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Abstract In start-up demonstration testing, the performance of the unit on successive
start-ups is taken into account and several different types of decision criteria (most of
them are inspired by the theory of runs and scans) for accepting or rejecting the unit
have been introduced. Although the use of a start-up demonstration test assumes the
existence of units of lower quality, when the estimation of the respective probability
comes up, there is still much work to be done. Therefore, in this paper, we study
binary start-up demonstration tests, assuming that we have at hand two different types
of units with potentially different probabilities of successful start-up. In this case, the
waiting time distributions are expressed as two-component mixture models and their
identifiability is discussed. Finally, an estimation method based on the EM algorithm
for the model parameters is described and some numerical examples are presented to
illustrate the methods developed here.
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1 Introduction

Start-up demonstration testing is a technique for assessing the quality/reliability of a
unit (manufactured unit) through its performance on successive start-ups. This form
of testing could be useful for testing the reliability of units such as lawn mowers,
batteries, power generators, fire alarm systems, etc. (e.g. Balakrishnan et al. 1997;
Smith and Griffith 2005; Antzoulakos et al. 2009; Yue et al. 2010; Gera 2010, 2011;
Yalcin and Eryilmaz 2012; Zhao 2014; Balakrishnan et al. 2014a).

In the related literature, several different types of decision criteria for accepting or
rejecting the unit have been studied. Assuming that the outcomes of the individual
start-ups are binary random variables (i.e., successful or failed start-up), we can use,
for example, the model proposed by Hahn and Gage (1983) based on which the unit
under test is accepted if a specified number of consecutive successful start-ups is
observed (CS model); see also Viveros and Balakrishnan (1993) for further details
on this model. One more example is the CSTF model introduced by Balakrishnan
and Chan (2000), in which the unit under test is accepted if a number of consecutive
successful start-ups is observed before a total number of failures; otherwise, the unit
is rejected (see also Martin 2004, 2008). Therefore, some criteria take into account
only the successful start-ups (such as their frequency, run or scan occurrences), some
others take into account only the failed start-ups and some both. Amore realisticmodel
in start-up demonstration testing is generated by considering the family of multistate
tests (e.g. Smith and Griffith 2011) where more than one type of successful start-ups
and/or failed start-ups are allowed. Note also that the probabilistic aspects of decision
criteria used in the literature are strictly related to the study of reliability systems, the
theory of runs and scans, the more general theory of pattern waiting times and the
theory of discrete distributions [see, for example, Aki et al. 1996; or the monographs
by Johnson et al. (1992), Balakrishnan and Koutras (2002) and Fu and Lou (2003)];
for a recent review on the area of start-up demonstration tests, interested readers may
also refer to the recent discussion article by Balakrishnan et al. (2014a).

Hence, the use of a start-up demonstration test actually assumes the existence of
units of lower quality, in the testing procedure. However, in the literature of the binary
start-updemonstration tests, the estimationofmodel parameters is carried out under the
assumption that the available data consist of unitswith the same success probability (no
matter if they have been accepted or rejected). Therefore, according to the underlying
principle of this testing procedure, a more realistic approach must be adopted with
regard to the estimation of model parameters. The present work offers a new direction
in this regard; specifically, we assume that we have at hand two different types of units,
type A and type B, with probabilities of successful start-ups pA and pB, respectively.
Furthermore,we assume that the probability of selecting a unit of typeA for conducting
a series of start-up tests on it equalsπ , with 1−π being the corresponding probability of
selecting a unit of type B. Consequently, the corresponding waiting time distributions
can be expressed as a two-component mixture.

One of the aims of the present study is to develop suitable statistical inference
(point and interval estimation methods) for the model parameters. However, since our
set-up results in the use of mixture models, before proceeding with the estimation
of the probabilities pA, pB and π , we have to consider the identifiability issue of the
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Start-up demonstration mixture models 719

proposed mixture model which is clearly a critical issue as it would provide conditions
under which the estimation would be feasible.

The rest of the paper is organized as follows. In Sect. 2, after presenting some
introductory material, we introduce the mixture model; the identifiability of the mix-
ture model is studied in Sect. 3 while the necessary steps for estimating the model
parameters, using the EM algorithm, are described in Sect. 4. A simulation study is
carried out in Sect. 5 and finally, some concluding remarks are made in Sect. 6.

2 The mixture model

Recently, Balakrishnan et al. (2014a, b) studied the class of binary and multistate start-
up demonstration tests under a general/unified framework by using families of sets
that parallel the nature and role of the minimal path and cut sets found in statistical
reliability theory; for the properties of minimal path and cut sets, an interested reader
may refer to the classical monograph by Barlow and Proschan (1981). Adopting the
aforementioned approach, we shall illustrate now how one can use a binary random
variable φ that parallels the structure function of a reliability system, to describe the
length of a binary start-up demonstration test.

Let us start by introducing the families P = {Pj : j = 1, . . . , Mn} and C = {C j :
j = 1, . . . , Nn}, in such a way that a unit will be accepted if the outcomes of the trials
i ∈ Pj (for at least one j ∈ {1, . . . , Mn}) are successful start-ups while no other set
of trials i ∈ C j (for all j ∈ {1, . . . , Nn}), has resulted in failed start-ups. Then, we
define the binary (0–1) functions, φ0(Xn), φ1(Xn) and φ(Xn), as follows:

φ0(Xn) =
Nn∏

j=1

⎛

⎝1 −
∏

i∈C j

(1 − Xi )

⎞

⎠ , φ1(Xn) =
Mn∏

j=1

⎛

⎝1 −
∏

i∈Pj

Xi

⎞

⎠

and

φ(Xn) = φ0(Xn)φ1(Xn),

where Xn = (X1, . . . , Xn) ∈ {0, 1}n , and

Xi =
{
1, if the outcome of the i-th start-up is a success

0, if the outcome of the i-th start-up is a failure,

for i = 1, 2, . . . Denoting by X the test length, i.e., the number of trials until termina-
tion (i.e., by accepting or rejecting the unit), we can see that φ(Xn) = 1 if and only if
X > n and so

P(X > n) = E(φ(Xn)).

