
Ann Inst Stat Math (2017) 69:865–878
DOI 10.1007/s10463-016-0565-x

A simple approach to constructing quasi-Sudoku-based
sliced space-filling designs

Diane Donovan1 · Benjamin Haaland2,3 ·
David J. Nott4

Received: 30 June 2015 / Revised: 3 March 2016 / Published online: 18 May 2016
© The Institute of Statistical Mathematics, Tokyo 2016

Abstract SlicedSudoku-based space-filling designs and,more generally, quasi-sliced
orthogonal array-based space-filling designs are useful experimental designs in several
contexts, including computer experiments with categorical in addition to quantitative
inputs and cross-validation. Here, we provide a straightforward construction of doubly
orthogonal quasi-Sudoku Latin squares which can be used to generate quasi-sliced
orthogonal arrays and, in turn, sliced space-filling designs which achieve unifor-
mity in one- and two-dimensional projections for the full design and uniformity in
two-dimensional projections for each slice. These constructions are very practical to
implement and yield a spectrum of design sizes and numbers of factors not currently
broadly available.

Keywords Computer experiments · Space-filling designs · Sudoku ·
Sliced experimental designs

B Benjamin Haaland
bhaaland3@gatech.edu

1 Department of Mathematics, University of Queensland, Brisbane St Lucia, QLD 4072, Australia

2 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute
of Technology, 755 Ferst Drive, NW, Atlanta 30332, GA, USA

3 Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, 8 College Road,
Singapore 169857, Singapore

4 Department of Statistics and Applied Probability, National University of Singapore,
Singapore 117546, Singapore

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10463-016-0565-x&domain=pdf

866 D. Donovan et al.

1 Introduction

In the popular game Sudoku, players are presented with a nine-by-nine array, divided
into nine three-by-three subsubarrays, and partially filled with the numbers 1 through
9. The goal is to fill the nine-by-nine array with the numbers 1 through 9 so that each
row, column, and three-by-three subarray contains no repeated numbers. See a starting
and completed Sudoku square in Fig. 1 (USA Today 2013).

Sets of (completed) Sudoku squares, as well as generalizations thereof, can be
used to construct sliced space-filling designs achieving uniformity in both one- and
two-dimensional projections for both the complete design and each subdesign, or
slice (Xu et al. 2011). Sliced space-filling designs are experimental designs which
can be partitioned into groups of subdesigns, so that both the full design and each
subdesign achieve some typeof uniformity (Qian andWu2009). These types of designs
are broadly useful for collecting data from computer experiments, large and time-
consuming mathematical codes used to model real-world systems such as the climate
or a component in an engineering design problem. Sliced space-filling designs are
particularly useful for computer experiments with qualitative and quantitative inputs
(Qian andWu 2009), multiple levels of accuracy (Haaland and Qian 2010), and cross-
validation problems in the context of computer experiments (Zhang and Qian 2013).
Sudoku-based sliced space-filling designs were introduced in Xu et al. (2011) and
a construction was given using doubly orthogonal Sudoku squares, whose complete
arrays are orthogonal and whose subarrays are orthogonal after a projection. In Xu
et al. (2011), doubly orthogonal Sudoku squares were constructed using the techniques
developed in Pedersen and Vis (2009) along with a subfield projection.

Here, we give a straightforward construction for doubly orthogonal quasi-Sudoku
squares from sets of orthogonal Latin squares. These constructions are relatively well
described and available for a broad range of sizes (Colbourn and Dinitz 2006; Keed-
well and Dénes 2015; Raghavarao 1971). A similar technique has been used by Li
et al. (2015) to construct sliced orthogonal arrays of composite order from smaller
orthogonal arrays, as well as constructions incorporating difference matrices. See also
Ai et al. (2014) andQian andWu (2009) for related constructions.We givemore details
of the Li et al. (2015) construction techniques in Sect. 5 and comment on the com-
parisons and differences. However, one theoretical difference is that the constructions
given in the current paper result in doubly orthogonal quasi-Sudoku Latin squares,

7 3 5 8 2
8 1 5

2 6 1
8 1 7 9
6 9 5

9 5 3 8
3 1 4

4 6 3
9 2 3 8 7

1 4 9 7 3 5 8 2 6
8 2 6 9 1 4 7 3 5
3 5 7 8 2 6 9 1 4
5 8 1 2 7 3 4 6 9
2 6 3 4 9 8 1 5 7
9 7 4 6 5 1 3 8 2
7 3 5 1 4 2 6 9 8
4 1 8 5 6 9 2 7 3
6 9 2 3 8 7 5 4 1

Fig. 1 A starting and completed Sudoku square USA Today 2013

123

Constructing quasi-Sudoku-based sliced space-filling designs 867

with the doubly orthogonal Sudoku property leading to a straightforward verification
that the corresponding orthogonal arrays may be partitioned into slices, which after
an appropriate projection corresponds to asymmetric orthogonal arrays. Given that
the “base ingredients” are orthogonal Latin squares, these new constructions deliver
a wider class of designs.

The remainder of this article is organized as follows. Section 2 provides notation
and definitions which will be used throughout. Section 3 provides a construction for
sets of pairwise doubly orthogonal quasi-Sudoku Latin squares which is based on
sets of orthogonal Latin squares. Section 4 illustrates the presented techniques with
an example. Section 5 notes the connection with quasi-sliced asymmetric orthogonal
arrays. Finally, Sect. 6 reviews the construction of Sudoku-based sliced space-filling
designs from Xu et al. (2011).

