
Ann Inst Stat Math (2017) 69:833–864
DOI 10.1007/s10463-016-0564-y

A change detection procedure for an ergodic diffusion
process

Koji Tsukuda1,2

Received: 21 April 2015 / Revised: 16 December 2015 / Published online: 18 May 2016
© The Institute of Statistical Mathematics, Tokyo 2016

Abstract A test procedure based on continuous observation to detect a change in drift
parameters of an ergodic diffusion process is proposed. The asymptotic behavior of a
random field relating to an estimating equation under the null hypothesis is established
using weak convergence theory in separable Hilbert spaces. This result is applied to a
change point detection test.

Keywords Change point problems · Diffusion processes · Weak convergences in
L2(0, 1)

1 Introduction and notation

1.1 Introduction

Diffusion processes play important roles in several fields, including economics, finan-
cial mathematics and population genetics. Many statistical problems corresponding
to classical i.i.d. settings can also be considered for diffusion processes (see, e.g.,
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834 K. Tsukuda

the book Kutoyants (2004)). In particular, tests to detect changes in drift parame-
ters of diffusion processes are considered in the studies by Lee et al. (2006), Negri
and Nishiyama (2012), and Dehling et al. (2014). De Gregorio and Iacus (2008) and
Song and Lee (2009) consider testing for changes in diffusion coefficients using dis-
crete observations and Negri and Nishiyama (2014) considers a way to detect changes
in drift and diffusion coefficients at the same time. See also Mihalache (2012) for
a sequential change detection for ergodic diffusion processes. These are all change
point problems, a topic on which there has been much research: see studies by Csörgő
and Horváth (1997), Brodsky and Darkhovsky (2000), and Chen and Gupta (2012)
for general surveys.

Let us now roughly explain the problem setting and our approach, leaving the
precise description to Sect. 4. Consider an ergodic diffusion process

Xt = X0 +
∫ t

0
S(Xs, θ)ds +

∫ t

0
σ(Xs)dWs (1)

for t ∈ [0,∞) with the state space I = (l, r) for −∞ ≤ l < r ≤ ∞, where W· is a
standard Brownian motion and X0 is a random variable that is independent of W· and
satisfies E[(X0)

2] < ∞. The problem is to test the following pair of hypotheses:

H0 : ∃θ0 ∈ � such that θ(t) = θ0 ∀t ∈ [0, T ]
H1 : ∃θ0, θ1 ∈ � and ∃u∗ ∈ (0, 1) such thatθ(t) = θ0 ∀t ∈ [0, Tu∗) and

θ(t) = θ1 �= θ0 ∀t ∈ [Tu∗, T ]

Based on the continuous time observations {Xt ; t ∈ [0, T ]}with the asymptotic setting
T → ∞, we propose a consistent procedure to test these hypotheses. Similar problem
settings have been considered by some previous works, such as Lee et al. (2006) and
Negri and Nishiyama (2012). For estimating the drift parameter in (1), the likelihood
equation

1

T

∫ T

0

Ṡ(Xs, θ)

σ (Xs)2
(dXs − S(Xs, θ)ds) = 0

is considered. Define the random field

(u, θ) � ZT (u, θ) = 1√
T

∫ T

0
wT
s (u)

Ṡ(Xs, θ)

σ (Xs)2
(dXs − S(Xs, θ)ds), (2)

where

wT
s : (0, 1) � u �→ wT

s (u) = 1{s ≤ Tu} − u√
u(1 − u)

and s ∈ [0, T ].We shall see that, underH0, the randomfield u � ZT (u, θ0) converges
weakly to a Gaussian field in L2(0, 1) as T tends to infinity. The denominator ofwT

s (·)
converges to 0 as u → 0 or u → 1; so, underH1, ZT becomes large when u∗ is close
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to 0 or 1 and then the test is expected to have a high power if we use the function of
ZT as a test statistic. This is the main motivation of the work.

The idea of using the partial sum of the estimating equation basically comes from
the study by Horváth and Parzen (1994). This work examined the asymptotic behavior
of a Fisher score change process, which is a stochastic process relating to the likelihood
equation, for general independent observations under the null hypothesis. Negri and
Nishiyama (2012) refines the idea and applies it to the detection of changes of drift
parameters in an ergodic diffusion process. The proof of the limit theorem of Negri
and Nishiyama (2012), especially the proof of asymptotic tightness, is based on the
tightness criterion for martingales taking values in �∞ spaces, which is the set of all
bounded real functions endowed with the uniform metric. However, we cannot apply
this kind of weak convergence theorem to the current problem because the random
fieldZT (·, θ) is not bounded owing to the denominator ofwT

s (·). Hence, we regard the
random field (2) as an element of L2(0, 1) and prove the limit theorems in L2(0, 1).
Generally speaking, weak convergences in L2 are weaker than other often-used results
in the Skorokhod topology or the uniform topology. But, for some tests, weak conver-
gences in L2 are enough: for goodness-of-fit tests see studies by Khmaladze (1979),
Mason (1984), and LaRiccia and Mason (1986) and for change point detection tests
see studies by Suquet and Viano (1998) and Tsukuda and Nishiyama (2014).

Note that Mihalache (2012) and Dehling et al. (2014) also consider weighted test
statistics for the detection of changes of a drift parameter in a diffusion processes.
In particular, Mihalache (2012) considers a sequential change detection problem and
proposes a weighted CUSUM test statistic. Their result is strong convergence and the
limit is t � B(t)/tγ , γ ∈ [0, 1/4) in the sense of the supremum metric, whereas ours
is t � B◦(t)/{t (1 − t)}γ , γ = 1/2 in the sense of the L2(0, 1) metric, where B is
a standard Brownian motion and B◦ is a standard Brownian bridge with dimensions
depending on the dimension of the parameter of interest. We believe that using the
weight function corresponding to γ = 1/2 is important even though our result is one
of the weak convergences in L2(0, 1). Dehling et al. (2014) consider another model
and propose test statistics using the log likelihood ratio with two results: one is weak
convergence with a fixed interval that does not contain 0 and 1, and the other is a
Darling-Erdős type result which has the same limit as a result in the study by Horváth
(1993). In contrast, our result is convergence in L2(0, 1) and the interval contains 0
and 1.

To close this subsection, let us describe the organization of this paper. Section 2
introduces the preliminary results that will be used in the following sections. Section
3 includes the limit theorem of a stochastic integral taking values in L2(0, 1). This
result is applied to a change point detection test in Sect. 4. The proofs of the results
are in Sect. 5.

1.2 Notation

Let us explain some notations. We shall consider asymptotic behaviors as T tends to
infinity and the notations →p and →d denote convergence in probability and con-
vergence in distribution, respectively. The notation l.i.m. means the limit in mean
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square, where “mean” indicates the expectation. The notation 1{·} denotes the indica-
tor function. The binary relation a∧b for a, b ∈ Rmeans min(a, b). Let us denote the
transpose of a vector or matrix by the superscript�. The finite-dimensional Euclidean
norm of a vector x is denoted by ‖x‖ = (x�x)1/2. The (i, j) element of matrix A is
denoted by (A)(i, j) and the operator norm of matrix A is denoted by ‖A‖OP , that is,

‖A‖OP = sup
x∈Rd ,‖x‖=1

‖Ax‖ = sup
x∈Rd ,‖x‖>0

‖Ax‖
‖x‖ .

Moreover, the Frobenius norm of matrix A is denoted by ‖A‖, that is,

‖A‖ = (tr(A�A))1/2 =
⎛
⎝∑

i

∑
j

∣∣(A)(i, j)
∣∣2

⎞
⎠

1/2

.

Note that

‖A‖OP = max
σ

σ (A) ≤
(∑

σ

(σ (A))2

)1/2

= ‖A‖,

where σ(A) denotes the singular value of the matrix A. The expectation of a random
variable X is denoted by E[X ]. In particular, for a random vector or a random matrix
X , E[X ] denotes the vector or the matrix in which each element is the expectation of
the corresponding element of X .

We introduce a functional space L2(S,Rd , ds), or in abbreviated form L2(S), where
S is a bounded subset of the Euclidean space. Consider the inner product

〈z1, z2〉L2(S) =
∫
S
z1(s)

�z2(s)ds,

where z1 and z2 are d-dimensional vector-valued functions on S and ds is the Lebesgue
measure. The functional space L2(S) is equivalence classes of square integrable real
vector functions on a bounded set S, that is, the set of all measurable functions z :
S → R

d that satisfy ‖z‖2
L2(S)

= 〈z, z〉L2(S) < ∞. This space is a separable Hilbert

space with respect to L2 distance ‖z1 − z2‖L2(S).
The predictable quadratic variation process of a martingale t � Mt is denoted by

t � 〈M〉t .
The derivatives of f with respect to θi and x , which will appear in Sects. 4 and 5,

are denoted by ∂i f and f ′, respectively. Moreover, the gradient vector with respect to
θ is denoted by ḟ .
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2 Preliminary results

2.1 On tightness criteria in L2(0, 1)

Let H be a real separable Hilbert space with inner product 〈·, ·〉H and a complete
orthonormal system {ei }∞i=1. An H-valued random sequence {Xn}∞n=1 is said to be
asymptotically finite dimensional if for any δ, ε > 0, there exists a finite subset {ei }i∈I
of the complete orthonormal system such that

lim sup
n→∞

P

⎛
⎝∑

j /∈I
〈Xn, e j 〉2H > δ

⎞
⎠ < ε.