Therefore, assuming independent and identically distributed (i.i.d.) binary trials, the
tail probabilities for the test length can be expressed as
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720 N. Balakrishnan et al.

S(n; p) = P(X > n; p) =
n∑

i=0

cni p
i (1 − p)n−i ,

where the coefficients cni are given by

cni =
∑

xn∈{0,1}n :xnx′
n=i

φ(xn), (1)

for i = 0, . . . , n. Note that the quantities cni in (1) denote the number of ways in
which i successes could be allocated into n positions such that neither acceptance nor
rejection criteria are met in the first n trials.

In this work, we assume that there is a proportion π of, say, highly reliable units
(type A unit), with correspondingly high probability of a successful start-up pA; the
remaining proportion of units (1 − π ) are of low quality (type B unit), having corre-
spondingly a low probability of a successful start-up pB. Then, the tail probabilities
for the test length can be expressed as

P(X > n;π, pA, pB) = π S(n; pA) + (1 − π)S(n; pB). (2)

Although not explicitly displayed in formula (2), the nature of the quantities cni given
by (1) plays a significant role in the identifiability of the mixture model, discussed in
the next section.

3 Model identifiability

The identifiability of finite mixtures is the subject of many papers and monographs;
see, for example, Teicher (1963), Yakowitz and Spragins (1968) and McLachlan and
Peel (2004). Let us denote by S the class

S = {S(n; p) : p ∈ (0, 1)} ,

i.e., the class of tail probabilities for the test length, for a specific binary start-up
demonstration test, with success probability p; denote also byH the class of all two-
component mixtures of S, i.e.,

H = {π S(n; pA) + (1 − π)S(n; pB) : pA, pB, π ∈ (0, 1) and pA �= pB} .

The above class of mixtures will be identifiable if the relation

π S(n; pA) + (1 − π)S(n; pB) = aS(n; qA) + (1 − a)S(n; qB),

for all n implies that

π = a, pA = qA, pB = qB or π = 1 − a, pA = qB, pB = qA.
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Start-up demonstration mixture models 721

Recall that the test length X is an integer positive random variable with X ∈
{nmin, . . . , nmax}, where in some cases nmax = ∞. Afirst comment before studying the
identifiability of the model is that, since our mixture model contains three parameters,
it is necessary that the start-up demonstration test must be such that nmax−nmin ≥ 3. A
very useful theorem by Yakowitz and Spragins (1968) provides (in its two-component
version) a necessary and sufficient condition for a classH of two-component mixtures
of S to be identifiable; this condition calls for S to be a linearly independent set over
the field of real numbers, i.e.,

ψ1S(n; pA) + ψ2S(n; pB) = 0, for every n and pA �= pB ⇒ ψ1 = ψ2 = 0.

Hence, if there exist two real values n1 and n2 such that the determinant of the matrix
(
S(n1; pA) S(n1; pB)

S(n2; pA) S(n2; pB)

)
(3)

does not vanish, then H is identifiable (see also Teicher 1963). Without loss of gen-
erality, we assume that 0 < pB < pA < 1 and by setting n2 = nmin − 1, n1 = n we
conclude that a sufficient condition for H to be identifiable is the existence of an n
such that

n∑

i=0

cni [piA(1 − pA)n−i − piB(1 − pB)n−i ] �= 0, (4)

where cni are as defined in (1).
Suppose now that we choose n such that the probability

∑n
i=0 cni p

i
A(1 − pA)n−i

is different than 0 which also implies that
∑n

i=0 cni p
i
B(1 − pB)n−i is different than

0. In this case the coefficients cni , i = 0, . . . , n could not vanish simultaneously. Let
m denote the number of non-vanishing cni ’s. In the simplest case m = 1, when there
exists a unique k ∈ {0, . . . , n} such that k successes can be allocated into n positions
with neither acceptance nor rejection criteria being met, condition (4) is true when

(
pA
pB

)k

�=
(
1 − pB
1 − pA

)n−k

.

If k = 0 or k = n, then (4) is true (i.e., the mixture model is identifiable) since it
reduces to

(
1 − pB
1 − pA

)n

�= 1 or

(
pA
pB

)n

�= 1,

which holds true for all pA and pB, with pA �= pB. In the more general case when
m = 1 and k ∈ {0, . . . , n}, condition (4) does not hold true if and only if

log
(
1−pB
1−pA

)

log
(
1−pB
1−pA

)
+ log

(
pA
pB

) = k

n
. (5)
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722 N. Balakrishnan et al.

Therefore, we can state the following theorem:

Theorem 1 Suppose X is the test length of a start-up demonstration test, with X ∈
D = {nmin, . . . , nmax}. If there is n ∈ D and 0 ≤ k ≤ n such that cnk > 0 and
cni = 0,∀i �= k, then the class H is identifiable, provided (5) does not hold true.

Note that the fraction shown on the left-hand side of (5) can take any value between 0
and 1 as pA �= pB varies in the interval (0, 1); hence, it can be said that the probability
of having this identity to be true is zero.