2 Notation and definitions

Let [n] = {0, 1, . . . , n − 1} and A = [A(i, j)] be a Latin square of order n; that is,
an n × n array in which each of the entries in a set N (usually [n]) of size n occurs
once in every row and once in every column. Two Latin squares A = [A(i, j)] and
B = [B(i, j)], of the sameorder, are said to be orthogonal if,whenwe superimpose one
on top of the other, the arrays contain each of the n2 ordered pairs (x, y), x, y ∈ N
exactly once. It is useful to note that A and B are orthogonal if and only if for all
p, q, s, t ∈ N ,

A(p, q) = A(s, t) �⇒ B(p, q) �= B(s, t).

Let A = [A(i, j)] and B = [B(i, j)] be two orthogonal Latin squares of order
n. For n = s2, let � denote a projection from N to [s], � : N → [s], and let
O = {(�(A(i, j)),�(B(i, j))) | i, j ∈ N }. We may think of O as an n × n array
obtained by superimposing �(A) and �(B). The Latin squares A and B are said to
be doubly orthogonal if there exists a projection � such that O can be partitioned
into s × s subarrays with the cells of each subarray containing the s2 ordered pairs
(x, y), 0 ≤ x, y ≤ s − 1. For n = rs, let �r denote a projection from N to [r],
�r : N → [r], let �s denote a projection from N to [s], �s : N → [s], and
O = {(�r (A(i, j)),�s(B(i, j))) | i, j ∈ N }. The Latin squares A and B are said
to be doubly orthogonal if there exist projections �r and �s, such that O can be
partitioned into r × s subarrays with the cells of each subarray containing the rs
ordered pairs (x, y) where 0 ≤ x ≤ r − 1 and 0 ≤ y ≤ s − 1.

An m2 ×m2 array is said to be a Sudoku Latin square, on the set X of size m2, if it
is a Latin square and we can label the rows by (p, s), 0 ≤ p, s ≤ m − 1 and columns
by (q, t), 0 ≤ q, t ≤ m − 1, such that for each p and q the subarray defined by the
cells

((p, s), (q, t)), 0 ≤ s, t ≤ m − 1

123

868 D. Donovan et al.

A1 B1 A2 B2

0 1 2 3
1 0 3 2
2 3 0 1
3 2 1 0

0 1 2 3
3 2 1 0
1 0 3 2
2 3 0 1

0 1 2 3
2 3 0 1
3 2 1 0
1 0 3 2

0 1 2
1 2 0
2 0 1

0 1 2
2 0 1
1 2 0

Fig. 2 The three (pairwise) orthogonal Latin squares of order 4 and the two orthogonal Latin squares of
order 3

contains each entry of X precisely once. An mn×mn array is said be a quasi-Sudoku
Latin square, on the set X of order mn, if it is a Latin square and we can label the
rows by (p, s), 0 ≤ p ≤ m − 1, 0 ≤ s ≤ n − 1 and columns (q, t), 0 ≤ q ≤ n − 1,
0 ≤ t ≤ m − 1, such that for each p and q the subarray defined by the cells

((p, s), (q, t)), 0 ≤ s ≤ n − 1, 0 ≤ t ≤ m − 1

contains each entry of X precisely once. Two Sudoku Latin squares or quasi-Sudoku
Latin squares are orthogonal (doubly orthogonal) if they are orthogonal (doubly
orthogonal) Latin squares.

3 Construction of doubly orthogonal quasi-Sudoku Latin squares

Here, we construct quasi-Sudoku Latin squares which are doubly orthogonal using
sets of (pairwise) orthogonal Latin squares. This is done by first using a direct product
construction to construct orthogonal quasi-Sudoku Latin squares and then showing
that they are doubly orthogonal.

For the remainder of this section, we will take A1 and A2 to be two Latin squares of
orderm and n, respectively.We can construct a newLatin square of ordermn by taking
the direct product, A1 ⊗ A2, of A1 with A2, where (A1(p, q), A2(s, t)) is the element
in row np+ s and column nq + t of A1 ⊗ A2, 0 ≤ p, q ≤ m−1 and 0 ≤ s, t ≤ n−1.
Label the rows of A1 ⊗ A2 as (p, s) and the columns of A1 ⊗ A2 as (q, t). For fixed
p and q, the subarray defined by the set of cells {((p, s), (q, t)) | 0 ≤ s, t ≤ n − 1}
is then isomorphic to A2.

The next proposition attests that orthogonality is maintained under the direct prod-
uct. For a proof, see Keedwell and Dénes (2015), p 427.

Proposition 1 If A1 and B1 are orthogonal Latin squares of order m, and A2 and B2
are orthogonal Latin squares of order n, then A1 ⊗ A2 and B1 ⊗ B2 are orthogonal
Latin squares of order mn.

An example of orthogonal Latin squares A1 ⊗ A2 and B1 ⊗ B2, constructed using
the orthogonal Latin squares shown in Fig. 2, is described in Sect. 4 and shown in
Fig. 3.

Proposition 2 If A1 and B1 are orthogonal Latin squares of order m, and A2 and
B2 are orthogonal Latin squares of order n, then A1 ⊗ A2 and B1 ⊗ B2 are doubly
orthogonal quasi-Sudoku Latin squares of order mn.

