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Abstract This paper focuses on the high-dimensional additive quantile model, allow-
ing for both dimension and sparsity to increase with sample size. We propose a new
sparsity-smoothness penalty over a reproducing kernel Hilbert space (RKHS), which
includes linear function and spline-based nonlinear function as special cases. The com-
bination of sparsity and smoothness is crucial for the asymptotic theory as well as the
computational efficiency. Oracle inequalities on excess risk of the proposed method
are established under weaker conditions than most existing results. Furthermore, we
develop a majorize-minimization forward splitting iterative algorithm (MMFIA) for
efficient computation and investigate its numerical convergence properties. Numerical
experiments are conducted on the simulated and real data examples, which support
the effectiveness of the proposed method.
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1 Introduction

We consider the problem of analyzing ultra-high-dimensional data, allowing dimen-
sion p to grow at an exponential order of sample size n; that is, log p = O(nν)

with 0 < ν < 1. In recent years, much effort has been devoted to tackle this
challenging problem, motivated by modern applications in genomics, bioinformatics,
chemometrics, among others. Considering that high-dimensional data often display
heterogeneity, outliers and sparsity, we advocate a penalized quantile regressionmodel
as an alternative to the widely used penalizedmean regression formulation. Besides, in
view of the complex relationship between covariates and response, this paper consid-
ers a high-dimensional additive quantile regression model. More precisely, given the
available training sample {(xi , yi )}ni=1, the high-dimensional additive quantile regres-
sion model is formulated as

yi = μτ +
∑

j∈Sτ

f ∗
τ, j (xi j ) + ετ,i , i = 1, . . . , n, (1)

where τ is a given quantile, Sτ is the active subset of {1, 2, . . . , p} that may change
with τ , ετ,i is the random error satisfying P(ετ,i ≤ 0|xi ) = τ , and f ∗

τ, j : R → R is a
smooth univariate function. Furthermore,E[ f ∗

τ, j (x)] = 0 is imposed for j = 1, . . . , p
to circumvent the identifiability issue. Note that no distributional assumption for ετ,i

is needed, and it may depend on the covariates to account for the heterogeneous errors
and heavy-tailed distributions.

Since its introduction by Koenker and Basset (1978), quantile regression (QR)
has attracted great attention due to its interpretability and robustness. Compared to
the mean regression formulation, by tuning different quantiles, QR provides a com-
plete picture of the conditional distribution of the response given the covariates.
This advantage enables us to better understand the intrinsic relationship between the
covariates and the response. Recently, many researchers have demonstrated that high-
dimensional data often display heterogeneity due to either heteroscedastic variance or
covariate variety. Besides, it is usually difficult to check error distribution with high-
dimensional data, and thus the validity of least square regression formulation can be
problematic. These observations partiallymotivate researchers to study the sparse addi-
tive QR, as well as its interpretability and flexibility. Analogous to high-dimensional
sparse mean regression models, estimation and variable selection properties of high-
dimensional sparse QR models are intensively studied (Belloni and Chernozhukov
2011; Kato 2016; Lian 2012; Li and Zhu 2008; Van der Geer 2008; Wang et al. 2012;
He et al. 2013). Among them, Belloni and Chernozhukov (2011) proposed a lasso-type
penalized method for the linear quantile model, and established some nice statistical
properties, including the oracle inequalities. Wang et al. (2012) proposed a penalized
QRbased on the SCADpenalty (Fan andLi 2001) in a high-dimensional setting, which
established variable selection consistency for linear models. Kato (2016) presented a
group-lasso penalized method for the linear QRmodel, leading to a second-order cone
programming (SOCP) problem.

Note that the aforementioned work is all geared for linear or parametric QRmodels.
In many applications, however, little prior justification can be made for the parametric
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Sparse additive quantile model 899

forms. To allowmore flexible modeling while still avoiding the “curse of dimensional-
ity”, the additivemodel has become a natural and popular choice (Hastie andTibshirani
1990). For example, Koenker (2011) proposed a twofold penalizedmethod with a total
variation roughness penalty, which leads to a sparse linear programming problem and
is solved by the interior point method. Lian (2012) proposed a model selection and
semi-parametric method with two SCAD-type penalties in the fixed p setting. Van der
Geer (2008) investigated the non-asymptotic oracle inequities of the adaptive Lasso
estimators for general Lipschitz loss functions, which includes the quantile loss as
a special case. Kato (2016) also proved a non-asymptotic oracle inequality with the
group-Lasso penalty for the sparse additive QR. However, it is noticed that the existing
work often lead to computationally demanding numerical algorithms, including the
interior point method (Koenker 2011), the local quadratic approximation (Lian 2012),
or the SOCP (Kato 2016). Moreover, Koenker (2011) and Lian (2012) only considered
fixed p settings, and Van der Geer (2008) did not address computational challenges
and variable selection of the corresponding penalized approaches.

In this paper, we propose a new penalized QR approach with a combined
smoothness-sparsity penalty under the RKHS (Wahba 1999) framework. The pro-
posed method attains nice theoretical properties and allows for flexible modeling due
to the properties of RKHS. Particularly, the oracle inequality is established undermuch
weaker conditions than the existing results in the literature (Belloni and Chernozhukov
2011; Kato 2016; Van der Geer 2000;Wang et al. 2012), which often require restrictive
conditions, such as the extended restricted eigenvalue assumption (Ravikumar et al.
2009). In terms of computation, we developed an efficient algorithm combining the
majorizeminimization (MM; Lian 2012) algorithm and the proximal gradient method.
On one hand, the penalization of our method enables us to reduce computational cost
significantly by reformulating into a group-Lasso type of formulation. On the other
hand, to tackle the computational challenges, we use a smooth quadratic function to
majorize the non-smooth quantile loss function. Then, weminimize themajorized loss
function with a group-Lasso penalty, which then is to be optimized by the proposed
MMFIA algorithm. The MMFIA algorithm enjoys fast computation and nice con-
vergence properties, compared against a number of existing optimization algorithms
developed for penalized QR models (Li and Zhu 2008; Pearce and Wand 2006). To
our knowledge, our study is new under the high-dimensional QR models, taking both
computational efficiency and theoretical properties simultaneously into account.

It is also worth pointing out that the proposed method is developed for a general
RKHS, which contains most of the existing methods as special cases. For example, if
the linear kernel is used, the proposed method reduces down to a linear QR method;
if part of additive components are in a specified nonlinear kernel space, the proposed
method becomes the partially linear model; the classical spline-based approaches are
also included in our method, as penalized spline functions can be embedded in an
RKHS (Pearce and Wand 2006). Moreover, compared with the finite-dimensional
functional spaces, the RKHS is an infinite-dimensional space and gains much more
flexibility and avoids the choice of basis functions as in many classical nonparametric
models.

The rest of the article is organized as follows. Section 2 introduces some basic
notations and the regularized QR model with the smoothness-sparsity penalty. Sec-
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tion 3 presents an efficient numerical optimization for the proposed model, which is
achieved by combing the MM algorithm and the proximal gradient method. In Sect.
4, oracle inequalities for the proposed method are established under weak conditions.
Numerical experiments on simulated and real examples are conducted in Sect. 5 to
examine the effectiveness of the proposed method. All technical proofs are relegated
to the Appendix.