As an illustration, consider the CSTFmodelwhere the unit under test is accepted if a
number of consecutive successful start-ups, say c, is observed before a total number of
failures, say d; otherwise, the unit is rejected. We have X ∈ D = {min{c, d}, . . . , cd}
and

cnk =
{
0, if k ≤ n − d

N (n, k, c − 1), if k > n − d,
for n ≥ max{c, d},

where

N (n,m2,m1 − 1) =
[m2/m1]∑

j=0

(−1) j
(
n − m2 + 1

j

)(
n − jm1

n − m2

)
, m1 − 1 ≤ m2 ≤ n,

denotes the number of ways in whichm2 1’s can be distributed in n distinct places with
at most m1 − 1 consecutive 1’s (see, for example, Balakrishnan and Koutras 2002).
Selecting n as n = cd − 1 it can be readily verified that the only non-zero cnk arises
for k = d(c− 1). Note also that if d = 1, then cnn = 1 and cni = 0, i = 1, . . . , n− 1,
for every n.

It is true that the acceptance and rejection criteria of most start-up demonstra-
tion tests are based on the appearance of a total number of successes/failures and/or
a number of consecutive successes/failures. This category encompasses the models
CS, CSTF, TSTF, CSCF, CSTS, TSCSTF, CSTFCF, TSTFCF, TSCSCF, TSCSTFCF,
R-TSCSTFCF, R-CSCF and others (e.g. Balakrishnan et al. 2014a). For example,
according to:

– theTSCSTFCFmodel, the unit under test is accepted if a total number of successful
trials, say d1, or a specified number of consecutive successful trials, say c1, is
observed, before a total number of failures, say d2, and a specified number of
consecutive failures, say c2; otherwise, the unit is rejected;

– the R-TSCSTFCF model, the unit under test is accepted if r1 non overlapping
success runs of size c1, or d1 successful trials occur prior to r2 non-overlapping
failure runs of size c2, or d2 failed trials; otherwise, the unit is rejected.

For some start-up demonstration test models the test length can take arbitrarily large
values (i.e., nmax = ∞). On the other hand, the minimum of the test length (i.e., nmin)
can be attained by meeting either one of the rejection or one of the acceptance criteria.
The models studied in the literature so far require the appearance of a number of
consecutive failures or successes for having X = nmin; this means that the probability
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Start-up demonstration mixture models 723

of the event X = nmin would be equal to pnmin (if the minimum is attained only by
accepting the unit) or (1 − p)nmin (if the minimum is attained only by rejecting the
unit) or pnmin + (1 − p)nmin (if the minimum is attained by accepting or rejecting the
unit). Typically, the rejection of a unit requires a number of consecutive/total failures
much less than the number of successes for the acceptance of the unit; hence, the
case P(X = nmin) = (1 − p)nmin is what is usually encountered. The next theorem
provides a useful sufficient condition for the identifiability of the proposed mixture
model.

Theorem 2 Consider a start-up demonstration test with i.i.d. binary trials where the
minimum of the test length (i.e., X = nmin) cannot be attained by both rejecting or
accepting a unit; assume also that the probability P(X = nmin) is equal to pnmin (if
the minimum is attained only by accepting the unit) or (1 − p)nmin (if the minimum
is attained only by rejecting the unit). Then, the class of all two-component mixtures
generated by this model is identifiable.

Proof Let us use the determinant criterion on matrix (3) by choosing n1 = nmin and
n2 = nmin − 1. Suppose the minimum is attained only by accepting the unit; then, for
pA �= pB we have 1 − pnmin

A �= 1 − pnmin
B and the determinant of matrix (3) does not

vanish; therefore, the mixture model is identifiable.
Finally, suppose the minimum is attained only by rejecting the unit; in this case,

from pA �= pB we conclude that 1− (1− pA)nmin �= 1− (1− pB)nmin , and the mixture
model is identifiable since the determinant of matrix (3) does not vanish. 
�

Let us now consider the family finite consecutive/total start-up models (FCT mod-
els) whose members possess the following two properties: (a) they have acceptance
and rejection criteria based on the appearance of a total number of successes/failures
and/or a number of consecutive successes/failures, and (b) their test length is a bounded
random variable. This family encompasses many of the popular models of the start-up
demonstration test literature, for example, CSTF, TSTF, CSTS, TSCSTF, CSTFCF,
TSTFCF, TSCSCF, TSCSTFCF, R-TSCSTFCF and R-CSCF.

For the FCT models, we shall now prove the next general result.

Theorem 3 The class of two-component mixtures generated by a FCT model is iden-
tifiable provided (5) does not hold true.

Proof According toTheorem1, it suffices to prove the existence of n such that cnk �= 0,
for only one k ∈ {0, . . . , n}; we shall prove that this is the case for n = nmax − 1. To
achieve this, let us assume that for n = nmax−1 there exist k1 < k2 such that cnk1 > 0
and cnk2 > 0; this means that there is at least one way of placing k1 or k2 ones in n
positions such that neither acceptance nor rejection criterion will be met.

In one of these ways, with k1 ones, we may have observed Xn = 0 or Xn = 1; let
us next examine separately the following cases that may arise:

(a) if Xn = 0, then by setting Xn+1 = 1, the testwill not terminate; this is true because
the occurrence of k1 + 1 ones does not allow any of the acceptance criteria to
be realized since k2 > k1 and cnk2 > 0. This means that P(X > nmax) > 0
(contradiction);
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724 N. Balakrishnan et al.