123

Constructing quasi-Sudoku-based sliced space-filling designs 869

A1 ⊗ A2

00 01 02 10 11 12 20 21 22 30 31 32
00 00 01 02 10 11 12 20 21 22 30 31 32
01 01 02 00 11 12 10 21 22 20 31 32 30
02 02 00 01 12 10 11 22 20 21 32 30 31
10 10 11 12 00 01 02 30 31 32 20 21 22
11 11 12 10 01 02 00 31 32 30 21 22 20
12 12 10 11 02 00 01 32 30 31 22 20 21
20 20 21 22 30 31 32 00 01 02 10 11 12
21 21 22 20 31 32 30 01 02 00 11 12 10
22 22 20 21 32 30 31 02 00 01 12 10 11
30 30 31 32 20 21 22 10 11 12 00 01 02
31 31 32 30 21 22 20 11 12 10 01 02 00
32 32 30 31 22 20 21 12 10 11 02 00 01

B1 ⊗ B2

00 01 02 10 11 12 20 21 22 30 31 32
00 00 01 02 10 11 12 20 21 22 30 31 32
01 02 00 01 12 10 11 22 20 21 32 30 31
02 01 02 00 11 12 10 21 22 20 31 32 30
10 20 21 22 30 31 32 00 01 02 10 11 12
11 22 20 21 32 30 31 02 00 01 12 10 11
12 21 22 20 31 32 30 01 02 00 11 12 10
20 30 31 32 20 21 22 10 11 12 00 01 02
21 32 30 31 22 20 21 12 10 11 02 00 01
22 31 32 30 21 22 20 11 12 10 01 02 00
30 10 11 12 00 01 02 30 31 32 20 21 22
31 12 10 11 02 00 01 32 30 31 22 20 21
32 11 12 10 01 02 00 31 32 30 21 22 20

Fig. 3 A pair of orthogonal Latin squares of order 12

Proof We begin by verifying that there exists an arrangement of the rows of both
arrays A1 ⊗ A2 and B1 ⊗ B2, which verifies that they are quasi-Sudoku Latin squares.

For fixed q, the entries A1(p, q) and B1(p, q) take the values in column q of
A1 and B1, respectively. That is, for fixed q, {A1(p, q) | 0 ≤ p ≤ m − 1} =
{B1(p, q) | 0 ≤ p ≤ m − 1} = [m]. Likewise, for fixed s, the entries A2(s, t)
and B2(s, t) take values in row s of A2 and B2, respectively. That is, for fixed s,
{A2(s, t) | 0 ≤ t ≤ n − 1} = {B2(s, t) | 0 ≤ t ≤ n − 1} = [n]. Thus, for fixed q and
s

[m] × [n] = {(A1(p, q), A2(s, t)) | 0 ≤ p ≤ m − 1, 0 ≤ t ≤ n − 1}
= {(B1(p, q), B2(s, t)) | 0 ≤ p ≤ m − 1, 0 ≤ t ≤ n − 1}.

Hence, we will assume that the rows of A1 ⊗ A2 and B1 ⊗ B2 have been reordered
by moving row np + s to position ms + p, where 0 ≤ p ≤ m − 1 and 0 ≤ s ≤ n − 1.
The order of the columns, however, remains as qn + t , where 0 ≤ q ≤ m − 1 and
0 ≤ t ≤ n−1. Now for fixed s and q, the subarrays of A1⊗A2 and B1⊗B2 are defined

123

870 D. Donovan et al.

by the intersection of rows ms + p with columns qn + t , where 0 ≤ p ≤ m − 1 and
0 ≤ t ≤ n − 1 contain each of the mn entries precisely once. Note that the reordering
of rows has been consistently applied to both A1 ⊗ A2 and B1 ⊗ B2; therefore these
Latin squares are still orthogonal.

For the remainder of the proof, we will replace q by q and s by s to emphasize the
fact that these two parameters are fixed. In addition, in the reordered squares, fixed q
and s define a subarray containing all entries of [m] × [n].

We select two onto functions �m : [m] × [n] → [m] and �n : [m] × [n] → [n],
such that if �m(A1(p, q), A2(s, t)) = �m(A1(p′, q), A2(s, t ′)), then t �= t ′, and if
�n(B1(p, q), B2(s, t)) = �n(B1(p′, q), B2(s, t ′)), then t = t ′. The first projection
ensures that in the subarray of A1⊗ A2 (defined by q and s) in each column, the entries
are distinct and the second projection ensures that in this subarray and in each column
the entries are all the same.

Such functions are not hard to find; for instance, we could take

�m(A1(p, q), A2(s, t)) = A1(p, q) and

�n(B1(p, q), B2(s, t)) = B2(s, t),

or if m and n are coprime, with m > n, take

�m(A1(p, q), A2(s, t)) = (n × A1(p, q) + A2(s, t)) mod m and

�n(B1(p, q), B2(s, t)) = (n × B1(p, q) + B2(s, t)) mod n.

In this latter case, since m and n are coprime and m > n, for fixed q , {n ×
A1(p, q) mod m | 0 ≤ p ≤ m − 1} = [m] and for a fixed column t , so fixed A2(s, t),
{n × A1(p, q) + A2(s, t) mod m | 0 ≤ p ≤ m − 1} = [m]. Further, n × B1(p, q) +
B2(s, t) ≡ B2(s, t) mod n, so {�n((B1(p, q), B2(s, t))) | 0 ≤ p ≤ m − 1, 0 ≤ t ≤
n} = [n]. Thus, {(�m((A1(p, q), A2(s, t))),�n((B1(p, q), B2(s, t))) | 0 ≤ p ≤
m − 1, 0 ≤ t ≤ n} = [m] × [n]. This verifies that A1 ⊗ A2 and B1 ⊗ B2 are doubly
orthogonal quasi-Sudoku squares. ��

It should be noted that the different projections given in the above proof produce
non-isomorphic squares. This will be illustrated in the example given below. For m =
n, the extension of these pairwise properties tomore than two orthogonal direct product
designs is immediate, if the component designs are available. Further, it should benoted
that when we have that A1 ⊗ A2 and B1 ⊗ B2 are orthogonal quasi-Sudoku Latin
squares, we are assuming that the rows of the direct products have been rearranged to
the required format for Sudoku Latin squares.

