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Abstract In this paper, a minimizing average check loss estimation (MACLE) pro-
cedure is proposed for the single-index coefficient model (SICM) in the framework
of quantile regression (QR). The resulting estimators have the asymptotic normal-
ity and achieve the best convergence rate. Furthermore, a variable selection method
is investigated for the QRSICM by combining MACLE method with the adaptive
LASSO penalty, and we also established the oracle property of the proposed variable
selection method. Extensive simulations are conducted to assess the finite sample per-
formance of the proposed estimation and variable selection procedure under various
error settings. Finally, we present a real-data application of the proposed approach.

Keywords Single index coefficient model · Quantile regression · Asymptotic
normality · Variable selection · Adaptive LASSO · Oracle property

1 Introduction

Consider the varying-coefficient model (VCM), whose standard form can be written
as
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Y = g(X)TZ + ε, (1)

where Y is the response variable, X = (X1, . . . , X p)
T ∈ R

p and Z =
(Z0, Z1, . . . , Zd−1)

T ∈ R
d are two covariates vectors, ε is the model error,

g(·) = (g0(·), g1(·), . . . , gd−1(·))T is an unknown coefficient function vector. With-
out loss generality, we assume Z0 ≡ 1, i.e., the corresponding nonparametric function
g0(·) can be seen as the baseline function.

Though much research has been done on the VCM (1), the voluminous literature
mostly focused on the case when the variate X is scalar. When the dimension of X is
high, how to effectively estimate the multivariate nonparametric g(X) is challenging
in practice because of model (1) still facing the problem of “curse of dimensionality”.
To this end, Xia et al. (1999) proposed an elegant solution for multivariate X by
introducing a single-index structure for the index vector, resulting in

Y = g(XT θ)TZ + ε, (2)

with θ = (θ1, . . . , θp)
T ∈ R

p, which was termed the single-index coefficient model
(SICM). For identifiability, we assume ‖θ‖ = 1 and θ1 > 0. A related model, termed
the adaptive varying-coefficient linear models (Fan et al. 2003), has the same form as
SICM with X = Z. For the simplicity, in this paper, we assume that X �= Z in model
(2), otherwise we need the additional identifiability condition like in Fan et al. (2003).

On the other hand, SICM can be also viewed as the useful extension of the single-
index model proposed by Härdle et al. (1993). Xia et al. (1999) investigated the
least-squares cross-validation estimation method for the index parameter θ , and its
estimator can achieve the best convergence rate without “undersmoothing” the non-
parametric coefficient function. However, the least-squares cross-validation method is
computationally expensive and not practical in reality. Lu et al. (2007) established
the asymptotic theory of the profile likelihood estimation of SICM, but they did
not provide any simulation studies and real data analysis. Recently, Xue and Pang
(2013) proposed an estimation method based on estimating equation and obtained
the confidence region of the nonparametric coefficient function. Huang and Zhang
(2012) derived a confidence interval of the index parameter θ in SICM by profile
empirical likelihood method. Furthermore, Feng and Xue (2013) proposed an esti-
mation procedure of SICM based on spline approximation and further considered
the variable selection issue of the parameter and the nonparametric coefficient func-
tions.

However, the estimation methods aforementioned all focused on the mean regres-
sion for SICM. It is well known that when the error deviates far from the normal
distribution and/or the data include some outliers, the least square-based method or
likelihood estimation approach may loss efficiency and lead to incorrect inference. In
this case, quantile regression proposed by Koenker and Basset (1978) can be chosen
as an alternative approach to investigate the underlying relationship of the response
and the multidimensional covariates, and it can provide the full description of the
conditional distribution for response variable at different quantile level. There have
been some researches on the quantile regression of the two simplified form of SICM,
varying-coefficient model (VCM) (see Honda 2004; Kim 2007; Cai and Xu 2008) and
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single-index model (SIM) (see Wu et al. 2010; Jiang et al. 2012). However, there is
no work for the SICM based on the quantile method.

In this paper, an estimation procedure, called as minimizing average check loss
estimation(MACLE) method, is proposed for SICM based on the quantile regression
framework. We describe the implementation details of the proposed algorithm and
establish the theoretical properties of the estimators. In special, the estimator of the
index parameter can achieve the best convergence rate without “undersmoothing”
the nonparametric coefficient vector function. Meanwhile, we address the variable
selection method for quantile regression SICM by combining the MACLE method
and the adaptive LASSOmethod (Zou 2006), and the corresponding oracle properties
are also established.