(b) if Xn = 1, then observe first that the number of zeros among the first n trials is
n − k1 > 0 (since k1 < k2 ≤ n = nmax − 1); if n − k1 = 1, then k2 = n and the
occurrence of n ones does not allow any criterion to be realized. In this case, if
X1 = · · · = Xn = 1, Xn+1 = 0, the test will not terminate (contradiction);

(c) suppose Xn = 1, n − k1 ≥ 2 and there exist at least two successive zeros; then,
by placing one 1 between these two successive zeros, the resulting 1 × (n + 1)
vector makes the termination infeasible at the (n + 1)-th trial (contradiction);

(d) suppose Xn = 1, n − k1 ≥ 2 with no two successive zeros; then, X1 = 0 or
X1 = 1. If X1 = 0, then the vector which is derived by transferring the zero found
at the first place to the end and setting Xn+1 = 1, makes the termination infeasible
(contradiction). If X1 = 1, by replacing one zero with one and reordering, we
can have a vector with k1 + 1 ones with which the test will not terminate. In this
vector we must have at least two consecutive ones (if n > 1); then by placing
one zero between them, the resulting 1 × (n + 1) vector makes the termination
infeasible at the (n + 1)-th trial (contradiction).

Therefore, for any FCT model, on choosing n = nmax −1, we have only one non-zero
cni . This completes the proof. 
�

Hence, from the above proof, for any FCT model and n = nmax − 1, there exists
only one k ∈ {0, . . . , n} such that cnk �= 0; this means that only the appearance of
k successes could make the test not to terminate at n = nmax − 1’th trial. Following
similar steps, we can verify that if for a family of start-up demonstration tests we have
cnk1 > 0 and cnk2 > 0 with k1 > k2, then cn+1,k1+1 > 0; a direct conclusion from this
observation is that if n = nmax − 2, then the number of non-zero cni ’s is either 1 or 2.
The next result offers a useful sufficient condition for the identifiability of a mixture
model.

Proposition 1 Suppose X is the test length of a start-up demonstration test, with
X ∈ D = {nmin, . . . , nmax}. Assume also that there exist n ∈ D, k ≥ 0 and μ > 0,
such that:

(a) cnk > 0 and cn+μ,k+μ > 0;
(b) cni = 0,∀i �= k and cn+μ,i = 0,∀i �= k + μ.

Then, the class of two-component mixtures generated by this model is identifiable.

Proof Suppose the following two conditions hold true simultaneously:

(
pA
pB

)k

=
(
1 − pB
1 − pA

)n−k

and

(
pA
pB

)k+μ

=
(
1 − pB
1 − pA

)n+μ−k−μ

.

Then, it can be easily proved that pA = pB; therefore, at least one of the above
equalities is not true and so (4) holds for n1 = n or n1 = n + μ. 
�

The next result is of the same nature as Proposition 1 and offers new sufficient
conditions for the identifiability of the mixture model. The proof can be carried out
by following exactly the same reasoning as that of Proposition 1 and, therefore, it is
not presented here for the sake of conciseness.
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Proposition 2 Suppose X is the test length of a start-up demonstration test, with
X ∈ D = {nmin, . . . , nmax}. Assume also that there exist n1, n2 ∈ D (n1 �= n2),
k ≥ 0 such that:

(a) cn1k > 0 and cn2,k > 0;
(b) cn1i = cn2i = 0,∀i �= k.

Then, the class of two-component mixtures generated by this model is identifiable.

Restricting our attention again to the family of FCT models, we can state the
following theorem which covers the case where the maximum value of the test length
is an even number. In this case the respective class of two-component mixture is
identifiable, no matter whether condition (5) is true or not.

Theorem 4 If nmax is an even number, then the class of two-component mixtures of
a FCT model is identifiable. If instead, nmax is an odd number and the unique k for
which cnmax−1,k > 0 is not equal to (nmax − 1)/2, then the class of two-component
mixtures of a FCT model is identifiable, as well.

Proof In view of Theorem 2, if the minimum of the test length (i.e., X = nmin) cannot
be attained by both rejecting or accepting a unit, then the class of all two-component
mixtures of this model is identifiable. Therefore, we should only turn our attention to
the case where P(X = nmin) = (1 − p)nmin + pnmin .

Suppose the determinant of matrix (3) is zero for n1 = nmin and n2 = nmin − 1
(with pA > pB), and for n1 = nmax − 1 and n2 = nmin − 1. Then, the following two
equalities are true:

(1 − pA)nmin + pnmin
A = (1 − pB)nmin + pnmin

B

and

(
pA
pB

)k

=
(
1 − pB
1 − pA

)nmax−1−k

,

where k is such that cnmax−1,k > 0. Taking advantages of the monotonicity of the
function

f (x) = xn + (1 − x)n, n > 1, x ∈ (0, 1),

we can state that the first equality holds only for pA = pB or pA = 1 − pB. Since
we have assumed that pA > pB, only the solution pA = 1 − pB is allowed; this also
means that pB < 1/2. Replacing now pA = 1 − pB in the second equality, we have

(
1 − pB
pB

)k

=
(
1 − pB
pB

)nmax−1−k

.

Assuming that nmax is an even number, we have nmax−1−k > k or nmax−1−k < k;
from either case, we gain pB = 1/2 = pA (contradiction). Therefore, one of the two
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equalities does not hold and the model is identifiable. Obviously, we could also come
to the same conclusion if nmax is an odd number with nmax − 1 − k �= k. 
�

Before closing this section, it is worth paying more attention to the CSTF model,
which is one of the well-studied models in the literature; the next theorem states that
the mixture of this model is always identifiable.

Theorem 5 The class of two-component mixtures of the CSTF model is identifiable.

Proof Suppose the unit under test is accepted if c consecutive successful start-ups are
observed before a total number of d failures; otherwise, the unit is rejected (X ∈ D =
{min{c, d}, . . . , cd}). We know that a non-zero cnk exists if and only if

n − k ≤ d − 1 and
k

n − k + 1
≤ c − 1;

therefore,

n − d + 1 ≤ k ≤ (n + 1)(c − 1)

c
.

