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Abstract Social networks and other sparse data sets pose significant challenges for
statistical inference, since many standard statistical methods for testing model/data fit
are not applicable in such settings. Algebraic statistics offers a theoretically justified
approach to goodness-of-fit testing that relies on the theory of Markov bases. Most
current practices require the computation of the entire basis, which is infeasible in
many practical settings. We present a dynamic approach to explore the fiber of a
model, which bypasses this issue, and is based on the combinatorics of hypergraphs
arising from the toric algebra structure of log-linear models. We demonstrate the

E. Gross is supported by the NSF Postdoctoral Research Fellowship, NSF award #DMS-1304167.
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approach on the Holland–Leinhardt p1 model for random directed graphs that allows
for reciprocation effects.

Keywords Algebraic statistics · Markov basis · Hypergraph · Toric ideal ·
Contingency table · Network model · Random graph · Sampling algorithm

1 Introduction

Network data often arise as a single sparse observation of relationships among units,
for example, individuals in a network of friendships, or species in a food web. Such
a network can be naturally represented as a contingency table whose entries indicate
the presence and type of a relationship, and whose dimension depends on the com-
plexity of the model. This representation makes networks amenable to analysis by
standard categorical data analysis tools and, in particular, it brings to bear the log-
linear models literature, e.g., Bishop et al. (1975). However, given that often only a
small sample or even just a single observation of the network is all we have access
to, or that the data are sparse, several problems remain. In particular, in the case of
network models, since quantitative methods are essentially nonexistent, goodness-
of-fit testing is usually carried out qualitatively using model diagnostics. Namely,
the clustering coefficient, triangle count, or another network characteristic is used
for a heuristic comparison between observed and simulated data. In Hunter et al.
(2008), the authors offer a systematic approach for comparing structural statistics
between an observed network and networks simulated from the fitted model and point
out some of the difficulties of fitting the ERGMs. More recently, Goldenberg et al.
(2009) review various network models and discuss modeling and fitting challenges
that remain.

Even for linear exponential families, the problem of determining goodness of fit
is a difficult one for network data. When standard asymptotic methods, such as χ2

approximations, are deemed unreliable (see Haberman 1981), or when the observed
data are sparse, one may want to use exact conditional tests. In such tests, the observed
network (or table) u with sufficient statistic vector S(u) is compared to the reference
set, called the fiber FS , defined to be the space of all realizations of the network under
the given set of constraints S. Unfortunately, the size and combinatorial complexity
of the fiber are the main obstacle for complete fiber enumeration, so that even in
small problems (see Slavković et al. 2015, Sect. 4), determining the exact distribution
is often unfeasible. Moreover, fiber enumeration and sampling is crucial not only
for goodness-of-fit testing but also for data privacy considerations (see Slavković
2010).

The theory ofMarkov bases provides a possible solution to the problem of sampling
the fibers for any log-linear model. Namely, a Markov basis is a set of “moves” that,
starting from any point in a fiber, allows one to perform a random walk on the fiber
and visit every point with positive probability. Therefore, the standard Metropolis–
Hastings algorithm provides a way to carry out exact tests and as argued by Diaconis
and Sturmfels (1998), this procedure yields bona fide tests for goodness of fit. Further-
more, every log-linear model comes equipped with a non-unique but finite Markov
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basis. The existence and finiteness of the basis is a consequence of the main result of
Diaconis and Sturmfels (1998), what is now often called the Fundamental Theorem of
Markov Bases in the algebraic statistics literature. However, two main computational
challenges remain open to make this theory useful for network and large table data
in practice. We describe these challenges broadly next and, then, address them in the
remainder of this manuscript.

The first computational challenge is in determining theMarkov basis itself. The fact
that a Markov basis for a model guarantees to connect every one of its fibers makes it a
highly desirable object to obtain. Unfortunately, the fastest algorithms for computing
the moves for an arbitrary model (these algorithms exploit the toric structure of the
model) are not fast enough. Even for some basic log-linear network models, it can take
hours to find all Markov moves for networks with less than ten nodes. This motivates
a structural study of Markov bases for a given fixed family of models. To this end,
the literature provides many examples, including Aoki and Takemura (2003, 2005),
Develin and Sullivant (2003), Dobra (2003), Dobra and Sullivant (2004), Hara et al.
(2010), Hara et al. (2009b, a), Haws et al. (2014), Král et al. (2010), Norén (2015),
Rapallo andYoshida (2010), Sturmfels andWelker (2012) andYamaguchi et al. (2013).
Researchers in applied fields may also be interested in a non-Markov-basis method
by Hara et al. (2012) which relies on generating moves that are random combinations
of lattice basis elements. As lattice bases are easy to calculate even for complicated
models, this method is promising. However, it does not take into account observed data
and will thus result in a large number of the moves generated being non-applicable.
Since our example of interest is a network model with inherent sampling constraints,
we should also note that such constraints can compound the issue of computing a
set of moves guaranteed to connect each fiber. Sampling constraints restrict the fiber,
and in fact, if one is interested in sampling a restricted fiber, Ogawa et al. (2013) and
Aoki et al. (2012) show that one needs a larger set of moves, for example a Graver
basis, to guarantee connectivity. A Graver basis (see Drton et al. (2009), Sect. 1.3;
Aoki et al. (2012), Sect. 4.6 for definition and discussion) is a particular Markov basis
and generally contains more moves than a minimal Markov basis (where minimal is
defined with respect to set inclusion).

The second computational challenge comes from the fact that knowing an entire
Markov basis for a model may still not be sufficient to run goodness-of-fit tests effi-
ciently. Namely, Markov bases are data-independent (see Dobra et al. 2008, Problem
5.5.). To paraphrase Aoki et al. (2012): since a Markov basis is common for every
fiber FS (that is, for all values that the vector S of sufficient statistics can take),
the set of moves connecting the particular fiber of the observed data u ∈ FS(u)

will usually be significantly smaller than the entire basis for the model. To handle
this issue, Dobra (2012) suggests generating only moves needed to complete one
step of the random walk, that is, only applicable moves. Dobra refers to the set
of moves generated in this way as a dynamic Markov basis, since the full basis is
not generated ahead of time. An example of this strategy is found in Ogawa et al.
(2013), where the authors present an algorithm for generating a random element
of the Graver basis for the beta model. The beta model is a basic generalization
of the Erdös – Rényi random graph model: an ERGM for simple undirected ran-
dom graphs where the degrees of the nodes form the sufficient statistics. In fact,
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this work can be cast within a more general framework of sampling from the space
of contingency tables with fixed properties. A commonly fixed set of table prop-
erties are marginals of the table: they represent sufficient statistics of many—but
not all—log-linear models. The paper Dobra (2012) focuses on log-linear models
whose sufficient statistics are fixed marginals. There, the Markov moves are obtained
through a sequential adjustment of cell bounds, a method that appears in sequen-
tial importance sampling (SIS); see, for example, Chen et al. (2005) and Dinwoodie
and Chen (2011). In contrast, we build a dynamic Markov basis by exploiting the
combinatorics of the model. This allows us to complement Dobra’s methodology
to log-linear models whose sufficient statistics are not necessarily table marginals
and extend that of Ogawa, Hara and Takemura to include also directed graph mod-
els.

In this manuscript, we explore the problem of performing goodness-of-fit tests for
log-linear models when sufficient statistics are not necessarily table marginals, and
in the presence of sampling constraints. In this case, there is no general methodology
for obtaining the part of the Markov bases which is relevant for the observed data.
In this work, we address the issues raised above from the point of view of algebraic
statistics and combinatorial commutative algebra. We propose the use of parame-
ter hypergraphs to generate Graver moves that are data-dependent and, therefore,
applicable to the observed network (or table). Using Graver bases ensures connectiv-
ity of restricted fibers, while respecting sampling constraints. Furthermore, as Petrović
and Stasi (2014) frame the Graver basis determination problem in terms of combina-
torics of hypergraphs, we add this combinatorial ingredient to the recipe which allows
us to generate the moves in a dynamic fashion, based on the observed table or network.
The sufficient statistics for the model need not be table marginals; the only assumption
we impose, mostly for simplicity, is that the model parametrization is squarefree in
the parameters (see Sect. 2 for details). The random walk associated with the moves
we produce in this way is irreducible, symmetric and aperiodic, and so we may use the
Metropolis-Hastings algorithm (see Robert and Casella 1999, Sect. 7) to implement a
Markov chain whose stationary distribution is equal to the conditional distribution on
the fiber. This allows us to sample from the fiber of an observed network or table as
desired.