4 An example

As an illustration, we will construct doubly orthogonal quasi-Sudoku Latin squares
of order 12. We begin with two orthogonal Latin squares of order n = 3 and two
of the three orthogonal Latin squares of order m = 4, as shown in Fig. 2. Note, it
does not matter which two orthogonal Latin squares of order 4 we choose, so we

123

Constructing quasi-Sudoku-based sliced space-filling designs 871

Reordered A1 ⊗ A2

00 01 02 10 11 12 20 21 22 30 31 32
00 00 01 02 10 11 12 20 21 22 30 31 32
10 10 11 12 00 01 02 30 31 32 20 21 22
20 20 21 22 30 31 32 00 01 02 10 11 12
30 30 31 32 20 21 22 10 11 12 00 01 02
01 01 02 00 11 12 10 21 22 20 31 32 30
11 11 12 10 01 02 00 31 32 30 21 22 20
21 21 22 20 31 32 30 01 02 00 11 12 10
31 31 32 30 21 22 20 11 12 10 01 02 00
02 02 00 01 12 10 11 22 20 21 32 30 31
12 12 10 11 02 00 01 32 30 31 22 20 21
22 22 20 21 32 30 31 02 00 01 12 10 11
32 32 30 31 22 20 21 12 10 11 02 00 01

Reordered B1 ⊗ B2

00 01 02 10 11 12 20 21 22 30 31 32
00 00 01 02 10 11 12 20 21 22 30 31 32
10 20 21 22 30 31 32 00 01 02 10 11 12
20 30 31 32 20 21 22 10 11 12 00 01 02
30 10 11 12 00 01 02 30 31 32 20 21 22
01 02 00 01 12 10 11 22 20 21 32 30 31
11 22 20 21 32 30 31 02 00 01 12 10 11
21 32 30 31 22 20 21 12 10 11 02 00 01
31 12 10 11 02 00 01 32 30 31 22 20 21
02 01 02 00 11 12 10 21 22 20 31 32 30
12 21 22 20 31 32 30 01 02 00 11 12 10
22 31 32 30 21 22 20 11 12 10 01 02 00
32 11 12 10 01 02 00 31 32 30 21 22 20

Fig. 4 A pair of orthogonal quasi-Sudoku Latin squares of order 12

arbitrarily select the first and the last. In general, if the underlying Latin squares
are non-isomorphic, then it is possible to construct sets of non-isomorphic doubly
orthogonal quasi-Sudoku Latin squares.

In Fig. 3, we construct A1 ⊗ A2 and B1 ⊗ B2 using the direct product construction.
To facilitate understanding, rows and columns have been labelled and (x, y) has been
replaced by xy. In Fig. 4, the rows have been reordered as first (p, 0) for 0 ≤ p ≤ 3,
then (p, 1) for 0 ≤ p ≤ 3, then (p, 2) for 0 ≤ p ≤ 3 to emphasise the fact that these
squares are quasi-Sudoku Latin squares.

In Fig. 5, we project down each subsquare in Fig. 4 by applying the mappings
�4 : [4] × [3] → [4] and �3 : [4] × [3] → [3], given by

�4((A1(p, q), A2(s, t))) = (3 × A1(p, q) + A2(s, t)) mod 4, and

�3((B1(p, q), B2(s, t))) = (3 × B1(p, q) + B2(s, t)) mod 3,

to the entries in the quasi-Sudoku squares obtained by reordering the rows of the Latin
squares A1⊗ A2 and B1⊗B2 and label these as�4(A1⊗ A2) and�3(B1⊗B2). Then,

123

872 D. Donovan et al.

Π4(A1 ⊗ A2)
00 01 02 10 11 12 20 21 22 30 31 32

00 0 1 2 3 0 1 2 3 0 1 2 3
10 3 0 1 0 1 2 1 2 3 2 3 0
20 2 3 0 1 2 3 0 1 2 3 0 1
30 1 2 3 2 3 0 3 0 1 0 1 2
01 1 2 0 0 1 3 3 0 2 2 3 1
11 0 1 3 1 2 0 2 3 1 3 0 2
21 3 0 2 2 3 1 1 2 0 0 1 3
31 2 3 1 3 0 2 0 1 3 1 2 0
02 2 0 1 1 3 0 0 2 3 3 1 2
12 1 3 0 2 0 1 3 1 2 0 2 3
22 0 2 3 3 1 2 2 0 1 1 3 0
32 3 1 2 0 2 3 1 3 0 2 0 1

Π3(B1 ⊗ B2)
00 01 02 10 11 12 20 21 22 30 31 32

00 0 1 2 0 1 2 0 1 2 0 1 2
10 0 1 2 0 1 2 0 1 2 0 1 2
20 0 1 2 0 1 2 0 1 2 0 1 2
30 0 1 2 0 1 2 0 1 2 0 1 2
01 2 0 1 2 0 1 2 0 1 2 0 1
11 2 0 1 2 0 1 2 0 1 2 0 1
21 2 0 1 2 0 1 2 0 1 2 0 1
31 2 0 1 2 0 1 2 0 1 2 0 1
02 1 2 0 1 2 0 1 2 0 1 2 0
12 1 2 0 1 2 0 1 2 0 1 2 0
22 1 2 0 1 2 0 1 2 0 1 2 0
32 1 2 0 1 2 0 1 2 0 1 2 0

Fig. 5 Orthogonal quasi-Sudoku Latin squares under projections �4 and �3

in Fig. 6, we superimpose the projections �4(A1 ⊗ A2) and �3(B1 ⊗ B2) to verify
that indeed A1 ⊗ A2 and B1 ⊗ B2 are doubly orthogonal quasi-Sudoku Latin squares
of order 12, as each 4 × 3 subsquare has each of the ordered pairs (x, y), 0 ≤ x ≤ 3
and 0 ≤ y ≤ 2.

