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Abstract We study regularized regression problems where the regularizer is a proper,
lower-semicontinuous, convex and partly smooth function relative to a Riemannian
submanifold. This encompasses several popular examples including the Lasso, the
group Lasso, the max and nuclear norms, as well as their composition with linear
operators (e.g., total variation or fused Lasso). Our main sensitivity analysis result
shows that the predictor moves locally stably along the same active submanifold as
the observations undergo small perturbations. This plays a pivotal role in getting a
closed-form expression for the divergence of the predictor w.r.t. observations. We also
show that, for many regularizers, including polyhedral ones or the analysis group
Lasso, this divergence formula holds Lebesgue a.e. When the perturbation is random
(with an appropriate continuous distribution), this allows us to derive an unbiased
estimator of the degrees of freedom and the prediction risk. Our results unify and go
beyond those already known in the literature.
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1 Introduction

1.1 Regression and regularization

We consider a model
E(Y |X) = h(Xβ0), (1)

where Y = (Y1, . . . ,Yn) is the response vector, β0 ∈ R
p is the unknown vector of

linear regression coefficients, X ∈ R
n×p is the fixed design matrix whose columns

are the p covariate vectors, and the expectation is taken with respect to some σ -finite
measure. h is a known real-valued and smooth function R

n → R
n . The goal is to

design an estimator of β0 and to study its properties. In the sequel, we do not make
any specific assumption on the number of observations n with respect to the number
of predictors p. Recall that when n < p, (1) is underdetermined, whereas when n ≥ p
and all the columns of X are linearly independent, it is overdetermined.

Many examples fall within the scope of model (1). We here review two of them.

Example 1 (GLM) One naturally thinks of generalized linear models (GLMs)
(McCullagh and Nelder 1989) which assume that conditionally on X , Yi are indepen-
dent with distribution that belongs to a given (one-parameter) standard exponential
family. Recall that the random variable Z ∈ R has a distribution in this family if its
distribution admits a density with respect to some reference σ -finite measure on R of
the form

p(z; θ) = B(z) exp(zθ − ϕ(θ)), θ ∈ � ⊆ R,

where � is the natural parameter space and θ is the canonical parameter. For model
(1), the distribution of Y belongs to the n-parameter exponential family and its density
reads

f (y|X;β0) =
(

n∏
i=1

Bi (yi )

)
exp

(
〈y, Xβ0〉 −

n∑
i=1

ϕi
(
(Xβ0)i

))
, Xβ0 ∈ �n ,

(2)
where 〈·, ·〉 is the inner product, and the canonical parameter vector is the linear
predictor Xβ0. In this case, h(μ) = (hi (μi ))1≤i≤n , where hi is the inverse of the link
function in the language of GLM. Each hi is a monotonic differentiable function, and
a typical choice is the canonical link hi = ϕ′

i , where ϕ′
i is one-to-one if the family is

regular (Brown 1986).

Example 2 (Transformations) The second example is where h plays the role of a
transformation such as variance-stabilizing transformations (VSTs), symmetrizing
transformations, or bias-corrected transformations. There is an enormous body of
literature on transformations, going back to the early 1940s. A typical example is
when Yi are independent Poisson random variables ∼ P ((Xβ0)i ), in which case hi
takes the form of the Anscombe bias-corrected VST. See DasGupta (2008, Chapter 4),
for a comprehensive treatment and more examples.
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The degrees of freedom of partly smooth regularizers 793

1.2 Variational estimators

Regularization is now a central theme in many fields including statistics, machine
learning and inverse problems. It allows one to impose on the set of candidate solu-
tions some prior structure on the object to be estimated. This regularization ranges
from squared Euclidean or Hilbertian norms (Tikhonov and Arsenin 1977), to non-
Hilbertian norms that have sparked considerable interest in the recent years.

Given observations (y1, . . . , yn), we consider the class of estimators obtained by
solving the convex optimization problem

β̂(y) ∈ Argmin
β∈Rp

F(β, y) + J (β). (P(y))

The fidelity term F is of the following form

F(β, y) = F0(Xβ, y), (3)

where F0(·, y) is a general loss function assumed to be a proper, convex and sufficiently
smooth function of its first argument; see Sect. 3 for a detailed exposition of the
smoothness assumptions. The regularizing penalty J is proper lower semicontinuous
and convex, and promotes some specific notion of simplicity/low-complexity on β̂(y);
see Sect. 3 for a precise description of the class of regularizing penalties J that we
consider in this paper. The type of convex optimization problem in (P(y)) is referred to
as a regularized M-estimator in Negahban et al. (2012), where J is moreover assumed
to have a special decomposability property.

We now provide some illustrative examples of loss functions F and regularizing
penalty J routinely used in signal processing, imaging sciences and statistical machine
learning.

Example 3 (Generalized linear models) Generalized linear models in the exponential
family falls into the class of losses we consider. Indeed, taking the negative log-
likelihood corresponding to (2) gives1

F0(μ, y) =
n∑

i=1

ϕi (μi ) − 〈y, μ〉. (4)

It is well-known that if the exponential family is regular, then ϕi is proper, infinitely
differentiable, its Hessian is definite positive, and thus it is strictly convex (Brown
1986). Therefore, F0(·, y) shares exactly the same properties. We recover the squared
loss F0(μ, y) = 1

2 ||y − μ||2 for the standard linear models (Gaussian case), and
the logistic loss F0(μ, y) = ∑n

i=1 log (1 + exp(μi )) − 〈y, μ〉 for logistic regression
(Bernoulli case).

GLM estimators with losses (4) and �1 or �1 − �2 (group) penalties have been
previously considered and some of their properties studied including in Bunea (2008),

1 Strictly speaking, the minimization may have to be over a convex subset of Rp .
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794 S. Vaiter et al.

van de Geer (2008), Meier et al. (2008), Bach (2010) and Kakade et al. (2010); see
also Bühlmann and van de Geer (2011, Chapters 3, 4 and 6).

Example 4 (Lasso) The Lasso regularization is used to promote the sparsity of the
minimizers, see Chen et al. (1999),Tibshirani (1996), Osborne et al. (2000), Donoho
(2006), Candès and Plan (2009), Bickel et al. (2009) and Bühlmann and van de Geer
(2011) for a comprehensive review. It corresponds to choosing J as the �1-norm

J (β) = ||β||1 =
p∑

i=1

|βi |. (5)

It is also referred to as �1-synthesis in the signal processing community, in contrast to
the more general �1-analysis sparsity penalty detailed below.

Example 5 (General Lasso) To allow for more general sparsity penalties, it may be
desirable to promote sparsity through a linear operator D = (d1, . . . , dq) ∈ R

p×q .
This leads to the so-called analysis-type sparsity penalty (a.k.a. general Lasso after Tib-
shirani and Taylor 2012), where the �1-norm is pre-composed by D∗, hence giving

J (β) = ||D∗β||1 =
q∑
j=1

|〈d j , β〉|. (6)

This of course reduces to the usual lasso penalty (5) when D = Idp. The penalty (6)
encapsulates several important penalties including that of the 1-D total variation (Rudin
et al. 1992), and the fused Lasso (Tibshirani et al. 2005). In the former, D∗ is a finite
difference approximation of the derivative, and in the latter, D∗ is the concatenation
of the identity matrix Idp and the finite difference matrix to promote both the sparsity
of the vector and that of its variations.

Example 6 (�∞ Anti-sparsity) In somecases, the vector to be reconstructed is expected
to be flat. Such a prior can be captured using the �∞ norm (a.k.a. Tchebycheff norm)

J (β) = ||β||∞ = max
i∈{1,...,p} |βi |. (7)

More generally, it is worth mentioning that a finite-valued function J is polyhe-
dral convex (including Lasso, general Lasso, �∞) if and only if can be expressed
as max

i∈{1,...,q} 〈di , β〉 − bi , where the vectors di define the facets of the sublevel set at

1 of the penalty (Rockafellar 1996). The �∞ regularization has found applications in
computer vision (Jégou et al. 2012), vector quantization (Lyubarskii and Vershynin
2010), or wireless network optimization (Studer et al. 2012).

Example 7 (Group Lasso) When the covariates are assumed to be clustered in a few
active groups/blocks, the group Lasso has been advocated since it promotes sparsity
of the groups, i.e., it drives all the coefficients in one group to zero together hence
leading to group selection see Bakin (1999), Yuan and Lin (2006), Bach (2008) and
Wei and Huang (2010) to cite a few. The group Lasso penalty reads
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The degrees of freedom of partly smooth regularizers 795

J (β) = ||β||1,2 =
∑
b∈B

||βb||2, (8)

where βb = (βi )i∈b is the sub-vector of β whose entries are indexed by the block
b ∈ B where B is a disjoint union of the set of indices, i.e.,

⋃
b∈B = {1, . . . , p} such

that b, b′ ∈ B, b ∩ b′ = ∅. The mixed �1 − �2 norm defined in (8) has the attractive
property to be invariant under (groupwise) orthogonal transformations.

Example 8 (General Group Lasso) One can push the structured sparsity idea one step
further by promoting group/block sparsity through a linear operator, i.e., analysis-
type group sparsity. Given a collection of linear operators {Db}b∈B, that are not all
orthogonal, the analysis group sparsity penalty is

J (β) = ||D∗β||1,2 =
∑
b∈B

||D∗
bβ||2. (9)

This encompasses the 2-D isotropic total variation (Rudin et al. 1992), where β is a
2-D discretized image, and each D∗

bβ ∈ R
2 is a finite difference approximation of

the gradient of β at a pixel indexed by b. The overlapping group Lasso (Jacob et al.
2009) is also a special case of (9) by taking D∗

b : β �→ βb to be a block extractor
operator (Peyré et al. 2011; Chen et al. 2010).

Example 9 (Nuclear norm) The natural extension of low-complexity priors to matrix-
valued objects β ∈ R

p1×p2 (where p = p1 p2) is to penalize the singular values of
the matrix. Let Uβ ∈ R

p1×p1 and Vβ ∈ R
p2×p2 be the orthonormal matrices of left

and right singular vectors of β, and λ : R
p1×p2 → R

p2 is the mapping that returns
the singular values of β in non-increasing order. If j ∈ Γ0(R

p2), i.e., convex, lower
semi-continuous and proper, is an absolutely permutation-invariant function, then one
can consider the penalty J (β) = j (λ(β)). This is a so-called spectral function, and
moreover, it can be also shown that J ∈ Γ0(R

p1×p2) (Lewis 2003b). The most popular
spectral penalty is the nuclear norm obtained for j = || · ||1,

J (β) = ||β||∗ = ||λ(β)||1. (10)

This penalty is the best convex candidate to enforce a low-rank prior. It has beenwidely
used for various applications, including low rankmatrix completion (Recht et al. 2010;
Candès and Recht 2009), robust PCA (Candès et al. 2011), model reduction (Fazel
et al. 2001), and phase retrieval (Candès et al. 2013).

1.3 Sensitivity analysis

A chief goal of this paper is to investigate the sensitivity of any solution β̂(y) to the
parameterized problem (P(y)) to (small) perturbations of y. Sensitivity analysis2 is a

2 The meaning of sensitivity is different here from what is usually intended in statistical sensitivity and
uncertainty analysis.
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796 S. Vaiter et al.

major branch of optimization and optimal control theory. Comprehensive monographs
on the subject are Bonnans and Shapiro (2000) and Mordukhovich (1992). The focus
of sensitivity analysis is the dependence and the regularity properties of the optimal
solution set and the optimal valueswhen the auxiliary parameters (e.g., y here) undergo
a perturbation. In its simplest form, sensitivity analysis of first-order optimality con-
ditions, in the parametric form of the Fermat rule, relies on the celebrated implicit
function theorem.