Note also that

(n + 1)(c − 1)

c
− (n − d + 1) ≥ 0 ⇔ n ≤ cd − 1,

as expected. Furthermore, we have

(n + 1)(c − 1)

c
− (n − d + 1) ≤ 1 ⇔ n ≥ c(d − 1) − 1,

which means that for every n with c(d −1)−1 ≤ n ≤ cd −1 the number of non-zero
cnk’s is 1; note that there are cd − 1 − c(d − 1) + 1 = c such n’s. If c = 1, then the
identifiability of the mixture model can be proved couching on the discussion done
before Theorem 1 or Theorem 2 and the fact that nmax−nmin ≥ 3. If c ≥ 2, then it can
be easily verified that we have cnmax−1,d(c−1) > 0 and cnmax−2,d(c−1)−1 > 0; hence,
due to Proposition 1, the class of two-component mixtures is again identifiable. 
�

4 Statistical inference

In this section, we discuss the estimation problem using the maximum likelihood
estimation (MLE) and the EM algorithm. Suppose r independent start-up procedures
are carried out on r different units. We shall next discuss three different scenarios for
the observed/available data. More specifically, let us assume that the data collected
from the r independent start-up testing procedures, include the following:

Scenario I: Only the test length, i.e., ni , i = 1, . . . , r ;
Scenario II: the test length and the outcome of the testing procedure; in this case the

available data contain the pairs (ni , yi ), i = 1, . . . , r , with yi = 1 if the
i th unit was accepted and yi = 0, otherwise;
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Start-up demonstration mixture models 727

Scenario III: the test length, the outcome and the number of successes; in this case,
we have observed the triplets (ni , si , yi ), i = 1, . . . , r , where si is the
number of successes in the i th testing unit and ni , si are as for Scenario
II.

Then, the likelihood function for Scenario I is given by

L I(π, pA, pB) =
r∏

i=1

f (ni ;π, pA, pB)

with

f (n;π, pA, pB) = π f (n; pA) + (1 − π) f (n; pB)

and f (n; p) = S(n − 1; p) − S(n; p); equivalently, f (n; p) can be written as

f (n; p) =
n∑

k=0

vnk p
k(1 − p)n−k,

where

vnk =
∑

xn∈{0,1}n :xnxn ′=k

(1 − φ(xn))φ(xn−1)

and xn−1 stands for a vector of size n − 1 containing the first n − 1 components of xn
(see also Balakrishnan et al. 2014a, b).

Similarly, the likelihood function for Scenario II has the following form:

L II(π, pA, pB) =
r∏

i=1

f (ni , yi ;π, pA, pB)

with

f (n, y;π, pA, pB) = π f (n, y; pA) + (1 − π) f (n, y; pB),

where

f (n, 1; p) =
n∑

k=0

bnk p
k(1 − p)n−k, f (n, 0; p) =

n∑

k=0

dnk p
k(1 − p)n−k,

and

bnk =
∑

xn∈{0,1}n :xnxn ′=k

φ0(xn)(1 − φ1(xn))φ1(xn−1), k = 0, . . . , n,

dnk =
∑

xn∈{0,1}n :xnxn ′=k

φ1(xn)(1 − φ0(xn))φ0(xn−1), k = 0, . . . , n.
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In Scenario III, the likelihood function is given by

L III(π, pA, pB) =
r∏

i=1

f (ni , si , yi ;π, pA, pB)

with

f (n, s, y;π, pA, pB) = π f (n, s, y; pA) + (1 − π) f (n, s, y; pB)

where

f (n, s, 1; p) = bns p
s(1 − p)n−s, f (n, s, 0; p) = dns p

s(1 − p)n−s .

Clearly, a direct maximization of L I (π, pA, pB), L II (π, pA, pB) or L III (π,

pA, pB) would provide us the MLEs of the model parameters (π, pA, pB) and then
using them alongwith the observed informationmatrix, we could also have the asymp-
totic confidence intervals. Alternatively, we can employ the EM algorithm where the
complete data log-likelihood for Scenario I is given by

lcI (π, pA, pB) = log(π)

r∑

i=1

Zi + log(1 − π)

r∑

i=1

(1 − Zi )

+
r∑

i=1

[Zi log f (ni ; pA) + (1 − Zi ) log f (ni ; pB)],

with

Zi =
{
1, if the i th unit is of type A (i.e., its success probability equalspA),

0, if the i th unit is of type B (i.e., its success probability equalspB),

for i = 1, . . . , r . In the E-step, the expected value of the complete data log-likelihood
function is computed with respect to the expected value of Zi , given both the current
values of the parameter and the observed data. Taking into account that

E[Zi |observed data] = E[Zi |X = ni ] = π f (ni ; pA)

π f (ni ; pA) + (1 − π) f (ni ; pB)
,

we may write

QI (π, pA, pB; θ (t)) = E[lcI (π, pA, pB)|observed data]

= log(π)

r∑

i=1

θ
(t)
i + log(1 − π)

r∑

i=1

(1 − θ
(t)
i )

+
r∑

i=1

[θ(t)
i log f (ni ; pA) + (1 − θ

(t)
i ) log f (ni ; pB)]
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where θ (t) = (θ
(t)
1 , . . . , θ

(t)
r ) and

θ
(t)
i = π(t) f (ni ; p(t)

A )

π(t) f (ni ; p(t)
A ) + (1 − π(t)) f (ni ; p(t)

B )
, i = 1, . . . , r,

with π(t), p(t)
A and p(t)

B being the parameter estimates at the t-th iteration step. Simi-
larly, in Scenario II, we have

QII(π, pA, pB; θ (t)) = log(π)

r∑

i=1

θ
(t)
i + log(1 − π)

r∑

i=1

(1 − θ
(t)
i )

+
r∑

i=1

[θ(t)
i log f (ni , yi ; pA) + (1 − θ

(t)
i ) log f (ni , yi ; pB)]

with

θ
(t)
i = π(t) f (ni , yi ; p(t)

A )

π(t) f (ni , yi ; p(t)
A ) + (1 − π(t)) f (ni , yi ; p(t)

B )
,

while in Scenario III, we have

QIII(π, pA, pB; θ (t)) = log(π)

r∑

i=1

θ
(t)
i + log(1 − π)

r∑

i=1

(1 − θ
(t)
i )

+
r∑

i=1

[θ(t)
i log f (ni , si , yi ; pA) + (1 − θ

(t)
i ) log f (ni , si , yi ; pB)]

with

θ
(t)
i = π(t) f (ni , si , yi ; p(t)

A )

π(t) f (ni , si , yi ; p(t)
A ) + (1 − π(t)) f (ni , si , yi ; p(t)

B )
.