This tightness criterion was established by Prokhorov (1956). The phrase “asymptot-
ically finite dimensional” seems to have been first used by van der Vaart and Wellner
(1996) and the following theorem is contained in Section 1.8 of this book.

Theorem 1 (van der Vaart andWellner (1996), Theorem 1.8.4)A sequence of random
variables Xn : 
n → H converges in distribution to a tight random variable X if and
only if it is asymptotically finite dimensional and the sequence 〈Xn, h〉H converges in
distribution to 〈X, h〉H for every h ∈ H.

It should be noted that the measurability of {X ·} is not assumed in van der Vaart and
Wellner (1996), whereas it is assumed in this paper. A sufficient condition to verify
that a given sequence of random elements taking values in H is asymptotically finite
dimensional is given in the following proposition which is due to Prof. Nishiyama.

Proposition 1 A sequence of random variables Xn : 
 → H is asymptotically finite
dimensional if there exists the random variable X such that

E
[‖Xn‖2H

] → E
[‖X‖2

H

]
< ∞ (3)

and
E
[〈Xn, e j 〉2H

] → E
[〈X, e j 〉2H

]
, ∀ j ∈ J, (4)

as n → ∞, where {e j : j ∈ J } is a complete orthonormal system of H.

2.2 On limit theorems for stochastic processes

In this subsection, we introduce two theorems that can be used to prove the consis-
tency and asymptotic normality of Z-estimators, including the maximum likelihood
estimator, together with the general theory of Z-estimation. See Remark 2 in Sect. 4
for general results on the Z-estimator (see, for example, van der Vaart 1998).

The following theorem is a uniform law of large numbers for ergodic stochastic
processes. For one-dimensional ergodic diffusion processes, a corresponding result
with a more general envelope condition for a set of functions instead of (5) can be
found in van Zanten (2003).
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Theorem 2 (Nishiyama (2011), Theorem8.4.1(i))Let (X ,A) be ameasurable space,
� be a bounded subset of Rp. Consider a set of measurable function { f (·, θ); θ ∈ �}
on X . Suppose that

| f (x, θ1) − f (x, θ2)| ≤ K (x)‖θ1 − θ2‖γ (5)

for ∀θ1, θ2 ∈ �, a measurable function K and positive constant γ . Consider an
ergodic stochastic process {Xt }t∈[0,∞) which takes its value in X and let μ be the
invariant measure. If all f (·; θ) and K are integrable with respect to μ, then it holds
that

sup
θ∈�

∣∣∣∣ 1T
∫ T

0
f (Xt , θ)dt −

∫
X
f(x; θ)μ(dx)

∣∣∣∣ →p 0

as T → ∞.

The next theorem is a central limit theorem in �∞ for martingales, where �∞(�)

is the set of all bounded real-valued functions on �. This result is based on Theorems
3.1.1 and 3.4.2 of Nishiyama (2000).

Theorem 3 (Nishiyama (2011), Theorem 8.6.4(i)) Let (�, ρ) be a metric space satis-
fying the metric entropy condition, Xn,θ· be a continuous time martingale, and Tn be a
finite stopping time. Suppose that there exists a sequence of positive random variables
{Kn}∞n=1 satisfying

√
〈Xn,θ1 − Xn,θ2〉Tn ≤ Knρ(θ1, θ2)

for ∀θ1, θ2 ∈ � and Kn = Op(1). If for every θ1, θ2 ∈ �, 〈Xn,θ1 , Xn,θ2〉Tn converges
to a constant C(θ1, θ2) in probability, then the random field θ � Xn,θ

Tn
converges

weakly in �∞(�) to aGaussian field θ � G(θ) such thatE[G(θ)] = 0 and the covari-
ance isE[G(θ1, θ2)] = C(θ1, θ2). The limit θ � G(θ) is almost surely continuouswith
respect to ρ and the semimetric ρG defined by ρG(θ1, θ2) = (E[|G(θ1)−G(θ2)|2])1/2.

For other approaches to deriving asymptotic properties of the maximum likelihood
estimators of drift parameters of diffusion processes, see studies by Lánska (1979)
and by Kutoyants (2004).

3 A weak convergence theorem in L2(0, 1) for a stochastic integral

Choose a measurable space and introduce a filtration. Let us consider a locally square
integrable martingale M· whose predictable quadratic variation process is

〈M〉· =
∫ ·

0
λsds,
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where λ· is a non-negative adapted process which satisfies

sup
s∈[0,∞)

E[λs] < ∞.

It follows that M· is a martingale. Define the random field

(u, θ) � MT (u, θ) = 1√
T

∫ T

0
wT
s (u)Hs(θ)dMs,

where

wT
s (u) = 1{s ≤ Tu} − u√

u(1 − u)
, ∀u ∈ (0, 1),

θ is an element of an open bounded subset � of Rd and H·(θ) is a d-dimensional
predictable process such that

∫ T

0
‖Hs(θ)‖2λsds < ∞, a.s. ∀θ ∈ �.

Note that MT (u, θ) is the terminal value of the martingale

1√
T

∫ ·

0
wT
s (u)Hs(θ)dMs .

The following proposition gives a relation between moments.

Proposition 2 Fix a θ ∈ �. (i) If

sup
s∈[0,∞)

E

[
‖Hs(θ)‖4λ2s

]
< ∞ (6)

holds, then

sup
s∈[0,∞)

∥∥∥E
[
Hs(θ)Hs(θ)�λs

]∥∥∥
OP

< ∞. (7)

(ii) If (6) and

sup
s∈[0,∞)

E

[
‖Hs(θ)‖2

]
< ∞ (8)

hold, then

sup
s∈[0,∞)

E

[
‖Hs(θ)‖3λs

]
< ∞. (9)

(iii) If (6) holds, then

sup
s∈[0,∞)

E

[
‖Hs(θ)‖2λs

]
< ∞. (10)
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Moreover, (10) implies that

E

[
‖MT (·, θ)‖2L2(0,1)

]
< ∞, (11)

and in particular, MT (·, θ) almost surely takes its values in L2(0, 1).

The following theorem describes the asymptotic behavior of u � MT (u, θ) in
L2(0, 1).

Theorem 4 Fix a θ ∈ �. Suppose that there exists the limit

C(θ, η) = l.i.m.
T→∞

(
1

T

∫ T

0
Hs(θ)Hs(η)�λsds

)
(12)

for θ, η ∈ �. If (6) and (8) hold, then the random fieldMT (·, θ) converges weakly to

�(·, θ) = C(θ, θ)1/2B◦
d (·)

w(·)

in L2(0, 1) as T → ∞, where B◦
d (·) denotes a d-dimensional standard Brownian

bridge and w(u) = (u(1 − u))1/2 for u ∈ (0, 1).

The following proposition will be used in the proof of Theorem 4.

Proposition 3 For any u, v ∈ (0, 1), θ ∈ � and h ∈ L2(0, 1), (12) implies

1

T

∫ T

0
wT
s (u)wT

s (v)Jsds → u ∧ v − uv√
uv(1 − u)(1 − v)

h(u)�C(θ, θ)h(v),

where Js = h(u)�E[Hs(θ)Hs(θ)�λs]h(v).

4 A change detection procedure for an ergodic diffusion process

Let us consider the stochastic differential equation given by (1). The parameter θ is
an element of �, an open bounded subset of Rd . Suppose that there exists a strong
solution to this SDE and that

sup
s∈[0,∞)

E[σ(Xs)
2] < ∞.

Further, suppose that X · is ergodic in mean square with respect to an invariant measure
μθ for some θ , that is, for any μθ -integrable function f , it holds that

lim
T→∞E

[∥∥∥∥ 1

T

∫ T

0
f (Xs)ds −

∫
I
f (x)μθ (dx)

∥∥∥∥
2]

= 0.
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Remark 1 The previous work, Negri and Nishiyama (2012) assumes ergodicity which
guarantees the convergence in probability, so this assumption is stronger than theirs.

Let us denote the true value of θ for Xt by θ(t). For the model above, we wish to
test the hypotheses H0 and H1 in Sect. 1.

To estimate the parameter θ , let us consider the estimating equation under H0

�T (θ) = 1

T

∫ T

0

Ṡ(Xs, θ)

σ (Xs)2
(dXs − S(Xs, θ)ds) = 0. (13)

Suppose that there exists a unique solution θ̂T of this estimating equation. Let us
introduce the following conditions.