2 Proposed approach

2.1 Preambles

Given a compact subset ofX ⊂ R, let K : X ×X → R be a bounded, symmetric, and
positive semi-definite kernel function. The RKHS associated with the kernel function
K , denoted as HK , is the completion of the linear span of functions Kx := K (x, ·);
x ∈ X with the inner product given by < Kx , Ky >HK = K (x, y). It satisfies the
reproducing property:

f (x) =< Kx , f >HK , for any f ∈ HK .

This property implies that ‖ f ‖∞ ≤ κ‖ f ‖HK with κ = supx∈X
√
K (x, x). For nota-

tional simplicity, we assume that κ = 1 in the sequel.
Assume that the training sample is drawn from X p ⊂ [0, 1]p, endowed with an

underlying probability measure Q. Let H j ; j = 1, 2, . . . , p denote an RKHS of
univariate functions on the domain X . As the intercept effect is accounted by μτ in
(1), we assume that

E[ f j (x)] =
∫

X
f j (x)dQ(x) = 0, for any f j ∈ H j ; j = 1, 2, . . . , p,

to avoid the identifiability issue.
Furthermore, we define a composite RKHS by

F :=
⎧
⎨

⎩ f =
p∑

j=1

f j : f j ∈ H j

⎫
⎬

⎭ ,

where the norm is defined as ‖ f ‖2F = ∑p
j=1 ‖ f j‖2H j

, and the associated kernel is

Kc(x, u) = ∑p
j=1 K j (x j , u j ). Denote by L2(Q) the usual square integral norm on the

space F . In addition, we consider the empirical norm L2(Qn) by the sample {xi }ni=1,
defined as ‖ f ‖2

L2(Qn)
= 1

n

∑n
i=1 f 2(xi ). For short hand, we frequently use ‖ f ‖2 =

‖ f ‖L2(Q) and ‖ f ‖n = ‖ f ‖L2(Qn)
for a p-variate function f ∈ F . For a univariate

function f j ∈ H j , we also use ‖ f j‖2 = ‖ f j‖L2(Q j )
and ‖ f j‖n = ‖ f j‖L2(Qn, j )

,
where Q j is the marginal distribution of the j th covariate induced by Q and Qn, j is
its empirical counterpart by the sample {xi j }ni=1 as well.
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2.2 Regularized QR with smoothness-sparsity penalty

For illustration, we assume allH j values are identical, denoted byH, and the proposed
method can be extended to allow differentH j values. Indeed, if we consider different
kernels, such that some kernels are linear and the others are nonlinear kernels, the
assumed model in (1) reduces to the standard partially linear model.

Define the empirical risk concerning the quantile loss as

En( f ) = 1

n

n∑

i=1

ρτ (yi − f (xi )) ,

where ρτ (u) = u(τ − Iu≤0) is the quantile loss function, also called the asymmetric
absolute deviation function (Koenker and Basset 1978). Based on the identification
condition, the intercept termμτ in (1) can be estimated separately; μ̂τ is the τ th quan-
tile of the responses {yi }ni=1. Then, we propose the following minimization problem
with respect to the additive components:

min
f=∑p

j=1 f j , f j∈H
{En(μ̂ + f ) + λn In( f )

}
, (2)

where the regularization term is defined as

In( f ) =
p∑

j=1

√
‖ f j‖2n + ρn‖ f j‖2H.

Clearly, In( f ) consists of two penalties, where ‖ f j‖n is used to control the sparsity
and ‖ f j‖H is a smoothness penalty. The regularization parameters (λn, ρn) will be
specified, respectively, in our theory and in practice.

Note that the penalty In( f ) was proposed originally by Meier et al. (2009) in the
context of mean regression, which has achieved superior performance both theoreti-
cally and computationally. The main idea behind this combined penalty is that ‖ f j‖n ,
as an approximation of ‖ f j‖2, is able to measure nonparametric function, whereas
‖ · ‖H is added to the penalty term to control the functional complexity. Meanwhile,
considering the importance of decomposable property to the generated sparsity and
fast convergence rates (Negahban et al. 2012), In( f ) is ultimately formulated as a
mixed norm to enjoy the decomposable property.

In the literature, a variety of combinations of sparsity and smoothness penalties
have been studied based on sparse additive models. In the context of additive mean
regression, Ravikumar et al. (2009) proposed a regularized method with only the
sparsity regularization,while putting the smoothness term as a constraint. Although the
method in Ravikumar et al. (2009) can be solved by a backfitting procedure, it does not
establish any theoretical guarantees, andmayencounter algorithmic and computational
instability. Koltchinskii and Yuan (2008) developed a regularized learning algorithm
for selecting significant kernels under the multi-kernel setting. Their method is based
on a single penalty term

∑p
j=1 ‖ f j‖H. However, if H is a RKHS, this method leads
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to a SOCP problem and can be computationally challenging. We also notice that there
exist two popular combinations of the sparsity and smoothness penalties: (i) I ( f ) =∑p

j=1(λ1‖ f j‖n + λ2‖ f j‖2H) in Rosasco (2013) and (ii) I ( f ) = ∑p
j=1(λ1‖ f j‖n +

λ2‖ f j‖H) in Raskutti et al. (2012). While the first combined penalty leads to a group
lasso formulation, it appears to be lack of theoretical justification. The second term has
been proved to enjoy some theoretical properties (Lv et al. 2016; Raskutti et al. 2012);
however, it still requires SOCP. To enjoy both theoretical properties and computational
efficiency, we propose to equip the additive QR model with the new combination of
the sparsity and smoothness penalty In( f ) in (2).

3 Computing algorithm

This section presents an efficient computing algorithm for solving (2). First, applying
the representer theorem of the RKHS, (2) reduces to a finite-dimensional minimization
problem.

Specifically, the representer theorem assures that the solution to (2) has the form

f̂ (z1, . . . , z p) =
p∑

j=1

n∑

i=1

α̂i j K (z j , xi j ) = (α̂1, . . . , α̂p)
T	(z),

where α̂ j = (α̂1 j , . . . , α̂nj ), j = 1, . . . , p. The empirical np vector-valued function
is defined as

	(z) = (K (x11, z1), . . . , K (xn1, z1), . . . , K (x1p, z p), . . . , K (xnp, z p)), z = (z1, . . . , z p).

For every j ∈ {1, . . . , p}, denote K
j ∈ R

n×n , with entries K j
i,
 = K (xi j , x
j ). Let

α = (α1, . . . , αp) be an np column vector. The optimal coefficients α̂ = (α̂1, . . . , α̂p)

are any minimizer to the following convex optimization:

arg min
α j∈Rn

{�(α)} , where �(α) := 1

n

n∑

i=1

ρτ

(
yi − αT	(xi )

)
+ λn

p∑

j=1

√
αT
j M jα j ,

(3)

and Mj := (K j )2

n + ρnK
j for each j and some specified parameter ρn .

Traditionally, by introducing two slack variables, the quantile function ρτ can be
linearized. Thus, the optimization problemof (2) is reduced to an SOCPaccordingly, as
suggested in Kato (2016). However, SOCP is known to be computationally expensive,
and is not scalable for large problems.

Alternatively, this section develops a direct optimization scheme for solving (2),
which consists of two parts. First, we propose to use MM algorithm to majorize
the nonsmooth quantile loss function by a smooth one. Second, we will employ the
proximal method to solve the resultant optimization.
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In essence, the MM algorithm replaces a difficult optimization problem by a
sequence of easier optimization problems. In our case, a quadratic function is used to
majorize ρτ (u) for any u. We first note that ρτ can be approximated by its perturbed
version with some small ε > 0:

ρε
τ (u) := ρτ (u) − ε

2
ln(ε + |u|).