The paper is organized as follows. In Sect. 2, we outline the estimation procedure
and the algorithm for the quantile regression of SICM. In Sect. 3, the asymptotic
properties of the estimators are established. To select the important index variables,
we investigated the variable selection method in Sect. 4, and the corresponding oracle
properties are also established. In Sect. 5, we conduct two simulations with different
error settings to assess the finite sample performance of our proposed method. We
further illustrate the method by the analysis of the Boston Housing data in Sect. 6. The
technical proof and the regularity conditions are relegated in the Appendix.

2 Estimation methodology

To apply the quantile method, we assume that the τ -th quantile of ε in model (2) is
zero, i.e., P{ε < 0|X = x,Z = z} = τ . Let ρτ (u) = u[τ − I (u < 0)] be the check
loss function for τ ∈ (0, 1). Quantile regression is used to estimate the conditional
quantile of the response variable Y , which is defined as

qτ (x, z) = argmin
a

E {ρτ (Y − a)|X = x,Z = z} .

Suppose {Xi , Zi , Yi }n
i=1 is an independent and identically distributed (i.i.d.) samples

from (2). Theoretically, the estimate θ̂ satisfies

θ̂ = argmin
‖θ‖=1,θ1>0

E[ρτ (Y − g(XT θ)TZ)]. (3)

By the property of conditional expectation, the right side of (3) can be re-expressed
as

E
[
ρτ (Y − g(XT θ)TZ)

]
= E

{
E
[
ρτ (Y − g(XT θ)TZ)

∣∣XT θ
]}

, (4)

where E[ρτ (Y − g(XT θ)TZ)|XT θ] is the conditional expected check loss function
given XT θ . In the following, we will construct an empirical form of the theoretical
loss (4). By minimizing the empirical loss function, we can derive the estimation of
the index parameter.
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Given θ , when XT
i θ in the neighborhood of u, for 0 ≤ j ≤ d − 1, the j th element

of g(XT
i θ), g j (XT

i θ) can be approximated local linearly as

g j

(
XT

i θ
)

� g j (u) + g′
j (u)

(
XT

i θ − u
)

.

Then the local linear approximation of E[ρτ (Y − g(XT θ)TZ)|XT θ = u] will be
n∑

i=1

ρτ

(
Yi −

[
g(u) + g′(u)

(
XT

i θ − u
)]T

Zi

)
ωi0,

where ωi0 = Kh(XT
i θ − u)/

∑n
l=1 Kh(XT

l θ − u) satisfy
∑n

i=1 ωi0 = 1, K (·) is
kernel function, Kh(·) = K (·/h)/h , and h is the bandwidth. By averaging on
u j = XT

j θ , j = 1, . . . , n, we can get the empirical form of (4) as

1

n

n∑
j=1

n∑
i=1

ρτ

(
Yi −

[
g(u j ) + g′(u j )XT

i jθ
]T

Zi

)
ωi j , (5)

whereXi j = Xi −X j , ωi j = Kh(XT
i jθ)/

∑n
l=1 Kh(XT

l jθ) satisfy
∑n

i=1 ωi j = 1, ∀ j =
1, . . . , n.

Now the parameter θ can be estimated by

θ̂ = argmin
‖θ‖=1, θ1>0

n∑
j=1

n∑
i=1

ρτ

(
Yi −

[
g(u j ) + g′(u j )XT

i jθ
]T

Zi

)
ωi j . (6)

We call the estimation of θ as the minimizing average check loss estima-
tion(MACLE). Since both g(·) and g′(·) are unknown vector functions in (6), the
direct minimization of (6) is impossible. To obtain the estimator, the unknown func-
tions can be firstly replaced by their estimates, and then we can obtain the MACLE
estimator for index parameter θ . The details of the minimization algorithm are given
as follows.

• Step 1.Given initial value of θ by θ̃ , standardize θ̃ s.t. ‖θ̃‖ = 1, θ̃1 > 0. Denote
α j = g(XT

j θ̃), β j = g′(XT
j θ̃), j = 1, . . . , n, which can be estimated by

(α̃ j , β̃ j ) = argmin
α j ,β j

n∑
i=1

ρτ

[
Yi −

(
α j + β jXT

i j θ̃
)T

Zi

]
ωi j for j = 1, . . . , n.

• Step 2. Given α̃ j , β̃ j , j = 1, . . . , n, the estimation value of θ can be updated by

θ̃ = argmin
θ

n∑
j=1

n∑
i=1

ρτ

[
Yi −

(
α̃ j + β̃ jXT

i jθ
)T

Zi

]
ωi j , (7)
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where the values of ωi j are calculated based on the value of θ̃ and h in Step 1.
• Step 3. Repeat Step 1 and Step 2 until convergence, then we obtain the final
estimate of θ denoted by θ̂ .