(I) The function (x, θ) �→ S(x, θ) is continuously differentiable with respect to x
and third-order continuously differentiable with respect to θ and the order of
the derivatives is exchangeable. The function x �→ σ(x) is continuously differ-
entiable with respect to x . The functions supθ∈� |S(x, θ)|, supθ∈� |∂i S(x, θ)|,
supθ∈� |∂i j S(x, θ)|, supθ∈� |∂i jk S(x; θ)|, σ(x) and σ ′(x) are bounded above by
polynomial growth functions of x : that is, for example, it holds that

sup
θ∈�

|S(x, θ)| ≤ C(1 + |x |)p, ∀x ∈ R

for some constants C, p ≥ 1.
(II) infx∈R σ(x) > 0.
(III) For arbitrary q ≥ 1, sups∈[0,∞) E

[|Xs |q
]

< ∞.
(IV) For all θ, κ ∈ �,

�(θ, κ) =
∫
I

(S(x, κ) − S(x, θ))Ṡ(x, θ)

σ (x)2
μκ(dx) < ∞. (14)

For all κ ∈ � and any ε > 0, infθ :‖θ−κ‖>ε ‖�(θ, κ)‖ > 0 holds.
(V) For all θ, η, κ ∈ �

Cκ(θ, η) =
∫
I

Ṡ(x, θ)Ṡ(x, η)�

σ(x)2
μκ(dx) < ∞.

The matrix Cκ(θ, θ) is positive definite for all θ, κ ∈ �.
(VI) There exist positive functions x �→ K (x), Kd(x) such as

max
i, j

|∂i∂ j S(·, θ1) − ∂i∂ j S(·, θ2)| ≤ K (·)‖θ1 − θ2‖,
max
i, j

|∂i∂ j S
′(·, θ1) − ∂i∂ j S

′(·, θ2)| ≤ Kd(·)‖θ1 − θ2‖

for ∀θ1, θ2 ∈ N , where N is a neighborhood of any θ0. The function K (x) is
continuously differentiable with respect to x . The functions K (x) and Kd(x) are
bounded above by polynomial growth functions of x .
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Remark 2 From (13) and (14), under H0, it holds that

‖�T (θ) − �(θ, θ0)‖
≤

∥∥∥∥ 1

T

∫ T

0

S(Xs, θ0)Ṡ(Xs, θ)

σ (Xs)2
ds −

∫
I

S(x, θ0)Ṡ(x, θ)

σ (x)2
μθ0(dx)

∥∥∥∥
+

∥∥∥∥ 1

T

∫ T

0

Ṡ(Xs, θ)

σ (Xs)
dWs

∥∥∥∥
+

∥∥∥∥ 1

T

∫ T

0

S(Xs, θ)Ṡ(Xs, θ)

σ (Xs)2
ds −

∫
I

S(x, θ)Ṡ(x, θ)

σ (x)2
μθ0(dx)

∥∥∥∥ .

UnderH0, the supremum of ‖�T (θ) − �(θ, θ0)‖ with respect to θ converges to 0 in
probability by Theorems 2 and 3. This leads to the consistency of θ̂T : see Theorem
5.9 of van der Vaart (1998). Asymptotic normality, which is Lemma 1 (i) of Negri and
Nishiyama (2012) under stronger conditions, follows from the consistency, the Taylor
expansion and Theorems 2 and 3: see Theorem 5.21 of van der Vaart (1998) (although
Theorems 5.9 and 5.21 of van der Vaart (1998) deal with discrete observations, cor-
responding results are valid for continuous observations). Moreover, part (ii) of the
following lemma, which is Lemma 1 (ii) of Negri and Nishiyama (2012), also holds
from a similar argument involving only consistency.

Lemma 1 Assume conditions (I–V). (i) Under H0, it holds that
√
T (θ̂T − θ0) →d

N (0,Cθ0(θ0, θ0)
−1).

(ii)UnderH1, it holds that θ̂T →p θ∗, where θ∗ is a value that satisfies u∗�(θ∗, θ0)+
(1 − u∗)�(θ∗, θ1) = 0.

Proposition 4 Assume conditions (I–III). (i) Under H0, it holds that

sup
s∈[0,∞)

E

[‖Ṡ(Xs, θ0)‖4
σ(Xs)4

]
< ∞ (15)

and

sup
s∈[0,∞)

E

[‖Ṡ(Xs, θ0)‖2
σ(Xs)4

]
< ∞. (16)

(ii) Under H1, (15) and (16) hold if we replace θ0 with θ∗. Moreover, it holds that

sup
s∈[0,∞)

E

[‖Ṡ(Xs, θ∗)‖2
σ(Xs)4

(S(Xs, θ))2
]

< ∞

for θ ∈ {θ0, θ1, θ∗}.
Introduce the random field {ZT (u, θ); (u, θ) ∈ (0, 1) × �} given by

ZT (u, θ) = 1√
T

∫ T

0
wT
s (u)

Ṡ(Xs, θ)

σ (Xs)2
(dXs − S(Xs, θ)ds),
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where

wT
s (u) = 1{s ≤ Tu} − u√

u(1 − u)
, u ∈ (0, 1).

Its “predictable projection” to the true model is

Z
p
T (u, θ) = 1√

T

∫ T

0
wT
s (u)

Ṡ(Xs, θ)

σ (Xs)2
(S(Xs, θ(s)) − S(Xs, θ))ds.

The difference between Z and Z
p, which is a martingale random field, is denoted by

{MT (u, θ); (u, θ) ∈ (0, 1) × �}:

MT (u, θ) = ZT (u, θ) − Z
p
T (u, θ) = 1√

T

∫ T

0
wT
s (u)

Ṡ(Xs, θ)

σ (Xs)
dWs

for u ∈ (0, 1) and θ ∈ �. Its weak convergence follows from the limit theorem in the
preceding section.

Under H0, it holds that

Z
p
T (·, θ0) = 0,

so

MT (·, θ0) = ZT (·, θ0).

This relationshipmotivates the use of functions ofZT as test statistics. Sincewe cannot
know θ0, it is crucial that, under H0,

∥∥ZT (·, θ̂T ) − ZT (·, θ0)
∥∥
L2(0,1) →p 0.

This will be established by the following two lemmas.

Lemma 2 Assume conditions (I–VI). Under H0,

∥∥∥∥ 1√
T

∫ T

0
wT
s (·) Ṡ(Xs, θ)

σ (Xs)
dWs |θ=θ̂T

− 1√
T

∫ T

0
wT
s (·) Ṡ(Xs, θ0)

σ (Xs)
dWs

∥∥∥∥
L2(0,1)

converges to 0 in probability as T → ∞.

Remark 3 Let us confirm the Itô formula, which will be frequently used in the proof.
Let s � Xs be a one-dimensional continuous semimartingale whose predictable
quadratic variation process is denoted by s � 〈X〉s . Let the map x �→ f (x) be
second-order continuously differentiable. Its first and second derivatives are denoted
by f ′ and f ′′, respectively. It holds that

∫ XT

X0

f ′(x)dx = f (XT ) − f (X0) =
∫ T

0
f ′(Xs)dXs + 1

2

∫ T

0
f ′′(Xs)d〈X〉s .
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844 K. Tsukuda

In particular, when we consider the stochastic differential equation

Xt = X0 +
∫ t

0
S(Xs, θ0)ds +

∫ t

0
σ(Xs)dWs,

by putting f ′ = g(·)/σ 2(·), it holds that
∫ XT

X0

g(x)

σ (x)2
dx

=
∫ T

0

g(Xs)

σ (Xs)
dWs +

∫ T

0

(
g(Xs)S(Xs, θ0)

σ (Xs)2
+ g′(Xs)

2
− σ ′(Xs)g(Xs)

σ (Xs)

)
ds.

We shall use Ṡ, S̈, K as g in the proof.

Lemma 3 Assume conditions (I–VI). Under H0,

∥∥∥Zp
T (·, θ̂T )

∥∥∥2
L2(0,1)

converges to 0 in probability as T → ∞.

Next, we discuss the limit behavior ofMT (·, θ0), which almost surely takes values
in L2(0, 1) by Propositions 2 and 4. The following lemma follows from Theorem 4.

Lemma 4 Assume conditions (I–VI). Under H0, the random field u � MT (u, θ0)

converges weakly to u � Cθ0(θ0, θ0)
1/2B◦

d (u)/(u(1− u))1/2 in L2(0, 1) as T → ∞,
where B◦

d is a d-dimensional standard Brownian bridge.

Remark 4 Lemmas 2 and 4 above yield the weak convergence of u � MT (u, θ̂T ) to
u � Cθ0(θ0, θ0)

1/2B◦
d (u)/(u(1 − u))1/2 in L2(0, 1). This corresponds to Lemma 3

of Negri and Nishiyama (2012), which states the weak convergence of u � (u(1 −
u))1/2MT (u, θ̂T ) to u � Cθ0(θ0, θ0)

1/2B◦
d (u) in �∞([0, 1]) underH0. Their Lemma 3

follows from their Lemmas 2 and 5. It seems that weak convergences in L2 is too weak
to show the result corresponding to their Lemma 5, so we take a different approach.