The set of regularizers J we consider is that of partly smooth functions relative to
a Riemannian submanifold as detailed in Sect. 3. The notion of partial smoothness
was introduced in Lewis (2003a). This concept, as well as that of identifiable sur-
faces (Wright 1993), captures essential features of the geometry of non-smoothness
which are along the so-called “active/identifiable manifold”. For convex functions, a
closely related idea was developed in Lemaréchal et al. (2000). Loosely speaking, a
partly smooth function behaves smoothly as we move on the identifiable manifold,
and sharply if we move normal to the manifold. In fact, the behavior of the function
and of its minimizers (or critical points) depend essentially on its restriction to this
manifold, hence offering a powerful framework for sensitivity analysis theory. In par-
ticular, critical points of partly smooth functions move stably on the manifold as the
function undergoes small perturbations (Lewis 2003a; Lewis and Zhang 2013).

Getting back to our class of regularizers, the core of our proof strategy relies on
the identification of the active manifold associated to a particular minimizer β̂(y)
of (P(y)). We exhibit explicitly a certain set of observations, denoted H (see Defini-
tion 3), outside which the initial non-smooth optimization (P(y)) boils down locally
to a smooth optimization along the active manifold. This part of the proof strategy is in
close agreement with the one developed in Lewis (2003a) for the sensitivity analysis
of partly smooth functions. See also (Bolte et al. 2011, Theorem 13) for the case of
linear optimization over a convex semi-algebraic partly smooth feasible set, where the
authors proves a sensitivity result with a zero-measure transition space. However, it is
important to stress that neither the results of Lewis (2003a) nor those of Bolte et al.
(2011) and Drusvyatskiy and Lewis (2011) can be applied straightforwardly in our
context for two main reasons (see also Remark 1 for a detailed discussion). In all these
works, a non-degeneracy assumption is crucial while it does not necessarily hold in
our case, and this is precisely the reason we consider the boundary of the sets HM
in the definition of the transition set H. Moreover, in the latter papers, the authors
are concerned with a particular type of perturbations (see Remark 1) which does not
allow to cover our class of regularized problems except for restrictive cases such as X
injective. For our class of problems (P(y)), we were able to go beyond these works by
solving additional key challenges that are important in a statistical context, namely:
(i) we provide an analytical description of the set H involving the boundary of HM,
which entails that H is potentially of dimension strictly less than n, hence of zero
Lebesgue measure, as we will show under a mild o-minimality assumption; (ii) we
prove a general sensitivity analysis result valid for any proper lower-semicontinuous
convex partly smooth regularizer J ; (iii) we compute the first-order expansion of β̂(y)
and provide an analytical form of the weak derivative of y �→ X β̂(y) valid outside
a set involving H. If this set is of zero-Lebesgue measure, this allows us to get an
unbiased estimator of the risk on the prediction X β̂(Y ).
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The degrees of freedom of partly smooth regularizers 797

1.4 Degrees of freedom and unbiased risk estimation

The degrees of freedom (DOF) of an estimator quantifies the complexity of a statistical
modeling procedure (Efron 1986). It is at the heart of several risk estimation procedures
and thus allows one to perform parameter selection through risk minimization.

In this section, we will assume that F0 in (3) is strictly convex, so that the response
(or the prediction) μ̂(y) = X β̂(y) is uniquely defined as a single-valued mapping of
y (see Lemma 2). That is, it does not depend on a particular choice of solution β̂(y)
of (P(y)).

Let μ0 = Xβ0. Suppose that h in (1) is the identity and that the observations
Y ∼ N (μ0, σ

2Idn). Following Efron (1986), the DOF is defined as

d f =
n∑

i=1

cov(Yi , μ̂i (Y ))

σ 2 .

The well-known Stein’s lemma (Stein 1981) asserts that, if y �→ μ̂(y) is weakly
differentiable function (i.e., typically in a Sobolev space over an open subset of R

n),
such that each coordinate y �→ μ̂i (y) ∈ Rhas an essentially boundedweakderivative3

E

(∣∣∣∂μ̂i

∂yi
(Y )

∣∣∣) < ∞, ∀i,

then its divergence is an unbiased estimator of its DOF, i.e.,

d̂ f = div(μ̂)(Y )
def.= tr(Dμ̂(Y )) and E(d̂ f ) = d f,

whereDμ̂ is the Jacobian of y �→ μ̂(y). In turn, this allows to get an unbiased estimator
of the prediction risk E(||μ̂(Y ) − μ0||2) through the SURE (Stein 1981).

Extensions of the SURE to independent variables from an exponential family are
considered in Hudson (1978) for the continuous case, and Hwang (1982) in the dis-
crete case. Eldar (2009) generalizes the SURE principle to continuous multivariate
exponential families.

1.5 Contributions

We consider a large class of losses F0, and of regularizing penalties J which are
proper, lower-semicontinuous, convex and partly smooth functions relative to a Rie-
mannian submanifold, see Sect. 3. For this class of regularizers and losses, we first
establish in Theorem 1 a general sensitivity analysis result, which provides the local
parametrization of any solution to (P(y)) as a function of the observation vector y.
This is achieved without placing any specific assumption on X , should it be full col-
umn rank or not. We then derive an expression of the divergence of the prediction

3 We write the same symbol as for the derivative, and rigorously speaking, this has to be understood to
hold Lebesgue a.e.
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798 S. Vaiter et al.

with respect to the observations (Theorem 2) which is valid outside a set of the form
G ∩H, where G is defined in Sect. 5. Using tools from o-minimal geometry, we prove
that the transition setH is of Lebesgue measure zero. If G is also negligible, then the
divergence formula is valid Lebesgue a.e. In turn, this allows us to get an unbiased
estimate of the DOF and of the prediction risk (Theorems 3 and 4) for model (1) under
two scenarios: (i) Lipschitz continuous non-linearity h and an additive i.i.d. Gaussian
noise; (ii) GLMs with a continuous exponential family. Our results encompass many
previous ones in the literature as special cases (see discussion in the next section). It
is important, however, to mention that though our sensitivity analysis covers the case
of the nuclear norm (also known as the trace norm), unbiasedness of the DOF and
risk estimates is not guaranteed in general for this regularizer as the restricted positive
definiteness assumption (see Sect. 4) may not hold at anyminimizer (see Example 27),
and thus G may not be always negligible.

1.6 Relation to prior works

In the case of standard Lasso (i.e., �1 penalty (5)) with Y ∼ N (Xβ0, σ
2Idn) and X of

full column rank, Zou et al. (2007) showed that the number of nonzero coefficients
is an unbiased estimate for the DOF. Their work was generalized in Dossal et al.
(2013) to any arbitrary design matrix. Under the same Gaussian linear regression
model, unbiased estimators of the DOF for the general Lasso penalty (6), were given
independently in Tibshirani and Taylor (2012) and Vaiter et al. (2013).

A formula of an estimate of the DOF for the group Lasso when the design is
orthogonal within each group was conjectured in Yuan and Lin (2006). Kato (2009)
studied the DOF of a general shrinkage estimator where the regression coefficients are
constrained to a closed convex set C. His work extends that of Meyer and Woodroofe
(2000) which treats the case where C is a convex polyhedral cone. When X is full
column rank, Kato (2009) derived a divergence formula under a smoothness condition
on the boundary of C, fromwhich an unbiased estimator of the degrees of freedomwas
obtained. When specializing to the constrained version of the group Lasso, the author
provided an unbiased estimate of the corresponding DOF under the same group-wise
orthogonality assumption on X as Yuan and Lin (2006). Hansen and Sokol (2014)
studied the DOF of the metric projection onto a closed set (non-necessarily convex),
and gave a precise representation of the bias when the projector is not sufficiently
differentiable. An estimate of the DOF for the group Lasso was also given by Solo and
Ulfarsson (2010) using heuristic derivations that are valid only when X is full column
rank, though its unbiasedness is not proved.

Vaiter et al. (2012) also derived an estimator of the DOF of the group Lasso and
proved its unbiasedness when X is full column rank, but without the orthogonality
assumption required in Yuan and Lin (2006) and Kato (2009). When specialized to
the group Lasso penalty, our results establish that the DOF estimator formula in Vaiter
et al. (2012) is still valid while removing the full column rank assumption. This of
course allows one to tackle the more challenging rank-deficient or underdetermined
case p > n.
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The degrees of freedom of partly smooth regularizers 799

2 Notations and preliminaries

Vectors and matrices Given a non-empty closed set C ⊂ R
p, we denote PC the

orthogonal projection on C. For a subspace T ⊂ R
p, we denote

βT = PT β and XT = X PT .

For a set of indices I ⊂ N
∗, we will denote βI (resp. XI ) the sub-vector (resp.

submatrix) whose entries (resp. columns) are those of β (resp. of X ) indexed by I . For
a linear operator A, A∗ is its adjoint. For a matrix M , M� is its transpose and M+ its
Moore–Penrose pseudo-inverse.
Sets In the following, for a non-empty set C ⊂ R

p, we denote conv C and cone C,
respectively, its convex and conical hulls. ιC is the indicator function of C (takes 0
in C and +∞ otherwise), and NC(β) is the cone normal to C at β. For a non-empty
convex set C, its affine hull aff C is the smallest affine manifold containing it. It is a
translate of par C, the subspace parallel to C, i.e., par C = aff C − β = R(C − C) for
any β ∈ C. The relative interior ri C (resp. relative boundary rbd C) of C is its interior
(resp. boundary) for the topology relative to its affine hull.
Functions For a C1 vector field v : y ∈ R

n �→ v(y), Dv(y) denotes its Jacobian at
y. For a C2 smooth function f̃ , d f̃ (β)[ξ ] = 〈∇ f̃ (β), ξ 〉 is its directional derivative,
∇ f̃ (β) is its (Euclidean) gradient and ∇2 f̃ (β) is its (Euclidean) Hessian at β. For
a bivariate function g : (β, y) ∈ R

p × R
n → R that is C2 with respect to the first

variable β, for any y, we will denote∇g(β, y) and∇2g(β, y) the gradient and Hessian
of g at β with respect to the first variable.

A function f : β ∈ R
p �→ R ∪ {+∞} is lower semicontinuous (lsc) if its epigraph

is closed. Γ0(R
p) is the class of convex and lsc functions which are proper (i.e., not

everywhere +∞). ∂ f is the (set-valued) subdifferential operator of f ∈ Γ0(R
p). If f

is differentiable at β then ∇ f (β) is its unique subgradient, i.e., ∂ f (β) = {∇ f (β)}.
Consider a function J ∈ Γ0(R

p) such that ∂ J (β) �= ∅. We denote Sβ the subspace
parallel to ∂ J (β) and its orthogonal complement Tβ , i.e.,

Sβ = par(∂ J (β)) and Tβ = S⊥
β . (11)

We also use the notation

e(β) = Paff(∂ J (β))(0),

i.e., the projection of 0 onto the affine hull of ∂ J (β).
Differential and Riemannian geometry LetM be a C2-smooth embedded submani-
fold ofR

p around β� ∈ M. To lighten notation, henceforth we shall state C2-manifold
instead of C2-smooth embedded submanifold ofR

p. Tβ(M) denotes the tangent space
to M at any point β ∈ M near β�. The natural embedding of a submanifold M into
R

p permits to define a Riemannian structure on M, and we simply say M is a Rie-
mannian manifold. For a vector v ∈ Tβ(M)⊥, the Weingarten map of M at β is the
operator Aβ(·, v) : Tβ(M) → Tβ(M) defined as

123



800 S. Vaiter et al.

Aβ(ξ, v) = −PTβ(M) dV [ξ ],

where V is any local extension of v to a normal vector field on M. The definition
is independent of the choice of the extension V , and Aβ(·, v) is a symmetric linear
operator which is closely tied to the second fundamental form ofM; see Chavel (2006,
Proposition II.2.1).

Let f be a real-valued functionwhich is C2 onM aroundβ�. The covariant gradient
of f at β is the vector ∇M f (β) ∈ Tβ(M) such that

〈∇M f (β), ξ 〉 = d

dt
f (PM(β + tξ))

∣∣
t=0, ∀ξ ∈ Tβ(M).