• Step 4. After obtaining the estimate θ̂ , for any inner point u on the tight support
of XT θ̂ , g(u) can be estimated by ĝ(u; h, θ̂) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

ρτ

{
Yi −

[
α + β

(
XT

i θ̂ − u
)]T

Zi

}
Kh

(
XT

i θ̂ − u
)

. (8)

Remark 1 After implementing Step 2 in the above algorithm, θ̃ needs standardization
as: θ̃ = sign(θ̃1)θ̃/‖θ̃‖, where sign(θ̃1) is the first component of θ̃ . In addition, the
initial estimate θ̃ in Step 1 can be obtained using the single-index quantile regression
method proposed in Wu et al. (2010) based on data {Xi , Yi }n

i=1. Our simulations show
that our proposed estimation procedure works well.

Remark 2 The optimal bandwidth h used in above algorithm can be selected by cross-
validation method. To reduce the computation task, we can use the K -fold cross-
validation method as following. Denote F1, . . . , FK as a partition of {1, . . . , n}, and
each Fi being roughly the same size, we may define a cross-validation score for the
given bandwidth h

CV(h) =
K∑

k=1

ρτ

(
Y (Fk ) −

(
ĝ(−Fk )

(
X(Fk )

T
θ̂

(−Fk )
))T

Z(Fk )

)
,

where Y (Fk ), X(Fk ) and Z(Fk ) denote using the observations from Fk only, and ĝ(−Fk )

and θ̂
(−Fk )

are the estimates based on observations in {1, . . . , n}\Fk with the given
bandwidth h. Then the optimal bandwidth is selected by

hopt = argminhCV(h).

In the simulations and real data analysis, we use the fivefold cross-validation method.

3 Asymptotic properties

In this section, we present the asymptotic properties of the resulting estimators θ̂ and
ĝ(·; h, θ̂). We first give some notations.

Let fY (·|XT θ) and FY (·|XT θ) be the density and cumulative distribution function
of Y when given XT θ , respectively. Choose K (·) as a symmetric density function,
and denote μ j = ∫

u j K (u)du and ν j = ∫
u j K 2(u)du, j = 0, 1, 2, . . . . Then, for

the estimator θ̂ obtained in (6), we have the following results.

Theorem 1 Suppose the condition A.1–A.8 in the Appendix hold, then

√
n
(

θ̂ − θ

) L−→ N (0, τ (1 − τ)G−1G0G−1), (9)
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where
L−→ denote convergence in distribution, G0 = E(D), G = E

(
fY (qτ (X,Z)|XT

θ)D) , D = g′(XT θ)T πθ (X)g′(XT θ)X̃X̃T , X̃ = X − E(X|XT θ), πθ (X) =
E(ZZT |XT θ).

By Theorem 1, we can get
√

n-consistence estimation of θ , then based on θ̂ , we
can derive the estimation of g(·) by (8). In the following, we present the asymptotic
property of the nonparametric estimation of g(·).
Theorem 2 Suppose x be the inner point of the tight support of X, and the conditions
A.1–A.7 in appendix hold, then we have

√
nh

{
ĝ(xT θ̂; h, θ̂) − g(xT θ) − 1

2
g′′(xT θ)μ2h2

}
L−→ N (0, �τ (xT θ)), (10)

where �τ (xT θ) = τ(1 − τ)ν0
[

fU (xT θ) fY (qτ (X,Z)|xT θ)2E(ZZT |XT θ)
]−1

,
fY (qτ (X,Z)|xT θ) is the conditional density value of Y at qτ (X,Z) given XT θ ,
fU (·) is the marginal density function of XT θ .

4 Variable selection

In practice, the true model is unknown previously. An underfitted model will yield
biased estimates and large prediction deviation, while an overfittedmodel will increase
the complexity of the model and difficult to interpret. This motivates us to apply the
penalized approach to simultaneously estimate the parameter θ and select important
variables of X.