The following proposition will be used in the proofs of Lemmas 2 and 4.

Proposition 5 Let x �→ f (x) be a function satisfying

sup
s∈[0,∞)

E

[
f (Xs)

2
]

< ∞

and

∫
I
f (x)μθ0(dx) < ∞.
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A change detection procedure 845

Under H0, it holds that

E

[∫ 1

0

(
1

T

∫ T

0
wT
s (u) f (Xs)ds

)2

du

]
→ 0.

We now make some assertions that guarantee the consistency of the test.

Lemma 5 Assume conditions (I–VI). (i) Under H1,

∥∥∥∥ 1

T

∫ T

0
wT
s (·) Ṡ(Xs, θ)

σ (Xs)
dWs |θ=θ̂T

− 1

T

∫ T

0
wT
s (·) Ṡ(Xs, θ∗)

σ (Xs)
dWs

∥∥∥∥
2

L2(0,1)

converges to 0 in probability as T → ∞.
(ii) Under H1,

1

T
‖ZT (·, θ̂T ) − ZT (·, θ∗)‖2L2(0,1)

converges to 0 in probability as T → ∞.
(iii) Under H1, it holds that ‖MT (·, θ∗)‖L2(0,1) = Op(1).

Introduce the test statistic

ADT =
∫ 1

0
ZT (u, θ̂T )�Ĉ−1

T ZT (u, θ̂T )du,

where

ĈT = 1

T

∫ T

0

Ṡ(Xs, θ̂T )Ṡ(Xs, θ̂T )�

σ(Xs)2
ds.

It follows from Theorem 2 that ĈT converges in probability to Cθ0(θ0, θ0) under H0
and to u∗Cθ0(θ∗, θ∗) + (1 − u∗)Cθ1(θ∗, θ∗) under H1 (see page 915 in the study
by Negri and Nishiyama 2012). The continuous mapping theorem and the Slutsky
theorem yield part (i) of the following theorem.

Theorem 5 Assume conditions (I–VI). (i) Under H0, it holds that

ADT →d
∫ 1

0

‖B◦
d (u)‖2

u(1 − u)
du

as T → ∞.
(ii) Under H1, the test is consistent.

Remark 5 Theorem 1 (i) by Negri and Nishiyama (2012) shows the convergence in
distribution

sup
u∈[0,1]

(u(1 − u)ZT (u, θ̂T )�Ĉ−1
T ZT (u, θ̂T )) →d sup

u∈[0,1]
‖B◦

d (u)‖2
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846 K. Tsukuda

as T → ∞ underH0. This result corresponds to a Kolmogorov–Smirnov type test in
goodness-of-fit testing in terms of its limit distribution. On the other hand, the result
in Theorem 5 (i) corresponds to an Anderson–Darling type test, which often has better
power than a Kolmogorov–Smirnov type test.

5 Proofs

Proof of Proposition 1. It is enough to show that ∀ε > 0, there exists a finite subset
{ei : i ∈ I } of the complete orthonormal system such that

lim sup
n→∞

E

⎡
⎣∑

j /∈I
〈Xn, e j 〉2H

⎤
⎦ < ε

by the Markov inequality. The Parseval identity yields

‖X‖2
H

=
∑
j∈I

〈X, e j 〉2H +
∑
j /∈I

〈X, e j 〉2H,

so it holds that, for any ε > 0, there exists a finite subset I ⊂ J such that

∑
j∈I

E

[
〈X, e j 〉2H

]
> E

[
‖X‖2

H

]
− ε.

Hence, it follows from the assumptions that

E

⎡
⎣∑

j /∈I
〈Xn, e j 〉2H

⎤
⎦ = E

[
‖Xn‖2H

]
− E

⎡
⎣∑

j∈I
〈Xn, e j 〉2H

⎤
⎦

→ E

[
‖X‖2

H

]
− E

⎡
⎣∑

j∈I
〈X, e j 〉2H

⎤
⎦ < ε

for a large enough finite set I . This completes the proof. ��
Proof of Proposition 2. (i) It follows from the property of the operator norm and the
Jensen inequality that

sup
s∈[0,∞)

∥∥∥E
[
Hs(θ)Hs(θ)�λs

]∥∥∥2
OP

≤ sup
s∈[0,∞)

d∑
i=1

d∑
j=1

∣∣E [
(Hs(θ))(i) (Hs(θ))( j) λs

]∣∣2
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A change detection procedure 847

≤ sup
s∈[0,∞)

d∑
i=1

d∑
j=1

E

[
(Hs(θ))2(i) (Hs(θ))2( j) λ2s

]

= sup
s∈[0,∞)

E

[
‖Hs(θ)‖4 λ2s

]
< ∞.

(ii) It follows from the Schwartz inequality that

sup
s∈[0,∞)

E

[
‖Hs‖3λs

]
≤ sup

s∈[0,∞)

(
E

[
‖Hs‖4λ2s

]
E

[
‖Hs‖2

])1/2
< ∞.

(iii) As for the former assertion, (6) implies (10) because of the Schwartz inequality.
As for the latter assertion, the left-hand side of (11) is equal to

E

[∫ 1

0

∥∥∥∥ 1√
T

∫ T

0
wT
s (u)Hs(θ)dMs

∥∥∥∥
2

du

]

=
∫ 1

0
E

[
1

T

∫ T

0

(
wT
s (u)

)2 ‖Hs(θ)‖2λsds
]
du

=
∫ 1

0

(
1

T

∫ T

0

(
wT
s (u)

)2
E

[
‖Hs(θ)‖2λs

]
ds

)
du

≤ sup
s∈[0,∞)

E

[
‖Hs(θ)‖2λs

]
< ∞

by the martingale property and the Fubini theorem. This completes the proof. ��
Proof of Theorem 4. Let us use Proposition 1 to check the asymptotic tightness of
MT (·, θ) in L2(0, 1). First, let us confirm criterion (3) as follows:

E

[∥∥∥∥ 1√
T

∫ T

0
wT
s Hs(θ)dMs

∥∥∥∥
2

L2(0,1)

]

=
∫ (

1

T

∫ T

0

(
wT
s (u)

)2
E

[
‖Hs(θ)‖2λs

]
ds

)
du

→ trC(θ, θ) < ∞.

The result of the limit operation above follows from the bounded convergence theorem
because the pointwise convergence

1

T

∫ T

0

(
wT
s (u)

)2
E

[
‖Hs(θ)‖2λs

]
ds

=
(
1 − u

Tu

∫ Tu

0
+ u

T (1 − u)

∫ T

Tu

)
E

[
‖Hs(θ)‖2λs

]
ds

→ (1 − u)trC(θ, θ) + utrC(θ, θ) = trC(θ, θ)
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848 K. Tsukuda

for all u ∈ (0, 1) follows from assumption (12) and the fact that

1

T

∫ T

0

(
wT
s (u)

)2
E

[
‖Hs(θ)‖2λs

]
ds ≤ sup

s∈[0,∞)

E

[
‖Hs(θ)‖2λs

]
.

Next we argue the convergence of the inner product

〈
1√
T

∫ T

0
wT
s Hs(θ)dMs, h

〉
L2(0,1)

for h ∈ L2(0, 1) which also leads to (4). The preceding expression is equal to

1√
T

∫ T

0

〈
wT
s Hs(θ), h

〉
L2(0,1)

dMs

by the Fubini theorem for stochastic integrals. We shall apply the central limit theorem
for martingales. The predictable quadratic variation of the inner product is

1

T

∫ T

0

〈
wT
s Hs(θ), h

〉2
L2(0,1)

λsds. (17)

Define

VT = E

[
1

T

∫ T

0

〈
wT
s Hs(θ), h

〉2
L2(0,1)

λsds

]
,

then it holds that

VT = E

[
1

T

∫ T

0

∫ 1

0

∫ 1

0
wT
s (u)wT

s (v)h(u)�Hs(θ)Hs(θ)�h(v)dudvλsds

]

=
∫ 1

0

∫ 1

0

1

T

∫ T

0
wT
s (u)wT

s (v)h(u)�E
[
Hs(θ)Hs(θ)�λs

]
h(v)dsdudv.

Thus, we see that

VT →
∫ 1

0

∫ 1

0

u ∧ v − uv√
u(1 − u)v(1 − v)

h(u)�C(θ, θ)h(v)dudv (18)
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A change detection procedure 849

as T → ∞. Pointwise convergence for any u, v follows from Proposition 3. Because
of the Schwartz inequality, it holds that

1

T

∫ T

0
wT
s (u)wT

s (v)h(u)�E
[
Hs(θ)Hs(θ)�λs

]
h(v)ds

≤
(

1

T 2

∫ T

0

(
wT
s (u)h(u)�E

[
Hs(θ)Hs(θ)�λs

]
h(v)

)2
ds

∫ T

0
(wT

s (v))2ds

)1/2

≤
(
1

T

∫ T

0
(wT

s (u))2 sup
s∈[0,∞)

(
h(u)�E

[
Hs(θ)Hs(θ)�λs

]
h(v)

)2
ds

)1/2

= sup
s∈[0,∞)

∣∣∣h(u)�E
[
Hs(θ)Hs(θ)�λs

]
h(v)

∣∣∣ .