The covariant Hessian of f at β is the symmetric linear mapping ∇2
M f (β) from

Tβ(M) into itself defined as:

〈∇2
M f (β)ξ, ξ 〉 = d2

dt2
f (PM(β + tξ))

∣∣
t=0, ∀ξ ∈ Tβ(M).

This definition agrees with the usual definition using geodesics or connections (Miller
and Malick 2005). Assume now that M is a Riemannian embedded submanifold of
R

p, and that a function f has a smooth restriction on M. This can be characterized
by the existence of a smooth extension (representative) of f , i.e., a smooth function
f̃ on R

p such that f̃ and f agree onM. Thus, the Riemannian gradient ∇M f (β) is
also given by

∇M f (β) = PTβ(M) ∇ f̃ (β) (12)

and, ∀ξ ∈ Tβ(M), the Riemannian Hessian reads

∇2
M f (β)ξ = PTβ(M) d (∇M f ) (β)[ξ ] = PTβ(M) d

(
β �→ PTβ(M) ∇ f̃ (β)

)
[ξ ]

= PTβ(M) ∇2 f̃ (β)PTβ(M) ξ + Aβ

(
ξ,PTβ(M)⊥ ∇ f̃ (β)

)
, (13)

where the last equality comes from Absil et al. (2013, Theorem 1). When M
is an affine or linear subspace of R

p, then obviously M = β + Tβ(M), and

Aβ

(
ξ,PTβ(M)⊥ f̃ (β)

)
= 0, hence (13) becomes

∇2
M f (β) = PTβ(M) ∇2 f̃ (β)PTβ(M) . (14)

Similarly to the Euclidean case, for a real-valued bivariate function g that is C2 on
M around the first variable β, for any y, we will denote ∇Mg(β, y) and ∇2

Mg(β, y)
the Riemannian gradient and Hessian of g at β with respect to the first variable. See
e.g., Lee (2003) and Chavel (2006) for more material on differential and Riemannian
manifolds.
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The degrees of freedom of partly smooth regularizers 801

3 Partly smooth functions

3.1 Partial smoothness

Toward the goal of studying the sensitivity behavior of β̂(y) and μ̂(y)with regularizers
J ∈ Γ0(R

p), we restrict our attention to a subclass of these functions that fulfill some
regularity assumptions according to the following definition.

Definition 1 Let J ∈ Γ0(R
p) and a point β such that ∂ J (β) �= ∅. J is said to be

partly smooth at β relative to a setM ⊆ R
p if

1. Smoothness: M is a C2-manifold and J restricted to M is C2 around β.

2. Sharpness: Tβ(M) = Tβ
def.= par(∂ J (β))⊥.

3. Continuity: the set-valued mapping ∂ J is continuous at β relative toM.

J is said to be partly smooth relative to the manifold M if J is partly smooth at each
point β ∈ M relative toM.

Observe thatM being affine or linear is equivalent toM = β + Tβ . A closed convex
set C is partly smooth at a point β ∈ C relative to a C2-manifoldM locally contained
in C if its indicator function ιC maintains this property.

Lewis (2003a, Proposition 2.10) allows to prove the following fact (known as local
normal sharpness).

Fact 1 If J is partly smooth at β relative toM, then all β ′ ∈ M near β satisfy

Tβ ′(M) = Tβ ′ .

In particular, when M is affine or linear, then

∀β ′ ∈ M near β, Tβ ′ = Tβ.

It can also be shown that the class of partly smooth functions enjoys a powerful
calculus. For instance, under mild conditions, it is closed under positive combination,
pre-composition by a linear operator and spectral lifting, with closed-form expressions
of the resulting partial smoothness manifolds and their tangent spaces, see Lewis
(2003a) and Vaiter et al. (2014).

It turns out that except the nuclear norm, the regularizing penalties that we exem-
plified in Sect. 1 are partly smooth relative to a linear subspace. The nuclear norm is
partly smooth relative to the fixed-rank manifold.

Example 10 (Lasso) We denote (ai )1≤i≤p the canonical basis of R
p. Then, J = || · ||1

is partly smooth at β relative to

M = Tβ = Span{(ai )i∈supp(β)} where supp(β)
def.= {i ∈ {1, . . . , p} : βi �= 0}.

Example 11 (General Lasso) (Vaiter et al. 2015, Proposition 9) relates the partial
smoothness subspace associated to a convex partly smooth regularizer J ◦ D∗, where
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D is a linear operator, to that of J . In particular, for J = || · ||1, J ◦ D∗ is partly smooth
at β relative to

M = Tβ = Ker(D∗
�c) where Λ = supp(D∗β).

Example 12 (�∞ Anti-sparsity) It can be readily checked that J = || · ||∞ is partly
smooth at β relative to

M = Tβ = {β ′ : β ′
I ∈ R sign(βI )} where I = {i : βi = ||β||∞}.

Example 13 (Group Lasso) The partial smoothness subspace associated to β when
the blocks are of size greater than 1 can be defined similarly, but using the notion of
block support. Using the block structure B, one has that the group Lasso regularizer
is partly smooth at β relative to

M = Tβ = Span{(ai )i∈suppB(β)},

where

suppB(β) = {i ∈ {1, . . . , p} : ∃b ∈ B, βb �= 0 and i ∈ b}.

Example 14 (General Group Lasso) Using again Vaiter et al. (2015, Proposition 9),
we can describe the partial smoothness subspace for J = ||D∗ · ||B, which reads

M = Tβ = Ker(D∗
Λc) where Λ = suppB(D∗β).

Example 15 (Nuclear norm) Piecing together Daniilidis et al. (2013, Theorem 3.19),
and Example 10, the nuclear norm can be shown to be partly smooth at β ∈ R

p1×p2

relative to the set

M = {β ′ : rank(β ′) = r}, r = rank(β),

which is a C2-manifold around β of dimension (p1 + p2 − r)r ; see Lee (2003, Exam-
ple 8.14).

Example 16 (Indicator function of a partly smooth set C) Let C be a closed convex
and partly smooth set at β ∈ C relative toM. Observe that when β ∈ ri C,M = R

p.
For β ∈ rbd C,M is locally contained in rbd C.

We now consider an instructive example of a partly smooth function relative to a
non-flat active submanifold that will serve as a useful illustration in the rest of the
paper.

Example 17 (J = max(|| · || − 1, 0)) We have J ∈ Γ0(R
p) and continuous. It is then

differentiable Lebesgue a.e., except on the unit sphere S
p−1. For β outside S

p−1, J is
partly smooth at β relative to R

p. For β ∈ S
p−1, J is partly smooth at β relative to

S
p−1. Obviously, S

p−1 is a C2-smooth manifold.
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3.2 Riemannian gradient and Hessian

We now give expressions of the Riemannian gradient and Hessian for the case of
partly smooth functions relative to a C2-manifold. This is summarized in the following
fact which follows by combining (12), (13), Definition 1 and Daniilidis et al. (2009,
Proposition 17).

Fact 2 If J is partly smooth relative at β relative toM, then for any β ′ ∈ M near β

∇M J (β ′) = PTβ′
(
∂ J (β ′)

) = e(β ′),

and this does not depend on the smooth representation J̃ of J on M. In turn,

∇2
M J (β) = PTβ ∇2 J̃ (β)PTβ +A(·,PSβ ∇ J̃ (β)).

Let us now exemplify this fact by providing the expressions of the Riemannian
Hessian for the examples discussed above.

Example 18 (Polyhedral penalty) Polyhedrality of J implies that it is affine nearby β

along the partial smoothness subspaceM = β + Tβ , and its subdifferential is locally
constant nearby β along M. In turn, the Riemannian Hessian of J vanishes locally,
i.e., ∇2

M J (β ′) = 0 for all β ′ ∈ M near β. Of course, this holds for the Lasso, general
Lasso and �∞ anti-sparsity penalties since they are all polyhedral.

Example 19 (Group Lasso) Using the expression of M = Tβ in Example 13, it is
straightforward to show that

∇2
M J (β) = δβ ◦ Qβ⊥ ,

where, for Λ = suppB(β),

δβ : Tβ → Tβ, v �→
{

vb/||βb|| if βb �= 0

0 otherwise

and

Qβ⊥ : Tβ → Tβ, v �→
{

vb − 〈βb, vb〉
||βb||2 βb if βb �= 0

0 otherwise
.

Example 20 (General Group Lasso) Applying the chain rule to Example 19, we get

∇2
M J (β) = PKer(D∗

�c ) D
(
δD∗β ◦ Q(D∗β)⊥

)
D∗ PKer(D∗

�c ),

where Λ = suppB(D∗β) and the operator δD∗β ◦ Q(D∗β)⊥ is defined similarly to
Example 19.
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Example 21 (Nuclear norm) For β ∈ R
p1×p2 with rank(β) = r , let β =

U diag(λ(β))V ∗ be a reduced rank-r SVD decomposition, where U ∈ R
p1×r and

V ∈ R
p2×r have orthonormal columns, and λ(β) ∈ (R+\{0})r is the vector of singu-

lar values (λ1(β), . . . , λr (β)) in non-increasing order. From the partial smoothness of
the nuclear norm at β (Example 15) and its subdifferential, one can deduce that

Tβ(M) = Tβ = {U A∗ + BV ∗ : A ∈ R
p2×r , B ∈ R

p1×r } and
∇M|| · ||∗(β) = e(β) = UV ∗. (15)

It can be checked that the orthogonal projector on Tβ is given by

PTβ W = UU∗W + WVV ∗ −UU∗WVV ∗

Let ξ ∈ Tβ and W ∈ Sβ . Then, from Absil et al. (2013, Section 4.5), the Weingarten
map reads

Aβ (ξ,W ) = Wξ∗β+∗ + β+∗
ξ∗W where β+∗ def.= U diag(λ(β))−1V ∗. (16)

In turn, from Fact 2, the Riemannian Hessian of the nuclear norm reads

∇2
M|| · ||∗(β)(ξ) = PTβ ∇2 |̃| · ||∗(β)(PTβ ξ)

+ PSβ ∇|̃| · ||∗(β)ξ∗β+∗ + β+∗
ξ∗ PSβ ∇|̃| · ||∗(β),

where |̃| · ||∗ is any smooth representative of the nuclear norm at β on M. Owing to
the smooth transfer principle (Daniilidis et al. 2013, Corollary 2.3), the nuclear norm
has a C2-smooth (and even convex) representation on M near β which is

|̃|β ′||∗ = ˜||λ(β ′)||1 =
r∑

i=1

λi (β
′).

Combining this with (Lewis 1995, Corollary 2.5), we then have ∇|̃| · ||∗(β) = UV ∗,
and thus Aβ

(
ξ,PSβ ∇|̃| · ||∗(β)

)
= 0, or equivalently,

∇2
M|| · ||∗(β)(ξ) = PTβ ∇2 |̃| · ||∗(β)(PTβ ξ). (17)

The expression of the Hessian∇2 |̃| · ||∗(β) can be obtained from the derivative ofUV ∗
using either Candès et al. (2012, Theorem 4.3)) or Deledalle et al. (2012, Theorem 1)
when β is full-rank with distinct singular values, or from Lewis and Sendov (2001,
Theorem 3.3) in the case where β is symmetric with possibly repeated eigenvalues.

Example 22 (Indicator function of a partly smooth set C) Let C be a closed convex and
partly smooth set at β ∈ C relative to M. From Example 16, it is then clear that the
zero-function is a smooth representative of ιC onM around β. In turn, the Riemannian
gradient and Hessian of ιC vanish around β on M.
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Example 23 (J = max(|| · || − 1, 0)) Let β ∈ S
p−1. We have Tβ = (Rβ)⊥, and the

orthogonal projector onto Tβ is

PTβ = Id − ββ�.

The Weingarten map then reduces to

Aβ (ξ, v) = −ξ 〈β, v〉, ξ ∈ Tβ and v ∈ Sβ.

Moreover, the zero-function is a smooth representative of J on S
p−1. It then follows

that ∇2
M J (β) = 0.

