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Abstract We present a general result on the limit distribution of weighted one- and
two-sample L2-goodness-of-fit test statistics of some hypothesis H0 under fixed alter-
natives. Applications include an approximation of the power function of such tests,
asymptotic confidence intervals of the distance of an underlying distribution with
respect to the distributions under H0, and an asymptotic equivalence test that is able
to validate certain neighborhoods of H0.

Keywords Goodness-of-fit test · Weighted L2-statistic · Fixed alternative ·
Empirical transform · Asymptotic equivalence test

1 Introduction

For more than 30 years, numerous goodness-of-fit tests (GOF tests) based on weighted
L2-statistics involving empirical transforms, such as the empirical characteristic func-
tion (ECF), the empirical Laplace transform (ELT), the empirical moment generating
function (EMF), the empirical probability generating function (EGF), the empiri-
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cal Mellin transform (EMT), and the empirical Hankel transform (EHT), have been
proposed for various testing problems. The following list is not exhaustive, but nev-
ertheless shows that such statistics have gained much interest.

Epps and Pulley (1983) considered testing for univariate normality by means of
the ECF, and Baringhaus and Henze (1988) and Henze and Zirkler (1990) generalized
their approach to the multivariate case. Testing for the Poisson distribution by means
of L2-statistics based on the EGF was studied by Rueda et al. (1991), Baringhaus and
Henze (1992), and Gürtler and Henze (2000b). Baringhaus and Henze (1991), Henze
(1993), Henze andMeintanis (2002a, b), (2005), and (2010) considered corresponding
statistics based on the ELT or the ECF for testing the hypothesis that the underlying
distribution is exponential, and Ebner et al. (2012) studied a goodness-of-fit test for
the gamma distribution. A weighted L2-statistic based on the ELT for testing that the
underlying distribution is inverse Gaussian was studied by Henze and Klar (2002),
and Gürtler and Henze (2000a) proposed an ECF-based statistic for testing for the
Cauchy family. Meintanis (2010) employed the EMF to test for the family of skew-
normal distributions, and Meintanis and Tsionas (2010) used the EMF to construct
a GOF test for the normal-Laplace distribution. A weighted L2-statistic using the
ECF for testing GOF for normal inverse Gaussian distributions was considered by
Fragiadakis et al. (2009), and Meintanis (2008a) employed such statistic based on
the EMT to construct tests for generalized exponential laws. Moreover, Iliopoulos and
Meintanis (2003) studied L2-statistics in connectionwithGOF testing for theRayleigh
distribution, Meintanis (2008b) considered testing for the log-normal family bymeans
of the EMF, and Meintanis (2007) used the ELT for L2-based tests of fit for bivariate
Marshall–Olkin distributions. Meintanis (2004a, b) considered L2-type statistics for
testing GOF for the Laplace and the logistic family of distributions, respectively.
More recently, Fermanian (2009) and Genest et al. (2011) employed L2-statistics for
testing for parametric families of copula functions. Last but not least, Alba-Fernández
and Jiménez-Gamero (2015) and Novoa-Muñoz and Jiménez-Gamero (2014) studied
L2-type statistics to test for bivariate exponential and bivariate Poisson distributions,
respectively.

Let Bd be the Borel σ -field of subsets of Rd , M �= ∅ an element of Bd , and μ a
finite measure on Bd

M = Bd ∩ M. A weighted L2-statistic takes the form

Tn = n
∫
M
Z2
n(t) μ(dt), (1)

where Zn(t) = zn(X1, . . . , Xn, t) and zn : (Rp)n × M → R is a product measur-
able function, i.e., zn is measurable with respect to the product σ -field (B p)n ⊗ Bd

M .

Moreover,

∫
M
z2n(x1, . . . , xn, t) μ(dt) < ∞ for each (x1, . . . , xn) ∈ (Rp)n,

and X1, . . . , Xn are [not necessarily independent and identically distributed (i.i.d.)]
R

p-valued random (column) vectors.
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Weighted L2-GOF-statistics under fixed alternatives 971

For asymptotic theorems, we assume that X1, . . . , Xn is the beginning of an infinite
sequence X1, X2, . . ., where X1, X2, . . . are defined on a common probability space
(�,A,P). Usually, μ is given by a non-negative weight function w defined on M ,
and we have μ(dt) = w(t) dt , where dt means integration with respect to Lebesgue
measure on M . The weight function w is often chosen to give Tn a simple expression
that is suitable for computations.

Each of the L2-statistics in the papers listed above has been proposed, in a setting
of i.i.d. copies X1, X2, . . . of a random vector X , to test a hypothesis of the type

H0 : PX ∈ Q = {Qϑ : ϑ ∈ �}, (2)

where P
X denotes the distribution of X , Q is a family of p-variate distributions

indexed by some finite-dimensional parameter ϑ . Weighted L2-statistics, however,
have also been studied for testing non-parametric hypotheses, see e.g. Henze et al.
(2003), Ngatchou-Wandji (2009), and Leucht (2012) in the context of testing for
reflected symmetry about an unspecified point. The latter paper even relaxed the i.i.d.-
assumption.

As an example, we consider the now classical BHEP statistic for testing the hypoth-
esis H0 that X has some non-degenerate d-variate normal distribution [see, e.g., Henze
(2002), Section 6]. This statistic is defined as

Tn = n
∫
Rd

|ψn(t) − exp

(
−‖t‖2

2

)
|2 w(t) dt. (3)

Here, ψn(t) = n−1∑n
j=1 exp(it


Yn, j ) is the ECF of the so-called scaled residuals

Yn, j = S−1/2
n (X j − Xn), j = 1, . . . , n, where Xn = n−1∑n

j=1 X j is the sample

mean, and S−1/2
n denotes the symmetric positive definite square root of the inverse of

the sample covariance matrix Sn = n−1∑n
j=1(X j − Xn)(X j − Xn)


, which exists
almost surely if n > d and the distribution of X is absolutely continuous. Moreover, i
stands for the imaginary unit, ‖·‖ denotes the Euclidean norm, and x
 is the transpose
of a column vector x . With the weight function

w(t) = wβ(t) = 1

(2πβ2)d/2 exp

(
−‖t‖2

2β2

)
, (4)

where β > 0 is fixed, Tn has the simple expression

Tn = 1

n

n∑
j,k=1

exp

(
−β2

2
‖Yn, j − Yn,k‖2

)

−2(1 + β2)−d/2
n∑
j=1

exp

(
−β2‖Yn, j‖2
2(1 + β2)

)
+ n(1 + 2β2)−d/2.
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972 L. Baringhaus et al.

Putting

Zn(t) = 1

n

n∑
j=1

[
cos(t
Yn, j ) + sin(t
Yn, j ) − exp

(
−1

2
‖t‖2

)]

yields the form (1), where μ is the centered d-variate normal distribution with inde-
pendent components, each having variance β2.

Regarding β figuring in (4), it is a common feature of weighted L2-statistics that the
weight function includes some kind of ’hyper-parameter’. The purpose of introducing
such a parameter [which is called a in (15)] is to gain flexibility with respect to the
power of a test of H0. The role of β has been extensively discussed in Henze and
Zirkler (1990) and Henze (1997), and further insight for other weighted L2-statistics
is provided by Baringhaus et al. (2000).