The right-hand side is integrable by the Schwartz inequality for the Euclidean inner
product, which gives an upper bound for the right-hand side,

‖h(u)‖‖h(v)‖ sup
s∈[0,∞)

∥∥∥E
[
Hs(θ)Hs(θ)�λs

]∥∥∥
OP

,

and by Proposition 2. Therefore, the dominated convergence theorem yields (18).
Though it is not obvious, it holds that (17) converges to the right-hand side of (18)
in probability because of assumptions (6), (8) and (12). Finally, let us confirm the
Lyapunov type condition

E

[
1

T (2+δ0)/2

∫ T

0

〈
wT
s Hs(θ), h

〉2+δ0

L2(0,1)
λsds

]
→ 0

for some δ0 > 0. The Schwartz inequality and the Jensen inequality give an upper
bound for the left-hand side

1

T (2+δ0)/2
E

[∫ T

0

∥∥∥wT
s Hs(θ)

∥∥∥2+δ0

L2(0,1)
λsds

]
‖h‖2+δ0

L2(0,1)

≤ 1

T (2+δ0)/2
E

[∫ T

0

∫ 1

0
‖wT

s (u)Hs(θ)‖2+δ0duλsds

]
‖h‖2+δ0

L2(0,1)

= 1

T (2+δ0)/2

∫ 1

0

∫ T

0
|wT

s (u)|2+δ0E

[
‖Hs(θ)‖2+δ0λs

]
dsdu‖h‖2+δ0

L2(0,1)

≤ 1

T δ0/2

∫ 1

0

u1+δ0 + (1 − u)1+δ0

(u(1 − u))δ0/2
du sup

s∈[0,∞)

E

[
‖Hs(θ)‖2+δ0λs

]
‖h‖2+δ0

L2(0,1)
.

Setting δ0 = 1, the right-hand side converges to 0. Hence, the central limit theorem
for martingales yields the conclusion. ��
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850 K. Tsukuda

Proof of Proposition 3. It follows from

u ∧ v − uv√
uv(1 − u)(1 − v)

= 1

T

∫ T

0
wT
s (u)wT

s (v)ds

that

1

T

∫ T

0
wT
s (u)wT

s (v)Js(θ)ds − u ∧ v − uv√
uv(1 − u)(1 − v)

C(θ, θ)

= 1

T

∫ T

0
wT
s (u)wT

s (v)(Js(θ) − C(θ, θ))ds

= u ∧ v

T

∫ T (u∧v)

0

(Js(θ) − C(θ, θ))√
uv(1 − u)(1 − v)

ds − u

T

∫ T v

0

(Js(θ) − C(θ, θ))√
uv(1 − u)(1 − v)

ds

− v

T

∫ Tu

0

(Js(θ) − C(θ, θ))√
uv(1 − u)(1 − v)

ds + uv

T

∫ T

0

(Js(θ) − C(θ, θ))√
uv(1 − u)(1 − v)

ds.

All terms of the right-hand side converge to 0 by assumption (12). This completes the
proof. ��
Proof of Proposition 4. (i) By the assumptions, there exist constants C, p ≥ 1 such
that

sup
s∈[0,∞)

E

[‖Ṡ(Xs, θ0)‖4
σ(Xs)4

]
= sup

s∈[0,∞)

E

⎡
⎢⎣

(∑d
i=1 (∂i S(Xs, θ0))

2
)2

σ(Xs)4

⎤
⎥⎦

≤ sup
s∈[0,∞)

E

[
d

∑d
i=1 (∂i S(Xs, θ0))

4

σ(Xs)4

]

≤ sup
s∈[0,∞)

E

[
d

d∑
i=1

supθ∈N |∂i S(Xs, θ)|4
infx∈R σ(x)4

]

≤ sup
s∈[0,∞)

E

[
d

d∑
i=1

|C(1 + |Xs |)p
infx∈R σ(x)4

]

= Cd2

infx∈R σ(x)4
sup

s∈[0,∞)

E
[|1 + |Xs ||p

]
< ∞.

Hence, (15) holds. (16) follows from (15) and condition (II). This completes the proof.
(ii) The proof can be done in the same manner as for part (i). ��

Proof of Lemma 2. It follows from the Itô formula that
∫ Tu

0

Ṡ(Xs, θ)

σ (Xs)
dWs

=
∫ XTu

X0

Ṡ(x, θ)

σ (x)2
dx −

∫ Tu

0

(
Ṡ(Xs, θ)S(Xs, θ0)

σ (Xs)2
+ Ṡ′(Xs, θ)

2
− σ ′(Xs)Ṡ(Xs, θ)

σ (Xs)

)
ds
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A change detection procedure 851

and that

∫ T

Tu

Ṡ(Xs, θ)

σ (Xs)
dWs

=
∫ XT

XTu

Ṡ(x, θ)

σ (x)2
dx −

∫ T

Tu

(
Ṡ(Xs, θ)S(Xs, θ0)

σ (Xs)2
+ Ṡ′(Xs, θ)

2
− σ ′(Xs)Ṡ(Xs, θ)

σ (Xs)

)
ds.

Noting that

M(u, θ) = 1√
Tu(1 − u)

(
(1 − u)

∫ Tu

0

Ṡ(Xs, θ)

σ (Xs)
dWs − u

∫ T

Tu

Ṡ(Xs, θ)

σ (Xs)
dWs

)
,

a Taylor expansion around θ0 yields

‖M(u, θ̂T ) − M(u, θ0)‖

≤ ‖θ̂T − θ0‖
T

√
u(1 − u)

∥∥∥∥∥(1 − u)

∫ XTu

X0

S̈(x, θ̃T )

σ (x)2
dx − u

∫ XT

XTu

S̈(x, θ̃T )

σ (x)2
dx

−(1 − u)

∫ Tu

0

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ̌T )

2
− σ ′(Xs)S̈(Xs, θ̃T )

σ (Xs)

)
ds

+u
∫ T

Tu

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ̌T )

2
− σ ′(Xs)S̈(Xs, θ̃T )

σ (Xs)

)
ds

∥∥∥∥∥ ,

where θ̃T and θ̌T are elements between θ̂T and θ0. The triangle inequality yields the
bound

‖M(u, θ̂T ) − M(u, θ0)‖

≤ ‖√T (θ̂T − θ0)‖
T

√
u(1 − u)

∥∥∥∥∥(1 − u)

∫ XTu

X0

S̈(x, θ̃T )

σ (x)2
dx − u

∫ XT

XTu

S̈(x, θ̃T )

σ (x)2
dx

∥∥∥∥∥
+‖√T (θ̂T − θ0)‖

T
√
u(1 − u)

×
∥∥∥∥∥−(1 − u)

∫ Tu

0

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ̌T )

2
− σ ′(Xs)S̈(Xs, θ̃T )

σ (Xs)

)
ds

+ u
∫ T

Tu

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ̌T )

2
− σ ′(Xs)S̈(Xs, θ̃T )

σ (Xs)

)
ds

∥∥∥∥∥ . (19)

123



852 K. Tsukuda

For the second factor of the first term of (19), the triangle inequality gives

∥∥∥∥∥(1 − u)

∫ XTu

X0

S̈(x, θ̃T )

σ (x)2
dx − u

∫ XT

XTu

S̈(x, θ̃T )

σ (x)2
dx

∥∥∥∥∥
≤

∥∥∥∥(1 − u)

∫ XTu

X0

S̈(x, θ0)

σ (x)2
dx − u

∫ XT

XTu

S̈(x, θ0)

σ (x)2
dx

∥∥∥∥ (20)

+
∥∥∥∥∥(1 − u)

∫ XTu

X0

(S̈(x, θ̃T ) − S̈(x, θ0))

σ (x)2
dx − u

∫ XT

XTu

(S̈(x, θ̃T ) − S̈(x, θ0))

σ (x)2
dx

∥∥∥∥∥ .

By the Itô formula, the first term is equal to

∥∥∥∥(1 − u)

[∫ Tu

0

S̈(Xs, θ0)

σ (Xs)
dWs

+
∫ Tu

0

(
S̈(Xs, θ0)S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ0)

2
− σ ′(Xs)S̈(Xs, θ0)

σ (Xs)

)
ds

]

−u

[∫ T

Tu

S̈(Xs, θ0)

σ (Xs)
dWs

+
∫ T

Tu

(
S̈(Xs, θ0)S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ0)

2
− σ ′(Xs)S̈(Xs, θ0)

σ (Xs)

)
ds

]∥∥∥∥

and the second term on the right-hand side of (20) is bounded above by

∥∥∥∥∥(1 − u)

∫ XTu

X0

|S̈(x, θ̃T ) − S̈(x, θ0)|
σ(x)2

dx + u
∫ XT

XTu

|S̈(x, θ̃T ) − S̈(x, θ0)|
σ(x)2

dx

∥∥∥∥∥ .