4 Sensitivity analysis of ̂β( y)

In all the following, we consider the variational regularized problem (P(y)). We recall
that J ∈ Γ0(R

p) and is partly smooth. We also suppose that the fidelity term fulfills
the following conditions:

∀ y ∈ R
n, F(·, y) ∈ C2(Rp) and ∀β ∈ R

p, F(β, ·) ∈ C2(Rn). (CF )

Combining (13) and the first part of assumption CF , we have for all y ∈ R
n

∇2
MF(β, y)(β, y)ξ = PTβ ∇2F(β, y)PTβ +Aβ

(
ξ,PSβ ∇F(β, y)

)
PTβ . (18)

When M is affine or linear, Eq. (18) becomes

∇2
MF(β, y)(β, y)ξ = PTβ ∇2F(β, y)PTβ s. (19)

4.1 Restricted positive definiteness

In this section, we aim at computing the derivative of the (set-valued) map y �→ β̂(y)
whenever this is possible. The following condition plays a pivotal role in this analysis.

Definition 2 (Restricted positive definiteness) A vector β ∈ R
p is said to satisfy the

restricted positive definiteness condition if, and only if,

〈(∇2
MF(β, y) + ∇2

M J (β))ξ, ξ 〉 > 0 ∀ 0 �= ξ ∈ Tβ. (Cβ,y)

Condition (Cβ,y) has a convenient re-writing in the following case.

Lemma 1 Let J ∈ Γ0(R
p) be partly smooth atβ ∈ R

p relative toM, and set T = Tβ .
Assume that ∇2

MF(β, y) and ∇2
M J (β) are positive semidefinite on T . Then

(Cβ,y) holds if and only if Ker(∇2
MF(β, y)) ∩ Ker(∇2

M J (β)) ∩ T = {0}.
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For instance, the positive semidefiniteness assumption is satisfied whenM is an affine
or linear subspace.

When F takes the form (3) with F0 the squared loss, condition (Cβ,y) can be
interpreted as follows in the examples we discussed so far.

Example 24 (Polyhedral penalty) Recall that a polyhedral penalty is partly smooth
at β relative to M = β + Tβ . Combining this with Example 18, condition (Cβ,y)
specializes to

Ker(XTβ ) = {0}.

Lasso Applying this to the Lasso (see Example 10), (Cβ,y) reads Ker(XΛ) = {0},
with Λ = supp(β). This condition is already known in the literature, see for
instance Dossal et al. (2013).

General Lasso In this case, Example 11 entails that (Cβ,y) becomes

Ker(X) ∩ Ker(D∗
Λc) = {0}, where Λ = supp(D∗β).

This condition was proposed in Vaiter et al. (2013).

Example 25 (Group Lasso) For the case of the group Lasso, by virtue of Lemma 2(ii)
and Example 19, one can see that condition (Cβ,y) amounts to assuming that the system
{Xbβb : b ∈ B, βb �= 0} is linearly independent. This condition appears in Liu and
Zhang (2009) to establish �2-consistency of the group Lasso. It goes without saying
that condition (Cβ,y) is much weaker than imposing that XΛ is full column rank, which
is standard when analyzing the Lasso.

Example 26 (General group Lasso) For the general group Lasso, let Iβ = {i :
bi ∈ B and D∗

bi
β �= 0}, i.e., the set indexing the active blocks of D∗β. Combining

Examples 14 and 20, one has

Ker(∇2
M J (β)) ∩ Ker(D∗

�c)

= {h ∈ R
p : D∗

bi h = 0 ∀i /∈ Iβ and D∗
bi h ∈ R D∗

bi β ∀i ∈ Iβ},

where Λ = suppB(D∗β). Indeed, δD∗β is a diagonal strictly positive linear operator,
and Q(D∗β)⊥ is a block-wise linear orthogonal projector, andwe get for h ∈ Ker(D∗

�c),

h ∈ Ker(∇2
M J (β)) ⇐⇒ 〈h, ∇2

M J (β)h〉 = 0

⇐⇒ 〈D∗h,
(
δD∗β ◦ Q(D∗β)⊥

)
D∗h〉 = 0

⇐⇒
∑
i∈Iβ

||P(D∗
bi

β)⊥(D∗
bi
h)||2

||D∗
bi

β|| = 0

⇐⇒ D∗
biβ ∈ R D∗

biβ ∀i ∈ Iβ.
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In turn, by Lemma 2(ii), condition (Cβ,y) is equivalent to saying that 0 is the only
vector in the set

{h ∈ R
p : Xh = 0 and D∗

bi h = 0 ∀i /∈ Iβ and D∗
bi h ∈ R D∗

biβ ∀i ∈ Iβ}.

Observe that when D is a Parseval tight frame, i.e., DD∗ = Id, the above condition
is also equivalent to saying that the system {(XD)bi D

∗
bi

β : i ∈ Iβ} is linearly
independent.

Example 27 (Nuclear norm) We have seen in Example 21 that the nuclear norm has
a C2-smooth representative which is also convex. It then follows from (17) that the
Riemannian Hessian of the nuclear norm at β is positive semidefinite on Tβ , where
Tβ is given in (15).

As far as F is concerned, one cannot conclude in general on positive semidefinite-
ness of its Riemannian Hessian. Let us consider the case where β ∈ Sp, the vector
space of real p1 × p1 symmetric matrices endowed with the trace (Frobenius) inner
product 〈β, β ′〉 = tr(ββ ′). From (16) and (18), we have for any ξ ∈ Tβ ∩ Sp1

〈ξ, ∇2
MF(β, y)(ξ)〉 = 〈ξ, PTβ ∇2F(β, y)(PTβ ξ)〉

+ 2〈ξU diag(λ(β))−1U�ξ, PSβ ∇F(β, y)〉.

Assume that β is a global minimizer of (P(y)), which by Lemma 3, implies that

PSβ ∇F(β, y) = U⊥ diag(γ)U⊥�,

where U⊥ ∈ R
n×(p1−r) is a matrix whose columns are orthonormal to U , and γ ∈

[−1, 1]p1−r . We then get

〈ξ, ∇2
MF(β, y)(ξ)〉 = 〈ξ, PTβ ∇2F(β, y)(PTβ ξ)〉

+ 2〈U⊥�ξU diag(λ(β))−1U�ξU⊥, diag(γ)〉.

It is then sufficient that β is such that the entries of γ are positive for ∇2
MF(β, y) to

be indeed positive semidefinite on T . In this case, Lemma 1 applies.

In a nutshell, Lemma 1 does not always apply to the nuclear norm as ∇2
MF(β, y)

is not always guaranteed to be positive semidefinite in this case. One may then wonder
whether there exist partly smooth functions J , with a non-flat active submanifold,
for which Lemma 1 applies, at least at some minimizer of (P(y)). The answer is
affirmative for instance for the regularizer of Example 17.

Example 28 (J = max(|| · || − 1, 0)) Let β ∈ S
p−1. From Example 23, we have for

ξ ∈ Tβ

〈ξ, ∇2
MF(β, y)ξ 〉 = 〈ξ, ∇2F(β, y)ξ 〉 − ||ξ ||2〈β, ∇F(β, y)〉.
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Assume that β is a global minimizer of (P(y)), which by Lemma 3, implies that

−∇F(β, y) ∈ β[0, 1] ⇒ −〈β, ∇F(β, y)〉 ∈ [0, 1].

Thus, 〈ξ, ∇2
MF(β, y)ξ 〉 ≥ 0, for all ξ ∈ Tβ . Since from Example 23, ∇2

M J (β) = 0,
Lemma 1 applies at β. Condition (Cβ,y) then holds if, and only if, ∇2

MF(β, y) is
positive definite on Tβ . For the case of a quadratic loss, this is equivalent to

ker(X) ∩ Tβ = {0} or β is not a minimizer of F(·, y).

4.2 Sensitivity analysis: main result

Let us now turn to the sensitivity of any minimizer β̂(y) of (P(y)) to perturbations of
y. Because of non-smoothness of the regularizer J , it is awell-known fact in sensitivity
analysis that one cannot hope for a global claim, i.e., an everywhere smooth mapping4

y �→ β̂(y). Rather, the sensitivity behavior is local. This is why the reason we need
to introduce the following transition spaceH, which basically captures points of non-
smoothness of β̂(y).

Let us denote the set of all possible partial smoothness active manifoldsMβ asso-
ciated to J as

M = {
Mβ

}
β∈Rp . (20)

For anyM ∈ M , we denoteM� the set of vectors sharing the same partial smoothness
manifold M,

M� = {β ′ ∈ R
p : Mβ ′ = M}.

For instance, when J = || · ||1,M�β is the cone of all vectors sharing the same support
as β.

Definition 3 The transition space H is defined as

H =
⋃

M∈M
HM, where HM = bd(�n+p,n(AM)),

where M is given by (20), and we denote

�n+p,n :
{

R
n × M� −→ R

n

(y, β) �−→ y

the canonical projection on the first n coordinates, bd C is the boundary of the set C,
and

AM = {(y, β) ∈ R
n × M� : −∇F(β, y) ∈ rbd ∂ J (β)}.

4 To be understood here as a set-valued mapping.
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Remark 1 Before stating our result, some comments about this definition are in order.
When bd is removed in the definition of HM, we recover the classical setting of
sensitivity analysis under partial smoothness,whereHM contains the set of degenerate
minimizers (those such that 0 is in the relative boundary of the subdifferential of
F(·, y) + J ). This is considered for instance in Bolte et al. (2011); Drusvyatskiy

and Lewis (2011) who studied sensitivity of the minimizers of β �→ fν(β)
def.=

f (β) − 〈ν, β〉 to perturbations of ν when f ∈ Γ0(R
p) and partly smooth; see also

Drusvyatskiy et al. (2015) for the semi-algebraic non-necessarily non-convex case.
These authors showed that for ν outside a set of Lebesgue measure zero, fν has a
non-degenerate minimizer with quadratic growth of fν, and for each ν̄ near ν, the
perturbed function fν̄ has a unique minimizer that lies on the active manifold of fν
with quadratic growth of fν̄. These results, however, do not apply to our setting in
general. To see this, consider the case of (P(y)) where F takes the form (3) with F0 the
quadratic (the same applies to other losses in the exponential family just aswell). Then,
(P(y)) is equivalent to minimizing fν, with f = J + ||X · ||2 and ν = 2X�y. It goes
without saying that, in general (i.e., for any X ), a property valid for ν outside a zero
Lebesgue measure set does not imply it holds for y outside a zero Lebesgue measure
set. To circumvent such a difficulty, our key contribution is to consider the boundary
of HM. This turns out to be crucial to get a set of dimension potentially strictly less
than n, hence negligible, as we will show under a mild o-minimality assumption (see
Sect. 6). However, doing so, uniqueness of the minimizer is no longer guaranteed.

In the particular case of the Lasso (resp. general Lasso), i.e., F0 is the squared loss,
J = || · ||1 (resp. J = ||D∗ · ||1), the transition spaceH specializes to the one introduced
in Dossal et al. (2013) (resp. Vaiter et al. 2013). In these specific cases, since J is a
polyhedral gauge,H is in fact a union of affine hyperplanes. The geometry of this set
can be significantly more complex for other regularizers. For instance, for J = || · ||1,2,
it can be shown to be a semi-algebraic set (union of algebraic hyper-surfaces). Section 6
is devoted to a detailed analysis of this setH.

We are now equipped to state our main sensitivity analysis result, whose proof is
deferred to Sect. 8.3.

Theorem 1 Assume that CF holds. Let y /∈ H, and β̂(y) a solution of (P(y)) where

J ∈ Γ0(R
p) is partly smooth at β̂(y) relative toM def.= Mβ̂(y) and such that (Cβ̂(y),y)

holds. Then, there exists an open neighborhood V ⊂ R
n of y, and a mapping β̃ : V →

M such that

1. For all ȳ ∈ V , β̃(ȳ) is a solution of (P(ȳ)), and β̃(y) = β̂(y).
2. the mapping β̃ is C1(V) and

∀ ȳ∈V, Dβ̃(ȳ)=−(∇2
MF(β̃(ȳ), ȳ)+∇2

M J (β̃(ȳ)))+ PT
β̃(ȳ)

D(∇F)(β̃(ȳ), ȳ),

(21)

where D(∇F)(β, y) is the Jacobian of ∇F(β, ·) with respect to the second
variable evaluated at y.