We illustrate our methodology and apply dynamically generated Markov bases to
the p1 model from Holland and Leinhardt (1981) (see also discussion in Fienberg
and Wasserman 1981); specifically because previous methods are not applicable to
this model directly. In particular, the sufficient statistics of the p1 model are not table
marginals; instead they are of two types: one is a sub-table marginal, and the other is a
subtable sum.This can be seen easilywhen representing themodel in contingency table
form following Fienberg and Wasserman (1981). Holland and Leinhardt proposed to
model a random directed graph by parametrizing propensity of nodes to send and
receive links as well as reciprocate edges, where dyads are independent of each other.
Petrović et al. (2010) and Fienberg et al. (2010) study the algebra and geometry of these
models and derive structural results for theirMarkov bases. Remarkably, themoves can
be obtained by a direct computation only for networkswith less than 7 nodes, using 4ti2
(2008), currently the fastest software capable of producing such bases. Thus testing
model fit for larger networks is not feasible using the traditional Metropolis-Hastings
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Fig. 1 Sampling distribution of the chi-square statistic: histograms from simulation running Algorithm 2
for the p1 model with edge-dependent reciprocation. aAffinity network derived from Sampson’s monastery
data set in Sampson (1968). Observed chi-square value: 404.7151. p = 0.986. b Chesapeake food web
data set derived from Baird and Ulanowicz (1989). Observed chi-square value: 2049.403. p = 0.03459

algorithm. Using a straightforward implementation of Algorithm 2 in R (2005), which
we have made available in supplementary material (Gross et al. 2014), we test several
familiar network data sets. Figure 1a shows the histogram of the values of the chi-
square statistics for 1,000,000 steps in the chain, including 50,000 burn-in steps),
obtained from the Sampson (1968) monastery study. The horizontal axis represents
chi-square statistic values. The observed value of the chi-square statistic for the monk
dataset is represented by the vertical red line, giving a visual representation of the
large p-value of 0.986 and thus a pretty good model fit. A similar histogram in Fig.
1b shows that the p1 model does not fit the Chesapeake Bay food web data so well:
the estimated p-value is 0.03459 after 1,000,000 moves.

This paper is organized as follows: Section 2 develops the combinatorial approach
to the construction of Markov bases dynamically and provides the necessary mathe-
matical background. Section 3 illustrates the developed methodology for the Holland
and Leinhardt’s p1 model. Examples and simulations are given in Sect. 4. Specifically,
further discussion and analyses of the model fit for the directed networks arising from
the monk and food web data can be found in Sects. 4.4 and 4.5. Sections 4.3 and 4.2
provide studies of mobile money networks of a Kenyan family and of four networks
simulated from the p1 distribution, respectively. Finally, simulations on a small syn-
thetic network in Sect. 4.1 indicate good mixing times and quick convergence of the
p-value estimate (e.g., see Fig. 7b). As this is best illustrated when the entire fiber has
been determined exactly, we also consider a small 591-network fiber for an undirected
graph on 8 nodes from Sect. 5.1 in Ogawa et al. (2013). Our walk explores the entire
fiber in as little as 15,000 moves and the total variation distance from the uniform dis-
tribution is below 0.25 after 10,000 moves. This improves the fiber discovery rate and
could be due to the fact that the steps in the simulated walks are longer than minimal
Markov moves would suggest, since we are generating a superset of the squarefree
applicable part of the Graver basis in our algorithm.
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2 Parameter hypergraphs of log-linear models: dynamic moves for
Metropolis-Hastings

Here we introduce the mathematical construction that allows us to dynamically gen-
erate applicable moves for sampling fibers of general log-linear models. Specifically,
Theorem 1 and Corollary 1 show that random walks on fibers of log-linear models
are equivalent to sampling sub-hypergraphs of the parameter hypergraph with a fixed
degree sequence, revealing the combinatorial nature of the applicable move construc-
tion problem. We end this section by demonstrating our theory and our method for
sampling fibers in a small example in Example 3. Our main application in this paper,
however, is the subject of Sects. 3 and 4, where we explain how to sample elements
from p1 fibers.

2.1 Markov bases: fundamentals

Consider a log-linear model on an m1 × · · · ×mu contingency tableU with sufficient
statistic S. Let u ∈ Z

m1×···×mu≥0 be a realization of the tableU , with observed sufficient

statistic S(u). The fiber of u, which we will denote FS(u) ⊂ Z
m1×···×mu≥0 (or simply

FS if the observed table u is implied from the context), is the space of all realizations
v of the table whose sufficient statistic is the same as that of u, i.e., S(v) = S(u). For
two tables in the same fiber u, v ∈ FS , the entry-wise difference u − v is called the
move from table v to table u. This move u − v is another r -way table with entries
equal to zero in the cell (i1, . . . , iu) if ui1,...,iu = vi1,...,iu , a positive integer in the
(i1, . . . , iu) cell if ui1,...,iu > vi1,...,iu , and a negative integer in the (i1, . . . , iu)-cell
otherwise. Note that, by definition, S is linear; thus the sufficient statistic of any move
connecting two tables in the same fiber, S(u−v), is zero. In particular, adding a move
to a contingency table does not change the value of the sufficient statistic vector. We
will call any table m ∈ Z

m1×···×mu such that S(m) = 0 a Markov move on FS . Thus,
to discuss walks on a fiber, we may either specify the start and target tables v and u,
or the Markov move m = u − v.

AMarkov basis B is a set of Markov moves such that for any fiber FS and any two
contingency tables u, v ∈ FS = FS(u), there exists a sequence ofmovesm1, . . . ,mk ∈
B such that v is reachable from u by the corresponding walk on the fiber FS(u), i.e.,
u = v + ∑k

i=1 mi and each partial sum ul = v + ∑l
i=1 mi , l < k, is a table in

the fiber FS(u) (that is, ul has nonnegative entries). The existence and finiteness of
a Markov basis is guaranteed by the Fundamental Theorem of Markov bases from
Diaconis and Sturmfels (1998), which states that the moves correspond to generators
of an algebraic object (namely, the toric ideal) associated with each log-linear model.
Equippedwith a set ofmoves, one can perform a randomwalk on the fiberFS . A priori,
the resulting Markov chain need not be irreducible; however, if the set of moves is
a Markov basis, then irreducibility is guaranteed. Moreover, a Metropolis-Hastings
algorithm can be used to adjust the transition probabilities, returning a chain whose
stationary distribution is exactly the conditional distribution on the given fiber.

In the remainder of this section, we discuss dynamically constructing arbitrary ele-
ments of a Markov basis B for log-linear models using the parameter hypergraph of
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the model. For simplicity, we restrict ourselves to log-linear models with 0/1 design
matrices (that is, parameters do not appear with multiplicities in the model parame-
trization), although the definition and construction could be extended to amore general
case. As mentioned in the introduction, this method will be particularly useful in sev-
eral cases: when B cannot be computed in its entirety. For example, this can be the case
when the model is not decomposable, meaning that the divide-and-conquer strategy
of Dobra and Sullivant (2004) cannot be applied, or when sufficient statistics of the
model are more complex than table marginals and the table is large. To that end, we
define the main tool of our construction.

2.2 From tables to hypergraphs

Let M := MS be any log-linear model for discrete random variables Z1, . . . , Zm

with sufficient statistic S. Suppose that the joint probabilities of the model are such
that the parameters θ1, . . . , θn appear without multiplicities (that is, S can be obtained
from the table in a linear fashion).

Definition 1 The model M is encoded by a hypergraph HM on the vertex set
θ1, . . . , θn , which is constructed as follows: {θ j } j∈J is an edge of HM if and only if the
index set J describes one of the joint probabilities in the model, i.e., there exist values
i1, . . . , im such that, up to the normalizing constant, Prob(Z1 = i1, . . . , Zm = im) ∝∏

j∈J θ j . The hypergraph HM is called the parameter hypergraph of the model M.