Theoretical results on weighted L2-statistics usually involve a non-degenerate limit
distribution of Tn under H0, the limit distribution of Tn under contiguous alternatives
to H0, and a stochastic limit of Tn/n under a fixed alternative distribution. More

precisely, one has (writing
P−→ for convergence in probability)

Tn
n

P−→ 	 :=
∫
M
z2(t) μ(dt) > 0 (5)

for some measurable function z on M that is square integrable with respect to μ. The
latter result is then used to prove the consistency of a GOF test that rejects H0 for large
values of Tn .

With very few exceptions, for example, Naito (1997), Bücher and Dette (2010),
and Gürtler (2000), there is no stronger result under a fixed alternative. Naito (1997)
proved asymptotic normality forweighted L2-statistics under an i.i.d. setting for testing
for parametric models with regular estimators using the theory of V-statistics with
estimated parameters, as given, e.g., in De Wet and Randles (1987). Gürtler (2000)
showed in the special case of the BHEP statistic for testing for multivariate normality
that, under a fixed alternative distribution satisfying a weak moment condition, we
have

√
n

(
Tn
n

− 	

)
D−→ N(0, σ 2),

where σ 2 > 0 depends on the underlying distribution, and
D−→ denotes convergence

in distribution of random vectors and stochastic processes.
Using a very general Hilbert space approach that carves out the quintessence of

asymptotic normality of weighted L2-statistics [see (6)], we will show that, under
general conditions, such statistics have centered normal limit distributions. Applica-
tions include an approximation of the power function of a GOF test based on Tn ,
an asymptotic confidence interval for the stochastic limit 	 figuring in (5), and an
asymptotic ‘inverse GOF test’ which tests, for a given value 	0 > 0, the hypothesis
that 	 ≥ 	0 against the alternative 	 < 	0.
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Weighted L2-GOF-statistics under fixed alternatives 973

The paper is organized as follows. Section 2 contains the main result, the implica-
tions of which are given in Sect. 3. Section 4 discusses some examples. In Sect. 5, we
show that themain result can readily be generalized to the case of two-sampleweighted
L2-statistics. Section 6 contains a brief summary. For the sake of readability, the proof
of Theorem 2 is deferred to Sect. 7.

2 The main result

To establish our main result, let H = L2(M,Bd
M , μ) be the Hilbert space of (equiv-

alence classes of) square-integrable measurable functions on M , equipped with the
scalar product 〈g, h〉 = ∫

M gh dμ. Furthermore, let ‖h‖2
L2 = ∫

M h2 dμ. We assume

that Zn figuring in (1) is a random element of H, which implies Tn = ‖√nZn‖2L2 . In

an i.i.d. setting as stated before (2), we typically have
√
nZn

D−→ Z under H0, where
Z = (Z(t), t ∈ M) is a centered Gaussian process that can be regarded as random
element of H and satisfies E‖Z‖2

L2 < ∞.

In what follows, we always assume that Gaussian processes arising as limits in
this (or a similar related) way are product-measurable, i.e., the function (ω, t) →
Z(t)(ω), (ω, t) ∈ � × M, isA⊗Bd

M -measurable. The continuous mapping theorem

gives Tn
D−→ ‖Z‖2

L2 . The distribution of ‖Z‖2
L2 is that of

∑
j λ j N 2

j , where the N j

are i.i.d. standard normal random variables, and the λ j are the at most countably
many positive eigenvalues corresponding to eigenfunctions of the integral equation
λ f (s) = ∫

M K (s, t) f (t)μ(dt) associated with the covariance kernel K of Z . Under
contiguous alternatives to H0, the limit distribution of Tn is that of ‖Z + c‖2

L2 , where
c is some shift function on H.

To consider the hitherto largely neglected behavior of weighted L2-statistics under
a fixed alternative to H0, notice that the stochastic limit 	 figuring in (5) is ‖z‖2

L2 . We
thus have

√
n

(
Tn
n

− 	

)
= √

n
(
‖Zn‖2L2 − ‖z‖2L2

)

= √
n〈Zn − z, Zn + z〉

= √
n〈Zn − z, 2z + Zn − z〉

= 2〈√n(Zn − z), z〉 + 1√
n
‖√n(Zn − z)‖2L2 . (6)

This decomposition of
√
n(Tn/n − 	), which in connection with the Cramér-von

Mises statistic has already been used by Chapman (1958), immediately leads to our
main result.

Theorem 1 Let (Tn)n≥1 be a sequence of weighted L2-statistic based on (not nec-
essarily i.i.d.) d-dimensional random vectors X1, X2, . . . satisfying (5). Putting
Wn(·) = √

n(Zn(·) − z(·)), suppose further that, as n → ∞,

Wn
D−→ W
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974 L. Baringhaus et al.

inH, where W = (W (t), t ∈ M) is a product-measurable centered Gaussian process
that can be regarded as random element of H and satisfies E‖W‖2

L2 < ∞. Let

K (s, t) = E[W (s)W (t)], s, t ∈ M,

be the covariance kernel of W. Then,

√
n

(
Tn
n

− 	

)
D−→ N(0, σ 2),

where

σ 2 = 4
∫
M

∫
M
K (s, t)z(s)z(t)μ(ds)μ(dt). (7)

Proof From (6), we have

√
n

(
Tn
n

− 	

)
= 2〈Wn, z〉 + 1√

n
‖Wn‖2L2 .

Since Wn
D−→ W and the continuous mapping theorem imply 〈Wn, z〉 D−→ 〈W, z〉

and ‖Wn‖2L2
D−→ ‖W‖2

L2 , it follows that

√
n

(
Tn
n

− 	

)
D−→ 2〈W, z〉.

Now, 〈W, z〉 has a centered normal distribution with variance

E

[
〈W, z〉2

]
= E

[∫
M
W (s)z(s)μ(ds)

∫
M
W (t)z(t) μ(dt)

]

=
∫
M

∫
M
E [W (s)W (t)] z(s)z(t)μ(ds)μ(dt),

proving the assertion. ��
The following corollary is an immediate consequence of Theorem 1 and Slutsky’s

Lemma.

Corollary 1 Suppose that, in the setting of Theorem 1, σ 2 figuring in (7) is positive.
Suppose further that σ̂ 2

n = σ̂ 2
n (X1, . . . , Xn) is a (weakly) consistent sequence of

estimators of σ 2. Then,

√
n

σ̂n

(
Tn
n

− 	

)
D−→ N(0, 1). (8)

Remark 1 Denoting by {e j : j ≥ 1} the countable set of orthonormal eigenfunctions
associated with the positive eigenvalues λ j , we have
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Weighted L2-GOF-statistics under fixed alternatives 975

K (s, t) =
∑
j≥1

λ j e j (s)e j (t).

The series converges in L2
(
M × M,Bd

M ⊗ Bd
M , μ ⊗ μ

) ; see, e.g., Dunford and
Schwartz (1988), p. 1087. It follows that

σ 2 = 4
∑
j≥1

λ j

(∫
M
e j (t)z(t)μ(ds)

)2
.

Therefore, σ 2 = 0 if and only if

∫
M
e j (t)z(t)μ(ds) = 0 for each j. (9)

Additionally, due to

∫
M
K (·, t)z(t)μ(dt) =

∑
j≥1

λ j

(∫
M
e j (t)z(t)μ(ds)

)
e j (·) μ-almost everywhere,

the integral
∫
M K (·, t)z(t)μ(dt) vanishes μ-almost everywhere if, and only if, (9) is

true. Thus, σ 2 is positive if, and only if,
∫
M K (·, t)z(t)μ(dt) does not vanishμ-almost

everywhere.