If the projections �4 and �3, given above, are replaced by the projections

�4((A1(p, q), A2(s, t))) = A1(p, q), and

�3((B1(p, q), B2(s, t))) = B2(s, t),

we obtain the projected squares given in Fig. 7. Note that here each of the twelve
subsquares can be obtained by reordering the rows and/or the columns of the first
subsquare. This is not the case for the projected squares given in Fig. 6. To see this,
consider the first subsquare and any of the subsquares on rows 01, 11, 21 and 31 of
Fig. 6; setwise the rows of these subsquares do not equal any row in the first subsquare.

123

Constructing quasi-Sudoku-based sliced space-filling designs 873

Π4(A1 ⊗ A2),Π3(B1 ⊗ B2)
00 01 02 10 11 12 20 21 22 30 31 32

00 0,0 1,1 2,2 3,0 0,1 1,2 2,0 3,1 0,2 1,0 2,1 3,2
10 3,0 0,1 1,2 0,0 1,1 2,2 1,0 2,1 3,2 2,0 3,1 0,2
20 2,0 3,1 0,2 1,0 2,1 3,2 0,0 1,1 2,2 3,0 0,1 1,2
30 1,0 2,1 3,2 2,0 3,1 0,2 3,0 0,1 1,2 0,0 1,1 2,2
01 1,2 2,0 0,1 0,2 1,0 3,1 3,2 0,0 2,1 2,2 3,0 1,1
11 0,2 1,0 3,1 1,2 2,0 0,1 2,2 3,0 1,1 3,2 0,0 2,1
21 3,2 0,0 2,1 2,2 3,0 1,1 1,2 2,0 0,1 0,2 1,0 3,1
31 2,2 3,0 1,1 3,2 0,0 2,1 0,2 1,0 3,1 1,2 2,0 0,1
02 2,1 0,2 1,0 1,1 3,2 0,0 0,1 2,2 3,0 3,1 1,2 2,0
12 1,1 3,2 0,0 2,1 0,2 1,0 3,1 1,2 2,0 0,1 2,2 3,0
22 0,1 2,2 3,0 3,1 1,2 2,0 2,1 0,2 1,0 1,1 3,2 0,0
32 3,1 1,2 2,0 0,1 2,2 3,0 1,1 3,2 0,0 2,1 0,2 1,0

Fig. 6 The projected squares verifying that A1 ⊗ A2 and B1 ⊗ B2 are doubly orthogonal quasi-Sudoku
Latin squares of order 12

Π4(A1 ⊗ A2),Π3(B1 ⊗ B2)
00 01 02 10 11 12 20 21 22 30 31 32

00 0,0 0,1 0,2 1,0 1,1 1,2 2,0 2,1 2,2 3,0 3,1 3,2
10 1,0 1,1 1,2 0,0 0,1 0,2 3,0 3,1 3,2 2,0 2,1 2,2
20 2,0 2,1 2,2 3,0 3,1 3,2 0,0 0,1 0,2 1,0 1,1 1,2
30 3,0 3,1 3,2 2,0 2,1 2,2 1,0 1,1 1,2 0,0 0,1 0,2
01 0,2 0,0 0,1 1,2 1,0 1,1 2,2 2,0 2,1 3,2 3,0 3,1
11 1,2 1,0 1,1 0,2 0,0 0,1 3,2 3,0 3,1 2,2 2,0 2,1
21 2,2 2,0 2,1 3,2 3,0 3,1 0,2 0,0 0,1 1,2 1,0 1,1
31 3,2 3,0 3,1 2,2 2,0 2,1 1,2 1,0 1,1 0,2 0,0 0,1
02 0,1 0,2 0,0 1,1 1,2 1,0 2,1 2,2 2,0 3,1 3,2 3,0
12 1,1 1,2 1,0 0,1 0,2 0,0 3,1 3,2 3,0 2,1 2,2 2,0
22 2,1 2,2 2,0 3,1 3,2 3,0 0,1 0,2 0,0 1,1 1,2 1,0
32 3,1 3,2 3,0 2,1 2,2 2,0 1,1 1,2 1,0 0,1 0,2 0,0

Fig. 7 The projected squares verifying that A1 ⊗ A2 and B1 ⊗ B2 are doubly orthogonal quasi-Sudoku
Latin squares of order 12

5 Quasi-sliced orthogonal arrays

A (symmetric) orthogonal array, denoted OA(N , k, s, t), is an N×k arraywith entries
chosen from the set [s] of levels, such that for every N × t submatrix the st level

combinations of

t
︷ ︸︸ ︷

[s] × · · · × [s] each occur a constant number of times. We follow the
work of Qian and Wu (2009) and define a sliced symmetric orthogonal array to be an
OA(N , k, s, t), O, which satisfies the following property:

– there exists a projection � from [s] to [s0], s0 < s, and a partition of the rows of
O into ν subarrays, Oi , such that when the s levels of [s] are collapsed according
to the projection � each Oi forms a symmetric OA(N0, k, s0, t).

We say (O1,O2, . . . ,Oν) is a sliced symmetric orthogonal array.

123

874 D. Donovan et al.

For a k factor design, let S = (s1, . . . , sk) denote the list of numbers of factor levels.
An asymmetric orthogonal array, denoted OA(N , k, S, t), is an N × k array, where
the j th column contains entries of [s j], s j ∈ S, and for each t-subset T of columns,
the N × t submatrix defined by these columns contains all

∏

i∈T si tuples of
∏

i∈T [si]
(the Cartesian product of [si], i ∈ T) a constant, λT , number of times. We define a
quasi-sliced asymmetric orthogonal array to be an OA(N , k, S, t) array, O, which
satisfies the following property:

– there exist projections �i : [si] → [s′
i] for i = 1, . . . , k and a partition of the

rows O into ν subarrays, Oi , such that when the sets of levels [s1], . . . , [sk] are
respectively collapsed onto [s′

1], . . . , [s′
k], s′

i < si , each Oi is an asymmetric
OA(N0, k, S′, t), S′ = (s′

1, s
′
2, . . . , s

′
k).