Notation 1 For conveniencewegather the notational conventionswewill use through-
out the manuscript. Log-linear models will be denoted by MS with sufficient
statistic S, or simply M when S is clear from context. The parameter hypergraph
HM = (V, E) has vertex set V and edge set E . Edges in the hypergraph are written
as products of parameters instead of the usual lists, e.g., θ1 · · · θk will represent the
edge {θ1, . . . , θk}.

The easiest way to understand HM is to view it as depicting the structure of para-
meter interactions. Since vertices of the hypergraph represent parameters of themodel,
edges in HM collect all the parameters that appear in a joint probability under the
model. There is a one-to-one map between the contingency table cell labels and edges
in the parameter hypergraph. Let us illustrate on two simple but familiar examples.

Example 1 (Two independent random variables) Consider the independence model
of two discrete random variables Z1 and Z2, taking a and b values, respectively.
Denote the marginal probabilities Prob(Z1 = i) and Prob(Z2 = j) by xi and y j ,
respectively. Since the independence model for Z1 and Z2 is specified by the formula
Pi j := Prob(Z1 = i, Z2 = j) = xi y j , we see that the parameter hypergraph HZ1 ⊥⊥ Z2

has a+b vertices: x1, . . . , xa, y1, . . . , yb and an edge between every xi and y j . Thus, in
this case, the hypergraph is the complete bipartite graph on {x1, . . . , xa}�{y1, . . . , yb},
depicted in Fig. 2a.

Example 2 (Quasi-complete independence) For a l ×m×n table, the quasi-complete
independence model is a complete independence model with structural zeros. If the
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Fig. 2 Two examples of parameter hypergraphs. a Independence model: Example 1. bQuasi independence
model: Example 2

cell (i, j, k) is a structural zero, then Prob(Z1 = i, Z2 = j, Z3 = k) = 0; otherwise,
Prob(Z1 = i, Z2 = j, Z3 = k) = xi y j zk where xi = Prob(Z1 = i), y j = Prob(Z2 =
j) and zk = Prob(Z3 = k) are marginal probabilities.
To obtain the parameter hypergraph for the quasi-complete independence model,

we start with the complete 3-partite hypergraph with vertex partition V1, V2 and V3
such that #V1 = l, #V2 = m and #V3 = n and then remove every edge that corresponds
to a cell with a structural zero. The hypergraph in Fig. 2b is the parameter hypergraph
for the quasi complete independence model on a 3 × 3 × 3 table where all cells are
structural zeros except (1, 1, 1), (1, 1, 2), (2, 2, 2), (2, 3, 3), (3, 2, 1) and (3, 3, 3).

In the next section (Definition 5) we will see a more complex example in Hp1 , the
parameter hypergraph for the edge-dependent reciprocation version of the p1 model.

A crucial observation about the parameter hypergraph is that it not only encodes
the parameter interactions, but also that any observed table can be viewed as a subset
of its edges, with multiplicities if the model allows them. Specifically, suppose the
table u has an entry 1 in the cell (i1, . . . , iu). If the model postulates Prob(X1 =
i1, . . . , Xu = iu) ∝ θ j1 · · · θ jk , then the (i1, . . . , iu)-cell entry is represented by the
edge θ j1 · · · θ jk . A larger entry (say, 3) in the table would be represented by an edge
with multiplicities (the edge θ j1 · · · θ jk would have multiplicity 3). Multiplicities are
recorded with a function μ : E → Z (e.g., μ(θ j1 · · · θ jk ) = 3).

Definition 2 The list of edges

{θ j1 · · · θ jk : u(i1,...,iu) > 0 and Prob(X1 = i1, . . . , Xu = iu) ∝ θ j1 · · · θ jk },
where edge θ j1 · · · θ jk appears μ(θ j1 · · · θ jk ) = u(i1,...,iu) times,

will be denoted by e(u). It is the multiset of edges representing the table u and has
support in the edge set E of the parameter hypergraph. Finally, for the multiset of
edges E of the parameter hypergraph such that e(u) = E , we will write e−1(E) to
denote the table u.

Next, notice that the sufficient statistic S(u) can be calculated from the hypergraph
edges e(u), since the vertices covered by e(u) represent those natural parameters that
affect the computation of S(u). In the independence model example (cf. Example 1),
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if u is the 2 × 2 table with 1 in cell (1, 2) and a 2 in the cell (2, 1), then e(u) =
{x1y2, x2y1, x2y1}. The entries of the sufficient statistic of the table under Z1 ⊥⊥ Z2
are the row and column sums; the first row having sum 1means that x1 appears once in
the set of edges e(u); in other words, the degree of the vertex x1 is 1. The first column
having sum 2 means that y1 has degree 2 in e(u). Therefore, the sufficient statistic
vector S(u) equals the degree vector of the multi-hypergraph (V, e(u)). It is obtained
by simply counting the number of edges incident to each vertex in e(u) and setting
the degree of all other vertices in V to zero.

Finally, we describe how to construct and explore the fiber FS(u). Preserving the
value of the vector S(u) means finding another edge set e(v) such that the degree
vector of e(v) is the same as that of e(u). If we view the edges e(u) as colored red
and e(v) blue, then the move v − u corresponds to a collection of edges (e(v), e(u)),
where each vertex appears in the same number of blue and red edges.

We have thus shown the following is an equivalent way to view the fiber FS(u) and
its connecting moves:

Theorem 1 Recall that an observed table u is represented by a multiset e(u) of edges
on the hypergraph HM.

(a) The fiber FS(u) consists of all multisets of edges of HM with degree vector equal
to S(u).

(b) Anymove v−u in theMarkov basis connecting u to some v ∈ FS(u) is represented
by the edge sets (e(v), e(u)) over the parameter hypergraph HM such that the
degree vector of e(v) is the same as that of e(u).

In particular, exact testing for a log-linear model M reduces to finding all sub-
hypergraphs of HM with a given degree sequence.

Theorem 1 implies that sampling the fiber of any log-linear model is equivalent
to sampling the space of sub-hypergraphs of the parameter hypergraph with fixed
degree sequence and can thus be used to approximate the exact p-value. We call a
collection (e(v), e(u)) from Theorem 1 a (color-)balanced edge set; balanced edge
sets are defined and discussed in more detail in Petrović and Stasi (2014). It is shown
in Petrović and Stasi (2014) that the collection of all such sets constitute a Markov
(and in fact, the Graver) basis. Complexity of minimal Markov moves to connect a
given (unrestricted) fiber is studied in Gross and Petrović (2013).

For convenience, let us summarize here the hypergraph notation we will use in the
following section:

Notation 2 For an observed table u, the (multi)set of red (observed) hyperedges e(u)

will be denoted byR, and any blue (multi)set that balances the vertices covered byR
will be denoted by B. Note that every B corresponds to a table v ∈ FS(u). The move
v − u will be denoted as W = (B,R).

Remark 1 By abuse of notation, we will also denote by (B,R) only those edges over
HM representing the non-zero entries of the move v − u. Indeed, if a cell has the
same value in both tables, the move directly connecting the tables does not affect that
cell; thus the corresponding edge need not be recorded in (B,R). If it is included in
this set, then the move simply subtracts and adds 1 to the cell in the table, that is, it
removes and then adds back the particular edge in e(u).
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2.3 Sampling constraints and applicable moves

Asmentioned briefly in the introduction, a Markov basis will connect all table realiza-
tions in a fiber that are subject to the constraint that each table entry is non-negative.
However, in the presence of table cell bounds or structural zeros (e.g., Bishop et al.
1975, Sect. 5.1), Markov moves will inevitably produce tables whose cell entries
exceed these bounds. These sampling constraints often arise in real-world data. In the
network modeling case, a structural zero means a certain relation or edge can never be
observed, while a cell bound puts a restriction on howmany times an edge between two
nodes can be observed in any instance of the network. In fact, most (simple) network
models begin with a basic assumption that allows only one edge per dyad, for exam-
ple, the p1 model from Holland and Leinhardt (1981) (see also Fienberg et al. 2010)
and the beta model from Chatterjee et al. (2011). This introduces another problem
for running random walks on fibers: at any given step, the table or network produced
may not be observable, and so many of the steps in the walk will be rejected. In fact,
these rejections are likely to occur because the usual Markov bases are blind to data
and sampling constraints. To compound this problem, a Markov basis only guarantees
that the fiber of non-negative table realizations is connected. It is quite reasonable to
expect that there exist two tables in the same fiber such that every path connecting
them traverses a table that does not satisfy the additional cell bounds. In this sense,
the sampling constraints have suddenly disconnected the fiber FS! With this in mind,
we will differentiate between the usual fiber FS and what we call the observable fiber
F S :

Definition 3 The observable fiber F S � FS is the set of all realizations u of the
contingency table U ∈ Z

m1×···×mu≥0 with nonnegative entries and sufficient statistic
S that respect the sampling constraints of the model, i.e., integer bounds on cells or
structural zeros.