3 Applications

There are some immediate consequences of Theorem 1 and Corollary 1. To this end,
consider testing a hypothesis H0 : P

X ∈ Q = {Qϑ : ϑ ∈ �} in the setting that
X1, X2, . . . are i.i.d. copies of a random vector X . Write F for the distribution function
of X under a fixed alternative distribution to H0. In what follows, assume that the
assumptions of Theorem 1 and Corollary 1 hold.

3.1 A confidence interval for �

Fix α ∈ (0, 1), and let uα = 
−1(1− α/2) be the (1− α/2)-quantile of the standard
normal distribution. From (8), it follows at once that

In :=
[
Tn
n

− uασ̂n√
n

,
Tn
n

+ uασ̂n√
n

]
(10)

is an asymptotic (two-sided) confidence interval at level 1 − α for 	, i.e., we have
limn→∞ PF (In � 	) = 1 − α.

Notice that 	 = 	(F) may be regarded as some kind of ‘distance’ between the
true underlying distribution and the distributions in Q, for which 	 = 0. Thus, In is
an asymptotic confidence interval for this ‘distance’.
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976 L. Baringhaus et al.

3.2 Approximation of the power function

As a second application of Theorem 1, we obtain an approximation of the power
function of a GOF test that rejects H0 for large values of Tn . As stated at the beginning
Sect. 2, the limit distribution of Tn under H0 is the distribution of a sum of weighted
independent χ2

1 -variates. When testing for multivariate normality and Tn is affine
invariant or when testing for exponentiality and Tn is scale invariant, the distribution
of Tn under H0 does not depend on the value of the ’true’ parameter ϑ ∈ �. In this
case, (1 − α)-quantiles of Tn are obtained by simulation. For the BHEP statistic for
testing for multivariate normality, the first three moments of the limit distribution have
been established, and a three-parameter log-normal distribution has been fitted to the
unknown limit distribution, seeHenze andWagner (1997). Thus, by the quantiles of the
fitted log-normal distribution, alternative critical values are available for large samples.
In general, a parametric bootstrap procedure is needed to find critical values to carry
out the test. Suppose that H0 is rejected if Tn > cn , and limn→∞ Pϑ(Tn > cn) = α for
each ϑ ∈ �, where (cn) is a sequence of constants. If F is the distribution function of
an alternative distribution satisfying the assumptions of Theorem 1 and Corollary 1,
it follows that the power of the test against this alternative can be approximated by

PF (Tn > cn) = PF

(√
n

σ

(
Tn
n

− 	

)
>

√
n

σ

(cn
n

− 	
))

≈ 1 − 


(√
n

σ

(cn
n

− 	
))

, (11)

where 
 is the standard normal distribution function. If a bootstrap procedure is used,
let ϑ̂n = ϑ̂n(X1, . . . , Xn) be some suitable estimator of ϑ ∈ �. Denote by L(Tn|F)

the distribution of Tn if X1 ∼ F , and by cn the (1 − α)-quantile of L(Tn|Fϑ̂n
). In

typical cases, given X1, X2, . . . with common distribution F , as n → ∞, the weak
limit μF , say, of L(Tn|Fϑ̂n

) exists almost surely, and cn → c almost surely, where c
is the (1 − α)-quantile of μF . Then, for a given alternative distribution F satisfying
the assumptions of Theorem 1 and Corollary 1, we are led to approximate the power
of the test that rejects H0 if Tn > cn by

PF (Tn > cn) ≈ PF (Tn > c) ≈ 1 − 


(√
n

σ

( c
n

− 	
))

. (12)

In practice, the approximations (11) and (12) may give an assessment of the power
of a GOF test when specifying an alternative distribution without having to perform a
simulation.

3.3 Neighborhood-of-model validation

A third application of the main results refers to a fundamental drawback inherent in
any GOF test. If a level-α-test of H0 does not lead to a rejection of H0, the hypothesis
H0 is by no means ‘validated’ or ‘confirmed’. There is probably only not enough
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Weighted L2-GOF-statistics under fixed alternatives 977

evidence to reject it! Suppose, on the other hand, that we want to tolerate a given
‘distance’ 	0 and consider the ‘inverse’ testing problem

H	0 : 	(F) ≥ 	0 against K	0 : 	(F) < 	0.

Here, the dependence of 	 on the underlying distribution has been made explicit.
From (8), we obtain the following asymptotic level-α-test of H	0 against K	0 : This
test rejects H	0 if

Tn
n

≤ 	0 − σ̂n√
n

−1(1 − α).

Using (8), we have for each F ∈ H	0

lim sup
n→∞

PF

(
Tn
n

≤ 	0 − σ̂n√
n

−1(1−α)

)

= lim sup
n→∞

PF

(√
n

σ̂n

(
Tn
n

−	0

)
≤ −
−1(1−α)

)

≤ α.

Thus, the test has asymptotic level α. Moreover, we have

lim
n→∞PF

(
Tn
n

≤ 	0 − σ̂n√
n

−1(1 − α)

)
= α

for each F such that 	(F) = 	0. It is easy to see that

lim
n→∞PF

(
Tn
n

≤ 	0 − σ̂n√
n

−1(1 − α)

)
= 1

if 	(F) < 	0. Thus, the test is consistent against each alternative.
Notice that this test is in the spirit of bioequivalence testing [see, e.g., Czado et al.

(2007) or Wellek (2010)], since it aims at validating a certain neighborhood of a
hypothesizedmodel. In this respect, Dette andMunk (2003) considered neighborhood-
of-model validation in a regression context, where the role of (our) 	 is taken by a
suitable minimum L2-distance between an unknown regression function and a para-
metric regression model.

Of course, if the hypothesis H	0 is not rejected, one could also argue that there
were not enough data to reject it. On the other hand, a parametric model {Qϑ : ϑ ∈ �}
which is tested for in (2) is much narrower than a fully non-parametric complement
of a neighborhood of this model, as given by H	0 .

4 Examples

Example 1 Gürtler (2000) considered the statistics Tn figuring in (3) with the weight
function wβ given in (4), which is the BHEP statistic for testing for multivariate
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978 L. Baringhaus et al.

normality. For the sake of simplicity, we assume d = 1 in what follows. Then, writing
ϕ(x) = (2π)−1/2 exp(−x2/2) for the standard normal density,

Tn,β = n
∫ ∞

−∞
|ψn(t) − exp

(
− t2

2

)
|2 1

β
ϕ

(
t

β

)
dt

yields the statistic of Epps and Pulley (1983) for testing for normality. Let

	β =
∫ ∞

−∞
|C(t) − exp

(
− t2

2

)
|2 1

β
ϕ

(
t

β

)
dt, (13)

where C(t) = E (cos(t X) + sin(t X)), and X is assumed to be standardized, i.e.,
we have E(X) = 0 and V(X) = 1. Under the additional condition E(X4) < ∞,
Gürtler (2000) proved that Theorem 1 holds with a centered Gaussian element W of
H := L2(R,B, wβ(t)dt) having covariance kernel

K (s, t) = R(t − s) + I (s + t) − C(s)C(t) + t D(t)D′(s) + sD(s)D′(t) + st D(s)D(t)

+ 1

2
{tC ′′(s)C ′(t) + sC ′′(t)C ′(s)} + 1

2
{tC(s)C ′(t) + sC(t)C ′(s)}

+ m3

2
st{D(s)

(
R′(t) + I ′(t)

)+ D(t)
(
R′(s) + I ′(s)

) }
+ 1

4
(m4 − 1)stC ′(s)C ′(t).