Theorem 1 can be extended to the case where the data fidelity is of the form F(β, θ)

for some parameter θ , with no particular role of y here.
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5 Sensitivity analysis of μ̂( y)

We assume in this section that F takes the form (3) with

∀ (μ, y) ∈ R
n × R

n, ∇2F0(μ, y) is positive definite. (Cdp)

This in turn implies that F0(·, y) is strictly convex for any y (the converse is obvi-
ously not true). Recall that this condition is mild and holds in many situations, in
particular for some losses (4) in the exponential family, see Sect. 1.2 for details.

We have the following simple lemma.

Lemma 2 Suppose the condition (Cdp) is satisfied. The following holds:

(i) All minimizers of (P(y)) share the same image under X and J .
(ii) If the partial smoothness submanifoldM at β is affine or linear, then (Cβ,y) holds

if, and only if, Ker(X)∩Ker(∇2
M J (β))∩ T = {0}, where T = Tβ and ∇2

M J (β)

is given in Fact 2.

Owing to this lemma, we can now define the prediction

μ̂(y) = X β̂(y) (22)

without ambiguity given any solution β̂(y), which in turn defines a single-valued
mapping μ̂. The following theorem provides a closed-form expression of the local
variations of μ̂ as a function of perturbations of y. For this, we define the following
set that rules out the points y where (Cβ̂(y),y) does not hold for any minimizer.

Definition 4 (Non-injectivity set) The Non-injectivity set G is

G = {y /∈ H : (Cβ̂(y),y) does not hold for any minimizer β̂(y) of (P(y))}.

Theorem 2 Under assumptions (CF) and (Cdp), the mapping y �→ μ̂(y) is
C1(Rn\(H ∪ G)). Moreover, for all y /∈ H ∪ G,

div(μ̂)(y)
def.= tr(Dμ̂(y)) = tr(�(y)), (23)

where

�(y) = −XT (∇2
MF(μ̂(y), y) + ∇2

M J (β̂(y)))+ XT
� D(∇F0)(μ̂(y), y),

∇2
MF(μ̂(y), y) = XT

�∇2F0(μ̂(y), y)XT + Aβ

(
·, XS

�∇F0(μ̂(y), y)
)

and β̂(y) is any solution of (P(y)) such that (Cβ̂(y),y) holds and J ∈ Γ0(R
p) is partly

smooth at β̂(y) relative toM, with T = S⊥ = Tβ̂(y).

This result is proved in Sect. 8.5.
A natural question that arises is whether the set G is of full (Hausdorff) dimension

or not, and in particular, whether there always exists a solution β̂(y) such that (Cβ̂(y),y)
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holds, i.e., G is empty. Though we cannot provide an affirmative answer to this for any
partly smooth regularizer, and this has to be checked on a case-by-case basis, it turns
out that G is indeed empty for many regularizers of interest as established in the next
result.

Proposition 1 The set G is empty when:

(i) J ∈ Γ0(R
p) is polyhedral, and in particular, when J is the Lasso, the general

Lasso or the �∞ penalties.
(ii) J is the general group Lasso penalty, and a fortiori the group Lasso.

The proof of these results is constructive.
We now exemplify the divergence formula (23) when F0 is the squared loss.

Example 29 (Polyhedral penalty) Thanks to Example 18, it is immediate to see that
(23) boils down to

div(μ̂)(y) = rank XTβ̂(y)
= dim Tβ̂(y),

where we used the rank-nullity theorem and that Lemma 2(ii) holds at β̂(y), which
always exists by Proposition 1.

Example 30 (Lasso and General Lasso) Combining together Examples 11 and 29
yields

div(μ̂)(y) = dimKer(D∗
Λc), Λ = supp(D∗β̂(y)) ,

where β̂(y) is such that Lemma 2(ii) holds. For the Lasso, Example 10 allows to
specialize the formula to

div(μ̂)(y) = | supp(β̂(y))|.

The general Lasso case was investigated in Vaiter et al. (2013) and Tibshirani and
Taylor (2012), and the Lasso in Dossal et al. (2013) and Tibshirani and Taylor (2012).

Example 31 (�∞ Anti-sparsity) By virtue of Examples 29 and 12, we obtain in this
case

div(μ̂)(y) = p − |I | + 1, where I = {i : β̂i (y) = ||β̂(y)||∞}

and β̂(y) is such that Lemma 2(ii) holds, and such a vector always exists by Proposi-
tion 1.

Example 32 (Group Lasso and General Group Lasso) For the general group Lasso,
piecing together Examples 14 and 20, it follows that

div(μ̂)(y) = tr

(
XT

(
XT

�XT + PT D
(
δD∗β̂(y) ◦ Q(D∗β̂(y))⊥

)
D∗ PT

)+
XT

�
)
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where T = Ker(D∗
Λc), Λ = suppB(D∗β̂(y)), and β̂(y) is such that Lemma 2(ii)

holds; such a vector always exists by Proposition 1. For the group Lasso, we get using
Example 13 that

div(μ̂)(y) = tr

(
XΛ

(
XΛ

�XΛ + (δD∗β̂(y) ◦ Q(D∗β̂(y))⊥)Λ,Λ

)−1
XΛ

�
)

,

where (δD∗β̂(y) ◦ Q(D∗β̂(y))⊥)Λ,Λ is the submatrix whose rows and columns are those

of δD∗β̂(y)◦Q(D∗β̂(y))⊥ indexed byΛ = suppB(β̂(y)). This result was proved in Vaiter
et al. (2012) in the overdetermined case. An immediate consequence of this formula is
obtained when X is orthonormal5, in which case one recovers the expression of Yuan
and Lin (2006),

div(μ̂)(y) = |Λ| −
∑

b∈B,D∗
b β̂(y) �=0

|b| − 1

||yb|| .

The general group Lasso formula is new to the best of our knowledge, andwill be illus-
trated in the numerical experiments on the isotropic 2-D total variation regularization
widely used in image processing.

We could also provide a divergence formula for the nuclear norm, but as we dis-
cussed in Example 27, we cannot always guarantee the existence of a solution that
satisfies (Cβ̂(y),y). However, one can still find other partly smooth functions J with a
non-flat submanifold for which this existence can be certified. The function of Exam-
ple 17 is again a prototypical example.

Example 33 (J = max(|| · || − 1, 0)) For β ∈ S
p−1. If β is a minimizer of (P(y)) is

not a minimizer of F(·, y), from Example 28, we have that ∇2
MF(β, y) is positive

definite on T = Tβ . Thus, we get for the case of the squared loss, that

div(μ̂)(y) = tr

(
XT

(
XT

�XT + PT 〈Xβ, y − Xβ〉
)+

XT
�
)

.

6 Degrees of freedom and unbiased risk estimation

From now on, we will assume that

the set M is finite. (CM ) (24)

Assumption (CM )holds inmany important cases, including the examples discussed
in the paper: polyhedral penalties (e.g., the Lasso, general Lasso or �∞-norm), as well
as for the group Lasso and its general form.

5 Obviously, Lemma 2(ii) holds in such a case at the unique minimizer β̂(y).
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Throughout this section, we use the same symbols to denote weak derivatives
(whenever they exist) as for derivatives. Rigorously speaking, the identities have to be
understood to hold Lebesgue a.e. Evans and Gariepy (1992).

So far, we have shown that outsideH∪G, the mapping y �→ μ̂(y) enjoys (locally)
nice smoothness properties, which in turn gives closed-form formula of its divergence.
To establish that such formula holds Lebesgue a.e., a key argument that we need to
show is thatH is of negligible Lebesgue measure. This is where o-minimal geometry
enters the picture. In turn, for Y drawn from some appropriate probability measures
with density with respect to the Lebesgue measure, this will allow us to establish
unbiasedness of quadratic risk estimators.

6.1 O-minimal geometry

Roughly speaking, to be able to control the size of H, the function J cannot be too
oscillating in order to prevent pathological behaviors. We now briefly recall here the
definition. Some important properties of o-minimal structures that are relevant to our
context together with their proofs are collected in Sect. 10. The interested reader may
refer to van den Dries (1998); Coste (1999) for a comprehensive account and further
details on o-minimal structures.

Definition 5 (Structure) A structure O expanding R is a sequence (Ok)k∈N which
satisfies the following axioms:

1. Each Ok is a Boolean algebra of subsets of R
k , with R

k ∈ Ok .
2. Every semi-algebraic subset of R

k is in Ok .
3. If A ∈ Ok and B ∈ Ok′ , then A × B ∈ Ok+k′ .
4. If A ∈ Ok+1, then�k+1,k(A) ∈ Ok , where�k+1,k : R

k+1 → R
k is the projection

on the first k components.
The structure O is said to be o-minimal if, moreover, it satisfies

5. (o-minimality) Sets in O1 are precisely the finite unions of intervals and points
of R.

In the following, a set A ∈ Ok is said to be definable.

Definition 6 (Definable set and function) Let O be an o-minimal structure. The
elements of Ok are called the definable subsets of R

p, i.e., � ⊂ R
k is defin-

able if � ∈ Ok . A map f : � → R
m is said to be definable if its graph

G( f ) = {(x, u) ∈ � × R
m : u = f (x)} ⊆ R

k × R
m is a definable subset of

R
k × R

m (in which case m times applications of axiom 4 implies that � is definable).

A fundamental class of o-minimal structures is the collection of semi-algebraic
sets, in which case axiom 4 is actually a property known as the Tarski–Seidenberg
theorem (Coste 2002). For example, in the special case where q is a rational number,
J = || · ||q is semi-algebraic. When q ∈ R is not rational, || · ||q is not semi-algebraic;
however, it can be shown to be definable in an o-minimal structure. To see this,we recall
from van den Dries and Miller (1996, Example 5 and Property 5.2)) that there exists
a (polynomially bounded) o-minimal structure that contains the family of functions
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{t > 0 : tγ , γ ∈ R} and restricted analytic functions. Functions F0 that correspond
to the exponential family losses introduced in Example 3 are also definable.

Our o-minimality assumptions requires the existence of an o-minimal structure O
such that

F, J and M,∀M ∈ M , are definable in O. (CO)

6.2 Degrees of freedom and unbiased risk estimation

We assume in this section that F takes the form (3) and that

∀ y ∈ R
n, F0(·, y) is strongly convex with modulus τ (Csconv)

and

∃L > 0, sup
(μ,y)∈Rn×Rn

||D(∇F0)(μ, y)|| ≤ L . (CL)

Obviously, assumption (Csconv) implies (Cdp), and thus the claims of the previous
section remain true. Moreover, this assumption holds for the squared loss, but also for
some losses of the exponential family (4), possibly adding a small quadratic term in
β. As far as assumption (CL) is concerned, it is easy to check that it is fulfilled with
L = 1 for any loss of the exponential family (4), since D(∇F0)(μ, y) = −Id.
Non-linear Gaussian regression Assume that the observation model (1) specializes
to Y ∼ N (h(Xβ0), σ

2Idn), where h is Lipschitz continuous.

Theorem 3 The following holds:

(i) Under condition (CO),H is of Lebesgue measure zero;
(ii) Under conditions (Csconv) and (CL), h ◦ μ̂ is Lipschitz continuous, hence weakly

differentiable, with an essentially bounded gradient.
(iii) If conditions (CO), (Csconv), (CF ) and (CL) hold, and G is of zero-Lebesgue

measure, then,
(a) d̂ f = tr(Dh(μ̂(Y ))�(Y )) is an unbiased estimate of d f = E(div(h ◦ μ̂(Y ))),

where �(Y ) is as given in Theorem 2.
(b) The SURE

SURE(h ◦ μ̂)(Y ) =||Y − h(μ̂(Y ))||2 + 2σ 2d̂ f − nσ 2 (25)

is an unbiased estimator of the risk E
(||h(μ̂(Y )) − h(μ0)||2

)
.