To conduct the variable selection, we firstly fit the model with all the index

predictors. According to Theorem 1, the MACLE estimator, denoted as θ̂
Q R

, is
√

n-

consistent to the true parameter θ . Then, based on θ̂
Q R

, we can obtain the penalized

estimator θ̂
λ
byminimizing the adaptiveLASSOpenalized average check loss function

defined as

Gn(θ) =
n∑

j=1

n∑
i=1

ρτ

(
Yi − ĝ

(
XT

i θ
)T

Zi

)
ωi j + λ

p∑
k=1

|θk |
|θ̂ Q R

k |2 , (11)

where θk and θ̂
Q R
k are the kth element of θ and θ̂

Q R
respectively, and ĝ(·) is obtained

from (8).
Without loss of generality, we assume that the first component of X is a relevant

variable. For given tuning parameter λ, by minimizing Gn(θ) with respect to θ under
the constrains that ‖θ‖ = 1 and the first nonzero element of θ is positive, we can obtain

the sparse estimator θ̂
λ
, which is called as the adaptive LASSO penalized MACLE

of θ .

Remark 3 Other variable selection methods such as SCAD proposed by Fan and Li
(2001) orMCPproposed byZhang (2010) can be also used here and the oracle property
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can be derived similarly. For the sake of computation, we adopt the adaptive LASSO
method, which can be solved conveniently by nonlinear programming.

To obtain the sparse estimator, the optimal tuning parameter λ can be chosen
through the Bayesian Information Criterion. FollowingWang and Leng (2007), denote

BIC(λ) = log Pτ (λ) + log n

n
DFλ, (12)

where

Pτ (λ) =
n∑

j=1

n∑
i=1

ρτ

(
Yi − ĝ

(
XT

i θ̂
λ
)T

Zi

)
ω̂λ

i j

with ω̂λ
i j = Kh

(
XT

i j θ̂
λ
)

/

n∑
l=1

Kh

(
XT

l j θ̂
λ
)

,

andDFλ is the number of non-zeros elements of θ̂
λ
. Then, the optimal tuningparameter

is selected by

λ̂opt = argmin
λ

BIC(λ).

According to our simulation experience, this tuning parameter selection strategyworks
very well.

In the following, we will show that the adaptive LASSO penalized MACLE θ̂
λ

enjoys the oracle property. Denote Aθ = {
j : θ j �= 0

}
. Without loss of generality,

suppose the true index parameter θ =
(

θ1

θ2

)
, where θ1 is the sub-vector composed by

the first p0 nonzero elements of θ , θ2 is composed by the remaining p − p0 zero
elements of θ . Thus, we have Aθ = {1, . . . , p0}. Similarly, we define X1 be the sub-
vector composed by the first p0 elements of X and define X̃1 = X1 − E(X1|XT

1 θ1).

Theorem 3 (Oracle Property) Suppose the conditions A.1–A.8 in the Appendix hold
and λ → ∞, λ/

√
n → 0 as n → ∞. Then for the adaptive LASSO penalized

MACLE θ̂
λ
, we have

(1) Model selection consistency: Pr({ j : θ̂ λ
j �= 0} = Aθ ) = 1,

(2) Asymptotic normality:

√
n
(
θ̂
1λ − θ1

) L−→ N
(
0, τ (1 − τ)

(G∗)−1 G∗
0

(G∗)−1
)

, (13)

where θ̂
1λ

is the sub-vector composed by the first p0 elements of θ̂
λ

, G∗
0 = E(D∗),

G∗ = E
(

fY (qτ (X1,Z)|XT
1 θ1)D∗), D∗ = g′(XT

1 θ1)T π∗
θ1

(X1)g′(XT
1 θ1)X̃1X̃T

1 ,

X̃1 = X1 − E(X1|XT
1 θ1), π∗

θ (X) = E(ZZT |XT
1 θ1).
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Remark 4 Based on the asymptotic result of Theorem 1 or 3, it can be used to obtain
the standard deviation estimate for index parameter by replacing some unknown quan-
tities by their estimates. However, due to the ignoring estimation bias of these unknown
quantities in small sample size, we propose to use the bootstrap method to obtain the
standard deviation in practice when the sample size is small. Our limited experience
shows that the bootstrap variance method works well in practice. However, its theo-
retical property of consistency issue for bootstrap variance remains an open question.

5 Monte Carlo simulation

In this subsection, we conduct two simulation studies with different error settings to
examine the performance of the MACLE method and the proposed variable selection
procedure.

