standard deviation (or half of the range) of

the distribution. One may then proceed as stated at the beginning of Sect. 3 to obtain
respective results for a more conventional parametrization, e.g., in terms of the initial
point and range of the distribution.

4 Concluding remarks

In a general parametric statistical model, we discuss the coverage probabilities of
confidence bands for a continuous cdf (or qf) which are constructed via confidence
regions for the parameters. To guarantee that such a confidence band is useful in
applications, we focus on the question as to when the coverage probabilities and,
in particular, the (exact) confidence level of the band are the same as that of the
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underlying confidence region, which is the case if the latter is exhaustive. Properties
and representations of exhaustive sets are obtained, and an equivalence is established
to use the derived results for the construction of bands for qfs as well. In the l-s
family, necessary and sufficient conditions for a confidence region to be exhaustive
are presented. Here, a case distinction is required regarding the boundedness of the
support supp(F) of the standard cdf F used for the parametrization of the distribution
family. In case of (a), supp(F) = R, a path-connected and compact confidence region is
exhaustive iff it is convex, whereas in situation (b), supp(F) = [0,∞), it is exhaustive
iff it is comprehensive and convex. A similar characterization is addressed for the
case (c), supp(F) = [−1, 1], by utilizing some orthogonal transformation. Note that
confidence regions for the l-s parameter (μ, σ ) are usually obtained by combining the
pivotal quantities (μ̂ − μ)/σ and σ̂ /σ or (μ̂ − μ)/σ̂ and σ̂ /σ , where (μ̂, σ̂ ) denotes
themaximum likelihood estimator of (μ, σ ) (see Antle and Bain 1969), and often have
trapezoidal shape. For a given l-s family as, e.g., the normal (case (a)), two-parameter
exponential (case (b)), or continuous uniform (case (c)) distributions, the results may
be applied to verify that these standard confidence regions are exhaustive (cases (a)
and (b)) or not exhaustive (case (c)). Moreover, they enable to compute the (exact)
confidence levels of confidence bands based on non-exhaustive confidence regions,
which are given by the confidence levels of the convex hulls (case (a)), comprehensive
convexhulls (case (b)), or other particular supersets (case (c)) of the confidence regions.
In Figure 3, these findings are illustrated. Since the characterization results shown
have simple geometric interpretations, they may also serve to construct exhaustive
confidence regions. Finally, in virtue of appropriate transformations of both, data and
band, the findings are also applicable to log-location-scale families, e.g., the log-
normal or Weibull distributions.
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parametric confidence region. Sankhyā. The Indian Journal of Statistics Series A, 30(4), 379–386.

Kanofsky, P., Srinivasan, R. (1972). An approach to the construction of parametric confidence bands on
cumulative distribution functions. Biometrika, 59(3), 623–631.

Peters, H. (2015). Game theory—a multi-leveled approach (2nd ed.). Berlin: Springer Science & Business
Media.

Rockafellar, R. T. (1970). Convex Analysis. Princeton: Princeton University Press.
Satten, G. A. (1995). Upper and lower bound distributions that give simultaneous confidence intervals for

quantiles. Journal of the American Statistical Association, 90(430), 747–752.
Srinivasan, R., Kanofsky, P., Wharton, R.M. (1975). Simultaneous confidence intervals for exponential
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