This theorem is proved in Sect. 8.7.
GLM with the continuous exponential family. Assume that the observation model
(1) corresponds to the GLMwith a distributionwhich belongs to a continuous standard
exponential family as parameterized in (2). From the latter, we have

∇ log B(y) =
(

∂ log Bi (yi )

∂yi

)
i
.
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Theorem 4 Suppose that conditions (CO), Csconv, (CF ) and (CL) hold, and G is of
zero-Lebesgue measure. Then,

(i) d̂ f = tr(�(Y )) is an unbiased estimate of d f = E(div(μ̂(Y ))).
(ii) The SURE

SURE(μ̂)(Y ) =||∇ log B(Y ) − μ̂(Y )||2 + 2d̂ f − (||∇ log B(Y )||2 − ||μ0||2)
(26)

is an unbiased estimator of the risk E
(||μ̂(Y ) − μ0||2

)
.

This theorem is proved in Sect. 8.7. Recall fromSect. 5 that there aremany regularizers
where G is indeed empty, and for which Theorems 3 and 4 then apply.

Though SURE(μ̂)(Y ) depends on μ0, which is obviously unknown, it is only
through an additive constant, which makes it suitable for parameter selection by risk
minimization. Moreover, even if it is not stated here explicitly, Theorem 4 can be
extended to unbiasedly estimate other measures of the risk, including the projection
risk, or the estimation risk (in the full rank case) through the Generalized Stein Unbi-
ased Risk Estimator as proposed in Eldar (2009, Section IV), see also Vaiter et al.
(2013) in the Gaussian case.

7 Simulation results

Experimental setting In this section, we illustrate the efficiency of the proposed DOF
estimator on a parameter selection problem in the context of some imaging inverse
problems. More precisely, we consider the linear Gaussian regression model Y ∼
N (Xβ0, σ

2Idn) where β0 ∈ R
p=p1×p2 is a column-vectorized version of an image

defined on a 2-D discrete grid of size p1 × p2. The estimation of β0 is achieved by
solving (P(y)) with

F(β, y) = F0(Xβ, y) = ||Xβ − y||2 and J (β) = λ||D∗β||1,2,

where D∗β ∈ R
p×2 is the 2-D discrete gradient vector field of the image β, and λ > 0

is the regularization parameter. Clearly, J is the isotropic total variation regularization
(Rudin et al. 1992), which is a special case of the general group Lasso penalty (9) for
blocks of size 2.

We aim at proposing an automatic and objective way to choose λ. This can be
achieved typically by minimizing the SURE given in (25) with h being the identity,
i.e.,

SURE(μ̂)(Y ) = ||Y − μ̂(Y )||2 + 2σ 2d̂ f − nσ 2,

where d̂ f = tr(�(Y )) according to Theorem 3(iii)-(a), and the expression of �(Y )

is obtained from that of the general group Lasso in Example 32 with D∗ the discrete
2-D gradient operator, and −D is the discrete 2-D divergence operator. Owing to
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Fig. 1 a Original image β0. b Blurry observation y. c β̂(y) obtained for the value of λ minimizing the
SURE estimate. d–f Prediction risk, average SURE and its confidence interval (±standard deviation) as a
function of λ, respectively, for the finite difference approach (Ramani et al. 2008), the iterative approach
(Vonesch et al. 2008), and our proposed approach

Proposition 1(ii) and Theorem 3(iii), the given SURE is indeed an unbiased estimator
of the prediction risk.

As the image size p can be large, the exact computation of tr(�(y)) can become
computationally intractable. Instead, we devise an approach based on Monte Carlo
(MC) simulations (see, Vonesch et al. 2008, for more details), that is

d̂ f
MC

(z) = 〈z, �(Y )z〉

with z a realization of Z ∼ N (0, Idn). It is clear that EZ (d̂ f
MC

(Z)) = d̂ f .
It remains to compute the vector �(y)z. This is achieved by taking �(y)z = Xν,

where ν is a solution of

(
X�X + λD(δD∗β̂(y) ◦ Q(D∗β̂(y))⊥)D∗) ν = X�z subject to ν ∈ T, s

where we recall that T = Ker(D∗
Λc), Λ = suppB(D∗β̂(y)). Taking into account the

constraint on T through its Lagrange multiplier ζ , solving for ν boils down to solving
the following linear system with a symmetric and positive-definite matrix

(
X�X + λD(δD∗β̂(y) ◦ Q(D∗β̂(y))⊥)D∗ D�c

D∗
�c 0

) (
ν

ζ

)
=

(
X�z
0

)
. (27)
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Fig. 2 a Original image β0. b Least squares estimate X+y. c β̂(y) obtained for the value of λ minimizing
the SURE estimate. d–f Prediction risk, average SURE and its confidence interval (±standard deviation) as
a function of λ, respectively, for the finite difference approach (Ramani et al. 2008), the iterative approach
(Deledalle et al. 2014), and our proposed approach

Numerical solvers In all experiments, optimization problem (P(y)) was solved using
Douglas–Rachford proximal splitting algorithm (Combettes and Pesquet 2007) with
2 · 104 iterations. Once the support Λ is identified with sufficiently high accuracy, the
linear problem (27) is solved using the generalizedminimal residualmethod (GMRES,
Saad and Schultz 1986) with a relative accuracy of 10−7.

Our proposed SURE estimator is compared for different values of λ with the
approach of Ramani et al. (2008) based on finite difference approximations, as well
as the approaches of Vonesch et al. (2008); Deledalle et al. (2014) based on iterative
chain rule differentiations. All curves are averaged on 40 independent realizations of
Y and Z and their corresponding confidence intervals at ± their standard deviation
are displayed.

DeconvolutionWe first consider an image of size p = 34 × 42 with grayscale values
ranging in [0, 255] obtained from a close up of the standard cameraman image. X is
a circulant matrix representing a periodic discrete convolution with a Gaussian kernel
of width 1.5 pixel. The observation y is finally obtained by adding a zero-mean white
Gaussian noise with σ = 5. Figure 1 depicts the evolution of the prediction risk and
its SURE estimates as a function of λ.

Compressive sensing We next consider an image of size p = 34 × 42 with grayscale
values ranging in [0, 255] obtained from a close up of the standard barbara image.
Now, X is amatrix corresponding to the composition of a periodic discrete convolution
with a square kernel, and a random sub-sampling matrix with n/p = 0.5. The noise
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standard deviation is again σ = 5. Figure 2 shows the evolution of the prediction risk
and its SURE estimates as a function of λ.

Discussion The three approaches seem to provide the same results with average SURE
curves that align very tightly with those of the prediction risk, with relatively small
standard deviation compared to the range of variation of the prediction risk.

It is worth observing that the SURE obtained with finite differences (Ramani et al.
2008) or with iterative differentiations (Vonesch et al. 2008; Deledalle et al. 2014) esti-
mate the risk at the last iterate provided by the optimization algorithm to solve (P(y)),
which is not exactly β̂(y) in general. In fact, what is important is not β̂(y) by itself
but rather its group support Λ. Thus, provided Λ has been perfectly identified, the
three approaches provide, as observed, the same estimate of the risk up to machine
precision. It may then be important to run the solver with a large number of iterations
in order to provide an accurate estimation of the risk. Even more important, solu-
tions of (27) should be accurate enough to avoid bias in the estimation. The choice
of 2 · 104 iterations for Douglas–Rachford and relative accuracy of 10−7 for GMRES
appears in our simulations as a good trade-off between negligible bias and reasonable
computational time.

8 Proofs

This section details the proofs of our results.

8.1 Preparatory lemma

By standard arguments of convex analysis, the following lemma gives the first-order
sufficient and necessary optimality condition of a minimizer of (P(y)).

Lemma 3 A vector β̂(y) ∈ R
p is a minimizer of (P(y)) if, and only if,

−∇F(β̂(y), y) ∈ ∂ J (β̂(y)).

If J is partly smooth at β̂(y) relative toM, then

−∇MF(β̂(y), y) = ∇M J (β̂(y)) = e(β̂(y)).

Proof The first monotone inclusion is just the first-order necessary and sufficient
minimality condition for our convex program. The second claim follows from (12)
and Fact 2. ��

8.2 Proof of Lemma 1

The equivalence is a consequence of simple arguments from linear algebra. Indeed,
when both ∇2

MF(β, y) and ∇2
M J (β) are positive semidefinite on T , we have

〈(∇2
MF(β, y)ξ, ξ 〉 ≥ 0 and 〈(∇2

M J (β)ξ, ξ 〉 ≥ 0, ∀ ξ ∈ T . Thus, for (Cβ,y) to
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hold, it is necessary and sufficient that � 0 �= ξ ∈ T such that ξ ∈ Ker(∇2
MF(β, y))

and ξ ∈ Ker(∇2
MF(β, y)), which is exactly what we state.

WhenM = β + T , the Riemannian hessians ∇2
MF(β, y) and ∇2

M J (β) are given
by (19) and (14). Convexity and smoothness of F(·, y) combined with (19) imply that
∇2
MF(β, y) is positive semidefinite. Moreover, convexity and partial smoothness of

J also yield that∇2
M J (β) is positive semidefinite, see Liang et al. (2014, Lemma 4.6).

��

8.3 Proof of Theorem 1

Let y /∈ H. To lighten the notation, we will drop the dependence of β̂ on y, where β̂

is a solution of (P(y)) such that (Cβ̂,y) holds.
Let the constrained problem on M

min
β∈M

F(β, y) + J (β). (P(y)M)

We define the notion of strong critical points that will play a pivotal role in our proof.

Definition 7 A point β̂ is a strong local minimizer of a function f : M → R∪{+∞}
if f grows at least quadratically locally around β̂ on M, i.e., ∃δ > 0 such that
f (β) ≥ f (β̂) + δ||β − β̂||2, ∀β ∈ M near β̂.

The following lemma gives an equivalent characterization of strong critical points
that will be more convenient in our context.

Lemma 4 Let f ∈ C2(M). A point β̂ is a strong local minimizer of f if, and only
if, it is a critical point of f , i.e., ∇M f (β̂) = 0, and satisfies the restricted positive
definiteness condition

〈∇2
M f (β̂)ξ, ξ 〉 > 0 ∀ 0 �= ξ ∈ Tβ̂ (M).

Proof (of Lemma 4) The proof follows by combining the discussion after Lewis
(2003a, Definition 5.4) and Miller and Malick (2005, Theorem 3.4). ��

We now define the following mapping

Γ : (β, y) ∈ M × R
n �→ ∇MF(β, y) + ∇M J (β).

We split the proof of the theorem in three steps. We first show that there exists a
continuously differentiable mapping ȳ �→ β̃(ȳ) ∈ M and an open neighborhood Vy

of y such that every element ȳ of Vy satisfies Γ (β̃(ȳ), ȳ) = 0. Then, we prove that
β̃(ȳ) is a solution of (P(ȳ)) for any ȳ ∈ Vy . Finally, we obtain (21) from the implicit
function theorem.

Step 1: construction of β̃(ȳ)Using assumption (CF ), the sum and smooth perturbation
calculus rules of partial smoothness (Lewis 2003a, Corollary 4.6 and Corollary 4.7)
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entail that the function (β, y) �→ F(β, y)+ J (x) is partly smooth at (β̂, y) relative to
M×R

m , which is a C2-manifold ofR
p×R

m . Moreover, it is easy to see thatM×R
m

satisfies the transversality condition of Lewis (2003a, Assumption 5.1). By assumption
(Cβ̂,y), β̂ is also a strong global minimizer of (P(y)M), which implies in particular

that Γ (β̂, y) = 0; see Lemma 4. It then follows from Lewis (2003a, Theorem 5.5) that
there exist open neighborhoods Ṽy of y and Ṽβ̂ of β̂ and a continuously differentiable

mapping β̃ : Ṽy → M∩ Ṽβ̂ such that β̃(y) = β̂, and ∀ȳ ∈ Ṽy , (P(ȳ)M) has a unique
strong local minimizer, i.e.,

�(β̃(ȳ), ȳ) = 0 and (Cβ̃(ȳ),ȳ) holds,

where we also used local normal sharpness property from partial smoothness of J ;
see Fact 1.