Therefore, the right-hand side of (20) is bounded by

∥∥∥∥
∫ T

0
(1{s ≤ Tu} − u)

S̈(Xs , θ0)

σ (Xs)
dWs

∥∥∥∥
+

∥∥∥∥
∫ T

0
(1{s ≤ Tu} − u)

(
S̈(Xs , θ0)S(Xs , θ0)

σ (Xs)2
+ S̈′(Xs , θ0)

2
− σ ′(Xs)S̈(Xs , θ0)

σ (Xs)

)
ds

∥∥∥∥
+ d

∣∣∣∣(1 − u)

∫ XTu

X0

K (x)

σ (x)2
dx + u

∫ XT

XTu

K (x)

σ (x)2
dx

∣∣∣∣ ‖θ̃T − θ0‖

because of condition (VI). The second term of (19) is equal to

∥∥∥∥∥− 1

T

∫ T

0
wT
s (u)

(
S̈(Xs, θ̃T )S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ̌T )

2
− σ ′(Xs)S̈(Xs, θ̃T )

σ (Xs)

)
ds

∥∥∥∥∥
‖√T (θ̂T − θ0)‖.
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Since ‖√T (θ̂T − θ0)‖ = Op(1), let us confirm that the first factor converges in
probability to 0. The triangle inequality yields an upper bound for the first factor of

∥∥∥∥ 1

T

∫ T

0
wT
s (u)

(
S̈(Xs, θ0)S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ0)

2
− σ ′(Xs)S̈(Xs, θ0)

σ (Xs)

)
ds

∥∥∥∥
+

∥∥∥∥∥
1

T

∫ T

0
wT
s (u)

(
(S̈(Xs, θ̃T ) − S̈(Xs, θ0))S(Xs, θ0)

σ (Xs)2

+ S̈′(Xs, θ̌T ) − S̈′(Xs, θ0)

2
− σ ′(Xs)(S̈(Xs, θ̃T ) − S̈(Xs, θ0))

σ (Xs)

)
ds

∥∥∥∥∥ .

The first term will be considered in (22). The absolute value of each element in the
norm of the second term is bounded above by

1

T

∫ T

0

∣∣wT
s (u)

∣∣
(

|∂i∂ j S(Xs, θ̃T ) − ∂i∂ j S(Xs, θ0)||S(Xs, θ0)|
σ(Xs)2

+|∂i∂ j S′(Xs, θ̌T )−∂i∂ j S′(Xs, θ0)|
2

+ |σ ′(Xs)||∂i∂ j S(Xs, θ̃T )−∂i∂ j S(Xs, θ0)|
σ(Xs)

)
ds

≤ 1

T

∫ T

0

∣∣wT
s (u)

∣∣
(
K (Xs)|S(Xs, θ0)|

σ(Xs)2
+ Kd(Xs)

2
+ |σ ′(Xs)|K (Xs)

σ (Xs)

)
ds

‖θ̂T − θ0‖.

The Schwartz inequality yields the following bound for the left-hand factor of the
right-hand side:

(
1

T

∫ T

0

(
K (Xs)|S(Xs, θ0)|

σ(Xs)2
+ Kd(Xs)

2
+ |σ ′(Xs)|K (Xs)

σ (Xs)

)2

ds

)1/2

.

Its L2(0, 1) norm is asymptotically tight in R because of ergodicity. Therefore, it
suffices to prove that

∥∥∥∥ 1

T

∫ T

0
wT
s (·) S̈(Xs, θ0)

σ (Xs)
dWs

∥∥∥∥
2

L2((0,1))
→p 0, (21)

∥∥∥∥ 1

T

∫ T

0
wT
s (·)

(
S̈(Xs, θ0)S(Xs, θ0)

σ (Xs)2
+ S̈′(Xs, θ0)

2

−σ ′(Xs)S̈(Xs, θ0)

σ (Xs)

)
ds

∥∥∥∥
2

L2(0,1)
→p 0, (22)

∥∥∥∥ 1 − ·
T 3/2

√·(1 − ·)
∫ XT ·

X0

K (x)

σ (x)2
dx

∥∥∥∥
2

L2(0,1)
→p 0, (23)
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and ∥∥∥∥ ·
T 3/2

√·(1 − ·)
∫ XT

XT ·

K (x)

σ (x)2
dx

∥∥∥∥
2

L2(0,1)
→p 0. (24)

for the limit in (21) follows from

1

T 2

∫ 1

0
E

[∣∣∣∣
∫ T

0
wT
s (u)

∂i∂ j S(Xs, θ0)

σ (Xs)
dWs

∣∣∣∣
2]

du

= 1

T

∫ 1

0
E

[
1

T

∫ T

0

(
wT
s (u)

)2 (∂i∂ j S(Xs, θ0))
2

σ(Xs)2
ds

]
du

≤ 1

T
sup

s∈[0,∞)

E

[
(∂i∂ j S(Xs, θ0))

2

σ(Xs)2

]
→ 0

for any i, j . To show (22), it is enough to prove the convergence of the expectation to
0. This follows from Proposition 5 and condition (I). For (23), since the Itô formula
yields

∫ XTu

X0

K (x)

σ (x)2
dx

=
∫ Tu

0

K (Xs)

σ (Xs)
dWs +

∫ Tu

0

(
K (Xs)S(Xs, θ0)

σ (Xs)2
+ K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)
ds,

it suffices to prove that

E

[∫ 1

0

(
1 − u

T 3/2
√
u(1 − u)

∫ Tu

0

K (Xs)

σ (Xs)
dWs

)2

du

]
→ 0 (25)

and that

E

[∫ 1

0

u(1 − u)

T

(
1

Tu

∫ Tu

0

(
K (Xs)S(Xs, θ0)

σ (Xs)2

+K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)
ds

)2

du

]
→ 0. (26)

Limit (25) holds because the left-hand side is equal to

∫ 1

0

1 − u

T 3u
E

[∫ Tu

0

(K (Xs))
2

σ(Xs)2
ds

]
du

≤ 1

T 2

∫ 1

0
(1 − u)du sup

s∈[0,∞)

E

[
(K (Xs))

2

σ(Xs)2

]
→ 0.
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Limit (26) holds because the Jensen inequality gives an upper bound for the left-hand
side:

E

[∫ 1

0

1 − u

T 2

∫ Tu

0

(
K (Xs)S(Xs, θ0)

σ (Xs)2
+ K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)2

dsdu

]

≤ 1

T

∫ 1

0
u(1 − u)du sup

s∈[0,∞)

E

[(
K (Xs)S(Xs, θ0)

σ (Xs)2
+ K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)2
]

which converges to 0. Limit (24) is also valid for the same reason as (23). This com-
pletes the proof of Lemma 2. ��
Proof of Lemma 3. A Taylor expansion yields

Z
p
T (u, θ̂T ) = 1√

T

∫ T

0
wT
s (u)

Ṡ(Xs, θ̂T )

σ (Xs)2
(S(Xs, θ0) − S(Xs, θ̂T ))ds

= 1

T

∫ T

0
wT
s (u)

Ṡ(Xs, θ̂T )

σ (Xs)2
Ṡ(Xs, θ̃T )�ds

√
T (θ̂T − θ0),

where θ̃T is a value between θ0 and θ̂T . Because it holds that
√
T (θ̂T − θ0) = OP (1),

it suffices to show the convergence to 0 in probability in L2(0, 1) of the all elements
in the matrix

1

T

∫ T

0
wT
s (·)

Ṡ
(
Xs, θ̂T

)

σ(Xs)2
Ṡ

(
Xs, θ̃T

)�
ds

= 1

T

∫ T

0
wT
s (·) Ṡ(Xs, θ0)

σ (Xs)2
Ṡ (Xs, θ0)

� ds

+ 1

T

∫ T

0
wT
s (·)

Ṡ
(
Xs, θ̂T

)

σ(Xs)2

(
Ṡ

(
Xs, θ̃T

)
− Ṡ(Xs, θ0)

)�
ds

+ 1

T

∫ T

0
wT
s (·)

(
Ṡ

(
Xs, θ̂T

)
− Ṡ(Xs, θ0)

)

σ(Xs)2
Ṡ(Xs, θ0)

�ds. (27)

It is sufficient to prove each term in the right-hand side converges to 0 in L2(0, 1).
The L2(0, 1)-norm of each element of the first term converges to 0 in mean square
by Proposition 5. As for the second term, by the Schwartz inequality and the Taylor
expansion, the absolute value of the (i, j)-element for any i, j is bounded above by

⎛
⎜⎝ 1

T 2

∫ T

0

(
wT
s (u)

)2
ds

∫ T

0

(
∂i S

(
Xs , θ̂T

)
∂ j S

(
Xs , θ̃T

)
− ∂ j S(Xs , θ0)