This leads to a intermediate convex optimization:

min
α j∈Rn

{�ε(α)} where �ε(α) := 1

n

n∑

i=1

ρε
τ

(
yi − αT	(xi )

)
+ λn

p∑

j=1

√
αT
j M jα j .

(4)

Then, at the kth step, ρε
τ can be majorized by the quadratic function at uk :

ρ̃τ (u|uk) = 1

4

[
u2

ε + |uk | + (4τ − 2)u + c

]
.

The majorization holds true, as it can showed by direct calculation that

ρ̃τ

(
u|uk) ≥ ρε

τ (u) for all u, and ρ̃τ

(
ut |uk) = ρε

τ

(
uk
)

(5)

for an appropriately chosen constant c.
Next,we solve the resultant optimization problemwithρτ replaced by themajorized

function ρ̃τ to update α:

αk+1
ε = arg min

α j∈Rn

{
�ε(α| αk

ε)
}

, (6)

where �ε(α| αk
ε) := 1

n

∑n
i=1 ρ̃τ

(
yi − αT	(xi )

∣∣∣yi − (αk
ε)

T	(xi )
)

+ λn
∑p

j=1√
αT
j M jα j . To solve the sub-optimization problem in (6), the proximal method is

employed. The proximal method has been proved to be effective in solving sparse
optimization problems (Beck and Teboulle 2009; Combettes and Wajs 2005) because
of its fast convergence rates and the ability to deal with nonsmooth convex problems.

The general proximal methods can be described as follows. The proximal operator
ProxλIn : G → G given by Moreau (1962) is defined as the unique solution of any
given function:
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ProxλIn ( f ) = argmin
g∈G

{
1

2
‖ f − g‖2G + λIn(g)

}
. (7)

At any given kth iteration, denote the functional Fk( f ) = 1
n

∑n
i=1 ρ̃τ

(
yi − f (xi )

∣∣ yi −
f k(xi )

)
with any f ∈ G. The minimization of (3) can be done iteratively using

the forward-backward splitting algorithm. Let f̃ 0 = f 0 = f 1 ∈ G is an arbitrary
initialization, c1,t and c2,t are suitable chosen positive sequences, when t ≥ 2

f t = Prox λn
L In

(
f̃ t − 1

2L
∇Fk( f̃ t

))
,

f̃ t = c1,t f
t−1 + c2,t f

t−2, (8)

where L is a parameter which should essentially be an upper bound on the Lipschitz
constant of ∇Fk/2 and is typically set with a line search. An alternative choice of c1,t
and c2,t leads to an accelerated version of the algorithm (8), sometimes called FISTA
(fast iterative shrinkage thresholding algorithmBeck and Teboulle 2009; Tseng 2010),
which is obtained by setting s0 = 1:

st = 1

2

(
1 +

√
1 + 4s2t−1

)
, c1,t = 1 + st−1 − 1

st
, and c2,t = 1 − st−1

st
. (9)

Using the above sequences, it is proved that the objective values generated by such a
procedure have convergence of order O(1/t2) in Beck and Teboulle (2009).

Computing the proximal operator efficiently and exactly is crucial to enjoying the
fast convergence rates of proximal methods. We, therefore, discuss the properties
of this operator and on its computation for our sparsity penalty. Since In is one-
homogeneous, namely, In(θ f ) = θ In( f ), for θ > 0. TheMoreau identity (Combettes
and Wajs 2005) gives a useful equivalent relationship between the proximal operator,
and the projection operator, that is,

Prox λn
L In

= I − πλn
L Cn , (10)

where Cn = (∂ In(0)) is the subdifferential of In at the origin, and πλn
L Cn : G → G is

the projection on λn
L Cn , which is well defined, since Cn is a closed subset of G. Hence,

the central point of the proximal method is computing the projection operator πλCn
for any given parameter λ.

In our setting, G = R
np with the usual Euclidean inner product. For notational

simplicity, we use αk instead of αk
ε in the following. At the kth iteration, denote the

functional Fk(α) = 1
n

∑n
i=1 ρ̃τ

(
yi −αT	(xi )

∣∣ yi − (αk)T	(xi )
)
with any α ∈ R

np.

For each j ∈ {1, . . . , p}, we define a map J j : R
np → R

n as J j (α) = α j , and J
is the identity map from R

np to R
np. Note that we endow R

n with the weight inner
product, that is, 〈u, v〉w j = uT M jv for any u, v ∈ R

n and j ∈ {1, . . . , p}. Thus, the
penalty term of (3) can be rewritten as
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In(α) =
p∑

j=1

∥∥J j (α)
∥∥

w j
.

Denote the adjoint of J by J ∗, and it is easy to verify that J ∗(α) = ∑p
j=1 J

∗
j (α j ) =

(M1α1, . . . , Mpαp), where we used the fact J ∗
j (α j ) = (0, . . . , Mjα j , . . . , 0).

With these preparations, following the conclusion of Proposition 2 of Mosci et al.
(2010), we have

Cn = {
J ∗v : v ∈ R

np, ‖v j‖w j ≤ 1, ∀ j
}
.

Moreover, the projection of an element u = (u1, . . . , u p) ∈ R
np on the set λCn is

given by λJ ∗v̄, with

v̄ j = arg min‖v j‖w j ≤1
‖λMjv j − u j‖2Rn ,

which yields that

v̄ j = min

{
1,

‖(M−1
j )u j‖w j

λ

}
(M−1

j )u j

‖(M−1
j )u j‖w j

.

Therefore, the nonlinear operation (I − πλCn )(u) acts on each block as

[(I − πλCn )(u)] j = u j − min
{
λ, ‖(M−1

j )u j‖w j

} u j

‖(M−1
j )u j‖w j

=
(√

uTj (M
−1
j )u j − λ

)

+
u j√

uTj (M
−1
j )u j

, (11)

since that‖(M−1
j )u j‖w j =

√
uTj (M

−1
j )u j . This leads to the classical soft-thresholding

operators introduced Donoho and Johnstone (1995).
Thus, the remaining work we need to do is computing the gradient function

∇Fk(α)/2 and the parameter L involved in (8). By a direct calculation, ∇Fk(α)

has an explicit form as

∇(Fk)(α) = −1

n

n∑

i=1

(
yi − αT	(xi )

2(ε + ∣∣yi − (αk)T	(xi )
∣∣)

+ 2τ − 1

2

)
	(xi ). (12)

For the step size Lk at iteration k, it is not easily computable in our situation, since
it depends on the maximum eigenvalue of ∇2(Fk), which is an np × np matrix.
Alternatively, we use a line search called backtracking to return an feasible constant
for Lk .
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As a consequence, the overall procedure can be stated as follows:

MMFIA Algorithm:
given: parameters λn , ρn , ε, c, and quantile point τ > 0.
initialize: α1 = 0, s1 = 1, k = t = 1,
for k ≥ 1
repeat
given: α0

k = α1
k = 0, Lk > 0

for t ≥ 2 repeat

st = 1

2

(
1 +

√
1 + 4s2t−1

)

α̃t
k =

(
1 + st−1 − 1

st

)
αt−1
k + 1 − st−1

st
αt−2
k

αt
k =

(
I − π λn

Lk
Cn

)(
α̃t
k − 1

2Lk
∇Fk(α̃t

k)

)

t ← t + 1

until αt
k converges to some α∗

αk+1 ← α∗, then k ← k + 1
until αk+1 converges to α̂ε .
then return (α̂ε)

Proposition 1 (Convergence property of MMFIA) Consider the objective function
(6), where the data (y, X) lie in a compact set and no two columns of X are identical.
For a given (λn, ρn) and ε > 0, we have a descent property with respect to �ε , that
is

�ε(α
k+1
ε ) ≤ �ε(α

k
ε), k ≥ 1.