Step 2 β̃(ȳ) is a solution of (P(ȳ)). We now have to check the first-order optimal-
ity condition of (P(ȳ)), i.e., that −∇F(β̃(ȳ), ȳ) ∈ ∂ J (β̃(ȳ)); see Lemma 3. We
distinguish two cases.

• Assume that −∇F(β̂, y) ∈ ri ∂ J (β̂). The result then follows from Lewis
(2003a, Theorem 5.7(ii)) which, moreover, allows to assert in this case that
−∇F(β̃(ȳ), ȳ) ∈ ri ∂ J (β̃(ȳ)).

• We now turn to the case where −∇F(β̂, y) ∈ rbd ∂ J (β̂). Observe that (y, β̂) ∈
AM. In particular, y ∈ �n+p,n(AM). Since by assumption y /∈ H, one has
y /∈ bd(�n+p,n(AM)). Hence, there exists an open ball B(y, ε) for some ε > 0
such that B(y, ε) ⊂ �n+p,n(AM). Thus for every ȳ ∈ B(y, ε), there exists
β̄ ∈ M� such that

−∇F(β̄, ȳ) ∈ rbd ∂ J (β̄).

Since β̄ ∈ M, β̄ is also a critical point of (P(ȳ)M). But from Step 1, β̃(ȳ) is
unique, whence we deduce that β̃(ȳ) = β̄. In turn, we conclude that

∀ȳ ∈ B(y, ε), −∇F(β̃(ȳ), ȳ) ∈ rbd ∂ J (β̃(ȳ)) ⊂ ∂ J (β̃(ȳ)).

Step 3: Computing the differential. In summary, we have built a mapping β̃ ∈ C1(V),
with V = Ṽy ∩ B(y, ε)), such that β̃(ȳ) is a solution of (P(ȳ)) and fulfills (Cβ̃(ȳ),ȳ).
We are then in position to apply the implicit function theorem to �, and we get the
Jacobian of the mapping β̃ as

Dβ̃(ȳ) = −
(
∇2
MF(β̃(ȳ), ȳ) + ∇2

M J (β̃(ȳ))
)+

D(∇MF)(β̃(ȳ), ȳ),

where

D(∇MF)(β, y) = PTβ D(∇F)(β, y),

where the equality is a consequence of (12) and linearity. ��
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8.4 Proof of Lemma 2

(i) See Vaiter et al. (2015, Lemma 8).
(ii) This is a specialization of Lemma 1 using (Cdp) and (14). ��

8.5 Proof of Theorem 2

We can now prove Theorem 2. At any y /∈ H ∪ G, we consider β̂(y) a solution of
(P(y)). By assumption, (Cβ̂,y) holds. According to Theorem 1, one can construct a

mapping y �→ β̃(ȳ) which is a solution to (P(ȳ)), coincides with β̂(y) at y, and is C1

for ȳ in a neighborhood of y. Thus, by Lemma 2, μ̂(ȳ) = X β̃(ȳ) is a single-valued
mapping, which is also C1 in a neighborhood of y. Moreover, its differential is equal
to �(y) as given, where we applied the chain rule in (18). ��

8.6 Proof of Proposition 1

The proofs of both statements are constructive.

(i) Polyhedral penalty: any polyhedral convex J can be written as (Rockafellar 1996)

J (β) = max
i∈{1,...,q} {〈di , β〉 − bi } + ιC(β),

C = {β ∈ R
p : 〈ak, β〉 ≤ ck}, k ∈ {1, . . . , r}.

It is straightforward to show that

∂ J (β) = conv{di }i∈Iβ + cone{ak}k∈Kβ , where

Iβ = {i : 〈di , β〉 − bi = J (β)} and Kβ = { j : 〈a j , β〉 = c j },

and

Tβ ={h : 〈h, di 〉=〈h, d j 〉 =τβ, ∀i, j ∈ Iβ} ∩ {h : 〈h, ak〉 = 0, ∀k ∈ Kβ}.

Let β̂ be a solution of (P(y)) for J as above. Recall from Example 24 that (Cβ̂,y)

is equivalent to Ker(X) ∩ Tβ̂ = {0}. Suppose that this condition does not. Thus,
there exists a nonzero vector h ∈ Tβ̂ such that the vector vt = β̂ + th, t ∈ R,
satisfies Xvt = X β̂. Moreover,

〈vt , di 〉 − bi =
{
J (β̂) + tτβ̂ , if i ∈ Iβ̂
〈β̂, di 〉 − bi + t〈h, di 〉 < J (β̂) + t〈h, di 〉 otherwise.

and

〈vt , ak〉 =
{
ck, if k ∈ Kβ̂

〈β̂, ak〉 + t〈h, ak〉 < ck + t〈h, ak〉 otherwise.
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Thus, for t ∈] − t0, t0[, where

t0 = min

(
min
i /∈Iβ̂

{
J (β̂) − 〈β̂, di 〉 + bi

|〈h, di 〉 − τβ̂ |

}
, min
k /∈Kβ̂

{
ck − 〈β̂, ak〉

|〈h, ak〉|
})

,

we have Ivt = Iβ̂ and Kvt = Kβ̂ . Moreover, vt ∈ C. Therefore, for all such t , we
indeed have ∂ J (vt ) = ∂ J (β̂) and Tvt = Tβ̂ . Altogether, we get that

−X�∇F0(Xvt , y) = −X�∇F0(X β̂, y) ∈ ∂ J (β̂) = ∂ J (vt ),

i.e., vt is a solution to (P(y)). Thus, by Lemma 2, we deduce that F0(Xvt , y) =
F0(X β̂, y) and J (vt ) = J (β̂). The continuity assumption (CF ) yields

F0(Xvt0 , y) = F0(X β̂, y).

Furthermore, since J is lsc and vt is a minimizer of (P(y)), we have

lim inf
t→t0

J (vt ) ≥ J (vt0) ≥ lim sup
t→t0

J (vt ) ⇐⇒ J (vt0) = lim
t→t0

J (vt ) = J (β̂).

Consequently, vt0 is a solution of (P(y)) such that Iβ̂ � Ivt0 or/and Kβ̂ � Kvt0
,

which in turn implies Tvt0
� Tβ̂ . Iterating this argument, we conclude.

(ii) General group Lasso: let β̂ be a solution of (P(y)) for J = ||D∗ · ||1,2, and
Iβ̂ = {i : bi ∈ B and D∗

bi
β̂ �= 0}, i.e., the set indexing the active blocks of D∗β̂.

We recall from Example 14 that the partial smoothness subspace M = Tβ̂ =
Ker(D∗

Λc), where Λ = suppB(D∗β̂).
FromLemma 3 and the subdifferential of the group Lasso, β̂ is indeed aminimizer
if and only if there exists η ∈ R

p such that

− X�∇F0(X β̂, y)+
∑
i∈I

Dbi ηbi =0 and

⎧⎨
⎩ηbi =

D∗
bi

β̂

||D∗
bi

β̂|| if i ∈ Iβ̂

||ηbi || ≤ 1 otherwise.
(28)

Suppose that (Cβ̂,y) (or equivalently Lemma 2(ii)) does not hold at β̂. This is
equivalent to the existence of a nonzero vector h ∈ R

p in the set at the end of
Example 26. Let vt = β̂ + th, for t ∈ R. By construction, vt obeys

vt ∈ Tβ̂ ⇐⇒ ∀i /∈ Iβ̂ , D∗
bi vt = 0

and Xvt = X β̂

and ∀i ∈ Iβ̂ , ∃μi ∈ R, D∗
bi vt = (1 + tμi )D

∗
bi β̂.

Let

t0 = min{|t | : 1 + tμi = 0, i ∈ I } = min
i∈Iβ̂ ,μi �=0

|μi |−1.
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For all t ∈]− t0, t0[, we have 1+ tμi > 0 for i ∈ Iβ̂ and Ivt = Iβ̂ (in fact Tvt = Tβ̂

by Fact 1), and thus

D∗
bi

vt

||D∗
bi

vt || = D∗
bi

β̂

||D∗
bi

β̂|| , ∀i ∈ Ivt .

Moreover, −X�∇F0(Xvt , y) = −X�∇F0(X β̂, y). Inserting the last statements
in (28), we deduce that vt is a solution of (P(y)).
From Lemma 2(i), we get that F0(Xvt , y) = F0(X β̂, y) and ||D∗vt ||1,2 =
||D∗β̂||1,2. By continuity of F0(·, y) (assumption (CF )), and of || · ||1,2 one has

F0(Xvt0) = F0(X β̂) and ||D∗vt0 ||1,2 = ||D∗β̂||1,2.

Clearly, we have constructed a solution vt0 of (P(y)) such that Ivt0 � Iβ̂ , hence

Ker(∇2
M J (vt0))∩ Tvt0

� Ker(∇2
M J (β̂))∩ Tβ̂ . Iterating this argument shows the

result. ��
Remark 2 For the general group Lasso, the iterative construction is guaranteed to ter-
minate at a non-trivial point. Indeed, if it were not the case, then eventually one would
construct a solution such that 0 �= h ∈ Ker(X) ∩ Ker(D∗) leading to a contradiction
with a classical condition in regularization theory.Moreover, Ker(X)∩Ker(D∗) = {0}
is a sufficient (and necessary in our case) condition to ensure boundedness of the set
of solutions to (P(y)).

8.7 Proof of Theorem 3

(i) We obtain this assertion by proving that all HM are of zero measure for allM,
and that the union is over a finite set, because of (CM ).
• Since J is definable by (CO), ∇F(β, y) is also definable by virtue of Propo-
sition 2.

• Given M ∈ M which is definable, M� is also definable. Indeed, M� can be
equivalently written

M� = M ∩ {β : ∃ε > 0,∀β ′ ∈ M ∩ B(β, ε), J ∈ C2(β ′)}
∩ {β : ∀(u, v) ∈ (∂ J (β))2, 〈u − v, β ′〉 = 0,∀β ′ ∈ Tβ(M)}
∩ {β : ∀βr ∈ M → β and u ∈ ∂ J (β), ∃ur → u s.t. ur ∈ ∂ J (βr )} .

Each of the four sets above capture a property of partial smoothness as intro-
duced in Definition 1. M� involves M which is definable, its tangent space
(which can be shown to be definable as a mapping of β using Proposition 2),
∂ J whose graph is definable thanks to Proposition 3, continuity relations and
algebraic equations, whence definability follows after interpreting the logical
notations (conjunction, existence and universal quantifiers) in the first-order
formula in terms of set operations, and using axioms 1–4 of definability in an
o-minimal structure.
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• Let D : R
p ⇒ R

p the set-valued mapping whose graph is

gph(D) = {(β, η) : η ∈ ri ∂ J (β)} .

FromLemma 8, gph(D) is definable. Since the graph ∂ J is closed (Lemaréchal
and Hiriart-Urruty 1996), and definable (Proposition 3), the set

{(β, η) : η ∈ rbd ∂ J (β)} = gph(∂ J )\ gph(D) ,

is also definable by axiom 1. This entails that AM is also a definable subset
of R

n × M� since

AM = (Rn × M� × R
n) ∩ {(y, β, η) : η = −∇F(βT , y)}

∩ (Rn × {(β, η) : η ∈ rbd ∂ J (β)}) .

• By axiom 4, the canonical projection Πn+p,n(AM) is definable, and its
boundary HT = bd(Πn+p,n(AM)) is also definable by Coste (1999, Propo-
sition 1.12) with a strictly smaller dimension than Πn+p,n(AM) (Coste 1999,
Theorem 3.22).