)2
σ(Xs)4

ds

⎞
⎟⎠
1/2

=
⎛
⎜⎝

(
θ̃T − θ0

)� 1

T

∫ T

0

(
∂i S

(
Xs , θ̂T

))2
∂ j Ṡ

(
Xs , θ̀T

)
∂ j Ṡ

(
Xs , θ̀T

)�

σ(Xs)4
ds(θ̃T − θ0)

⎞
⎟⎠
1/2
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856 K. Tsukuda

for any u ∈ (0, 1), where θ̀T is a value between θ̃T and θ0. Now it holds that

1

T

∫ T

0

(
∂i S

(
Xs, θ̂T

))2
∂ j Ṡ

(
Xs, θ̀T

)
∂ j Ṡ

(
Xs, θ̀T

)�

σ(Xs)4
ds = Op(1)

because the absolute value of the (i ′, j ′) element of its expectation is bounded above
by

sup
s∈[0,∞)

E

⎡
⎢⎣

(
∂i S

(
Xs, θ̂T

))2 |∂i∂i ′ S
(
Xs, θ̀T

)
∂ j∂ j ′S

(
Xs, θ̀T

)
|

σ(Xs)4

⎤
⎥⎦

≤ 1

infx∈R σ(x)4
sup

s∈[0,∞)

E

[
(sup
θ∈�

∣∣∂i S(Xs, θ)
∣∣)2 sup

θ∈�

|∂i∂i ′ S(Xs, θ)|

sup
θ∈�

|∂ j∂ j ′ S(Xs, θ))|
]

,

whereas (θ̃T − θ0) converges to 0 in probability. Since the bound does not depend on
u, the L2(0, 1)-norm of the second term in (27) converges to 0 in probability because
each element converges to 0 in probability. The L2(0, 1)-norm of the third term in
(27) also converges to 0 in probability for the same reason. This completes the proof.

��
Proof of Proposition 5. It follows from the Schwartz inequality that

E

[(
1

T

∫ T

0
wT
s (u) f (Xs)ds

)2]
≤ E

[
1

T 2

∫ T

0

(
wT
s (u)

)2
ds

∫ T

0
f (Xs)

2ds

]

≤ sup
s∈[0,∞)

E

[
f (Xs)

2
]
.

The right-hand side is integrable with respect to u. Moreover, it holds that

E

[(
1

T

∫ T

0
wT
s (u) f (Xs)ds

)2]
→ 0

for any u ∈ (0, 1) because

1

T

∫ T

0
wT
s (u) f (Xs)ds = u

1

Tu

∫ Tu

0
f (Xs)du − u

1

T

∫ T

0
f (Xs)du

converges to

u
∫
I
f (x)μθ0(dx) − u

∫
I
f (x)μθ0(dx) = 0
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A change detection procedure 857

in mean square for any u ∈ (0, 1). Therefore, the Fubini theorem and the dominated
convergence theorem yield the conclusion. This completes the proof. ��
Proof of Lemma 5. (i) It follows from the Itô formula that

1

T

∫ T

0
wT
s (u)

Ṡ(Xs, θ)

σ (Xs)
dWs |θ=θ̂T

− 1

T

∫ T

0
wT
s (u)

Ṡ(Xs, θ∗)
σ (Xs)

dWs

= 1

T
√
u(1 − u)

(
(1 − u)

∫ XTu

X0

Ṡ(x, θ̂T ) − Ṡ(x, θ∗)
σ (x)2

dx

− u
∫ XT

XTu

Ṡ
(
x, θ̂T

)
− Ṡ(x, θ∗)

σ (x)2
dx

⎞
⎠

− 1

T

∫ T

0
wT
s (u)

⎛
⎝ Ṡ

(
Xs, θ̂T

)
− Ṡ(Xs, θ∗)

σ (Xs)

(
S(Xs, θ(s))

σ (Xs)
− σ ′(Xs)

)

+
Ṡ′

(
Xs, θ̂T

)
− Ṡ′(Xs, θ∗)

2

⎞
⎠ ds, (28)

for any u ∈ (0, 1). By the Taylor expansion, the first term on the right-hand side of
(28) is equal to

(
(1 − u)

∫ XTu

X0

S̈ (x, θ∗)
σ (x)2

dx − u
∫ XT

XTu

S̈(x, θ∗)
σ (x)2

dx

) (
θ̂T − θ∗

)

T
√
u(1 − u)

+ (1 − u)

∫ XTu

X0

(S̈(x, θ̃T ) − S̈(x, θ∗))
σ (x)2

dx

(
θ̂T − θ∗

)

T
√
u(1 − u)

− u
∫ XT

XTu

(S̈(x, θ̃T ) − S̈(x, θ∗))
σ (x)2

dx

(
θ̂T − θ∗

)

T
√
u(1 − u)

(29)

where θ̃T lies between θ̂T and θ∗. The first term of (29) is

∫ T

0
wT
s (u)

S̈ (Xs, θ∗)
σ (Xs)2

dWs

(
θ̂T − θ∗

)

T

+
∫ T

0
wT
s (u)

(
S̈(Xs, θ∗)
σ (Xs)

(
S(Xs, θ(s))

σ (Xs)
− σ ′(Xs)

)
+ S̈(Xs, θ∗)

2

)
ds

(
θ̂T − θ∗

)

T

because of the Itô formula. Both terms converge in probability to 0 uniformly in
u ∈ (0, 1) because θ̂T − θ∗ converges in probability to 0 and the expectation of the
square of the remainders are O(1) uniformly in u ∈ (0, 1). As for the second term of
(29), it is enough to prove that

123



858 K. Tsukuda

(1 − u)

T
√
u(1 − u)

∫ XTu

X0

K (x)

σ (x)2
dx (30)

is Op(1) in L2(0, 1) because

1 − u

T
√
u(1 − u)

∫ XTu

X0

(∂i∂ j S(x, θ̃T ) − ∂i∂ j S(x, θ∗))
σ (x)2

dx

≤ 1 − u

T
√
u(1 − u)

∫ XTu

X0

|∂i∂ j S(x, θ̃T ) − ∂i∂ j S(x, θ∗)|
σ(x)2

dx

≤ (1 − u)‖θ̃T − θ∗‖
T

√
u(1 − u)

∫ XTu

X0

K (x)

σ (x)2
dx

holds for any u ∈ (0, 1) and for all i, j ∈ {1 . . . , d}, and θ̂T converges in probability
to θ∗. Since the Itô formula yields

∫ XTu

X0

K (x)

σ (x)2
dx

=
∫ Tu

0

K (Xs)

σ (Xs)
dWs +

∫ Tu

0

(
K (Xs)S(Xs, θ(s))

σ (Xs)2
+ K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)
ds,

it suffices to prove that

E

[∫ 1

0

(
(1 − u)

T
√
u(1 − u)

∫ Tu

0

K (Xs)

σ (Xs)
dWs

)2

du

]

=
∫ 1

0

(1 − u)

T 2u
E

[∫ Tu

0

(
K (Xs)

σ (Xs)

)2

ds

]
du (31)

converges to zero and that

sup
T∈[0,∞)

E

[∫ 1

0
u(1 − u)

(
1

Tu

∫ Tu

0

(
K (Xs)S(Xs, θ(s))

σ (Xs)2

+K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)
ds

)2

du

]
(32)

is finite. (31) is bounded above by

1

T

∫ 1

0
(1 − u)du sup

s∈[0,∞)

E

[(
K (Xs)

σ (Xs)

)2
]
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and it converges to zero. (32) is bounded above by

∫ 1

0
u(1 − u)du sup

s∈[0,∞)

E

[(
K (Xs)S(Xs, θ(s))

σ (Xs)2
+ K ′(Xs)

2
− σ ′(Xs)K (Xs)

σ (Xs)

)2
]

which is finite. For the third term of (29), it suffices to prove that

u

T
√
u(1 − u)

∫ XT

XTu

K (x)

σ (x)2
dx

is Op(1) in L2(0, 1), which we can see in the same way we see that (30) is Op(1) in
L2(0, 1). For the second term in the right-hand side of (28), because of the Schwartz
inequality and the Taylor expansion, it suffices to prove that

1

T

∫ T

0

∥∥∥∥∥∥
Ṡ

(
Xs, θ̂T

)
− Ṡ(Xs, θ∗)

σ (Xs)

(
S(Xs, θ(s))

σ (Xs)
− σ ′(Xs)

)

+
Ṡ′

(
Xs, θ̂T

)
− Ṡ′(Xs, θ∗)

2

∥∥∥∥∥∥

2

ds

≤
∥∥θ̂T − θ∗

∥∥2
T

∫ T

0

∥∥∥∥∥
S̈(Xs, θ̃T )

σ (Xs)

(
S(Xs, θ(s))

σ (Xs)
− σ ′(Xs)

)
+ S̈′(Xs, θ̌T )

2

∥∥∥∥∥
2

ds

converges in probability to 0, where θ̃T and θ̌T lie between θ̂T and θ∗. It follows from
θ̂T →p θ∗, ergodicity and conditions (I–III). This completes the proof of part (i).