Here, R(t) = E[cos(t X)], I (t) = E[sin(t X)], C(t) = R(t) + I (t), D(t) = R(t) −
I (t), andm j = E[X j ], j = 3, 4. Notice that differentiation can be carried out beneath
the expectation operator. For example, we have R′(t) = −E[X sin(t X)]. In this case,
the function z figuring in (5) is

z(t) = C(t) − exp

(
− t2

2

)
,

and σ 2 in (7) takes the form

σ 2 = 4
∫∫

K (s, t)

(
C(s)−exp

(
− s2

2

))(
C(t)−exp

(
− t2

2

))
1

β2 ϕ

(
s

β

)
ϕ

(
t

β

)
dsdt,

where
∫

is shorthand for
∫∞
−∞ (see also Naito (1997), p. 208, for the special case

β = 1). A consistent estimator σ̂ 2
n of σ 2 is obtained if, in the above expression,

K (s, t) is replaced with Kn(s, t) and C(u) with Cn(u), u ∈ {s, t}. Here, Kn results
from K stated above by replacing R with Rn , I with In , C with Cn , D with Dn , m3
with m3,n , and m4 with m4,n , where

Rn(s) = 1

n

n∑
j=1

cos(sY j ), In(s) = 1

n

n∑
j=1

sin(sY j ),
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Weighted L2-GOF-statistics under fixed alternatives 979

Cn(s) = Rn(s) + In(s), Dn(s) = Rn(s) − In(s), ml,n = n−1∑n
j=1 Y

l
j , l ∈ {3, 4},

and Y j = (X j − Xn)/(n−1∑n
l=1(Xl − Xn)

2)1/2, j = 1, . . . , n.
All the resulting integrals may be expressed in terms of

J1(Y j ) = (1 + β2)−d/2 exp

(
− β2Y 2

j

2(1 + β2)

)
,

J2(Y j ,Yk) = 1

2

[
exp

(
−β2

2
(Y j − Yk)

2
)

+ exp

(
−β2

2
(Y j + Yk)

2
)]

,

J3(Y j ,Yk) = 1

2

[
exp

(
−β2

2
(Y j − Yk)

2
)

− exp

(
−β2

2
(Y j + Yk)

2
)]

,

J4(Y j ) = Y jβ
2

(1 + β2)1+d/2 exp

(
− β2Y 2

j

2(1 + β2)

)
.

By tedious calculations, one obtains,

σ̂ 2
n = 4 ·

{
K1n + K2n(K3n − K2n) − 1

4
K 2
3n + K 2

5n + K5n (2K4n + K6n)

+ K9n

(
K7n + 1

4
K8n

)}
.

Here,

K1n = 1

n

n∑
j=1

⎧⎨
⎩
(
1

n

n∑
k=1

J2(Y j ,Yk) − J1(Y j )

)2

+
(
1

n

n∑
k=1

J3(Y j ,Yk)

)2
⎫⎬
⎭

+ 2

n

n∑
j=1

1

n

n∑
k=1

J3(Y j ,Yk)
1

n

n∑
k=1

J2(Yk,Yk) − J1(Y j ),

K2n = 1

n2

n∑
j,k=1

exp

(
−β2

2
(Y j − Yk)

2
)

− 1

n

n∑
j=1

J1(Y j ),

K3n = β2

n2

n∑
j,k=1

Y j (Yk − Y j ) exp

(
−β2

2
(Yk − Y j )

2
)

+ 1

n

n∑
j=1

Y j J4(Y j ),

K4n = 1

n

n∑
j=1

Y j J1(Y j ) − 1

n2

n∑
j,k=1

Y j exp

(
−β2

2
(Y j − Yk)

2
)

,

K5n = 1

n

n∑
j=1

J4(Y j ) + β2

n2

n∑
j,k=1

(Yk − Y j ) exp

(
−β2

2
(Yk − Y j )

2
)

,

K6n = 1

n2

n∑
j,k=1

Y jY
3
k J4(Y j ) + β2

n3

n∑
i, j,k=1

Y jY
3
k (Yi − Y j ) exp

(
−β2

2
(Yi − Y j )

2
)

,
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980 L. Baringhaus et al.

K7n = 1

n

n∑
j=1

Y 2
j J1(Y j ) − 1

n2

n∑
j,k=1

Y 2
j exp

(
−β2

2
(Y j − Yk)

2
)

,

K8n = 1

n2

n∑
j,k=1

Y jY
4
k J4(Y j ) + β2

n3

n∑
i, j,k=1

Y jY
4
k (Yi − Y j ) exp

(
−β2

2
(Yi − Y j )

2
)

,

K9n = 1

n

n∑
j=1

Y j J4(Y j ) + β2

n2

n∑
j,k=1

Y j (Yk − Y j ) exp

(
−β2

2
(Yk − Y j )

2
)

.

For the following alternative distributions, considered by Gürtler (2000), we take
β = 1 and put	 := 	1 (see (13)). The first alternative to the normal distribution is the
uniform distributionU[−1/

√
3, 1/

√
3], the second alternative the Laplace distribution

L(0, 1√
2
) with density f (x) = exp(−√

2|x |)/√2, x ∈ R, and the third is a mixture

of the normal distributions N(
√
8
3 , 1

9 ) and N(−
√
8
3 , 1

9 )with equal mixing probabilities,

abbreviated by NMIX(±
√
8
3 , 1

9 ). Notice that these distributions are standardized. The
values of 	 are 0.00647 for U[−1/

√
3, 1/

√
3], 0.00660 for L(0, 1√

2
), and 0.02005

for NMIX(±
√
8
3 , 1

9 ).
Table 1 shows the empirical coverage probabilities of the confidence interval (10)

for 	, each based on 10,000 replications, for the three alternatives and the sample
sizes n = 20, n = 50, n = 100, and n = 200. The nominal level is 1 − α = 0.9.

Obviously, these empirical values are close to the nominal value 0.9 even for small
sample sizes.

Table 2 displays the empirical power of the BHEP test for normality, rounded to two
decimal places and denoted byMC, against the three alternatives discussed above. The
nominal level is 0.9, and each value is based on 10,000 replications. Critical values
cn for Tn have been taken from Henze (1990). The columns denoted by App show

Table 1 Empirical coverage
probabilities of In for 	

(nominal level 0.9, 10,000
replications)

n U[−1/
√
3, 1/

√
3] L

(
0, 1√

2

)
NMIX

(
±

√
8
3 , 1

9

)

20 0.91 0.89 0.92

50 0.90 0.87 0.90

100 0.91 0.88 0.90

200 0.90 0.89 0.90

Table 2 Empirical power and
approximation (11) against
selected alternatives

U[−1/
√
3, 1/

√
3] L

(
0, 1√

2

)
NMIX

(
±

√
8
3 , 1

9

)

MC App MC App MC App

n = 20 0.27 0.06 0.35 0.24 0.96 0.86

n = 50 0.73 0.58 0.62 0.55 1.0 1.0

n = 100 0.98 0.94 0.88 0.78 1.0 1.0

n = 200 1.0 0.99 0.99 0.91 1.0 1.0
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Weighted L2-GOF-statistics under fixed alternatives 981

the corresponding approximations given by the right-hand side of (11). Obviously,
the approximation seems to be a lower bound for the true power. Notice that, due to a
normal approximation and several plug-in estimations, these approximations should
only be used for larger sample sizes.