If additionally, the kernel matrix 	̃ = (	(x1), . . . ,	(xn)) arranged by row is non-
singular, the algorithm (6) converges to the unique minimizer of �ε(α).

Proof By the descent property of (5), it follows that

�ε(α
k+1
ε ) ≤ �ε(α

k+1
ε | αk

ε) ≤ �ε(α
k
ε | αk

ε) = �ε(α
k
ε),

where the second inequality follows from the definition of αk+1
ε ,and the last equality

follows from (5) as well. Thus, we complete the first part of Proposition 1.
On the other hand, we define the iteration map � : αk

ε → αk+1
ε . Due to the strict

convexity of�ε,k(α),� is a point-point map.Moreover, since�ε(α| αk) is continuous
in αk , � is continuous as well. Note that the derivatives

∂

∂u
ρε

τ (u) =
{

τ − ε
2(ε+u)

, u ≥ 0;
τ − 1 + ε

2(ε−u)
, u < 0.
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This furthermore implies that

∂2

∂α2

{
n∑

i=1

ρε
τ

(
yi − αT	(xi )

)}
=

n∑

i=1

ε

2(ε + ∣∣yi − αT	(xi )
∣∣)2

	(xi )
T	(xi )

= ε

2
	̃T Wε(α)	̃,

where the matrixWε(α) = diag
(
(ε + ∣∣yi − αT	(xi )

∣∣)−2
)n
i=1. This shows that �ε(α)

is strictly convex when the kernel matrix 	̃ is of full rank, and �ε(α) has the unique
minimizer denoted by α̂ε . Given any convergent subsequence α

kn
ε of αk

ε with limit α∗
ε .

Rewriting the first derived result of this proof, we have

�ε

(
�
(
αkn

ε

)) ≤ �ε

(
αkn

ε

)
.

Let n → ∞, and based on the continuity of � and �ε(α), we claim that

�ε

(
�
(
α∗

ε

)) = �ε

(
α∗

ε

)
. (13)

Otherwise, there holds �ε(�(α∗
ε )) < �ε(α

∗
ε ), which implies that d�ε(α

∗
ε ) �= 0. In

addition, it is also verified that d�ε(α| α) = d�ε(α) for any α ∈ R
np, and then

d�ε(α
∗
ε |α∗

ε ) �= 0. It is impossible from the definition of α∗
ε as a limiting point of α

kn
ε .

As a similar argument as above, we see that

�ε(�(α∗
ε )|α∗

ε ) ≤ �ε(α
∗
ε |α∗

ε ) = �ε(α
∗
ε ) = �ε(�(α∗

ε )) ≤ �ε(�(α∗
ε )|α∗

ε ),

that is

�ε(�(α∗
ε )|α∗

ε ) = �ε(α
∗
ε |α∗

ε ).

By the definition of� and the strict convexity of�ε(α|α∗
ε ), we conclude that�(α∗

ε )=
α∗

ε . Based on the equality d�ε(α| α)=d�ε(α) again, we have d�ε(α
∗
ε ) = 0. That is,

α∗
ε = α̂ε follows from the strict convexity of �ε(α), which is proved as above. ��

Proposition 2 (Convergence property of the algorithm (4)) If α̂ε minimizes �ε(α),
then any limit point of {α̂ε} minimizes �(α) as ε tends to zero. If �(α) has a unique
minimizer α̂, then limε→0 α̂ε = α̂.

The proof of Proposition 2 is omitted here, since it can be done following that of
Proposition 4 of Hunter and Lange (2000).

4 Statistical theory

This section states our main results that provide upper bounds on the estimation error
and the excess risk achieved by the estimator (2). Our main theorems are based on an
appropriate adaptation to advanced empirical process theory under the non-parametric
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settings. In contract to the parametric settings or spline-based approaches, our analysis
is established from a more abstract form, since the RKHS is infinite dimensional.
This requires us to make use of various concentration theorems, such as results on
the covering number and the Rademacher complexity of kernel classes. In addition,
another challenge technically comes from the quantile loss, which is non-smooth and
non-quadratic. Most of the existing analysis tools concerning the quadratic loss are
invalid for the quantile models under the RKHS framework.

For the theoretical analysis, we introduce some basis notations and assumptions
as follows. First, the empirical covering number is needed to describe the functional
complexity.

Definition 1 (Empirical covering number with L2(Qn)-norm) Denote G a function
space endowed with the empirical norm ‖ · ‖n . For every ε > 0, letN (G, ε, ‖ · ‖n) be
the smallest integer N , such that there exists {g j }Nj=1 with

sup
g∈G

min
j=1,2,...,N

‖g − g j‖n ≤ ε.

Then, H(G, ε, ‖ · ‖n) = logN (G, ε, ‖ · ‖n) is called the ε-empirical covering number
of G for the empirical norm.

Note that H(G, ε, ‖ · ‖n) is a random quantity due to the empirical norm. We
can define a deterministic entropy notation by taking expectation or supremum for
H(G, ε, ‖ · ‖n). Without loss of generality, we assume that the following inequality
holds with probability 1.

We are concerned with the subspace as

F :=
⎧
⎨

⎩ f =
p∑

j=1

f j
∣∣∣ f j ∈ H j , and f j ∈ BH j

⎫
⎬

⎭ ,

where BH j is the unit ball ofH j for any fixed j .

Assumption A1 The empirical covering number of ({ f j : ‖ f j‖H ≤ 1}, ‖ · ‖n) is
denoted by H(·). We assume that for all j

H(ε) ≤ Aε−2(1−α), ε > 0, (14)

where 0 < α < 1 and A are constants. There exist many classical positive kernels sat-
isfying this assumption, including any spacewith finiteVC-dimension, Sobolev/Besov
classes, and Gaussian kernels. For example, one has α = 3/4 for the Sobolev space
with the second derivative.

Define the subset as

FS :=
⎧
⎨

⎩ f =
p∑

j=1

f j , satisfying
p∑

j=1

√
‖ f j‖2n + ρn‖ f j‖2H ≤ 4

∑

j∈S

√
‖ f j‖2n + ρn‖ f j‖2H.

⎫
⎬

⎭ .
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Let �̂ = f̂ − f ∗, and Proposition 3 below tells us that �̂ belongs to FS with a high
probability. In fact, the similar results have been proved with respect to the least square
approaches (Mernshausen and Yu 2009; Raskutti et al. 2012). Thus, it is sufficient to
conduct our analysis over the restricted subset FS .

Assumption A2 There exist universal constants C1 > 0 and q ∈ (0, 2), such that for
all f ∈ FS , one has

√
E( f ) − E( f ∗) ≥ C1‖ f − f ∗‖q .

This assumption shows that theweak convergence induced byρτ implies amore strong
convergence. This has been verified under some mild conditions on the underlying
distribution (Steinwart and Christmann 2011; Lv et al. 2016).