More precisely, (O1, . . . ,Oν) is said to be a quasi-sliced asymmetric orthogonal array.
We note that if the projection �i is not one-to-one, then it is immediate that s′

i < si .
Also if S = {s} and the orthogonal array is symmetric, we revert to the notation
OA(N , k, s, t).

Li et al. (2015) give four constructions for balanced sliced asymmetric orthogonal
arrays based on similar “producting” techniques. Here, the term balanced implies the
orthogonal arrays satisfy strength one conditions. The first three constructions given
in Li et al. (2015) use difference matrices (Hedayat et al. 2012) as a basic ingredient.
It is well known that difference matrices can be used to construct OA(N , k, s, 2)
orthogonal arrays and hencemutually orthogonal Latin squares. However, very little is
known about difference matrices except those constructed from finite fields and hence
of prime power order. By contrast, the construction presented in the current paper
only assumes the existence of pairs of orthogonal Latin squares, which are known
to exist for all orders except 2 and 6 with a broader range of techniques. The details
of alternate construction techniques can be found in Colbourn and Dinitz (2006). In
addition, the projections used by Li et al. (2015) must satisfy the additive property;
that is, �(f + g) = �(f) + �(g). Here, it is required that the functions �m and
�n are onto. The final construction given by Li, Jiang and Ai assumes the existence
of a pair of symmetric balanced sliced orthogonal arrays A, OA(n1,m1, s1, 2) and
B, OA(s1,m2, r1, 2) and projections δ1 and δ2 that, respectively, result in orthogonal
arraysOA(n2,m1, s2, 2) andOA(s2,m2, r2, 2). Thus, the number of runs in B is equal
to the number of levels in A. This condition places some restrictions on the application
of such constructions. Ai et al. (2014) used similar techniques to construct symmetric
balanced sliced orthogonal arrays. In these constructions, it was assumed that for each
factor the levels were partitioned into subclasses of the same size and that any two
elements in the same partition were projected onto the same element, an assumption
that implies that the resulting space-filling designs achieve maximum stratification in
the univariate margins as well as stratification in the higher-dimensional margins. If in
the proof of Proposition 2 we assume that for the function�m and�n each point in the
range is the image of, respectively, n andm points in the domain, then the constructions
here achieve maximum stratification in the univariate margins and stratification of
the bivariate margins. Once again, there are many distinct functions that satisfy this
property. As stated earlier, the main advantage of the results presented here is that the
construction is relatively well described and straightforward, and consequently easy

123

Constructing quasi-Sudoku-based sliced space-filling designs 875

to implement and available for a broad range of sizes (Colbourn and Dinitz 2006;
Keedwell and Dénes 2015; Raghavarao 1971).

Proposition 3 If A1 and B1 are pairwise orthogonal Latin squares of order m,

and A2 and B2 are pairwise orthogonal Latin squares of order n, then there
exists an orthogonal array OA(m2n2, 4,mn, 2), which satisfies the properties of a
quasi-sliced asymmetric orthogonal array, in that after collapsing each slice is an
OA(mn2, 4, S′, 2), where S′ = (n, n,m, n).

Proof “Unstack” the pair of orthogonal quasi-Sudoku Latin squares A1 ⊗ A2 and
B1 ⊗ B2 to obtain an orthogonal array OA(m2n2, 4,mn, 2), O, where row (r, c) of
O takes the form

[

r, c, (A1 ⊗ A2)(r, c), (B1 ⊗ B2)(r, c)
]

.

To verify that this is a quasi-sliced asymmetric orthogonal array, we provide details
of the partitioning of the rows of OA and then verify that there exists projections such
that each partition corresponds to an OA(m2n2, 4, S′, 2), where S′ = (n, n,m, n).

Recall that the rows of the reordered squares A1 ⊗ A2 and B1 ⊗ B2 are labelled as
(p, s), 0 ≤ p ≤ m − 1 and 0 ≤ s ≤ n − 1, and the columns are labelled as (q, t),
0 ≤ q ≤ m − 1 and 0 ≤ t ≤ n − 1. Now for fixed q = q, let Oq be the (mn2) × 4
subarray with rows indexed by ((p, s), (q, t)), 0 ≤ p ≤ m − 1 and 0 ≤ s, t ≤ n − 1,
so each row of Oq is of the form

[

�1(p, s), �2(q, t), �m(A1 ⊗ A2)((p, s), (q, t)), �n(B1 ⊗ B2)((p, s), (q, t))
]

,

where �1 : (p, s) → s, �2 : (q, t) → t and �m and �n are defined in the proof of
Proposition 2. Note that each of these projections is not one to one.

Now, we need to prove that Oq is an asymmetric orthogonal array with parameters
OA(mn2, 4, S′, 2) where S′ = (n, n,m, n).

Note that for fixed s = s columns 3 and 4 of Oq , are the concatenation of the n sets
of pairs

{
(

�m
(

A1(p, q), A2(s, t)
)

,�n
(

B1(p, q), B2(s, t)
)
)

| 0 ≤ p ≤ m − 1, 0 ≤ t ≤ n − 1

}

= [m] × [n]

one set for each of the m × n subarrays in the Latin squares. Hence, columns 3 and 4
are the concatenation of n copies of [m] × [n].