As a second class of alternatives, we consider standard normal distributions that
are contaminated by the Laplace distribution L(0, 1/

√
2). In this case, X has the same

distribution as (1 − U )N + UL , where U, N , and L are independent, P(U = 1) =
ε = 1 − P(U = 0), N ∼N(0, 1), and L ∼ L(0, 1/

√
2), i.e., X has the density

fε(x) = (1 − ε)
1√
2π

exp

(
− x2

2

)
+ ε

1√
2
exp
(
−√

2|x |
)

, x ∈ R,

where 0 ≤ ε ≤ 1. Notice that E(X) = 0 and V(X) = 1.
Since I (t) = E[sin(t X)] = 0, we have

C(t) = E [cos(t X) + sin(t X)] = (1 − ε) exp

(
− t2

2

)
+ ε

2

2 + t2

and

z(t) = C(t) − exp

(
− t2

2

)
= ε

(
2

2 + t2
− exp

(
− t2

2

))
.

From

∫ +∞

−∞
1

t2 + y2
e−xt2 dt = 2π

y
exy

2
(
1 − 


(√
2x y

))
, x > 0, y > 0, (14)

see, e.g. Magnus et al. (1966), p. 350, we obtain

	 = ε2
∫ +∞

−∞

(
2

2 + t2
− e− t2

2

)2

ϕ(t) dt

= ε2
(
1 − √

πe
(
1 − 


(√
2
))

− 4
√

πe2 (1 − 
(2)) + 3− 1
2

)

= ε2 · 0.006602033.

We calculate σ 2 only for the case ε = 1, i.e., for the Laplace distribution. In this
case, the covariance kernel takes the form

K (s, t) = 1

1 + 1
2 (s − t)2

− 1

1 + 1
2 s

2

1

1 + 1
2 t

2
+

1
4 s

3t3 − st(
1 + 1

2 s
2
)2 (

1 + 1
2 t

2
)2

−1

2

t2(
1 + 1

2 t
2
)2

3
2 s

2 − 1(
1 + 1

2 s
2
)3 + s2(

1 + 1
2 s

2
)2

3
2 t

2 − 1(
1 + 1

2 t
2
)3

−1

2

t2

(1+ 1
2 s

2)(1+ 1
2 t

2)2
+ s2(

1 + 1
2 s

2
)2 (

1+ 1
2 t

2
) + 5

4

s2t2(
1+ 1

2 s
2
)2 (

1+ 1
2 t

2
)2 .
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982 L. Baringhaus et al.

We have

σ 2 = 4

(
I1 − I 22 − I3 I4 − I3 I2 + 5

4
I 23

)
,

where

I1 = I1,1 − 2I1,2 + I1,3,

I2 = I2,1 − I2,2,

I3 = I3,1 − I3,2,

I4 = I4,1 − I4,2.

Here, writing
∫
for
∫∞
−∞,

I1,1 =
∫∫

1

1 + 1
2 (s − t)2

1

1 + 1
2 s

2

1

1 + 1
2 t

2
ϕ(s)ϕ(t) dsdt,

I1,2 =
∫∫

1

1 + 1
2 (s − t)2

1

1 + 1
2 s

2
e−t2/2 ϕ(s)ϕ(t) dsdt,

I1,3 =
∫∫

1

1 + 1
2 (s − t)2

e−(s2+t2)/2ϕ(s)ϕ(t) dsdt,

I2,1 =
∫ (

1

1 + 1
2 s

2

)2

ϕ(s) ds = 1 − √
πe
(
1 − 


(√
2
))

,

I2,2 =
∫

1

1 + 1
2 s

2
e−s2/2 ϕ(s) ds = 2

√
πe2 (1 − 
(2)) ,

I3,1 =
∫

s2

(1 + 1
2 s

2)3
ϕ(s) ds = 1

2

(
3 − 7

√
πe
(
1 − 


(√
2
)))

,

I3,2 =
∫

s2

(1 + 1
2 s

2)2
e−s2/2 ϕ(s) ds = 10

√
πe2 (1 − 
(2)) − 2

√
2,

I4,1 =
∫ 3

2 s
2 − 1

(1 + 1
2 s

2)4
ϕ(s) ds = 25

12

√
πe
(
1 − 


(√
2
))

− 13

12
,

I4,2 =
∫ 3

2 s
2 − 1

(1 + 1
2 s

2)3
e−s2/2 ϕ(s) ds = 8√

2
− 20

√
πe2 (1 − 
(2)) .

The values of last six integrals are obtained by equating corresponding partial deriv-
atives of the expressions on the left- and the right-hand side of (14) with respect to x
and y. Moreover,

I1,1 = 1√
2

∫
�2(w)e−√

2|w| dw,
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Weighted L2-GOF-statistics under fixed alternatives 983

where

�(w) =
∫

cos(sw)
1

1 + 1
2 s

2
ϕ(s) ds

=
∫

1√
2

(∫
cos(sw) cos(sv)e−√

2|v| dv
)

ϕ(s) ds

= 1√
2

∫ (∫
cos(sw) cos(sv)ϕ(s) ds

)
e−√

2|v| dv

= 1√
2

∫
e−(w−v)2/2 e−√

2|v| dv

= √
πe((1 − 
(−w + √

2)) exp(−√
2w) + 
(−w − √

2) exp(
√
2w)), w ∈ R.

By numerical integration, we obtain I1,1 = 0.41736219895. Moreover,

I1,2 = 1√
2

∫ (∫
cos(sw)

1 + 1
2 s

2
ϕ(s) ds

)(∫
cos(tw) e−t2/2 ϕ(t) dt

)
e−√

2|w| dw.

From
∫
cos(tw)e−t2/2ϕ(t) dt = e−w2/4/

√
2, w ∈ R, we deduce

I1,2 = 1

2

∫
�(w)e−w2/4 e−√

2|w| dw.

By numerical integration, we get I1,2 = 0.39748434972. Finally,

I1,3 = 1√
2

∫
1

2
e−w2/2e−√

2|w| dw = 1√
2

∫ ∞

0
e−w2/2−√

2w dw

= √
πe
(
1 − 


(√
2
))

.

Putting pieces together, we obtain σ 2 = 0.00231562626. Based on a sample of size
n = 1000 from simulated realizations of X1, . . . , Xn where X1 ∼ L(0, 1/

√
2), we

observed the value 0.002848655.
Table 3 shows the empirical coverage probabilities of the confidence interval (10)

for 	, each based on 10,000 replications, for several values of ε and the sample sizes

Table 3 Empirical coverage
probabilities of In for 	 (normal
distribution contaminated by
Laplace, nominal level 0.9,
10,000 replications)

ε

0.25 0.5 0.75 1

n = 20 0.96 0.97 0.94 0.89

n = 50 0.99 0.96 0.91 0.87

n = 100 0.99 0.92 0.89 0.88

n = 200 0.97 0.91 0.89 0.89
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984 L. Baringhaus et al.