Let μn =
(
c0 log p

2n

) 1
2(2−α)

, and η is constant large sufficiently. We can establish the

main results as follows.

Theorem 1 Let f̂ be the minimizer of the convex program (2) with regularization
parameters λn = ημn and ρn = ημ2

n. When p ≥ 2 log n and Assumptions 1 − 2
both hold, then there exists two constants N > 4 and c0, with probability at least

1 − c0 exp
(
− log p

c0

)
− 3p−N/2, we have

E( f̂ ) − E( f ∗) ≤ 8
√
2sη3/2μn

√
1 + μ2

n,

and there also holds

∥∥∥
p∑

j=1

( f̂ j − f ∗
j )

∥∥∥
q

= O
(
log p

n

) 1
4(2−α)

.

Note that, the first result measures the prediction ability on the penalized QR, and
the second one measures estimation error accordingly. This non-asymptotic inequality
is established under simpler conditions that is easy to interpret, compared with the
existing literatures (Belloni and Chernozhukov 2011; Van der Geer 2008; Kato 2016).
In particular, most existing oracle inequalities depend heavily on the dependency
among the covariates, such as compatibility and irrepresentable conditions. It is still
unclear whether these conditions hold in general.

In addition, despite its name known as “slow rate”, this inequity has been shown
in some cases to give faster rate of convergence than the more standard oracle rates
(Van der Geer 2008). They are particularly helpful in situations, where these various
assumptions imposed by the fast rate are hard to be verified, or would be quite difficult
to interpret. It is also worth pointing out, since α is induced by empirical covering
number, our regularization parameters are adaptive to the unknown distribution and
the sparsity of the problem. This also shows that the LASSO is tuning insensitive,
since the theoretical choice does not depend on the unknowns.
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In this case of p ≥ log n, the proposed estimator can handle a nonpolynomially
growing dimension of covariates as high as log p = o(n), while the dimension of the
true sparse model grows as s = o(n1/4) for all 0 < α < 1. We also notice that the
existence of any moments is not required and allows for heavy-tailed distributions.

5 Simulation and real examples

In this section, we examine the effectiveness of the proposed method against some
existing nonparametric methods in the literature, including Kato (2016) using a group
lasso penalty, Xue (2009) assuming additive models for mean regression, Li et al.
(2007) focusing on estimation of the quantile function in RKHS, and the unpenalized
QR. For simplicity, we denote the aforementioned methods as KSQ, GLasso, Add,
QR, and QR0, respectively. The kernel function is set as radial basis kernel for all
method, K (s, t) = e−‖s−t‖2/2σ 2

, where σ 2 is set as the median of all the pairwise
distances among the training sample (Jaakkola et al. 1999). Note that the performance
of all methods rely on the value of tuning parameters, and thus, cross validation is
used to estimate the validation error on a left-aside validation set. For all the methods,
the tuning parameter is determined via a grid search for the smallest validation error.
The grid for λ is set as λ = 10−2+0.1s ; s = 0, . . . , 40. For KSQ, the grid is set as
ρn ∈ {0.1, 0.3, 0.5, 0.7, 1}.

To compare the variable selection performance, a number of performance measures
are used. Specifically, size, TP, and FP are used to represent the averaged number of
selected informative variables, the number of truly informative variables selected and
the number of truly non-informative variables selected, andC,U, andO are the times of
correct-fitting, under-fitting, and over-fitting, respectively. Furthermore, the averaged
test errors of each method based on the check loss are reported as well. Since QR0
does not conduct variable selection, only its test errors are compared against other
methods.

5.1 Simulated examples

The simulated examples are generated in the same fashion as in Yuan (2006) and Li
et al. (2007), where different types of error distribution are examined. The true model
is given as

y = 40 exp
[
8
(
(x1 − .5)2 + (x2 − .5)2

)]

×
(
exp

[
8
(
(x1 − .2)2 + (x2 − .7)2

)]
+ exp

[
8
(
(x1 − .7)2 + (x2 − .2)2

)])−1 + ε,

where xi = (xi1, xi2, . . . , xip)T ∈ R
p with xi j ∼ Uniform(0, 1) for any i and j .

Three different error distributions are considered: (i) mixture normal distribution,
ε ∼ 0.1N (0, 52)+ 0.9N (0, 1); (ii) t-distribution, ε ∼ t (3); and (iii) standard Laplace
distribution, ε ∼ Laplace(0, 1).
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Table 1 Averaged performance measures of various variable selection methods: (n, p) = (100, 10)

Type-error Method Size TP FP C U O

Mixture-normal KSQ 2.020 2.000 0.020 49 0 1

GLasso 2.300 2.000 0.300 36 0 14

ADD 2.260 2.000 0.260 41 0 9

QR 10.000 2.000 8.000 0 0 50

Student-t KSQ 2.000 2.000 0.000 50 0 0

GLasso 2.420 2.000 0.420 35 0 15

ADD 2.480 2.000 0.480 34 0 16

QR 10.000 2.000 8.000 0 0 50

Double-exponential KSQ 2.040 2.000 0.040 48 0 2

GLasso 2.300 2.000 0.300 36 0 14

ADD 2.240 2.000 0.240 41 0 9

QR 10.000 2.000 8.000 0 0 50

The bold values represent the best performance

Table 2 Averaged performance measures of various variable selection methods: (n, p) = (100, 20)

Type-error Method Size TP FP C U O

Mixture-normal KSQ 2.060 2.000 0.060 47 0 3

GLasso 2.480 2.000 0.480 36 0 14

ADD 3.000 2.000 1.000 24 0 26

QR 20.000 2.000 18.000 0 0 50

Student-t KSQ 2.060 2.000 0.060 47 0 3

GLasso 2.560 2.000 0.560 36 0 14

ADD 2.640 2.000 0.640 28 0 22

QR 20.000 2.000 18.000 0 0 50

Double-exponential KSQ 2.100 2.000 0.100 46 0 4

GLasso 2.380 2.000 0.380 36 0 14

ADD 2.440 2.000 0.440 33 0 17

QR 20.000 2.000 18.000 0 0 50

The bold values represent the best performance

We consider three scenarios with (n, p) = (100, 10), (100, 20), (200, 30), where
the validation set is of the same size as training set and the test set has 10000 observa-
tions. The quantile is fixed to be τ = 0.5 in all scenarios. Each scenario is replicated 50
times, and the averaged performance measures are summarized in Tables 1, 2, and 3.

Furthermore, the test errors over 50 replications are summarized and displayed in
Table 4 and a side-by-side boxplots for each scenario in Table 4 and Fig. 1, respectively.