In the M-step, the maximization of the expected value of the complete data log-
likelihood is carried out and the new set of parameter estimates are obtained; the
E-step and the M-step are continued iteratively until a convergence criterion is met.
To compute the asymptotic confidence intervals for model parameters through the EM
algorithm, one may use the method of missing information principle Louis (1982);
analytically, denoting by B(π, pA, pB) the negative of the second derivativesmatrix of
lc(π, pA, pB) and by S(π, pA, pB) the gradient vector of lc(π, pA, pB), the observed
Fisher information matrix will be given by I (π̂, p̂A, p̂B), where π̂ , p̂A, p̂B is the EM
estimate of π, pA, pB and

I (π, pA, pB) =E [B(π, pA, pB)] − E[S(π, pA, pB)′S(π, pA, pB)]
+ E[S(π, pA, pB)]′E[S(π, pA, pB)].
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5 Numerical results

The method of inference developed in the previous section will be evaluated by means
of a Monte Carlo simulation study. First, we generate 100 random samples of sizes
r = 200, 400 and 600; i.e., for each of the 100 iterations, we assume that 200 or 400 or
600 units from the same population are tested. In Tables 1, 2 and 3, we consider three
cases, concerning the values of the probabilities π, pA and pB; we assume that: (a)
the probability of successful start-up for a high quality unit (type A unit) is pA = 0.9,
whereas the probability of successful start-up for a low quality unit (type B unit) is
pB = 0.2; the proportion of type A unit is taken to be π = 0.7; (b) the proportion of
type A unit and its success probability are π = 0.7 and pA = 0.85, respectively, while
pB = 0.4; and (c) π = 0.8, pA = 0.95 and pB = 0.5. Our attention is on the CSTF
model which is one of the well-studied start-up demonstration tests; we study the cases
where c = 4, 5 and d = 1, 2 (for the identifiability of this model, see Theorem 5).

The starting values of the EM algorithm can be selected by a grid search in the area
[0, 1]3 and then the choice that corresponds to the largest likelihood will be chosen
as the final estimation. The accuracy of our inference procedure is assessed using the
sample mean of the estimates (mean), the sample standard error (SE), and the root
mean square error (RMSE) given by

RMSE =
√√√√1

r

r∑

i=1

( p̂i − p)2,

where p = π or pA or pB and p̂i are the respective estimates.
Based on our numerical study, the following remarks can be made for Scenario I:

– the more distinct the two categories of units (i.e., type A and B) are, the better
accuracy is gained in terms ofBias, SE andRMSE; this can be seen inTable 1where
the case π = 0.70, pA = 0.90, pB = 0.20 offers the more accurate estimates.
When the difference between pA and pB becomes smaller (see the second case),
less accurate results are seen;

– the estimation of pB almost always gives the largest SE and RMSE, whilst pA
gives the smaller;

– the largest values of SE and RMSE for pB are found in the last case (π = 0.8,
pA = 0.95 and pB = 0.5); this is mainly due to the fact that in this case the
proportion of units of type B is the smallest;

– the results between c = 4, d = 1 and c = 5, d = 1 are quite comparable, while
c = 5, d = 2 gives much higher accuracy; this is because of the larger test lengths,
i.e., available information;

– larger sample sizes decrease the Bias, SE and RMSE.

The above remarks also hold true for Scenarios II and III. Moreover, moving from
Scenario I to Scenario II or III, i.e., increasing the available information, the accuracy of
the estimates increases aswell; the accuracy in Scenario II and III are quite comparable.
As expected, for c = 5, d = 2 and Scenario II or III, the results are very precise.
Furthermore, our numerical study reveals that a grid search in larger areas slightly
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Table 1 CSTF model