Table 4 Power Study for the
normal distributions
contaminated by the Laplace
distribution

ε 0.25 0.5 0.75 1.0

n = 20 0.14 0.20 0.27 0.35

n = 50 0.17 0.29 0.46 0.62

n = 100 0.22 0.44 0.69 0.88

n = 200 0.28 0.65 0.91 0.99

n = 20, n = 50, n = 100, and n = 200. The nominal level is 1 − α = 0.9. Notice
that the values for ε = 1 are also given in Table 1.

In contrast with Table 1, the coverage probabilities seem to be much higher than the
nominal value, and they seem to increase as ε decreases. Table 4 shows the empirical
power of the test for normality based on Tn,1. The nominal level is 0.9. As was to be
expected, the power increases as ε increases.

Example 2 Let X, X1, X2, . . . be i.i.d. positive randomvariables.Motivated by a char-
acteristic differential equation for the Laplace transform of an exponential distribution,
Baringhaus and Henze (1991) considered the test statistic

Tn,a = n
∫ ∞

0
Z2
n(t)e

−at dt (15)

for testing the hypothesis H0 that the distribution of X is some exponential distribution.
Here,

Zn(t) = 1

n

n∑
j=1

e−tY j
(
1 − (1 + t)Y j

)
,

Y j = X j/Xn , j = 1, . . . , n, and a > 0 is a fixed positive number. Notice that Tn,a is
scale invariant. Straightforward manipulations of integrals gives the computationally
simple form

Tn,a = 1

n

n∑
i, j=1

[
(1 − Yi )(1 − Y j )

Yi + Y j + a
+ Yi (Y j − 1) + Y j (Yi − 1)

(Yi + Y j + a)2
+ 2YiY j

(Yi + Y j + a)3

]
.

Under a fixed alternative distribution with finite expectation (which, because of scale
invariance, is taken to be 1), we have

Tn,a

n
P−→ 	 :=

∫ ∞

0
z2(t)e−at dt, (16)

where
z(t) := E

[
e−t X (1 − (1 + t)X)

]
, t ≥ 0. (17)
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Notice that 	 depends on a, although this dependence has not been made explicit.
To state the limiting normal distribution of Tn,a under a fixed alternative to H0, let
Wn(t) := √

n(Zn(t)−z(t)), t ≥ 0. The processWn = (Wn(t), t ≥ 0) can be regarded
as a random element of the Hilbert space H := L2([0,∞),B1 ∩ [0,∞), e−atdt).

Theorem 2 If X has mean 1 and positive finite variance τ 2, then

Wn
D−→ W in H.

Here, W is a centered Gaussian process on H having covariance kernel

K (s, t) = L(s + t) + (2 + s + t)L ′(s + t) + (1 + s)(1 + t)L ′′(s + t) − z(s)z(t)

+ (
L ′(s) + (1 + s)L ′′(s) + z(s)

)
w(t)

+ (
L ′(t) + (1 + t)L ′′(t) + z(t)

)
w(s)

+ τ 2g(s)g(t), s, t ≥ 0,

where L(t) = E[e−t X ] is the Laplace transform of X, and

g(t) = E

[
Xe−t X ((1 + t)(t X−1)−t)

]
= (2t + 1)L ′(t) + t (1+ t)L ′′(t), t ≥ 0.

(18)

Proof The proof of Theorem 2 is given in Sect. 7.
From Theorem 1, we thus have

√
n

(
Tn,a

n
− 	

)
D−→ N(0, σ 2),

where

σ 2 = 4
∫ ∞

0

∫ ∞

0
K (s, t)z(s)z(t)e−a(s+t) dsdt. (19)

Notice that, like 	, also σ 2 depends on a.
To estimate σ 2, we replace L , L ′, L ′′, g, z, and τ 2 by their respective empirical

counterparts

Ln(t) = 1

n

n∑
i=1

e−tYi , L ′
n(t) = −1

n

n∑
i=1

Yie
−tYi , t ≥ 0,

L ′′
n(t) = 1

n

n∑
i=1

Y 2
i e

−tYi , zn(t) = 1

n

n∑
i=1

(1 − Yi − tYi )e
−tYi , t ≥ 0,

gn(t) = −1

n

n∑
i=1

Yie
−tYi (1 − t (Yi − 2) − t2Yi ), τ̂ 2n = 1

n

n∑
i=1

(Yi − 1)2,

based on the scaled random variables Y1, . . . ,Yn . Denoting by Kn the resulting esti-
mator of K , the estimator σ̂ 2

n of σ 2 is

123



986 L. Baringhaus et al.

σ̂ 2
n = 4

∫ ∞

0

∫ ∞

0
Kn(s, t)zn(s)zn(t)e

−a(s+t) dsdt.

Putting

S1n =
∫∫

Ln(s + t)zn(s)zn(t)e
−a(s+t) dsdt,

S2n =
∫∫

(2 + s + t)L ′
n(s + t)zn(s)zn(t)e

−a(s+t) dsdt,

S3n =
∫∫

(1 + s)(1 + t)L ′′
n(s + t)zn(s)zn(t)e

−a(s+t) dsdt,

S4n =
∫

z2n(t)e
−at dt,

S5n =
∫ (

L ′
n(t) + (1 + t)L ′′

n(t)
)
zn(t)e

−at dt,

S6n =
∫

gn(t)zn(t)e
−at dt,

where
∫
is shorthand for

∫∞
0 , we have

σ̂ 2
n = 4

{
S1n + S2n + S3n − S24n + 2S5n S6n + 2S4n S6n + τ̂ 2n S

2
6n

}
.

Defining

Ti j = 1

Yi + Y j + a
, 1 ≤ i, j ≤ n,

tedious but straightforward calculations yield

S1n = 1

n3
∑
i, j,k

Ti j Tik(1 − Y j − Y j Ti j )(1 − Yk − YkTik),

S2n = − 1

n3
∑
i, j,k

Yi Ti j Tik(2(1 − Y j − Y j Ti j )(1 − Yk − YkTik)

+ Ti j (1−Y j −2Y j Ti j )(1−Yk−YkTik)+Tik(1−Y j −Y j Ti j )(1−Yk−2YkTik)),

S3n = 1

n3
∑
i, j,k

Y 2
i Ti j Tik(1−Y j +(1−2Y j )Ti j −2Y j T

2
i j)(1−Yk+(1−2Yk)Tik−2YkT

2
ik),

S4n = 1

n2
∑
i, j

Ti j ((1 − Yi )(1 − Y j ) − (Yi + Y j − 2YiY j )Ti j + 2YiY j T
2
i j ),

S5n = − 1

n2
∑
i, j

Yi Ti j ((1 − Yi )(1 − Y j ) − (Yi + Y j − 2YiY j )Ti j + 2YiY j T
2
i j ),

S6n = 1

n2
∑
i, j

Yi Ti j (Y j −1+(3Y j +Yi −YiY j −2)Ti j +2(Yi +2Y j −2YiY j )T
2
i j −6YiY j T

3
i j).
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In the sums above, each of the indices runs from 1 to n.
As an alternative to the exponential distribution, we consider the Gamma distrib-

ution G(β, β) with shape parameter β and scale parameter β, which has the density
fβ(x) = ββxβ−1 exp(−βx)/�(β), x > 0, and fβ(x) = 0, otherwise. The expecta-
tion of this distribution is 1, its variance is τ 2 = 1/β.

In what follows, the parameter a figuring in (15) is chosen to be 1. To calculate 	

defined in (16) and σ 2 given in (19) in case of the distribution G(β, β), notice that,
for t ≥ 0,

L(t) =
(

β

β + t

)β

, L ′(t) = −
(

β

β + t

)β+1

, L ′′(t) = β + 1

β

(
β

β + t

)β+2

.