For example, in the p1 model, the observable fiberF S contains only simple directed
graphs, whichmeans each cell in the contingency table representing the directed graph
is either a 0 or a 1. Naturally, there is a corresponding condition on the hypergraph:
no edge in e(u) representing the table u can have multiplicity larger than 1. Thus any
move (B,R) applied to e(u) ⊇ R must be such that in the resulting set of edges,
(e(u) \ R) ∪ B ⊆ HM, every edge appears at most once.

For the case of 0/1 contingency tables, that is, tables with cell bound of 1 every-
where, Hara and Takemura (2010) study the observable fibers and show in Proposition
2.1 that the squarefree part of the Graver basis will connect any fiber F S respecting
0/1 sampling constraints. Here, “squarefree part” simply means that each entry in
the table representing the move u − v is either 0 or 1; we will say that such a move
respects the 0/1 sampling constraint. Their result is, in fact, more general, and applies
to higher integer cell bounds and structural zeros as well.

Proposition 1 (Hara and Takemura 2010) The elements of the Graver basis which
respect the sampling constraints suffice to connect the observable fiber in all cases
where sampling constraints are integer bounds on cells.
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The proof relies on an algebraic fact that moves correspond to binomials in a toric
ideal, and every binomial in the ideal can be written as a conformal sum of Graver
basis elements. We will not go into technical details of this result here; the reader is
referred to Sturmfels (1996) and recent text Aoki et al. (2012).

In general, there are more squarefree moves in the Graver basis than there are in a
minimal Markov basis, though we should be clear that the latter need not be a subset
of the former. In particular, the set of squarefree Graver elements almost never equals
the squarefree moves from a minimal basis. Moreover, the Graver basis is notoriously
difficult to compute, providing another reason against pre-computing the moves for
the given model, and instead, generating dynamically only those moves that can be
applied to the observed table or network and remain in the observable fiber F S .

Definition 4 Amove v−u is said to be applicable to a point u in the fiber (equivalently,
to the network represented by a table u) if it produces another point v in the observable
fiber F S , respecting the sampling constraints of the model at hand.

In terms of the hypergraph edges, the move v−u, represented as (B,R), is applica-
ble if (e(u)\R) ∪ B = e(v) for some table v ∈ F S .

We now extend Theorem 1 to characterize applicable Graver moves in terms of the
parameter hypergraph. By Theorem 2.8 in Petrović and Stasi (2014) and the Funda-
mental Theorem of Markov bases, any move corresponds to a balanced edge set of
HM. Furthermore, moves in the Graver bases correspond to the primitive balanced
edge sets of HM. We can summarize applicable Graver moves in terms of HM in the
following way:

Corollary 1 Adopt Notation 2. Any move v − u in the Graver basis that is applicable
to u is a balanced edge set (B,R) of the parameter hypergraph HM such that

1. R ⊆ e(u),
2. (e(u)\R) ∪ B = e(v) for some table v ∈ F S and
3. there exists no move (B′,R′) such that B′ ⊂ B and R′ ⊂ R.

In the result above, (1) ensures non-negativity of the resulting table v, (2) ensures
the move is applicable and (3) ensures the move is a Graver basis element. That
the moves connect the observable fiber of tables u is a corollary of Proposition 1. In
practice, checking condition (3), primitivity, is a non-trivial task; instead, an algorithm
that produces each Graver move with positive probability suffices for goodness-of-fit
testing purposes. For example, in Sect. 3 we run walks on fibers using Graver basis
elements along with larger applicable moves.

In summary, Corollary 1 gives us the exact recipe we need to dynamically generate
applicable moves.

2.4 Metropolis-Hastings using parameter hypergraphs

Now that we have the language to describe applicable moves in terms of the parame-
ter hypergraph, we describe a Metropolis algorithm where the moves are generated
dynamically with respect to the parameter hypergraph. In particular, we embed the
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combinatorial idea from Corollary 1 within the Metropolis–Hastings algorithm to
perform randomwalks on fibers.We refer to it as theMetropolis–Hastings using para-
meter hypergraphs to distinguish it from the Metropolis–Hastings algorithm stated,
for example, in (Aoki et al. 2012, Algorithm 2.1) and (Drton et al. 2009, Algorithm
1.1.13). The latter requires a Markov basis as input, while the algorithm proposed
below constructs moves dynamically from the current state.

Algorithm 1: Metropolis–Hastings using parameter hypergraphs
input : u ∈ T (n), a contingency table (or G = g, a network represented by u),

S(u), the sufficient statistic for the model M,
N the number of steps,
f (·|S(u)) conditional probability distribution,
GF(·), test statistic

output: Estimate of p-value

1 Compute the MLE p̃.
2 Set GFobserved := GF(u).
3 Randomly select a multiset of hyperedges R from e(u).
4 Find a multiset of hyperedges B from HM that balances R, ensuring that each
Graver move (B,R) has positive probability of being constructed.

5 Set m = e−1 (R) − e−1 (B).

6 q = min
{
1, f (U=u+m|t)

f (U=u|t)
}
.

7 u =
{
u + m, with probability q

u, with probability 1 − q

8 if GF (u) > GFobserved then
9 k = k + 1.

10 Repeat Steps 3-9 N times.
11 Output k

N .

To carry out the specific implementation of Steps 3 and 4 for a given log-linear
model, one should take advantage of the model’s specific structure revealed by its
parameter hypergraph HM. Namely, the observed table u should be interpreted as a
multiset of edges e(u) on HM, as explained in Theorem 1(a). Then, these edges should
be rearranged into another set of edges on HM with the same degree sequence: this is
what the move (R,B) represents. Of course, we cannot determine the specifics of the
procedure of findingB givenR for every possible model at once, because the structure
of the hypergraph dictateswhich edges are allowed andwhich are not. This is a difficult
problem, but there is hope that specific models used in practice and, therefore, their
associated HMs, are generally well structured.

In order to achieve convergence in Algorithm 1, attention needs to be paid to the
proposal for B in Step 4. Symmetry and aperiodicity of the Markov chain produced
will suffice though; irreducibility is automatic as we require the set of moves we
generate to be a superset of the Graver basis. Indeed, if the procedure for finding B
in Step 4 is symmetric and aperiodic for any choice of R, then Algorithm 1 is in fact
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a Metropolis–Hastings algorithm and, as N → ∞, the output k/N will converge to
P(GF(U ) ≥ GF(u) |U ∈ FS(u)) (Drton et al. 2009; Robert and Casella 1999).

In Sect. 3, we implement Steps 3 and 4 of Algorithm 1 to dynamically produce
dynamically applicable moves for the Holland–Leinhardt p1 model by relying on the
nice structure of its parameter hypergraph, while ensuring that our proposal is sym-
metric and aperiodic. A smaller example illustrating the process on the independence
model, a model that should be familiar to the reader, appears in Example 3.

The use of HM allows us to bypass two crucial issues of the usual chain (Diaconis
and Sturmfels (1998)), which relies on precomputing a minimal Markov basis, and
which are summarized in the last paragraph of Dobra (2012). First, Algorithm 1
does not require computing the full Markov basis, or the full Graver basis as may be
required due to sampling constraints. Second, the number of rejections in the usual
Metropolis-Hastings are significantly reduced, since rejections are due to the fact that
most moves drawn from the full Markov basis will be non-applicable to the current
table and our method will never generate a move that violates the lower bounds of the
entry-constrains. This, in turn, should have positive impact to the mixing time of the
chain.