Scenario I c = 4, d = 1 c = 5, d = 1 c = 5, d = 2

Mean SE RMSE Mean SE RMSE Mean SE RMSE

True parametersa: π = 0.70, pA = 0.90, pB = 0.20

r = 200

π̂ 0.687 0.093 0.009 0.680 0.078 0.006 0.699 0.044 0.002

p̂A 0.905 0.039 0.002 0.907 0.027 0.0007 0.899 0.017 0.0003

p̂B 0.197 0.134 0.018 0.201 0.128 0.016 0.200 0.052 0.003

r = 400

π̂ 0.691 0.080 0.006 0.692 0.061 0.004 0.699 0.027 0.001

p̂A 0.904 0.033 0.001 0.905 0.020 0.0004 0.901 0.012 10−4

p̂B 0.197 0.113 0.013 0.194 0.101 0.010 0.202 0.038 0.001

r = 600

π̂ 0.692 0.068 0.005 0.695 0.051 0.003 0.698 0.021 10−4

p̂A 0.904 0.029 0.001 0.903 0.017 0.0003 0.902 0.009 10−4

p̂B 0.198 0.090 0.008 0.193 0.086 0.007 0.205 0.030 0.001

True parametersb: π = 0.70, pA = 0.85, pB = 0.40

r = 200

π̂ 0.699 0.148 0.022 0.664 0.156 0.025 0.691 0.105 0.011

p̂A 0.856 0.051 0.003 0.861 0.044 0.0021 0.853 0.036 0.001

p̂B 0.341 0.169 0.032 0.369 0.179 0.033 0.383 0.111 0.013

r = 400

π̂ 0.684 0.145 0.021 0.663 0.143 0.022 0.699 0.076 0.006

p̂A 0.860 0.046 0.002 0.862 0.038 0.002 0.851 0.026 0.001

p̂B 0.357 0.150 0.024 0.377 0.158 0.025 0.391 0.073 0.005

r = 600

π̂ 0.685 0.136 0.018 0.658 0.138 0.021 0.694 0.066 0.004

p̂A 0.859 0.045 0.002 0.863 0.038 0.002 0.853 0.022 0.001

p̂B 0.364 0.134 0.019 0.395 0.143 0.020 0.397 0.067 0.005

True parametersc: π = 0.80, pA = 0.95, pB = 0.50

r = 200

π̂ 0.809 0.107 0.011 0.784 0.120 0.014 0.790 0.074 0.005

p̂A 0.947 0.033 0.001 0.950 0.029 0.001 0.952 0.014 0.0002

p̂B 0.426 0.242 0.063 0.426 0.245 0.065 0.498 0.110 0.012

r = 400

π̂ 0.795 0.106 0.011 0.789 0.106 0.011 0.794 0.051 0.003

p̂A 0.952 0.029 0.001 0.952 0.025 0.001 0.951 0.010 10−4

p̂B 0.439 0.202 0.044 0.441 0.183 0.037 0.504 0.080 0.006

r = 600

π̂ 0.798 0.106 0.011 0.788 0.104 0.011 0.795 0.044 0.002

p̂A 0.952 0.029 0.001 0.953 0.024 0.001 0.950 0.008 10−4

p̂B 0.433 0.186 0.039 0.454 0.167 0.030 0.504 0.067 0.004

Grid search in the area:
a (π, pA, pB) ∈ [0.6, 0.8] × [0.75, 0.95] × [0.1, 0.3] (step size 0.2)
b (π, pA, pB) ∈ [0.6, 0.8] × [0.75, 0.95] × [0.3, 0.5] (step size 0.2)
c (π, pA, pB) ∈ [0.7, 0.9] × [0.79, 0.99] × [0.4, 0.6] (step size 0.2)
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Table 2 CSTF model

Scenario II c=4,d=1 c=5,d=1 c=5,d=2

Mean SE RMSE Mean SE RMSE Mean SE RMSE

True parametersa: π = 0.70, pA = 0.90, pB = 0.20

r = 200

π̂ 0.692 0.081 0.007 0.693 0.072 0.005 0.700 0.043 0.002

p̂A 0.901 0.029 0.001 0.901 0.023 0.001 0.900 0.014 0.0002

p̂B 0.195 0.127 0.016 0.185 0.121 0.015 0.197 0.051 0.003

r = 400

π̂ 0.694 0.063 0.004 0.704 0.053 0.003 0.700 0.027 0.001

p̂A 0.901 0.022 0.0003 0.900 0.015 0.0002 0.900 0.010 10−4

p̂B 0.204 0.104 0.011 0.177 0.089 0.008 0.199 0.037 0.001

r = 600

π̂ 0.696 0.054 0.003 0.702 0.044 0.002 0.699 0.021 10−4

p̂A 0.901 0.017 0.0003 0.900 0.014 0.0002 0.901 0.008 10−4

p̂B 0.200 0.084 0.007 0.186 0.080 0.007 0.203 0.030 0.001

True parametersb: π = 0.70, pA = 0.85, pB = 0.40

r = 200

π̂ 0.693 0.139 0.019 0.664 0.150 0.024 0.693 0.086 0.007

p̂A 0.854 0.041 0.002 0.860 0.035 0.001 0.853 0.027 0.001

p̂B 0.336 0.178 0.035 0.366 0.172 0.030 0.387 0.095 0.009

r = 400

π̂ 0.691 0.132 0.017 0.673 0.123 0.016 0.699 0.066 0.004

p̂A 0.854 0.039 0.001 0.856 0.029 0.001 0.851 0.021 0.0004

p̂B 0.356 0.153 0.025 0.379 0.149 0.022 0.393 0.070 0.005

r = 600

π̂ 0.704 0.117 0.014 0.678 0.114 0.013 0.696 0.061 0.004

p̂A 0.850 0.033 0.001 0.856 0.028 0.001 0.853 0.019 0.0004

p̂B 0.354 0.131 0.019 0.391 0.128 0.016 0.396 0.065 0.004

True parametersc: π = 0.80, pA = 0.95, pB = 0.50

r = 200

π̂ 0.790 0.111 0.012 0.770 0.115 0.014 0.804 0.045 0.002

p̂A 0.952 0.026 0.001 0.954 0.025 0.001 0.949 0.012 10−4

p̂B 0.440 0.229 0.056 0.457 0.218 0.049 0.492 0.081 0.007

r = 400

π̂ 0.778 0.110 0.012 0.771 0.096 0.010 0.803 0.033 0.001

p̂A 0.956 0.025 0.001 0.955 0.019 0.0004 0.949 0.009 10−4

p̂B 0.454 0.197 0.041 0.477 0.169 0.029 0.499 0.058 0.003

r = 600

π̂ 0.775 0.105 0.012 0.777 0.093 0.009 0.798 0.025 0.001

p̂A 0.957 0.024 0.001 0.955 0.018 0.0004 0.950 0.007 10−4

p̂B 0.470 0.169 0.029 0.479 0.152 0.023 0.508 0.042 0.002

Grid search in the area:
a (π, pA, pB) ∈ [0.6, 0.8] × [0.75, 0.95] × [0.1, 0.3] (step size 0.2)
b (π, pA, pB) ∈ [0.6, 0.8] × [0.75, 0.95] × [0.3, 0.5] (step size 0.2)
c (π, pA, pB) ∈ [0.7, 0.9] × [0.79, 0.99] × [0.4, 0.6] (step size 0.2)
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Table 3 CSTF model