It is evident that the proposed KSQ method has delivered superior numerical
performance and outperforms other competitors in most scenarios. Specifically, KSQ
yields better variable selection performance than both GLasso and Add. As Tables
1–3 showed, KSQ exactly selects the two informative variables almost every time,
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Table 3 Averaged performance measures of various variable selection methods: (n, p) = (200, 30)

Type-error Method Size TP FP C U O

Mixture-normal KSQ 2.000 2.000 0.000 50 0 0

GLasso 3.280 2.000 1.280 18 0 32

ADD 2.880 2.000 0.880 26 0 24

QR 30.000 2.000 28.000 0 0 50

Student-t KSQ 2.040 2.000 0.040 48 0 2

GLasso 5.240 2.000 3.240 10 0 40

ADD 2.500 2.000 0.500 35 0 15

QR 30.000 2.000 28.000 0 0 50

Double-exponential KSQ 2.040 2.000 0.040 48 0 2

GLasso 4.960 2.000 2.960 10 0 40

ADD 3.160 2.000 1.160 18 0 32

QR 30.000 2.000 28.000 0 0 50

The bold values represent the best performance

Table 4 Averaged test errors and standard errors of various methods in different scenarios

Type-error Method (100,10) (100,20) (200,30)

Mixture-normal KSQ 7.09 (0.05) 7.07 (0.03) 7.08 (0.06)

GLasso 7.15 (0.06) 7.11 (0.04) 7.14 (0.08)

ADD 7.10 (0.05) 7.13 (0.05) 7.01 (0.04)

QR 7.77 (0.05) 8.33 (0.07) 8.03 (0.07)

QR0 10.81 (0.43) 12.48 (0.31) 13.22 (0.52)

Student-t KSQ 7.21 (0.05) 7.13 (0.05) 7.13 (0.05)

GLasso 7.30 (0.05) 7.17 (0.06) 7.21 (0.06)

ADD 7.18 (0.04) 7.17 (0.05) 7.17 (0.06)

QR 7.84 (0.04) 8.37 (0.05) 8.13 (0.07)

QR0 12.53 (0.60) 11.94 (0.46) 12.90 (0.52)

Double-exponential KSQ 7.16 (0.05) 7.13 (0.04) 7.18 (0.04)

GLasso 7.18 (0.05) 7.14 (0.04) 7.26 (0.05)

ADD 7.19 (0.04) 7.13 (0.07) 7.14 (0.05)

QR 7.87 (0.05) 8.30 (0.05) 8.01 (0.05)

QR0 11.81 (0.46) 11.80 (0.40) 12.65 (0.48)

whereas both GLasso and Add tend to select more variables. QR and QR0 focus
on the estimation of the quantile function, and does not conduct variable selection.
Furthermore, the test error of KSQ is also smaller than that of GLasso, Add, and QR,
as showed in Fig. 1.

Note that the test errors of QR0 are not plotted in Fig. 1, since its test errors are
substantially larger than other competitors. In addition, as Add is developed based on
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Sparse additive quantile model 913

Fig. 1 Test errors of various methods in different scenarios. Each row represents a different scenario with
(n, p) = (100, 10), (100, 20), or (200, 30), respectively

mean regression, we refit the model with the selected informative variables by Add to
calculate its corresponding test error with the check loss.

5.2 Japanese industrial chemical firm data

In this section, the proposed KSQ method is applied to analyze a real data set on
Japanese industrial chemical firms (Lian 2012; Yafeh and Yosha 2003). The data set
includes 186 Japanese industrial chemical firms listed on the Tokyo stock exchange,
and the goal is to check whether the concentrated shareholding is associated with
lower expenditure on activities with scope for managerial private benefits. The data
set consists of a response variable MH5 (the general sales and administrative expenses
deflated by sales), and 12 covariates: ASSETS (log(assets)), AGE (the age of the firm),
LEVERAGE (ratio of debt to total assets), VARS (variance of operating profits to
sales), OPERS (operating profits to sales), TOP10 (the percentage of ownership held
by the 10 largest shareholders), TOP5 (the percentage of ownership held by the 5
largest shareholders), OWNIND (ownership Herfindahl index), AOLC (amount owed
to largest creditor), SHARE (share of debt held by largest creditor), BDHIND (bank
debt Herfindahl index), and BDA (bank debt to assets). The data set is available online
through the Economic Journal at http://www.res.org.uk.

The data set is pre-processed by removing all the observations with missing values,
and the response and the covariates are all standardized. The selected variables by
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Table 5 Selected variables as well as the corresponding prediction errors by various selection methods in
the Japanese industrial chemical firm data set

Variables KSQ GLasso Add QR

ASSETS – – –
√

AGE – – –
√

LEVERAGE
√ √ √ √

VARS
√ √ √ √

OPERS
√ √ √ √

TOP10 – – –
√

TOP5 – – –
√

OWNIND – –
√ √

AOLC – – –
√

SHARE
√ √ √ √

BDHIND
√ √ √ √

BDA – – –
√

Pred. err. 0.283 (0.007) 0.283 (0.007) 0.288 (0.007) 0.296 (0.008)

The bold values represent the best performance

various methods are reported in Table 5. To check the validity of the selected variables,
we then randomly split the data set,with 20observations for testing and20observations
for validation, and the remaining are for training. The splitting is replicated 100 times,
and the averaged prediction errors are reported in Table 5.

Both KSQ and GLasso select five informative variables, LEVERAGE, VARS,
OPERS, SHARE, and BDHIND, whereas Add include one more variable OWNIND.
The average prediction error of KSQ and GLasso is smaller than that of Add and QR,
indicating that the prediction performance is improved with more non-informative
variables screened. The prediction error of QR0 is the same as that of QR and thus
omitted here. Furthermore, a deviance test for themodelwith the five selected variables
against the saturated model yields a p value 0.386, which concurs with the conclusion
that the screened variables by KSQ are indeed statistically non-significant.

6 Conclusion

This article proposes a new sparsity-smoothness penalty over an RKHS in the high-
dimensional additive quantile model, which allows for both the dimension p and the
sparsity s to diverge with the sample size n. The proposed method provides a flex-
ible modeling framework and includes many existing methods as its special cases.
The resultant optimization task is tackled by an efficient computing algorithm, which
couples the MM algorithm and the proximal gradient descent algorithm. More impor-
tantly, the oracle inequalities for the proposed estimators are provided under weak
conditions. Numerical experiments on simulated and real examples are also support-
ive of the effectiveness of the proposed method. One potential future direction is to
further reduce the computational cost. As the proposed method allows for a more
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flexible modeling framework in RKHS and involves with a non-convex penalty term,
its computational cost can be expensive. It is also of interest to extend the framework
to a completely model-free scenario by relaxing the additive model assumption.
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Appendix: Main Proofs

To simplify the proof, we only consider the special case where μτ = 0 in our model
(1). Lemma 1 presents the behavior of weight empirical process (see Lemma 8.4 of
Van der Geer (2000)).

Lemma 1 Let G be a collection of functions g : {z1, . . . , zn} → R, endowed with a
metric induced by the norm ‖g‖n. Let H(·) be the entropy of G. Suppose that

H(ε) ≤ Aε−2(1−α), ∀ ε > 0,

where A is some constant and α ∈ (0, 1). In addition, let ε1, . . . , εn be independent
centered random variables, satisfying

max
i

E[exp(ε2i /L)] ≤ M. (15)

Denote 〈ε, g〉n = 1
n

∑n
i=1 εi g(zi ) with any given g ∈ G, then for a constant c0

depending on α, A, L, and M, we have for all T ≥ c0

P

(
sup
g∈G

2〈ε, g〉n
‖g‖α

n
>

T√
n

)
≤ c0 exp

(
−T 2

c20

)
.

According to Lemma 1, we can establish the following technical lemma, which tells
us that the key quantity involved in empirical process can be bounded by the proposed
regularization term. It turns out that the corresponding oracle rates are improved.