Next, recall that in the proof of Proposition 2, the projections �m and �n were
chosen to ensure that in them×n subarray of the Latin square A1 ⊗ A2, the entries in
each column are distinct, and in B1 ⊗ B2 the entries in each column are all the same
but the entries in the rows are distinct.

For fixed s = s, the set of pairs {(�1(p, s),�m(A1(p, q), A2(s, t))) | 0 ≤ p ≤
m − 1, 0 ≤ t ≤ n − 1} = {(s,�m(A1(p, q), A2(s, t))) | 0 ≤ p ≤ m − 1, 0 ≤

123

876 D. Donovan et al.

t ≤ n − 1} gives n copies of {s} × [m], one for each column of the subarray. Fur-
ther, {(�1(p, s), (�n(B1(p, q), B2(s, t))) | 0 ≤ p ≤ m − 1, 0 ≤ t ≤ n − 1} =
{(s, (�n(B1(p, q), B2(s, t))) | 0 ≤ p ≤ m − 1, 0 ≤ t ≤ n − 1} giving m copies of
{s} × [n]. So, respectively, as s takes the values 0, . . . , n − 1, we obtain n copies of
[n] × [m] and m copies of [n] × [n].

For fixed s = s, the set of pairs {(�2((q, t),�m(A1(p, q), A2(s, t))) | 0 ≤ p ≤
m − 1, 0 ≤ t ≤ n − 1} = {(t,�m(A1(p, q), A2(s, t))) | 0 ≤ p ≤ m − 1, 0 ≤ t ≤
n − 1} gives one copy of [n] × [m]. So, as s takes the values 0, . . . , n − 1, we obtain
n copies of [n] × [m]. Finally for fixed p = p, {(�2(q, t),�n(B1(p, q), B2(s, t))) |
0 ≤ s, t ≤ n − 1} = {(t,�n(B1(p, q), B2(s, t))) | 0 ≤ st ≤ n − 1} gives 1 copy of
[n] × [n], and as for 0 ≤ p ≤ m − 1, m copies of [n] × [n].

Thus each Oq for 0 ≤ q ≤ m − 1 is an asymmetric orthogonal array with the
required parameters. In all cases, the projections are not one-to-one and the result is a
quasi-sliced asymmetric orthogonal array as required. ��

By way of example, we project the first three columns of the array given in Fig. 6
to obtain the slice of the orthogonal array, denoted O0 (q = 0) with parameters
OA(36, 4, S′, 2), where S′ = (3, 3, 4, 3). The transpose of this slice is given below.
Note that the projection �1 has been applied to the rows’ labels in Fig. 6, giving the
values in the first row of the following array, and �2 has been applied to the column
labels in Fig. 6, giving the values in the second row of the following array.

In principle, it is possible to construct quasi-sliced orthogonal arrays for k > 4;
however, the construction relies on first constructing the doubly orthogonal quasi-
Sudoku Latin squares. When n = m = p, such an approach could be possible, but
onerous to verify and to implement for k > 4. In addition, it might be possible to
achieve a construction where all factors, with the exception of one factor, had the
same number of levels, but once again very onerous to implement. In these cases, it
may be better to revert to Tang’s construction (Tang 1993) or adapt the algorithm given
in Donovan et al. (2015).

6 Construction of quasi-Sudoku-based sliced space-filling designs

Sliced space-filling designs can be constructed from the doubly orthogonal quasi-
Sudoku Latin squares or the quasi-sliced asymmetric orthogonal arrays using the
techniques in Qian and Wu (2009), Tang (1993) and Xu et al. (2011). In brief, the
procedure follows the steps given below.

S1 Use the direct product construction as specified in Sect. 3 to construct orthogonal
Latin squares of composite order mn from orthogonal Latins squares of order m
and n.

S2 Rearrange the rows of these squares to obtain orthogonal quasi-Sudoku Latin
squares of order mn.

S3 Identify projection �m and �n and use these to verify the existence of doubly
orthogonal quasi-Sudoku Latin squares of order mn.

S4 “Unstack” the Latin squares to obtain a quasi-sliced OA(m2n2, 4,mn, 2), where
each partition can be collapsed to a slice corresponding to an OA(m2n2, 4, S′, 2),
where S′ = (n, n,m, n).

123

Constructing quasi-Sudoku-based sliced space-filling designs 877

O0 after projections Π1 and Π2 have been applied.
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
0 1 2 3 0 1 2 3 0 1 2 3 1 2 0 0 1 3 3 0 2 2 3 1 2 0 1 1 3 0 0 2 3 3 1 2
0 1 2 0 1 2 0 1 2 0 1 2 2 0 1 2 0 1 2 0 1 2 0 1 1 2 0 1 2 0 1 2 0 1 2 0