Example 3 (Steps 3 and 4 of Algorithm 1 for the independence model) Suppose we
observe a 5 × 5 contingency table all of whose entries are 0 except the (1, 1) and
(2, 2) entries, which are 1. There are 200 moves in a minimal Markov basis for the
independence model Z1 ⊥⊥ Z2. However, only one of those is applicable, namely

−1 1 0 0 0
1 −1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

,

or,written in terms of the parameter hypergraph,W = (B,R)whereB = {x1y2, x2y1}
andR = {x1y1, x2y2}. Thismove replaces the entries (1, 1) and (2, 2) by 0, and entries
(1, 2) and (2, 1) by 1. Any other move will produce negative entries in the table and
thus move outside the fiber. A more interesting example can be similarly constructed
on a k-way table that is either sparse or has many non-zero entries but F S allows only
0/1 entries.

Next, suppose the observed table is

u =

3 2 0 1 0
1 0 0 0 1
0 0 0 2 0
0 1 0 0 0
0 0 0 0 0

.

The table u is represented by the multiset of edges

e(u) = {x1y1, x1y1, x1y1, x1y2, x1y2, x1x4, x2y1, x2y5, x3y4, x3y4, x4y2}
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y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

x1 x2 x3 x4 x5

Fig. 3 Example 3: parameter hypergraph (left); observed tables e(u) and e(v)with applicable move (B,R)

highlighted (center and right)

from the independence model (hyper)graph illustrated in Fig. 2a. Denote the bipartite
(hyper)graph in Fig. 2a as G. It is known that any Markov move for the indepen-
dence model corresponds to a collection of closed even walks on G, and any Graver
move corresponds to a primitive closed even walk on G. For a detailed account of
the correspondence between primitive balanced edge sets of G and primitive closed
even walks (see Villarreal 2000). Due to this correspondence, a natural procedure for
performing Step 4 in Algorithm 1 is to randomly select a set of edges from e(u), say,
R = {x1y1, x2y5, x3y4}, and then complete a closed even walk onR, so that the new
edges form B = {x2y1, x3y5, x1y4}. Notice R and B have the same degree vector
and (B,R) is applicable to u. This move is depicted in Fig. 3. The first figure is the
parameter hypergraph. The second represents the observed table e(u), with edges in
R highlighted. The third is the edge set e(v)with B highlighted. The resulting table is

v =

2 2 0 2 0
2 0 0 0 0
0 0 0 1 1
0 1 0 0 0
0 0 0 0 0

.

We note that if every multiset of e(u) of the same size is drawn with equal proba-
bility while selectingR, then the procedure described above would be symmetric and
aperiodic, and thus, Algorithm 1 would converge as desired.

3 Goodness-of-fit testing for the p1 model

In a seminal 1981 paper (Holland and Leinhardt 1981), Holland and Leinhardt intro-
duced what they referred to as the p1 model for dyadic relational data in a social
network summarized in the form of a directed graph. Their model, which is log-linear
in form (Fienberg andWasserman 1981), allows for effects due to differential attraction
(popularity) and expansiveness, as well as an additional effect due to reciprocation.
For each dyad, a pair of nodes (i, j), the parameter αi describes the effect of an out-
going edge from i , and β j the effect of an incoming edge pointed towards j , while
ρi j corresponds to the added effect of reciprocated edges. The parameter θ quantifies
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the average “density” of the network, i.e., the tendency of having edges, and λi j is a
normalizing constant to ensure that the probabilities for each dyad (i, j) add to 1.

Given a directed graph, each dyad (i, j) can occur in one of the four possible con-
figurations: no edge, edge from i to j , edge from j to i and a pair of reciprocated
edges between i and j . The model postulates that, for each pair (i, j), the probabili-
ties of observing the four possible configurations, in that order, satisfy the following
equations:

pi j (0, 0) = exp[λi j ]
pi j (1, 0) = exp[λi j + αi + β j + θ ]
pi j (0, 1) = exp[λi j + α j + βi + θ ]
pi j (1, 1) = exp[λi j + αi + β j + α j + βi + 2θ + ρi j ].

where
∑

i

αi =
∑

j

β j = 0.

We will focus on the edge-dependent version of the reciprocation parameter, where
ρi j = ρi + ρ j + ρ.

Making the following substitutions

α′
i = eαi+θ , β ′

i = eβi , ρ′
i = e

1
2ρ+ρi , λ′

i j = eλi j

and ignoring the superscripts for convenience, we arrive at the following simplified
equations to describe the probability of observing each configuration for a pair (i, j):

pi j (0, 0) = λi j

pi j (1, 0) = λi jαiβ j

pi j (0, 1) = λi jα jβi

pi j (1, 1) = λi jαiβ jα jβiρiρ j .

While normalizing constants are usually ignored, we will follow Petrović et al.
(2010) and treatλi j as amodel parameter. The advantage of this technique is that, given
an observable network g, these extra parameters ensure that the sampling constraint of
a dyad (pair) {i, j} being observed in one and only one state is satisfied for all networks
in FS(g). Effectively this implies that every point in the fiber FS(u) of a network u is
observable. So while in this case we do not need to distinguish between the observable
fiber and the fiber, we state our main result regarding the observable fiber to emphasize
how this approach generalizes to other network models.

Definition 5 (The parameter hypergraph of the p1 model) We will denote the para-
meter hypergraph of the p1 model as Hp1 . Recall that the hyperedges of Hp1 are
determined by the parameters appearing in the joint probabilities of the model. Thus,
for the p1 modelwith edge reciprocation there are three types of hyperedges: singletons
(corresponding to pi j (0, 0) for each dyad (i, j)), hyperedges of size 3 (corresponding
to pi j (1, 0) and pi j (0, 1)) and hyperedges of size 7 (corresponding to pi j (1, 1)).
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More formally, Hp1 = (Vp, E), where Vp = {αi , βi , ρi : 1 ≤ i ≤ n} ∪ {λi j :
1 ≤ i < j ≤ n}, and E = E1 ∪ E3 ∪ E7, with E1 = {λi j : 1 ≤ i < j ≤ n},
E3 = {αiβ jλi j : 1 ≤ i �= j ≤ n}, and E7 = {αiα jβiβ jρiρ jλi j : 1 ≤ i < j ≤ n}.

By definition, the sufficient statistics of the p1 model are the in- and out- degrees
of every node in the network and, in the case of edge-dependent reciprocation, the
counts of reciprocated edges incident to each node. Interpreting the network as a
contingency table in a natural way as in Fienberg and Wasserman (1981) reveals that
these statistics are not table marginals; instead they are subtable sums and marginals
of a specific lower-dimensional subtable.

3.1 Markov moves for the p1 model

Here we describe the form of a Markov move W = (B,R) for the p1 model with
edge-dependent reciprocation in terms of the parameter hypergraph Hp1 given in
Definition 5. The moves can be described in terms of balanced edge sets on a graph
obtained by contracting hyperedges in Hp1 . Note that by definition, balanced edge
sets on graphs reduce to collections of closed even walks.

Let An be the undirected bipartite graph on 2n vertices with vertex set

V (An) = {αi | 1 ≤ i ≤ n} ∪ {βi | 1 ≤ i ≤ n}
and edge set

E(An) = {αiβ j | 1 ≤ i �= j ≤ n}.
Let Kn be the undirected complete graph on the n vertices {ρ j | 1 ≤ j ≤ n}. The
graphs An and Kn can be constructed from Hp1 as follows: To construct An from Hp1 ,
simply consider all hyperedges of size 3 in Hp1 . Each of these hyperedges has vertices
α j , βk, λ j,k for some 1 ≤ j �= k ≤ n. The contracted edges α jβk (with λ j,k deleted)
are precisely the edges in An . To construct Kn , consider all hyperedges of size 7 in
Hp1 . Note that each of these edges corresponds to an edge in Hp1 that has vertices
α j , αk, β j , βk, λ j,k, ρ j , ρk for some 1 ≤ j �= k ≤ n. Deleting all the vertices except
ρ j , ρk from each hyperedge of size 7 contracts them to size 2, and the result is the
complete graph on the n vertices ρ j , j = 1, . . . , n.

Let Hp1 |(3,7) be the subhypergraph of Hp1 where V(Hp1 |(3,7)) = V(Hp1) and
E(Hp1 |(3,7)) = {e ∈ E(Hp1) | #e = 3 or #e = 7}. The previous two paragraphs
describe a bijection between the edge sets of An ∪ Kn and Hp1 |(3,7):

φ : E(An ∪ Kn) → E(Hp1 |(3,7))
αiβ j �→ αiβ jλi j

ρiρ j �→ αiα jβiβ jλi jρiρ j .