Lemma 2 Under the same conditions of Lemma 1. Define the following event as

	 :=
{
∀ j = 1, 2, . . . , p

∣∣〈ε, f j 〉n
∣∣ ≤ μn

√
‖ f j‖2n + μ2

n‖ f j‖H, for all f j ∈ H
}

,

where c0 is some universal constant, which may differ from that of Lemma 1. When
2 log p ≥ c0, we have

P(	) ≥ 1 − c0 exp

(
− log p

c0

)
.
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Proof Let G = {g j : ‖g j‖H = 1} involved in Lemma 1. Then, applying Lemma 1, it
follows that

sup
f j

2〈ε, f j 〉n
‖ f j‖α

n‖ f j‖1−α
H

= sup
f j

2〈ε, f j/‖ f j‖H〉n
‖ f j/‖ f j‖H‖α

n
≤ T√

n

with probability at least 1−c0 exp(−T 2/c20). Let T = √
2c0 log p, and the assumption

2 log p ≥ c0 implies that T ≥ c0. Then, we have

P

(
max

j
sup
f j

2〈ε, f j 〉n
‖ f j‖α

n‖ f j‖1−α
H

>

√
2c0 log p

n

)
≤ c0 p exp

(
−T 2

c20

)
≤ c0 exp

(
− log p

c0

)
.

In other words, with probability at least 1 − c0 exp
(
− log p

c0

)
, there holds

sup
f j∈H

〈ε, f j 〉n
‖ f j‖α

n‖ f j‖1−α
H

≤
√
c0 log p

2n
, for all j ∈ {1, 2, . . . , p}.

Thus, we derive our first desired conclusion for 	 based on the basic inequality:

xα y1−α ≤
√
x2 + y2, for anyα ∈ (0, 1) and x, y > 0.

��

Similar results on the Rademacher complexity and Gaussian complexity have been
established in Koltchinskii and Yuan (2010) and Raskutti et al. (2012), respectively.

The next lemma shows that the quantities
∑p

j=1

√
‖�̂ j‖2n + ρn‖�̂ j‖2H can be con-

trolled by the corresponding one as applied to the active set S. They provide a way to
prove sparsity oracle inequalities for the estimator (2).

Proposition 3 Conditioned on the events 	, with the choices of λn ≥ 2μn and ρn ≥
μ2
n, we have

p∑

j=1

√
‖�̂ j‖2n + ρn‖�̂ j‖2H ≤ 4

∑

j∈S

√
‖�̂ j‖2n + ρn‖�̂ j‖2H.

Proof Define the functional

L̃(�) = 1

n

n∑

i=1

ρτ (εi − �(Xi )) + λn

p∑

j=1

√
‖ f ∗

j + � j‖2n + ρn‖ f ∗
j + � j‖2H
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and note that by definition of our M estimator, the error function �̂ := f̂ − f ∗
minimizes L̃. From the inequality L̃(�̂) ≤ L̃(0), that is

1

n

n∑

i=1

ρτ

(
εi − �̂(Xi )

)− 1

n

n∑

i=1

ρτ (εi )

≤ λn

p∑

j=1

√
‖ f ∗

j ‖2n + ρn‖ f ∗
j ‖2H − λn

p∑

j=1

√
‖ f ∗

j + �̂ j‖2n + ρn‖ f ∗
j + �̂ j‖2H.

(16)

Denote a(t) = τ − 1{t≤0}(t). Recall that ρτ is a convex function and a(t) ∈ ∂ρτ (t),
where ∂ρτ (t) is denoted to be the sub-gradient of ρτ at point t . By the definition of
sub-gradient, we have

1

n

n∑

i=1

ρτ

(
εi − �̂(Xi )

)− 1

n

n∑

i=1

ρτ (εi ) ≥ −1

n

n∑

i=1

a(εi )�̂(Xi ). (17)

This in connection with (16) shows that

−1

n

n∑

i=1

a(εi )�̂(Xi )

≤ λn

p∑

j=1

(√
‖ f ∗

j ‖2n + ρn‖ f ∗
j ‖2H. −

√
‖ f ∗

j + �̂ j‖2n + ρn‖ f ∗
j + �̂ j‖2H

)
. (18)

It is easy to check that Jn( f j ) :=
√

‖ f j‖2n + ρn‖ f j‖2H forms a standard mixed norm
with any f j ∈ H. For any j ∈ S, by the triangle inequality with respect to the norm,
we have

√
‖ f ∗

j ‖2n + ρn‖ f ∗
j ‖2H −

√
‖ f ∗

j + �̂ j‖2n + ρn‖ f ∗
j + �̂ j‖2H ≤

√
‖�̂ j‖2n + ρn‖�̂ j‖2H.

On the other hand, for any j ∈ Sc, we have

√
‖ f ∗

j ‖2n + ρn‖ f ∗
j ‖2H −

√
‖ f ∗

j + �̂ j‖2n + ρn‖ f ∗
j + �̂ j‖2H = −

√
‖�̂ j‖2n + ρn‖�̂ j‖2H.

This in connection with (18) implies that

− 1

n

n∑

i=1

a(εi )�̂(Xi ) ≤ λn
∑

j∈S

√
‖�̂ j‖2n + ρn‖�̂ j‖2H−λn

∑

j∈Sc

√
‖�̂ j‖2n + ρn‖�̂ j‖2H.

(19)
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In addition, it is clear that {a(εi )}ni=1 are bounded and independent variables with
zero-mean, so the condition of (15) is satisfied. Thus, by Lemma 2 on 	, one gets

1

n

n∑

i=1

a(εi )�̂(Xi ) ≤ μn

p∑

j=1

√
‖�̂ j‖2n + μ2

n‖�̂ j‖2H,

with the choices of λn ≥ 2μn and ρn ≥ μ2
n , the above quantity is plugged into (19) to

yield our desired result immediately. ��
Now,we introduce the local Rademacher complexity,which is critical to our derived

results. Given the bounded function class G with the star-shaped property [see Bartlett
et al. (2005)], satisfying ‖g‖∞ ≤ b(b ≥ 1) for all g ∈ G. Let {xi }ni=1 be an i.i.d.
sequence of variables from X , drawn according to some distribution Q. For each
a > 0, we define the local Rademacher complexity:

Rn(G; a) := Ex,σ

[
sup

g∈G,‖g‖2≤a

1

n

∣∣∣∣∣

n∑

i=1

σi g(xi )

∣∣∣∣∣

]
,

where {σi }ni=1 is an i.i.d. sequence of Rademcher variables, taking values {±1} with
probability 1/2. Denote νn to be the smallest solution to the inequality:

Rn({ f j : ‖ f j‖ ≤ 1}; νn) = ν2n

40
. (20)

Note that such an νn exists, since the star-shape property ensures that the function
Rn(G; a)/a is non-increasing in a.

Lemma 3 For any j ∈ {1, 2, . . . , p}, suppose that ‖ f j‖∞ ≤ b for all f j ∈ H. For
any t ≥ νn, define

E j (t) :=
{
1

2
‖ f j‖2 ≤ ‖ f j‖n ≤ 3

2
‖ f j‖2, for all f j ∈ Hwith ‖ f j‖2 ≥ bt

}
. (21)

Denote E(t) := ⋂p
j=1 E j (t). If t ≥

√
log p
n also holds, then there exist universal

constants (c1, c2), such that

P[E(t)] ≥ 1 − c1 exp(−c2nt
2).

To establish the relationship between α of empirical covering number and νn of
local Rademacher complexity, we need the following conclusion, showing that local
Rademacher averages can be estimated by empirical covering numbers.