Fig. 8 The projected sliced arrayO′
0

Variable 1

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

2

2

2

2

2 2

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

2

2

2

2

2 2

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

0
0

0

0

0

0

0

0

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1
1

1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

2

2

2

2

22

2
2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

2
2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

3

3

3

3

3

3

3
3

3

3

3

3

0 00
0 0

0
00

0
0

00

0
00 0 00

00
0

0 00

0
00

0
00 00

00 00

1 11
1

1
1 1

11
1 11

1 1
1 1 11

1
1

11
1

1

1 11 1 11 1
1

11 11

2 22
2

2
2

222
2

22

2 22
2 2

2 2
2

22 22

222
2 22 22

22 22

3 3
3

3 33 3333 3
3

3 33 3 3
3 33

3
3 33

3
33

3 33 33
3

3 3
3 Variable 2

0 0 0
0 0

0
0 0

0
0

0 0

0
0 0 00 0

0 0
0

0 0 0

0
00

0
0 0 0 0

00 0 0

11 1
1

1
11

1 1
111

1 1
11 11

1
1

11
1

1

1111 11 1
1

1 111

2 22
2

2
2

222
2

2 2

2 2 2
22

2 2
2

2 22 2

2 2 2
22 22 2

2 2 22

33
3

3 333 333 3
3

333 33
3 33

3
333

3
3 3

3 3333
3

33
3

0 0 0
0 0

0
00

0
0

00

0
0000 0

00
0

0 00

0
0 0

0
0 000

0 0 00

1 11
1

1
11

11
1 11

1 1
111 1

1
1

1 1
1

1

1 1111 1 1
1

1 111

222
2

2
2

2 22
2

2 2

222
22

22
2

22 2 2

22 2
2222 2

222 2

33
3

3 333 3333
3

33 3 33
3 3 3

3
333

3
33

333 3 3
3

3 3
3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

Variable 3

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

0

0
0

0

0

0

00

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0
0

0

0

0 0

0

0

0

0

0

0

0

0
1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1
2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2

23

3

3
3

3

3

3
3

3

3 3

3

3

3

3

3

3

3
3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3
3

0

0
0

0

0

0

00

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0
0

0

0

00

0

0

0

0

0

0

0

0
1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1
2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2
2
2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2

23

3

3
3

3

3

3
3

3

33

3

3

3

3

3

3

3
3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3
3

0

0
0

0

0

0

0 0

0

0

0

0

0

0
0

0

0
0

0

0

0

0

0
0

0

0

0 0

0

0

0

0

0

0

0

0
1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1
1

1

1
1

1

1

1

1

1
2

2

2

2

2

2

2

2

2

2
2

2
2

2

2

2

2
2

2

2

2
2

2

2

2

2

2

2

2

2
2

2

2
2

2

2 3

3

3
3

3

3

3
3

3

3 3

3

3

3

3

3

3

3
3

3

3

3

33

3

3

3

3

3

3

3

3

3

3

3
3

Variable 4

Fig. 9 Sliced space-filling design based on a quasi-sliced asymmetric orthogonal array. Slices are indicated
by point labels

S5 Group the runs of each slice together.
S6 Randomly relabel the element of each column of each slice using the labels

1, . . . ,mn and subject to the constraint that the elements mapped to the same
symbol by � form a consecutive subset of 1, . . . ,mn.

S7 For each column replace each symbol k with a randompermutation of (k−1)mn+
1, . . . , (k − 1)mn + mn.

123

878 D. Donovan et al.

S8 Construct a space-filling design with points generated as (xi j − ui j)/(mn)2,
where xi j denotes the design elements after step S7 and ui j denotes a random
Uniform(0, 1) deviate.

As an example, Fig. 9 shows a sliced space-filling design constructed based on the
quasi-sliced asymmetric orthogonal array whose first slice is shown in Fig. 8.

As shown inQian andWu (2009) andXu et al. (2011), the complete design achieves
uniformity in one- and two-dimensional projections, while the slices are guaranteed
to achieve uniformity in two-dimensional projections. On the other hand, the columns
based on the doubly orthogonal quasi-Sudoku Latin squares can be divided into a
larger number of slices, as defined by the quasi-Sudoku sub-squares, each of which
has guaranteed uniformity under one- and two-dimensional projections, as shown in
Xu et al. (2011).

References

Ai, M., Jiang, B., Li, K. (2014). Construction of sliced space-filling designs based on balanced sliced
orthogonal arrays. Statistica Sinica, 24, 1685–1702.

Colbourn, C. J., Dinitz, J. H. (2006). Handbook of combinatorial designs. New York: CRC Press.
Donovan, D., Burrage, K., Burrage, P., McCourt, T. A., Thompson, H. B., Yazici, E. S. (2015). Estimates

of the coverage of parameter space by latin hypercube and orthogonal sampling: connections between
populations of models and experimental designs. Preprint arXiv:1510.03502.

Haaland, B., Qian, P. Z. (2010). An approach to constructing nested space-filling designs for multi-fidelity
computer experiments. Statistica Sinica, 20(3), 1063.

Hedayat, A. S., Sloane, N. J. A., Stufken, J. (2012).Orthogonal arrays: theory and applications. NewYork:
Springer Science & Business Media.

Keedwell, A. D., Dénes, J. (2015). Latin squares and their applications. New York: Elsevier.
Li, K., Jiang, B., Ai, M. (2015). Sliced space-filling designs with different levels of two-dimensional

uniformity. Journal of Statistical Planning and Inference, 157, 90–99.
Pedersen, R. M., Vis, T. L. (2009). Sets of mutually orthogonal sudoku latin squares. The College Mathe-

matics Journal, 40(3), 174–181.
Qian, P. Z., Wu, C. J. (2009). Sliced space-filling designs. Biometrika, 96(4), 945–956.
Raghavarao, D. (1971). Constructions and combinatorial problems in design of experiments (Vol. 4). New

York: Wiley.
Tang, B. (1993). Orthogonal array-based latin hypercubes. Journal of the American statistical association,

88(424), 1392–1397.
USA Today. (2013). Daily crossword. 19 September 2013.
Xu, X., Haaland, B., Qian, P. Z. (2011). Sudoku-based space-filling designs. Biometrika, 98(3), 711–720.
Zhang, Q., Qian, P. Z. (2013). Designs for crossvalidating approximation models. Biometrika, 100(4),

997–1004.

123

http://arxiv.org/abs/1510.03502

	A simple approach to constructing quasi-Sudoku-based sliced space-filling designs
	Abstract
	1 Introduction
	2 Notation and definitions
	3 Construction of doubly orthogonal quasi-Sudoku Latin squares
	4 An example
	5 Quasi-sliced orthogonal arrays
	6 Construction of quasi-Sudoku-based sliced space-filling designs
	References