For a simple balanced edge setW = (B, R) of An ∪ Kn , the set (φ(B), φ(R)) may
not be balanced. However, it can become balanced by appending edges of the form
{λi j } to the sets φ(R) and φ(B). Thus, we define a lifting operation that grows W to
a simple balanced edge set of Hp1 in this manner:
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liftW : = (B,R), where

B = φ(B) ∪ {λi j | degφ(R)(λi j ) > degφ(B)(λi j )} and
R = φ(R) ∪ {λi j | degφ(B)(λi j ) > degφ(R)(λi j )}.

Let Hp1 |(7) be the subhypergraph of Hp1 that contains all the hyperedges of Hp1
of size 7. Let Hp1 |(3) be the subhypergraph of Hp1 that contains all the hyperedges
of Hp1 of size 3. If W = (B,R) is a balanced edge set of Hp1 , then each ρi in the
hyperedges of size 7 of W must be color-balanced. This implies that the α’s and β’s
are color-balanced with respect to Hp1 |(7). Thus, it follows that the α’s and the β’s are
color-balanced in Hp1 |(3). These observations are noted in Petrović et al. (2010), but
in algebraic terms using the binomials of the ideal of the hypergraph IHp1

.
Since a balanced edge set W = (B,R) on Hp1 is a move between two observ-

able networks only if degR(λi j ) = degB(λi j ) ∈ {0, 1}, we arrive at the following
proposition:

Proposition 2 A move between two observable networks g1 and g2 in the same fiber
is of the form liftW such that W is a balanced edge set on An ∪ Kn and degR(λi j ) =
degB(λi j ) ∈ {0, 1}.
Corollary 2 For the p1 model with edge-dependent reciprocation, the set of all
W = (B,R) such that W = lift(W ) and W is a balanced edge set of An ∪ Kn

and degR(λi j ) = degB(λi j ) ∈ {0, 1} connects the observable fiber F S for every
possible value of the sufficient statistic S.

Remark 2 The set of moves described in Corollary 2 is a superset of the applicable
square-free Graver basis, as stated in Algorithm 1.

3.2 Generating an applicable move

Now thatwehave described the general formof theMarkovmoves for the p1 model,we
give an algorithm for generating an applicable move. Let g = gu∪gd be an observable
network written as the union of its reciprocated1 part gu and its unreciprocated part
gd . For a directed graph G = (V, E), let undir(G) be the edges of the skeleton2 of G
and let recip(G) = (V , recip(E)), where recip(E) contains both directions of an edge
if at least one direction is in E . The following is a general algorithm for generating
applicable moves for the p1 model with edge-dependent reciprocation. It uses the fact
that every balanced edge set of a graph corresponds to a set of closed even walks
on that graph. The output is either an element of the Graver basis, or an applicable
combination of several Graver moves, which themselves need not be applicable. Since
the hyperedges of a balanced edge set on Hp1 each correspond to a dyadic configuration

1 Recall that a directed edge (u, v) is called reciprocated if (v, u) is also in the network. Otherwise, (u, v)

is called unreciprocated. In subsequent figures we sometimes draw reciprocated edges as undirected to
reduce clutter.
2 The skeleton of a graph G = (V, E) is the graph obtained by replacing the directed edges in E with their
undirected counterparts and then removing multiple edges.

123



690 E. Gross et al.

realizable in the network, we will return moves in the form (b, r)where r are the edges
to be removed from the network and b are the edges to be added.

Algorithm 2: Generating applicable moves for the p1 model.
input : g = gu ∪ gd , a directed graph,

c1, the probability of choosing a Type 1 Move that alters only gu ,
c2, the probability of choosing a Type 2 Move that alters only gd ,
c3, the probability of choosing a Type 3 Move that alters both types of

edges jointly,
where c1 + c2 + c3 = 1.

output: (b, r), an applicable move.

1 Generate c, a random number between 1 and 3 chosen with probabilities
(c1, c2, c3) (weighted coin).

2 if c = 1 then
3 Use Algorithm 3 to select a Type 1 move. Only reciprocated edges are

removed and added. A move of this type corresponds to a set of closed even
walks on Kn .

4 else if c = 2 then
5 Use Algorithm 4 to select a Type 2 move. Only unreciprocated edges are

removed and added. A move of this type corresponds to a set of closed even
walks on An .

6 else if c = 3 then
7 Use Algorithm 5 to select a Type 3 move. Both types of edges are removed

and added. A move of this type corresponds to a set of closed even walks on
An and a set of closed even walks on Kn .

8 end

Example 4 Figure 4 illustrates the process of generating a Type 2 move. First the
edges (x2, x1), (x3, x4) and (x5, x6) from a network g are chosen. These will be the
edges that are removed from g in the move. We consider these edges as edges of An .
A walk is completed on An by adding the blue edges {α2, β6}, {α3, β1} and {α5, β4}.
The blue edges are then interpreted in terms of pairs and dyadic configurations in g.
These are the edges that are added to g in the move.

Remark 3 Notice that in each of the above algorithms, it is possible that the triv-
ial move is returned. This means the walk in Algorithm 1 would stay in the same
place at that step. While this does not affect the stationary distribution of the Markov
chain, it can have a negative impact on mixing times if too many trivial moves are
returned. However, this is the problem also with the usual Metropolis-Hastings algo-
rithm, as mixing time questions are generally open. Section 4 shows some indication
that the chain seems to be mixing well. In the case of the p1 model, the probability
of returning the trivial move in any of the above algorithms depends on the in and
out-degree sequences of the unreciprocated edges and the reciprocated edges. One
direction for further research is to understand and try and reduce the output of trivial

123



Dynamic Markov bases using hypergraphs 691

x1 x2

x3 x4

x5

x6

x1 x2

x3 x4

x5

x6

x1 x2

x3 x4

x5

x6

α2 α3 α5
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α2 α3 α5

β1 β4 β6

Fig. 4 An example of generating a Type 2 move

moves. Even understanding which networks result in a high probability of a trivial
move being returned in Algorithms 3, 4, 5 would be an interesting combinatorial
problem.

Algorithm 3: Generating a Type 1 Move
input : gu , the reciprocated part of a directed graph,

gd , the unreciprocated part of a directed graph.
output: (b, r), a Type 1 (reciprocated-only) applicable move.

1 Choose a random subset r0 of edges from undir(gu) of size at least two.
2 for each edge e ∈ r0 do
3 Randomly direct the edge e and denote the directed edge as ae .
4 end
5 Randomly order the list of directed edges {ae |e ∈ r0}: call the resulting sequence a.
6 Randomly generate (a1, a2, . . . , ak ) to be a partition of the sequence a such that each part a j
contains at least two elements.3 Note that k, the number of subsequences, is also random.

7 for 1 ≤ j ≤ k do
8 Denote the ith edge in a j by aei , and let m be the size of the subsequence a j . Generate the set of

directed edges b j by joining the tail of aei+1 to the head of aei for i from 1 to m − 1 and joining
the tail of ae1 to the head of aem . In symbols:

9 b j := { (aei+1 (1), aei (2)) |1 ≤ i < m − 1 } ∪ { (ae1 (1), aem (2)) }.
10 if b j is not simple4 then
11 return the trivial move (∅, ∅).
12 end
13 end
14 Let b = �k

j=1 recip(b j ). Here � is the multiset union symbol.

15 Let r = recip(r0).
16 if b is not simple or b ∩ (E(gu) � r) �= ∅ or b ∩ E(gd ) �= ∅ then
17 return the trivial move (∅, ∅).
18 else
19 return (b, r).
20 end

3 Choosing this partition is equivalent to choosing a combinatorial composition σ of the number #r0. The
composition σ should be chosen according to a known but arbitrary distribution P#r0 (σ ) with full support.
4 A simple directed graph does not contain directed edges with multiplicity more than one or loops;
reciprocated edges are allowed.
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Algorithm 4: Generating a Type 2 Move
input : gd , the unreciprocated part of a directed graph,

gu , the reciprocated part of a directed graph.
output: (b, r), a Type 2 (non-reciprocated-only) applicable move.

1 Choose a random subset r of edges from gd of size at least two.
2 Randomly order the list of directed edges {e |e ∈ r}: call the resulting sequence
a.