• We recall now from Coste (1999, Theorem 2.10) that any definable subset
A ⊂ R

n in O can be decomposed (stratified) in a disjoint finite union of q
subsets Ci , definable in O, called cells. The dimension of A is (Coste 1999,
Proposition 3.17(4))

d = max
i∈{1,...,q} di ≤ n ,

where di = dim(Ci ). Altogether we get that

dimHM = dim bd(Πn+p,n(AM)) < dimΠn+p,n(AM) = d ≤ n

whence we deduce that H is of zero measure with respect to the Lebesgue
measure on R

n since the union is taken over the finite set M by (CM ).
(ii) F0(·, y) is strongly convex with modulus τ if, and only if,

F0(μ, y) = G(μ, y) + τ

2
||μ||2,

where G(·, y) is convex and satisfies (CF ), and in particular its domain in μ is
full-dimensional. Thus, (P(y)) amounts to solving

min
β∈Rp

τ

2
||Xβ||2 + G(Xβ, y) + J (β).

It can be recasted as a constrained optimization problem

min
μ∈Rn ,β∈Rp

τ

2
||μ||2 + G(μ, y) + J (β) s.t. μ = Xβ.
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Introducing the image (X J ) of J under the linear mapping X , it is equivalent to

min
μ∈Rn

τ

2
||μ||2 + G(μ, y) + (X J )(μ), (29)

where (X J )(μ) = min
{β∈Rp : μ=Xβ}

J (β) is the so-called pre-image of J under

X . This is a proper closed convex function, which is finite on Span(X). The
minimization problem amounts to computing the proximal point at 0 ofG(·, y)+
(X J ), which is a proper closed and convex function. Thus this point exists and
is unique.
Furthermore, by assumption (CL), the difference function

F0(·, y1) − F0(·, y2) = G(·, y1) − G(·, y2)

is Lipschitz continuous on R
p with Lipschitz constant L||y1 − y2||. It then fol-

lows from Bonnans and Shapiro (2000, Proposition 4.32) that μ̂(·) is Lipschitz
continuous with constant 2L/τ . Moreover, h is Lipschitz continuous, and thus so
is the composed mapping h ◦ μ̂(·). From Evans and Gariepy (1992, Theorem 5,
Section 4.2.3), weak differentiability follows.
Rademacher theoremasserts that a Lipschitz continuous function is differentiable
Lebesgue a.e. and its derivative and weak derivative coincide Lebesgue a.e.,
Evans andGariepy (1992, Theorem2, Section 6.2). Its weak derivative, whenever
it exists, is upper-bounded by the Lipschitz constant. Thus

E

(∣∣∣∂(h ◦ μ̂)i

∂yi
(Y )

∣∣∣) < +∞.

(iii) Now, by the chain rule (Evans and Gariepy 1992, Remark, Section 4.2.2), the
weak derivative of h ◦ μ̂(·) at y is precisely

D(h ◦ μ̂)(y)) = Dh (μ̂(y)) �(y).

This formula is valid everywhere except on the setH ∪ G which is of Lebesgue
measure zero as shown in (i). We conclude by invoking (ii) and Stein’s lemma
(Stein 1981) to establish unbiasedness of the estimator d̂ f of the DOF.

(iv) Plugging theDOF expression (iii) into that of the SURE (Stein 1981, Theorem1),
the statement follows. ��

8.8 Proof of Theorem 4

For (i)–(iii), the proof is exactly the same as in Theorem 3. For (iv): combining the
DOF expression (iii) and Eldar (2009, Theorem 1), and rearranging the expression
yields the stated result. ��
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9 Conclusion

In this paper, we proposed a detailed sensitivity analysis of a class of estimators
obtained by minimizing a general convex optimization problem with a regularizing
penalty encoding a low-complexity prior. This was achieved through the concept of
partial smoothness. This allowed us to derive an analytical expression of the local
variations of these estimators to perturbations of the observations, and also to prove
that the set where the estimator behaves non-smoothly as a function of the observa-
tions is of zero Lebesgue measure. Both results paved the way to derive unbiased
estimators of the prediction risk in two random scenarios, one of which covers the
continuous exponential family. This analysis covers a large set of convex variational
estimators routinely used in statistics, machine learning and imaging (most notably
group sparsity and multidimensional total variation penalty). The simulation results
confirm our theoretical findings and show that our risk estimator provides a viable
way for automatic choice of the problem hyperparameters.

Despite its generality, there are still problems which do not fall within our settings.
One can think for instance to the case of discrete (even exponential) distributions, risk
estimation for non-canonical parameter of non-Gaussian distributions, non-convex
regularizers, or the graphical Lasso.

Extension to the discrete case is far from obvious, even in the independent case.
One can think for instance of using identities derived by Hudson (1978) and Hwang
(1982), but so far, provably unbiased estimates of SURE (not generalized one) are
only available for linear estimators.

If the distribution under consideration is from a continuous exponential family, so
that our results apply, but one is interested in estimating the risk at a function of the
canonical parameter. First, this function has to be Lipschitz continuous, and one has
first to prove a formula of the corresponding SURE. So far, we are only aware of
such results in the Gaussian case (hence our Theorem 3 which addresses this question
precisely).

Strictly speaking, the �1-penalized likelihood formulation of the graphical Lasso in
Yuan and Lin (2007) ((3) or (6) in that reference) does not fall within our framework.
This is due to the fidelity/likelihood term which does not obey our assumptions. Note
that the limitation due to fidelity/likelihood can be circumvented at the price of a
quadratic approximation (Yuan and Lin 2007, Section 4) also used in Meinshausen
and Bühlmann (2006).

Extending our results to the non-convex case would be very interesting to handle
penalties such as SCAD or MCP. This would, however, require more sophisticated
material from variational analysis. Not to mention the other difficulties inherent to
non-convexity, including handling critical points (that are not necessarily minimizers
even local in general), and the fact that the mapping y �→ μ̂(y) is no longer single-
valued. All the above settings will be left to future work.

Acknowledgements This work has been supported by the European Research Council (ERC project
SIGMA-Vision) and Institut Universitaire de France.
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10 Basic properties of o-minimal structures

In the following results, we collect some important stability properties of o-minimal
structures. To be self-contained, we also provide proofs. To the best of our knowledge,
these proofs, although simple, are not reported in the literature or some of them are
left as exercises in the authoritative references (van den Dries 1998; Coste 1999).
Moreover, in most proofs, to show that a subset is definable, we could just write the
appropriate first-order formula (see Coste 1999, Page 12; van den Dries 1998, Section
Ch1.1.2), and conclude using (Coste 1999, Theorem 1.13). Here, for the sake of clarity
and to avoid cryptic statements for the non-specialist, we will translate the first-order
formula into operations on the involved subsets, in particular projections, and invoke
the above stability axioms of o-minimal structures. In the following, n denotes an
arbitrary (finite) dimension which is not necessarily the number of observations used
previously the paper.

Lemma 5 (Addition and multiplication) Let f : � ⊂ R
n → R

p and g : � ⊂ R
n ⊂

R
p be definable functions. Then their pointwise addition and multiplication is also

definable.

Proof Let h = f + g, and

B = (� × R × � × R × � × R) ∩ (� × R × gph( f ) × gph(h)) ∩ S,

where S = {(x, u, y, v, z, w) : x = y = z, u = v + w} is obviously an algebraic (in
fact linear) subset, hence definable by axiom 2. Axiom 1 and 2 then imply that B is
also definable. Let Π3n+3p,n+p : R

3n+3p → R
n+p be the projection on the first n+ p

coordinates. We then have

gph(h) = Π3n+3p,n+p(B)

whence we deduce that h is definable by applying 3n+3p times axiom 4. Definability
of the pointwise multiplication follows the same proof taking u = v · w in S. ��
Lemma 6 (Inequalities in definable sets) Let f : � ⊂ R

n → R be a definable
function. Then {x ∈ � : f (x) > 0}, is definable. The same holds when replacing >

with <.

Clearly, inequalities involving definable functions are accepted when defining defin-
able sets.

There are many possible proofs of this statement.

Proof (1) Let B = {(x, y) ∈ R × R : f (x) = y} ∩ (� × (0,+∞), which is
definable thanks to axioms 1 and 3, and that the level sets of a definable function are
also definable. Thus

{x ∈ � : f (x) > 0} = {x ∈ � : ∃y, f (x) = y, y > 0} = Πn+1,n(B) ,

and we conclude using again axiom 4. ��
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Yet another (simpler) proof.

Proof (2) It is sufficient to remark that {x ∈ � : f (x) > 0} is the projection of
the set {(x, t) ∈ � × R : t2 f (x) − 1 = 0}, where the latter is definable owing to
Lemma 5. ��
Lemma 7 (Derivative) Let f : I → R be a definable differentiable function on an
open interval I of R. Then its derivative f ′ : I → R is also definable.

Proof Let g : (x, t) ∈ I × R �→ g(x, t) = f (x + t) − f (x). Note that g is definable
function on I × R by Lemma 5. We now write the graph of f ′ as

gph( f ′)={(x, y)∈s I × R : ∀ε > 0, ∃δ > 0,∀t ∈ R, |t |<δ, |g(x, t) − yt | < ε|t |}.

Let C = {(x, y, v, t, ε, δ) ∈ I × R
5 : ((x, t), v) ∈ gph(g)}, which is definable since

g is definable and using axiom 3. Let

B = {(x, y, v, t, ε, δ) : t2 < δ2, (v − t y)2 < ε2t2} ∩ C.

The first part in B is semi-algebraic, hence definable thanks to axiom 2. Thus B is
also definable using axiom 1. We can now write

gph( f ′) = R
3\

(
Π5,3

(
R
5\Π6,5(B)

))
∩ (I × R),

where the projectors and completions translate the actions of the existential and uni-
versal quantifiers. Using again axioms 4 and 1, we conclude. ��

With such a result at hand, this proposition follows immediately.

Proposition 2 (Differential and Jacobian) Let f = ( f1, . . . , f p) : � → R
p be

a differentiable function on an open subset � of R
n. If f is definable, then so its

differential mapping and its Jacobian. In particular, for each i = 1, . . . , n and j =
1, . . . , p, the partial derivative ∂ fi/∂x j : � → R is definable.

We provide below some results concerning the subdifferential.

Proposition 3 (Subdifferential) Suppose that f is a finite-valued convex definable
function. Then for any x ∈ R

n, the subdifferential ∂ f (x) is definable.

Proof For every x ∈ R
n , the subdifferential ∂ f (x) reads

∂ f (x) = {η ∈ R
n : f (x ′) ≥ f (x) + 〈η, x ′ − x〉 ∀x ′ ∈ R

n}.

Let K = {(η, x ′) ∈ R
n × R

n : f (x ′) < f (x) + 〈η, x ′ − x〉}. Hence, ∂ f (x) =
R
n\Π2n,n(K ). Since f is definable, the set K is also definable using Lemmas 5 and 6,

whence definability of ∂ f (x) follows using axiom 4. ��
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Lemma 8 Suppose that f is a finite-valued convex definable function. Then, the set

{(x, η) : η ∈ ri ∂ f (x)}

is definable.

Proof Denote C = {(x, η) : η ∈ ri ∂ f (x)}. Using the characterization of the relative
interior of a convex set (Rockafellar 1996, Theorem 6.4), we rewrite C in the more
convenient form

C = {(x, η) : ∀u ∈ R
n,∀z ∈ R

n, f (z) − f (x) ≥ 〈u, z − x〉,
∃t > 1,∀x ′ ∈ R

n, f (x ′) − f (x) ≥ 〈(1 − t)u + tη, x ′ − x〉}.

Let D = R
n × R

n × R
n × R

n × (1,+∞) × R
n and K defined as

K = {(x, η, u, z, t, x ′)∈D : f (z) − f (x) � 〈u, z − x〉), f (x ′) − f (x)

� 〈(1 − t)u + tη, x ′ − x〉}.

Thus,

C = R
2n\Π3n,2n

(
R
3n\Π4n,3n

(
Π4n+1,4n

(
R
4n × (1,+∞)\Π5n+1,4n+1(K )

)))
,

where the projectors and completions translate the actions of the existential and uni-
versal quantifiers. Using again axioms 4 and 1, we conclude. ��
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