Moreover, z(t) figuring in (17) and g(t) defined in (18) are given by

z(t) = (1 − β)t

β

(
β

β + t

)β+1

, g(t) = t2(1 − β) + β(t + 1)

β + t

(
β

β + t

)β+1

,

respectively. Straightforward calculations now yield

σ 2 = 4

(
I1 + I2 − 	2 + 2(I3 + 	)I4 + I 24

β

)
,

where

I1 =
∫ ∞

0

∫ ∞

0

(
L(s + t) + (2 + s + t)L ′(s + t)

)
z(s)z(t)e−a(s+t) dsdt

=
∫ ∞

0

(∫ u

0
z(u − t)z(t) dt

) (
L(u) + (2 + u)L ′(u)

)
e−au du,

I2 =
∫ ∞

0

∫ ∞

0
(1 + s)(1 + t)L ′′(s + t)z(s)z(t)e−a(s+t) dsdt

=
∫ ∞

0

(∫ u

0
(1 + (u − t))(1 + t)z(u − t)z(t) dt

)
L ′′(u)e−au du,

I3 =
∫ ∞

0
(L ′(t) + (1 + t)L ′′(t))z(t)e−at dt,

I4 =
∫ ∞

0
g(t)z(t)e−at dt.

��
For β ∈ {0.1, 0.25, 0.5, 1.5, 2, 3}, the integrals I1, I2, I3, I4 and 	 = ∫∞

0 z2(t)
e−t dt have been calculated by numerical integration. The corresponding values of 	

and σ 2 are shown in Table 5. Also, Table 5 exhibits realizations of 1
n Tn,1 and σ̂ 2

n , based
on a sample of size n = 1000 from simulated observations of X1, . . . , Xn .

Table 6 shows the empirical coverage probabilities of the confidence interval (10)
for 	, each based on 10,000 replications, for several values of β and the sample sizes
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Table 5 Expectation 	 and
variance σ 2 of the limit
distribution in case where the
alternative distribution is
G(β, β), and simulated
observations of the estimators
1
n Tn and σ̂ 2

n ; n = 1000

β 0.1 0.25 0.5 1.5 2 3

	 0.34770 0.12380 0.02640 0.00547 0.01354 0.02659
1
n Tn,1 0.35816 0.11310 0.02897 0.00928 0.01474 0.02693

σ 2 0.30788 0.09987 0.01516 0.00107 0.00179 0.00192

σ̂ 2
n 0.32819 0.09182 0.01640 0.00154 0.00176 0.00187

Table 6 Empirical coverage
probabilities of In for 	

(distribution G(β, β), nominal
level 0.9, 10,000 replications)

β

0.1 0.25 0.5 1.5 2 3

n = 20 0.83 0.82 0.78 0.81 0.81 0.81

n = 50 0.87 0.86 0.84 0.84 0.86 0.86

n = 100 0.88 0.88 0.87 0.86 0.88 0.88

Table 7 Empirical power and approximation (11) of the test for exponentiality against selected alternatives
from the G(β, β)-family

β = 0.1 β = 0.25 β = 0.5 β = 1.5 β = 2 β = 3

MC App MC App MC App MC App MC App MC App

n = 20 1.0 1.0 0.99 0.91 0.70 0.71 0.35 0.37 0.70 0.61 0.97 0.95

n = 50 1.0 1.0 1.0 0.99 0.96 0.90 0.65 0.59 0.98 0.94 1.0 1.0

n = 100 1.0 1.0 1.0 1.0 1.0 0.98 0.90 0.79 1.0 1.0 1.0 1.0

n = 20, n = 50, and n = 100. The nominal confidence level is 1−α = 0.9. Likewise,
Table 7 displays the empirical power, based on 10,000 replications, of the goodness-
of-fit test for exponentiality that rejects the null hypothesis for large values of Tn,1.
The nominal level is 0.1. Critical values have been obtained by simulations based
on 100,000 replications. Moreover, Table 7 shows the approximation (11) (denoted
by App), to the power. The quality of this approximation is quite promising. Notice
that, in Tables 6 and 7, there are no entries for the sample size n = 200, since the
calculations are extremely time-consuming due to the fact that each of S1n , S2n , and
S3n is a triple sum.

5 Two-sample weighted L2-statistics

In the following, we show that the results obtained so far are by no means confined to
one-sampleweighted L2-statistics, but immediately carry over to two-sampleweighted
L2-statistics of the type

Tm,n = mn

m + n

∫
M
Z2
m,n(t) μ(dt), (20)
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where M and μ retain their meanings from Sect. 1, and Zm,n(t) is based on two
samples X1, . . . , Xm,Y1, . . . ,Yn , i.e., Zm,n(t) = Zm,n(X1, . . . , Xm,Y1, . . . ,Yn, t).

As an example, suppose that the Xi , Y j are independent d-dimensional random
vectors,where X1, . . . , Xm are i.i.d. andY1, . . . ,Yn are i.i.d. To test the semiparametric
‘location shift’ hypothesis H0 that Y1 has the same distribution as X1 + μ for some
unspecified μ ∈ R

d , Henze et al. (2005) studied the weighted L2-statistic (20) with
M = R

d and

Zm,n(t) = U (1)
m,n(t) −U (2)

m,n(t),

where

U (1)
m,n(t) = 1

m

m∑
j=1

{ cos(t
(X j + μ̂)) + sin(t
(X j + μ̂)) − �(t)},

U (2)
m,n(t) = 1

n

n∑
j=1

{ cos(t
Y j ) + sin(t
Y j ) − �(t)},

�(t) = E

[
cos(t
Y1) + sin(t
Y1)

]
,

and μ̂ = μ̂m,n(X1, . . . , Xm,Y1, . . . ,Yn) is some location-equivariant regular estima-
tor of μ, e.g., μ̂ = Y n − Xm . The measure μ figuring in (20) was chosen to be the
spherically symmetric d-variate normal distribution Nd(0, β2Id), where β > 0 is a
parameter, and Id is the unit matrix of order d.

Two-sample weighted L2-statistics have also been employed by Gupta et al. (2004)
in the context of testing for affine equivalence of elliptically symmetric distributions
and by Baringhaus and Franz (2010), who considered a general class of consis-
tent multivariate rigid motion invariant homogeneity tests. Meintanis (2005) studied
permutation tests for homogeneity based on the empirical characteristic function.
Moreover, Baringhaus and Kolbe (2015) dealt with two-sample weighted L2-statistics
based on empirical Hankel transforms. All these papers derive the limit distribution
under the respective null hypothesis H0 by showing that, under H0,

√
mn

m + n
Zm,n

D−→ Z as m, n → ∞

in H = L2(M, M ∩ Bd , μ), where Z is some centered Gaussian process on H. In
dealingwith asymptotics for two-sample problems, sometimes the additional condition

there is some p ∈ (0, 1) such that
m

m + n
→ p (21)

is imposed.
The following result shows that, under general conditions, two-sample weighted

L2-statistics have a limiting normal distribution.
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Theorem 3 Let (X j ) j≥1 and (Y j ) j≥1 be sequences of d-dimensional random vectors
on some probability space (�,A,P) such that, as m, n → ∞,

m + n

mn
Tm,n

P−→ 	 :=
∫
M
z2(t) μ(dt) > 0 (22)

for some function z ∈ H := L2(M, M ∩ Bd , μ). Suppose further that

√
mn

m + n

(
Zm,n − z

) D−→ W as m, n → ∞ (23)

in H, where W is a centered Gaussian process on H having covariance kernel K .
Then

√
mn

m + n

(
Tm,n
mn
m+n

− 	

)
D−→ N(0, σ 2),

where σ 2 is given in (7).