3 randomly generate (a1, a2, . . . , ak) to be a partition of the sequence a such that
each part a j contains at least two elements. Note that k, the number of
subsequences, is also random.

4 for 1 ≤ j ≤ k do
5 Denote the ith edge in a j by ei , and let m be the size of the subsequence a j .

Generate the set of directed edges b j by joining the tail of ei+1 to the head of
ei for i from 1 to m − 1 and joining the tail of e1 to the head of em . In
symbols:

b j := { (ei+1(1), ei (2)) |1 ≤ i < m − 1 } ∪ { (e1(1), em(2)) }.

6 end
7 Let b = �k

j=1b j .

8 if b is not simple or contains reciprocated edges, or b ∩ (E(gd) � r) �= ∅ or
b ∩ E(gu) �= ∅ then

9 return the trivial move (∅,∅).
10 else
11 return (b, r).
12 end

Algorithm 5: Generating a Type 3 Move
input : g = gu ∪ gd , a directed graph
output: (b, r), a Type 3 (mixed) applicable move.

1 Use Algorithm 3 with input gu to obtain (bu, ru).
2 Use Algorithm 4 with input gd to obtain (bd , rd).
3 if bu ∩ bd �= ∅, or (bu ∪ bd) ∩ (E(g)�(ru ∪ rd)) �= ∅ then
4 return the trivial move (∅,∅).
5 else
6 return (bu ∪ bd , ru ∪ rd).
7 end

Proposition 3 Every move outputted by Algorithms 3, 4, 5 is an applicable Markov
move of the form liftW such that W is a balanced edge set on An∪Kn and degR(λi j ) =
degB(λi j ) ∈ {0, 1}. Moreover, on input g1, if g2 ∈ FS(g) and g1 �= g2, Algorithm 2
has a non-zero probability of returning the move g2 − g1.
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Proof Algorithm 3 chooses a set of edges r0 from undir(gu) and completes k closed
even walks on Kn . We will denote the balance edge set of An corresponding to this set
of closed even walks as W . Step 7 checks that liftW = (B,R) satisfies degR(λi j ) =
degB(λi j ) ∈ {0, 1}. If the condition is not satisfied, then the trivial move is returned.
Otherwise, (b, r), outputted by Algorithm 3, is of the form specified. Applicability of
(b, r) follows from the fact that r is a subset of gu and degR(λi j ) = degB(λi j ) ≤ 1.
Moves outputted from Algorithms 4, 5 can be analyzed in a parallel fashion.

For the second part of the statement, Proposition 2 states that the move between two
networks g1, g2 in the same fiber is of the form liftW whereW = (R, B) is a balanced
edge set on An ∪ Kn . Assume that R is contained entirely in Kn . Denote the closed
even walks on Kn that correspond to W as W1, . . . ,Wk . The move g2 − g1 will be
returned if 1 is chosen in Algorithm 2, the edges of g1 corresponding to R are chosen
at Step 1 of Algorithm 3, and Steps 3 and 4 result in a sequence a = (a1, a2, . . . , ak)
such that ai corresponds to a cyclic permutation of the odd edges of Wi . If R is con-
tained entirely in An or contains edges from both An and Kn , then a similar argument
follows. ��

Algorithm 2 and its subroutines, Algorithms 3, 4 and 5, describe the procedure for
finding (B,R) in Steps 3 and 4 of Algorithm 1 (the Metropolis–Hastings algorithm
using parameter hypergraphs). Thus, for the p1 model, each move in the underlying
Markov chain of Algorithm 1 proceeds as follows: select a set of reciprocated and
unreciprocated edges from the current network in the chain that correspond to a set of
hyperedges R from the parameter hypergraph Hp1 ; flip a coin and either construct a
move on the reciprocated edges (Algorithm3), on the unreciprocated edges (Algorithm
4), or on both (Algorithm 5); the resulting new edges correspond to a set of hyperedges
B from Hp1 with the same degree sequence as R, and finally apply the move with
probability q as described in Step 6 of Algorithm 1; this modification guarantees that
the desired stationary distribution is attained.

Theorem 2 Let g be an observable network with more than two edges and with
sufficient statistic S(g). The Markov chain, (Gt )∞t=0, where the step from Gi to Gi+1 is
given by Algorithm 2 is an irreducible, symmetric and aperiodic random walk on FS.

Proof Irreducibility follows from Proposition 3.
To show symmetry, let g1 = g1u ∪ g2d and g2 = g2u ∪ g2d be two simple networks

with reciprocated parts g1u , g2u and unreciprocated parts g1d , g2d . The move (b, r)
from g1 to g2 is the combination of moves (bu, ru) from g1u to g2u and (bd , rd) from
g1d to g2d where b = bu ∪ bd and r = ru ∪ rd . The move (bu, ru) on the network
corresponds to a balanced edge setWu = (Bu, Ru) on the parameter (hyper)graph Kn ,
which forms a set of primitive closed even walks on Kn . The probability of choosing
ru in Step 1 of Algorithm 3 is dependent only on the number of edges in g1u , which
is equal to the number of edges in g2u . Step 5 in Algorithm 3 completes walks on
sequences of edges from ru by connecting heads to tails. Thus, given that ru was
chosen in Step 1, the probability of choosing an ordering of the vertices, an ordering
of the edges and a composition in Steps 2–4 such that Step 5will output bu is dependent
only on the structure of Wu (the primitive walks in Wu , the length of these walks and
which of these walks share a vertex). So, since Wu is the same regardless whether
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we are moving from g1u to g2u or from g2u to g1u , the probabilities of making these
moves in a single step are equal. A similar situation occurs between the reciprocated
parts of g1 and g2.

For aperiodicity, notice that every non-diagonal entry of the transition matrix P
of (Gt )∞t=0 is greater than zero. Therefore, since g contains more than two edges,
Pn(i, j) > 0 for all n ≥ 2. ��
Corollary 3 If g has more than two edges, then with probability one, as the number
of steps N → ∞, the output of Algorithm 1 with steps 3 and 4 implemented according
to Algorithm 2 converges to P(χ2(G) ≥ χ2(g) : G ∈ FS(g)).

Algorithm 2 and its subroutines Algorithms 3, 4, 5 are implemented in R; the code
is available in the supplementary material on Gross et al. (2014). The examples in
Sect. 4 that compute estimated p-values use the function Estimate.p.Value. It
takes an observed network and implements Algorithm 1 using an iterative proportional
scaling algorithm (Holland and Leinhardt 1981, p. 40) to compute the MLE, and
Algorithm 2 for Step 4. We chose to use the chi-square statistic for the goodness-of-fit
statistic.

Our implementation makes use of the R package igraph Csardi and Nepusz
(2006), and in particular its graph data structure and methods for producing graph
unions and graph intersections. Each of these methods has complexity linear in the
sum of the cardinalities of the edge sets and vertex sets of the input. As a result the
complexity of the algorithm is at worst O((|V |+|E |)2), where V and E are the vertex
and edge sets, respectively.

4 Simulations

We apply Algorithms 1 and 2 and run goodness-of-fit tests in R on several real-world
network datasets as well as simulated networks under the p1 model. In what follows,
the number of steps in the chain along with the initial burn-in is reported. Our statistic
of choice for GF(u) is the chi-square statistic, directly measuring the distance of
the network u from the MLE. For each simulation, we report the estimated p-value
returned on line 11 of Algorithm 2 and the sampling distribution of GF(u).

4.1 A small synthetic network

We begin with a test case to check howAlgorithm 2 explores the fiber. In (Ogawa et al.
2013 Sect. 5.1), the authors sample the fiber of an undirected graph H0 on 8 nodes,
depicted in Fig. 5, under the beta model. By enumeration they have determined that
the size of the fiber is 591. Considering this graph as a directed network all of whose
edges are reciprocated, we can test the fit of the p1 model as well and study its fiber
similarly. The fibers of H0 under the two models are the same, since in both cases, the
fiber consists of all undirected (or reciprocated-edge) graphs with the same (in- and
out-) degree vector as H0.