(ii) Since it holds that

ZT (u, θ̂T ) − ZT (u, θ∗)

= 1√
T

∫ T

0
wT
s (u)

(Ṡ(Xs, θ) − Ṡ(Xs, θ∗))
σ (Xs)2

(
dXs − S

(
Xs, θ̂T

)
ds

)
|
θ=θ̂T

+ 1√
T

∫ T

0
wT
s (u)

Ṡ(Xs, θ∗)
(
S(Xs, θ̂T

)
− S(Xs, θ∗))

σ (Xs)2
ds,

it suffices to confirm that

∥∥∥∥ 1

T

∫ T

0
wT
s (·) (Ṡ(Xs, θ) − Ṡ(Xs, θ∗))

σ (Xs)2

(
dXs − S

(
Xs, θ̂T

)
ds

)
|
θ=θ̂T

∥∥∥∥
2

L2(0,1)
(33)

and ∥∥∥∥∥∥
1

T

∫ T

0
wT
s (·)

Ṡ(Xs, θ∗)
(
S

(
Xs, θ̂T

)
− S(Xs, θ∗)

)

σ(Xs)2
ds

∥∥∥∥∥∥

2

L2(0,1)

(34)
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converge in probability to 0. The expression in (33) is bounded above by

2

∥∥∥∥ 1

T

∫ T

0
wT
s (·) (Ṡ(Xs, θ) − Ṡ(Xs, θ∗))

σ (Xs)
dWs |θ=θ̂T

∥∥∥∥
2

L2(0,1)

+ 2

∥∥∥∥∥∥
1

T

∫ T

0
wT
s (·)

(
Ṡ

(
Xs, θ̂T

)
− Ṡ(Xs, θ∗)

)

σ(Xs)2

(
S

(
Xs, θ(s)

)−S(Xs, θ̂T )
)
ds

∥∥∥∥∥∥

2

L2(0,1)

.

The convergence in probability to 0 of the first term is due to Lemma 5 (i). As for the
second term, by a Taylor expansion, it is enough to see that

1

T

∫ T

0

(supθ∈� |∂i∂ j S(Xs, θ)|)2
σ(Xs)4

(
sup
θ∈�

|S(Xs, θ)|
)2

ds = Op(1) (35)

for all i and j , where θ̃T lies between θ̂T and θ∗, since it holds that

(
θ̂T − θ∗

)� 1

T

∫ T

0
wT
s (u)

∂i Ṡ(Xs, θ̃T )

σ (Xs)2
(S(Xs, θ(s)) − S(Xs, θ∗))ds

≤ ‖θ̂T − θ∗‖
(
2

T

∫ T

0

∑d
j=1(∂i∂ j S(Xs, θ̃T ))2

σ(Xs)4
((S(Xs, θ(s)))

2 + (S(Xs, θ∗))2)ds
)1/2

≤ ‖θ̂T − θ∗‖
(
4
∑d

j=1

T

∫ T

0

(supθ∈� |∂i∂ j S(Xs, θ)|)2
σ(Xs)4

(sup
θ∈�

|S(Xs, θ)|)2ds
)1/2

and θ̂T →p θ∗. Equation (35) follows from ergodicity and conditions (I–III). The
convergence in probability of (34) to 0 also follows from the same argument using a
Taylor expansion and ergodicity. This completes the proof of part (ii).

(iii) The result follows from Propositions 2 and 4. This completes the whole proof.
��

Proof of Theorem 5 (ii). In general, when M is a d × d non-negative definite matrix,
it holds that

2(v�M−1v + w�M−1w) = (v + w)�M−1(v + w) + (v − w)�M−1(v − w)

≥ (v − w)�M−1(v − w)

for any d-dimensional vectors v and w. Since

ZT (u, θ̂T ) = Z
p
T (u, θ∗) + MT (u, θ∗) + (ZT (u, θ̂T ) − ZT (u, θ∗)) ,
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the stated inequality yields

ADT =
∫ 1

0
ZT (u, θ̂T )�ĈTZT (u, θ̂T )du

≥ 1

4

∫ 1

0
Z
p
T (u, θ∗)�ĈTZ

p
T (u, θ∗)du − 1

2

∫ 1

0
MT (u, θ∗)�ĈTMT (u, θ∗)du

−
∫ 1

0
(ZT (u, θ̂T ) − ZT (u, θ∗))�ĈT (ZT (u, θ̂T ) − ZT (u, θ∗))du. (36)

Define

AT (u) = 1

T

∫ T

0
(1{s ≤ Tu} − u)

Ṡ(Xs, θ∗)
σ (Xs)2

(S(Xs, θ(s)) − S(Xs, θ∗))ds,

and then

Z
p
T (u, θ∗) =

(
T

u(1 − u)

)1/2

AT (u) ≥ T 1/2AT (u).

This shows that the first term of (36) is bounded below by

T

4

∫ 1

0
AT (u, θ∗)�ĈT AT (u, θ∗)du. (37)

For u ≤ u∗, it follows from

AT (u) = 1 − u

T

∫ Tu

0

Ṡ(Xs, θ∗)
σ (X2)2

(S(Xs, θ0) − S(Xs, θ∗))ds

− u

T

∫ Tu∗

Tu

Ṡ(Xs, θ∗)
σ (X2)2

(S(Xs, θ0) − S(Xs, θ∗))ds

− u

T

∫ T

Tu∗

Ṡ(Xs, θ∗)
σ (X2)2

(S(Xs, θ1) − S(Xs, θ∗))ds,

that

l.i.m.
T→∞ AT (u) = (u(1 − u) − u(u∗ − u))�(θ∗, θ0) − u(1 − u∗)�(θ∗, θ1)

= u(1 − u∗)(�(θ∗, θ0) − �(θ∗, θ1)).

For u > u∗, l.i.m.T→∞ AT (u) = u∗(1 − u)(�(θ∗, θ0) − �(θ∗, θ1)) for the same
reason. Let us denote l.i.m.T→∞ AT (u) by A∞(u) for all u ∈ (0, 1). Now, we prove
that

E

[
‖AT − A∞‖2L2(0,1)

]
→ 0. (38)
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It holds that, for ∀u ∈ (0, 1),

E

[
‖AT (u) − A∞(u)‖2

]
≤ 2E

[
‖AT (u)‖2

]
+ 2‖A∞(u)‖2

and the first term in the right-hand side is bounded above by

2E

[
1

T 2

∫ T

0
(1{s ≤ Tu} − u)2ds

∫ T

0

∥∥∥∥ Ṡ(Xs, θ∗)
σ (Xs)2

(S(Xs, θ(s)) − S(Xs, θ∗))
∥∥∥∥
2

ds

]

≤ 4 sup
s∈[0,∞)

E

[‖Ṡ(Xs, θ∗)‖2
σ(Xs)4

(
(S(Xs, θ(s)))

2 + (S(Xs, θ∗))2
)]

≤ 4 sup
s∈[0,∞)

E

[‖Ṡ(Xs, θ∗)‖2
σ(Xs)4

(
(S(Xs, θ0))

2 + (S(Xs, θ1))
2 + (S(Xs, θ∗))2

)]

because of the Schwartz inequality and the bound is finite because of Proposition 4
(ii). Since the left-hand side of (38) is equal to

∫ 1

0
E

[
(AT (u) − A∞(u))2

]
du

and (A∞(u))2 is integrable with respect to u, the dominated convergence theorem
yields (38), and (38) gives AT →p A∞ in L2(0, 1). This result, the Slutsky theorem
and the continuous mapping theorem yield

∫ 1

0
A�
T (u)Ĉ−1

T AT (u)du →p
∫ 1

0
A�∞(u)C−1∗ A∞(u)du,

where C∗ := u∗Cθ0(θ∗, θ∗) + (1− u∗)Cθ1(θ∗, θ∗), which is the limit in probability of
ĈT . By simple calculations, the right-hand side of the limit is equal to

u2∗(1 − u∗)2

3
(�(θ∗, θ0) − �(θ∗, θ1))�C−1∗ (�(θ∗, θ0) − �(θ∗, θ1)).

Moreover, let us show that

�(θ∗, θ0) − �(θ∗, θ1) �= 0 . (39)

Now u∗�(θ∗, θ0) + (1 − u∗)�(θ∗, θ1) = 0 because of Lemma 1. If �(θ∗, θ0) −
�(θ∗, θ1) were zero, then �(θ∗, θ1) and �(θ∗, θ0) would be zero, but this contradicts
condition (IV) and the assumption θ0 �= θ1. Thus, (39) is valid. Hence, (37) and thus
the first term of (36) converge to positive infinity and the convergence is faster than
that of the third term of (36), which is op(T ) because of Lemma 4 (ii). Note that the
second term of (36) is Op(1) because of Lemma 4 (iii). Therefore, it follows that ADT

converges to positive infinity in probability, so the test is consistent. This completes
the proof. ��
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