Proof Let am,n = √
mn/(m + n). Proceeding as in the proof of Theorem 1, we have

am,n

(
Tm,n

a2m,n
− 	

)
= 2〈am,n(Zm,n − z), z〉 + 1

am,n
‖am,n(Zm,n − z)‖2L2 .

The assertion now follows from (23), the continuous mapping theorem and the fact
that am,n → ∞ as m, n → ∞. ��
Remark 2 Notice that Theorem 3 is fairly general, since there is no assumption regard-
ing independence or identical distributions among X1, X2, . . .orY1,Y2, . . ..Of course,
(22) postulates the validity of some sort of large numbers for Tm,n . The additional con-
dition (21), although sometimes imposed, can at second sight often be dispensed with,
and it clearly does not restrict the scope of possible applications.

It goes without saying that, in a two-sample setting with independent vectors
X1, . . . , Xm,Y1, . . . ,Yn , where the X1, . . . , Xm are i.i.d with unknown distribution
function F and Y1, . . . ,Yn are i.i.d. with unknown distribution function G, 	 fig-
uring in (22) will depend on F and G. Then, in the same way as was done in
Sect. 3, Theorem 3 can be used to construct an asymptotic confidence interval for
	(F,G) or to establish an inverse goodness-of-fit test of H	0 : 	(F,G) ≥ 	0 ver-
sus K	0 : 	(F,G) < 	0, where 	0 is a given positive number, provided that we
have a consistent estimator σ̂ 2

m,n of σ 2.

6 Concluding remarks

We have shown that, under general conditions, weighted one- and two-sample L2-
statistics are asymptotically normally distributed. It is easy to see that the approach also
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encompasses the multisample case, which was considered by Hušková and Meintanis
(2008) in connection with tests for the multivariate k-sample problem based on the
ECF.As the examples show, one has towork out the covariance structure of the limiting
Gaussian process and the resulting variance of the limiting normal distribution. If the
latter can be estimated consistently, this opens the ground for asymptotic confidence
intervals for the distance of an underlying distribution with respect to a hypothesized
family, and for asymptotic tests that are able to validate neighborhoods of hypothesized
models.Wehope that this paperwill stimulate interest in this important problem,which
is in the spirit of bioequivalence testing.

7 Proof of Theorem 2

To derive the limit distribution of Wn , put

W̃n(t) := 1√
n

n∑
j=1

{e−t X j − E

[
e−t X

]
− (1 + t)

(
X je

−t X j − E

[
Xe−t X

])

−E

[
Xe−t X ((1 + t)(t X − 1) − t)

]
(X j − 1)}, t ≥ 0.

We first show
‖Wn − W̃n‖L2

P−→ 0. (24)

To this end, define the processes A = (An(t), t ≥ 0), Ãn = ( Ãn(t), t ≥ 0), Bn =
(Bn(t), t ≥ 0), and B̃n = (B̃n(t), t ≥ 0), where

An(t) = 1√
n

n∑
j=1

{
e−tY j − E

[
e−t X

]}
,

Ãn(t) = 1√
n

n∑
j=1

{
e−t X j − E

[
e−t X

]}
+ √

n(Xn − 1)E
[
t Xe−t X

]
,

Bn(t) = 1√
n

n∑
j=1

{
(1 + t)

(
Y je

−tY j − E

[
Xe−t X

])}
,

B̃n(t) = 1√
n

n∑
j=1

{
(1 + t)

(
X je

−t X j − E

[
Xe−t X

])}

+ √
n(Xn − 1)E

[
Xe−t X (1 + t)(t X − 1)

]
.

Notice that
Wn − W̃n = (An − Ãn) − (Bn − B̃n). (25)

A one-term Taylor expansion with integral remainder gives

An(t) − Ãn(t) = √
n(Xn − 1)

(
R1,n(t) + R2,n(t) + R3,n(t)

)
, t ≥ 0, (26)
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where

R1,n(t) = t

(
1

Xn
− 1

)
E

[
Xe−t X

]
,

R2,n(t) = t

Xn

⎛
⎝1

n

n∑
j=1

X je
−t X j − E

[
Xe−t X

]⎞⎠ ,

R3,n(t) = t

Xn

∫ ∞

0

⎛
⎝1

n

n∑
j=1

X j

[
e
−t X j

(
1+τ

(
1
Xn

−1
))

− e−t X j

]⎞
⎠ dτ.

By the law of large numbers,
∫∞
0 R2

i,n(t)e
−at dt → 0 P-a.s. for i = 1, 2. Putting

R̃3,n(t) = t

Xn

1

n

n∑
j=1

X j

∣∣∣∣e−t X j
1
Xn − e−t X j

∣∣∣∣ , t ≥ 0,

the relation

sup
0≤τ≤1

∣∣∣∣e−t X j

(
1+τ

(
1
Xn

−1
))

− e−t X j

∣∣∣∣ =
∣∣∣∣e−t X j

1
Xn − e−t X j

∣∣∣∣

yields 0 ≤ R3,n(t) ≤ R̃3,n(t), t ≥ 0. Invoking the law of large numbers again,
we have

∫∞
0 R̃2

3,n(t)e
−at dt → 0 P-a.s., and thus,

∫∞
0 R2

3,n(t)e
−at dt → 0 P-a.s.

Therefore, (26) and
√
n(Xn − 1)

D−→ N(0, σ 2) give ‖An − Ãn‖L2
P−→ 0. Likewise,

‖Bn − B̃n‖L2
P−→ 0. In view of (25), this proves (24).

From the central limit theorem for random elements in theHilbert spaceH, see, e.g.,
Ledoux and Talagrand (2011), there is a centered Gaussian process W = (W (t), t ≥
0), which can be regarded as random element ofH, such that W̃n

D−→ W and thus, due

to (24), also Wn
D−→ W .

The covariance function K ofW can be expressed in terms of the Laplace transform
L(t) = E

[
e−t X

]
, t ≥ 0, of X. For noting that z(t) defined in (17) takes the form

z(t) = L(t) + (1 + t)L ′(t), t ≥ 0, the definition of g(t) given in (18) gives

K (s, t) = E

[(
e−sX − (1 + s)e−sX − z(s) − g(s)(X − 1)

)
(
e−t X − (1 + t)e−t X − z(t) − g(t)(X − 1)

)]
, s, t ≥ 0.

Due to

E

[(
e−sX − (1 + s)Xe−sX − z(s)

) (
e−t X − (1 + t)Xe−t X − z(t)

)]

= L(s + t) + (2 + s + t)L ′(s + t) + (1 + s)(1 + t)L ′′(s+t) − z(s)z(t), s, t ≥ 0,
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and

E

[(
e−sX − (1 + s)Xe−sX − z(s)

)
g(t)(X − 1)

]

= (L ′(s) + (1 + s)L ′′(s) + z(s)
)
g(t),

s, t ≥ 0, we obtain the representation of K (s, t) given in Theorem 2. �
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