Scenario III c = 4, d = 1 c = 5, d = 1 c = 5, d = 2

Mean SE RMSE Mean SE RMSE Mean SE RMSE

True parametersa: π = 0.70, pA = 0.90, pB = 0.20

r = 200

π̂ 0.692 0.081 0.007 0.693 0.072 0.005 0.700 0.043 0.002

p̂A 0.901 0.029 0.001 0.901 0.023 0.001 0.900 0.014 0.0002

p̂B 0.195 0.127 0.016 0.185 0.121 0.015 0.197 0.051 0.003

r = 400

π̂ 0.699 0.061 0.004 0.704 0.053 0.003 0.700 0.027 0.001

p̂A 0.900 0.022 0.001 0.900 0.015 0.0002 0.900 0.010 10−4

p̂B 0.194 0.105 0.011 0.177 0.089 0.008 0.199 0.037 0.001

r = 600

π̂ 0.699 0.052 0.003 0.702 0.044 0.002 0.699 0.021 10−4

p̂A 0.900 0.017 0.0003 0.900 0.014 0.0002 0.901 0.008 10−4

p̂B 0.194 0.083 0.007 0.186 0.080 0.007 0.203 0.030 0.001

True parametersb: π = 0.70, pA = 0.85, pB = 0.40

r = 200

π̂ 0.693 0.139 0.019 0.664 0.150 0.024 0.693 0.087 0.008

p̂A 0.854 0.041 0.002 0.860 0.035 0.001 0.853 0.028 0.001

p̂B 0.336 0.178 0.035 0.366 0.172 0.030 0.387 0.095 0.009

r = 400

π̂ 0.691 0.131 0.017 0.673 0.123 0.016 0.699 0.066 0.004

p̂A 0.854 0.039 0.001 0.856 0.029 0.001 0.851 0.021 0.0004

p̂B 0.356 0.152 0.025 0.379 0.149 0.022 0.393 0.070 0.005

r = 600

π̂ 0.704 0.117 0.014 0.678 0.113 0.013 0.696 0.061 0.004

p̂A 0.850 0.033 0.001 0.856 0.028 0.001 0.853 0.019 0.0004

p̂B 0.354 0.132 0.019 0.391 0.127 0.016 0.396 0.065 0.004

True parametersc: π = 0.80, pA = 0.95, pB = 0.50

r = 200

π̂ 0.790 0.111 0.012 0.770 0.115 0.014 0.803 0.044 0.002

p̂A 0.952 0.026 0.001 0.954 0.025 0.001 0.949 0.012 10−4

p̂B 0.440 0.229 0.056 0.457 0.218 0.049 0.492 0.080 0.006

r = 400

π̂ 0.825 0.066 0.005 0.815 0.051 0.003 0.803 0.033 0.001

p̂A 0.946 0.016 0.0003 0.947 0.011 10−4 0.949 0.009 10−4

p̂B 0.410 0.178 0.040 0.437 0.139 0.023 0.499 0.059 0.003

r = 600

π̂ 0.822 0.058 0.004 0.814 0.050 0.003 0.798 0.024 0.001

p̂A 0.946 0.014 0.0002 0.948 0.011 10−4 0.950 0.007 10−4

p̂B 0.425 0.147 0.027 0.446 0.122 0.018 0.509 0.042 0.002

Grid search in the area:
a (π, pA, pB) ∈ [0.6, 0.8] × [0.75, 0.95] × [0.1, 0.3] (step size 0.2)
b (π, pA, pB) ∈ [0.6, 0.8] × [0.75, 0.95] × [0.3, 0.5] (step size 0.2)
c (π, pA, pB) ∈ [0.7, 0.9] × [0.79, 0.99] × [0.4, 0.6] (step size 0.2)
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Fig. 1 95 % confidence intervals (CI) for r = 600, c = 5, d = 2, π = 0.7, pA = 0.9, pB = 0.2, with the
respective observed coverage probabilities (CP) and mean width of the CI

increases Bias, SE and RMSE, but this negative effect can be balanced by larger
sample sizes; a grid search around the moment estimates (which can be numerically
approximated) could also be a good strategy.

Finally, in Fig. 1, we have the 95% confidence intervals for r = 600, c = 5, d = 2,
with π = 0.7, pA = 0.9, pB = 0.2 and Scenarios I and III. Obviously, the observed
coverage probabilities in Scenario III are closer to their nominal levels than those
for Scenario I; also note that the sample mean of the width of confidence intervals is
slightly smaller in Scenario III.

6 Concluding remarks

In this article, we have provided a new direction for the estimation problem in the con-
text of start-up demonstration theory; specifically, we have studied the two-component
mixture models for waiting times used in start-up demonstration theory, by offering
general sufficient conditions for the identifiability of these models. This study has
focused on the case of i.i.d. binary trials and the results in Sect. 3 have covered all
the start-up demonstration models studied in the literature. The necessary steps for
the implementation of the EM algorithm have also been described in detail while the
numerical study carried out has shown that there is good accuracy in the proposed
estimation procedure, for at least large sample sizes and/or groups of units with quite
distinct characteristics.

Future work could include the study of identifiability of μ-component mixture
models, with μ > 2. Relaxing the i.i.d. condition and/or dealing with multistate trials
will also be of great importance. We are currently working on these issues and hope
to report our findings in a future paper.
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