Lemma 4 Let G be a class of measurable functions from X to [−1, 1]. Suppose that
Assumption A1 holds for some α ∈ (0, 1). Then, there exists a constant cα depending
only on α, such that
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Rn(H; r) ≤ cα max

{
rα

(
A

n

)1/2

,

(
A

n

)1(2−α)
}

.

Furthermore, for the case of a single RKHS H, we need the relationship between
the empirical and ‖ · ‖2 norms for function inH. The following conclusion is derived
immediately combining Theorem 4 of Koltchinskii and Yuan (2010) and Lemma 3
above.

Lemma 5 Suppose that N ≥ 4 and p ≥ 2 log n. Then, there exists a universal
constant c > 0, such that with probability at least 1 − p−N , for all f ∈ H

‖ f ‖2 ≤ c(‖ f ‖n + μn‖ f ‖H),

‖ f ‖n ≤ c(‖ f ‖2 + μn‖ f ‖H).

For any given �−, �+ > 0, we define the function subset of F as

F(�−,�+) := { f : μn‖ f − f ∗‖2,1 ≤ �−, μ2
n‖ f − f ∗‖H,1 ≤ �+},

where ‖ f ‖2,1 = ∑p
j=1 ‖ f j‖2 and ‖ f ‖H,1 = ∑p

j=1 ‖ f j‖H for any f = ∑p
j=1 f j .

Equipped with this result, we can then prove a refined uniform convergence rate.

Proposition 4 Let F(�−,�+) be a measurable function subset defined as above.
Suppose that assumption (14) holds for each univariateH. For some N > 4 involved

in c0, with confidence at least 1 − c0 exp
(
− log p

c0

)
− 2p−N/2, the following bound

holds uniformly on �− ≤ ep and �− ≤ ep:

[E( f ) − E( f ∗)] − [En( f ) − En( f ∗)] ≤ c1(�− + �+) + e−p, ∀ f ∈ F(�−,�+).

Proof of Theorem 1 By the definition of f̂ , it follows that

En
(
f̂
)+ λn

p∑

j=1

√
‖ f̂ j‖2n + ρn‖ f̂ j‖2H ≤ En( f ∗) + λn

p∑

j=1

√
‖ f ∗

j ‖2n + ρn‖ f ∗
j ‖2H.

This can be rewritten as

E( f̂ )− E( f ∗) + λn

p∑

j=1

√
‖ f̂ j‖2n + ρn‖ f̂ j‖2H

≤ [E( f̂ )− E( f ∗)] − [En
(
f̂
)− En( f ∗)] + λn

p∑

j=1

√
‖ f ∗

j ‖2n + ρn‖ f ∗
j ‖2H.

By the triangle inequality, we get

E( f̂ )− E( f ∗) + λn
∑

j∈Sc

√
‖ f̂ j‖2n + ρn‖ f̂ j‖2H
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≤ [E( f̂ )− E( f ∗)] − [En
(
f̂
)− En( f ∗)]

+λn
∑

j∈S

√
‖ f̂ j − f ∗

j ‖2n + ρn‖ f̂ j − f ∗
j ‖2H. (22)

Note that on j ∈ Sc, we have ‖ f̂ j‖n = ‖ f̂ j − f ∗
j ‖n and ‖ f̂ j‖H = ‖ f̂ j − f ∗

j ‖H.
∑

j∈S
√

‖ f̂ j‖2n + ρn‖ f̂ j‖2H is added to both the sides of (22), this implies that

E( f̂ )− E( f ∗) + λn

p∑

j=1

√
‖ f̂ j − f ∗

j ‖2n + ρn‖ f̂ j − f ∗
j ‖2H

≤ [E( f̂ )− E( f ∗)] − [En
(
f̂
)− En( f ∗)]

+2λn
∑

j∈S

√
‖ f̂ j − f ∗

j ‖2n + ρn‖ f̂ j − f ∗
j ‖2H. (23)

Applying Lemma 5 for ‖ f̂ j − f ∗
j ‖n , j = 1, . . . , p, with probability at least 1− p−N ,

we have

∥∥ f̂ j − f ∗
j

∥∥2
n ≥ c−2/2

∥∥ f̂ j − f ∗
j

∥∥2
2 − μ2

n

∥∥ f̂ j − f ∗
j

∥∥2H.

When ζ > 2 is satisfied, the quantity (23) can be further formulated as

E( f̂ )− E( f ∗) + λn

p∑

j=1

√
c−2/2‖ f̂ j − f ∗

j ‖22 + ρn/2‖ f̂ j − f ∗
j ‖2H

≤ [E( f̂ )− E( f ∗)] − [En
(
f̂
)− En( f ∗)]

+2λn
∑

j∈S

√
‖ f̂ j − f ∗

j ‖2n + ρn‖ f̂ j − f ∗
j ‖2H.

We can claim that

μn
∥∥ f̂ − f ∗∥∥

2,1 ≤ ep, μ2
n

∥∥ f̂ − f ∗∥∥H,1 ≤ ep,

with probability 1. For simplicity, we only verify the first term. Note that ‖ f j‖n ≤
‖ f j‖H ≤ 1 for any f j ∈ H, and we see that

μn
∥∥ f̂ − f ∗∥∥

2,1 ≤ 2p

(
log p

n

) 1
2(2−α) ≤ 2p

(
log p

n

) 1
4 ≤ ep, for all n ≥ 1, α ∈ (0, 1).
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This together Proposition 4 implies that, with probability at least 1−c0 exp
(
− log p

c0

)
−

3p−N/2

E( f̂ )− E( f ∗) + λn/
√
2

p∑

j=1

√
c−2‖ f̂ j − f ∗

j ‖22 + ρn‖ f̂ j − f ∗
j ‖2H

≤ c1μn

p∑

j=1

√
‖ f̂ j − f ∗

j ‖22 + μ2
n‖ f̂ j − f ∗

j ‖2H

+e−p + 2λn
∑

j∈S

√
‖ f̂ j − f ∗

j ‖2n + ρn‖ f̂ j − f ∗
j ‖2H.

Let η be large sufficiently, such that max{2√2cc1, 1} ≤ η, then with the same proba-
bility as above, we have

E( f̂ )− E( f ∗) + λn/4
p∑

j=1

√
c−2‖ f̂ j − f ∗

j ‖22 + ρn‖ f̂ j − f ∗
j ‖2H

≤ e−p + 2λn
∑

j∈S

√
‖ f̂ j − f ∗

j ‖2n + ρn‖ f̂ j − f ∗
j ‖2H. (24)

On the other hand, with the choices ρn = ημn and λ2n = ημ2
n , it follows that

λn
∑

j∈S

√
‖ f̂ j − f ∗

j ‖22 + ρn‖ f̂ j − f ∗
j ‖2H ≤ 4

√
2sη3/2μn

√
1 + μ2

n,

where we used the fact ‖ f j‖n ≤ ‖ f j‖H ≤ 1 for any f j ∈ H, j = 1, . . . , p. Plugging
the above quantity into the right side of (24) yields

E( f̂ )− E( f ∗) ≤ 4
√
2sη3/2μn

√
1 + μ2

n + e−p.

It is verified easily that p ≥ log n implies that e−p ≤ 4
√
2sη3/2μn

√
1 + μ2

n ; then, we
have

E( f̂ )− E( f ∗) ≤ 8
√
2sη3/2μn

√
1 + μ2

n .

��
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