We ran Algorithm 2 and stored all graphs discovered in the run. Starting from
H0, after 1000 steps, 232 points in the fiber were discovered. After 5000 steps, 538
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Fig. 5 The graph H0 from Fig.
13 in Ogawa et al. (2013)
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graphs were discovered, and the entire fiber of 591 graphs was reached after less
than 15,000 steps in the chain. At this point, the chain samples the fiber almost
uniformly, as the total variation distance between the sampling distribution and the
uniform distribution on the fiber is calculated to be 0.2088025 (at the 15,000th step).
For comparison purposes, the TV-distance is 0.1703418 after 50,000 steps. Figure 6
shows the histogram of graphs sampled in the 50,000-move walk. Therefore, running
aMarkov chain of at least 50,000 steps should be sufficient for testing purposes for this
example.

A run of Algorithm 1 for 450,000 steps, after 50,000 burn-in steps, produced the
values of the chi-square statistics in Fig. 7a and the p-value estimate of 0.86. The
estimates of the p-value from the simulation are plotted in Fig. 7b against the step
number of the Markov chain and give further evidence of convergence.

4.2 Networks simulated from the p1 distribution

Consider the four digraphs on 10 nodes that Holland and Leinhardt simulated from the
p1 distribution (see Holland and Leinhardt 1981, Fig. 3). The networks are depicted
in Fig. 8.

For each network, chains of length 200,000 provide expected results. The estimated
p-values are 0.284774, 0.7185896, 0.4673885 and 0.7432897, respectively. The his-
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Fig. 8 Four digraphs simulated from the p1 distribution from Holland and Leinhardt 1981, Figure 3. For
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tograms of the sampling distribution of the chi-square statistics from the 220,000-step
simulation (with 20,000 burn-in steps) are shown in Fig. 9. The p-values reach their
estimated value in approximately 25,000 steps after burn in.

4.3 Mobile money networks

Figure 10 is a directed graph on 12 vertices with 13 unreciprocated edges and 15
reciprocated edges. The data are from Kushimba et al. (2013) and were collected
through a survey conducted in Bungoma and Trans-Nzoia Counties in Kenya, and
among Kenyans living in Chicago, Illinois in the summer of 2012. Vertices represent
members of an extended family. An edge from vertex vi to vertex v j represents that
vi had sent money to v j using a mobile money transfer. Since the network depicted
in Fig. 10 is a social network and the individuals are social actors, it is reasonable
to suspect transitive effects are present. In such a setting, it is expected the p1 model
would not fit this data very well, and, in fact, Holland and Leinhardt (1981) suggest
the p1 model as a realistic null model in such cases.
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Fig. 10 Mobile money transfers
between members of an
extended family

Running Algorithm 1 for 300,000 steps after an initial burn-in of 30,000 steps
returns an estimated p-value of 0.06024261, which would suggest that the p1 model
with edge-dependent reciprocation is indeed a poor fit for this data, and in fact, if
the significance level is set to less than 0.1 we would reject the model. Figure 11a
shows the histogram of the sampling distribution of the chi-square statistics with the
chi-square statistic for the observed network marked in red. Figure 11b shows the
estimated p-value plotted against the step number of the Markov chain and gives
evidence of convergence.

4.4 Chesapeake Bay ecosystem

In their 1989 paper (Baird and Ulanowicz 1989), the authors constructed trophic
networks for specific regions of the Chesapeake Bay using extensive data gathered
from 1983 to 1986. Their work used highly sophisticated estimation methods, relying
on a multitude of different sources. Due to their profound detail, Ulanowicz and
Baird’s food webs have been extensively analyzed over the past 25 years. Often for
statistical model-fitting purposes, the edges are considered as undirected. This choice,
however, has been largely motivated by the scarcity of tools available to analyze
directed networks. Other than heuristicmethods, procedures for performing goodness-
of-fit testing for directed network models have not existed.

The data set on which we test the p1 model are depicted in Fig. 12 (see also
Baird and Ulanowicz 1989, Figure 2). The list of edges of this directed network
was downloaded from Pajek (2004a) and represents the Web 34 Chesapeake Bay
Mesohaline Ecosystem. The graph has 39 vertices and 176 edges. The majority of
vertices represent species in a Chesapeake Bay food web, with a directed edge u → v

indicating that species u eats species v. we note that other elements that are not species,
such as passive carbon storage compartment are also included as vertices. There are 6
reciprocated edges in the graph.

We expect a block structure in food networks that do not naturally occur in p1-
model generated networks. In fact, the estimated p-value is 0.03459158, indicating
that the p1 model with edge-dependent reciprocation is not a good for this data. If the
significance level is set to less than 0.05, we would reject this model. The histogram
of a simulation with 1,000,000 steps is shown in Fig. 1b.
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Fig. 12 The directed network
representing the food web
relationships in Chesapeake Bay
data from Pajek (2004a)
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4.5 Sampson’s monastery study

Sampson (1968) conducted an ethnographical study of social interactions between
novices in a New England monastery in the mid 1960s. Sampson observed 25 novices
over a period of 2 years, gathering social relations data at four time points, and on
multiple relationships. This has been a favorite example for analysis by sociologists,
statisticians and others, and was used in original p1 model studies. At the fourth
time point (T 4), there were 18 monks, and the social network had 54 directed edges
representing the top three answers to the question “whom do you like” for each novice.
We consider the directed graph in Fig. 13 representing the relationships derived from
this affinity sociometric data. The list of edges in the graph was downloaded from
Pajek (2004b).

Perhaps not unsurprisingly, the p1-model with edge-dependent reciprocation seems
to fit these data remarkably well. The chi-square statistic for the observed network is
404.7151, which is very close to the minimum chi-square statistic that was returned
during a 1,000,000 step walk (see Fig. 14a). The estimated p-value for this data is
0.9863126. The random walk seems to be exploring the fiber broadly, discovering
about 8800 new networks every 50,000 steps, though we do not know the exact size
of the fiber.

5 Conclusion

The central motivation for this work is the scarcity of tools available to analyze
directed networks. Other than heuristicmethods, procedures for performing goodness-
of-fit testing for directed network models have not existed. In the usual setting, the
Metropolis–Hastings algorithm for sampling from conditional distributions requires
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a Markov basis for a given model to be precomputed. By definition, however, Markov
bases are data-independent, thus presenting a computational problem that becomes
bothwasteful and infeasible for networkmodels on as few as 7 nodes. In addition, sam-
pling constraints (e.g., one edge per dyad in a network or cell bounds in a contingency
table) have presented problems for algebraic statistics as the restricted (observable)
fibers cannot always be connected with a minimal set of Markov moves. Instead, a
knowledge of a much larger set of moves, such as the Graver basis, is required for
sampling. Since Graver bases are notoriously difficult to compute except for (notable)
special cases (e.g., where a divide-and-conquer strategy applies, as in decomposable
models), being able to dynamically generate one applicable move at a time is essen-
tially the only hope for ever being able to utilize the algebraic statistics idea in practice.

Using thework byDobra (2012) and byOgawa et al. (2013) as ourmainmotivation,
we propose a methodology for dynamically generating moves and combinations of
moves from the Graver basis (and thus a Markov basis) that guarantee to connect
observable fibers for networks or contingency tables where sufficient statistics are
not necessarily table marginals. This approach allows for a data-oriented algorithm,
providing a dynamic exploration of any fiber without relying on an entire Markov
basis. It produces only a relatively small subset of the moves—which could still be a
large subset indeed—sufficient to connect the observable points in the fiber.

In contrastwith previous approaches, our proposedmodification usesmoves that are
constructed by understanding the balanced edge sets of the parameter hypergraph of
the given model. Drawing upon the classical literature in combinatorial commutative
algebra and recent work in algebraic statistics, we show how, in principle, one can
construct applicable moves using the parameter hypergraph of any log-linear model
and any observed network. Thus, the goodness-of-fit testing problem is translated
into the problem of finding sub-hypergraphs of the parameter hypergraph with fixed
degree sequences. Whereas this is a hard problem in general, it can be solved for
specificmodels, which allowsAlgorithm 1 to be used for goodness-of-fit testing. As an
example, we have described the entire procedure on the p1 model with edge-dependent
reciprocation. For the p1 model, we (1) derive the structure of such the Markov moves
in relation to the parameter hypergraph and (2) implement an algorithm to generate
them dynamically. We hope this technique of analyzing the parameter hypergraph to
construct dynamic Markov bases will be used for other log-linear models and spurs
new ideas for goodness-of-fit testing for exponential random graph models in general.
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