Example 1 We conduct a simulation with the data generating from the following
model

Y = g1
(
π(XT θ − a)/(b − a)

)
Z1 + g2

(
π(XT θ − a)/(b − a)

)
Z2 + σε, (14)

where X = (X1, X2, X3)
T , Xi ∼ U [0, 1], and the correlation corr(Xi , X j ) =

0.5|i− j |, 1 ≤ i, j ≤ 3; (Z1, Z2) follows bivariate normal distribution with marginal
distribution N (0, 1) and correlation coefficient 0.5; g1(u) = sin(u), g2(u) = cos(u),
θ = (1, 1, 1)T /

√
3, a = 0.3912, b = 1.3409, σ = 0.1 or 0.25 denotes the

low or high noise level. The sample size is set to be n = 100, 200 and 300. In our
simulation, we consider the following four different error distributions as N (0, 1), t
distribution with degree of freedom 3 (t (3)), standard Cauchy and mixture normal
0.9N (0, 1) + 0.1N (0, 102), and X, Z and ε are generated independently. For each
type of error, θ and a1(·), a2(·) are estimated byMACLEmethod under three quantile
levels τ = 0.25, 0.5 and 0.75. All the simulations are conducted 200 replications.

To assess the performance of our proposedmethod,we report the bias of the estimate
for the index parameter and the mean integrated squared errors (MISE) of the estimate
for nonparametric function, that is, MISE = 1

2

∑2
j=1 ISE j , where

ISE j = 1

ngrid

ngrid∑
k=1

(ĝ j (uk) − g j (uk))
2,

and {uk : k = 1, . . . , ngrid} are regular grid points with ngrid = 100.
The results of 200 times simulation are summarized in Tables 1–3,wherewe present

the bias and the standard deviation of θ and MISE of nonparametric function g(·).
From Tables 1, 2 and 3, we can see that all the biases of θ are close to zero and the
corresponding estimates of the standard deviation decrease as the sample size increases
for all the case. Meanwhile, the MISE of the nonparametric function g(·) becomes
more smaller when the sample size is large. Even for the large noise level σ = 0.25,
the performance of our proposed MACLE method is still satisfactory. Therefore, our
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Table 1 Summary of the bias and MISE for σ = 0.1, where the std denotes the sample standard deviation
calculated over 200 replications

n Error type τ θ̂1 (bias) θ̂1 (std) θ̂2 (bias) θ̂2 (std) θ̂3 (bias) θ̂3 (std) MISE Std

100 Normal 0.25 0.0010 0.0177 −0.0039 0.0179 0.0021 0.0165 0.0084 0.0021

0.5 −0.0270 0.0764 0.0174 0.0923 −0.0088 0.0765 0.0031 0.0014

0.75 0.0006 0.0216 0.0005 0.0256 −0.0025 0.0230 0.0045 0.0020

t (3) 0.25 0.0014 0.0215 −0.0055 0.0262 0.0027 0.0239 0.0125 0.0099

0.5 −0.0015 0.0201 −0.0012 0.0233 0.0016 0.0188 0.0036 0.0020

0.75 0.0016 0.0212 −0.0050 0.0258 0.0019 0.0251 0.0077 0.0124

Cauchy 0.25 −0.0017 0.0444 −0.0039 0.0589 −0.0012 0.0498 0.4560 0.5194

0.5 −0.0017 0.0262 −0.0002 0.0317 −0.0002 0.0271 0.0119 0.0414

0.75 0.0009 0.0351 −0.0007 0.0401 −0.0036 0.0322 0.0882 0.4378

Mixture
normal

0.25 0.0007 0.0180 −0.0016 0.0214 0.0001 0.0183 0.0148 0.0151

0.5 0.0006 0.0166 0.0009 0.0211 −0.0023 0.0173 0.0054 0.0124

0.75 0.0009 0.0216 −0.0013 0.0226 −0.0008 0.0198 0.0137 0.0310

200 Normal 0.25 0.0004 0.0076 −0.0002 0.0112 −0.0008 0.0101 0.0073 0.0011

0.5 −0.0016 0.0071 0.0026 0.0105 0.0001 0.0103 0.0019 0.0004

0.75 0.0009 0.0067 −0.0007 0.0107 −0.0011 0.0101 0.0032 0.0008

t (3) 0.25 −0.0002 0.0074 0.0004 0.0114 −0.0002 0.0102 0.0092 0.0019

0.5 0.0000 0.0062 −0.0006 0.0110 0.0002 0.0091 0.0022 0.0007

0.75 −0.0002 0.0071 −0.0003 0.0114 0.0002 0.0108 0.0045 0.0018

Cauchy 0.25 0.0002 0.0088 −0.0014 0.0145 0.0003 0.0117 0.0274 0.0931

0.5 0.0002 0.0073 −0.0005 0.0124 −0.0002 0.0100 0.0032 0.0024

0.75 0.0005 0.0090 −0.0002 0.0145 −0.0011 0.0121 0.0122 0.0099

Mixture
normal

0.25 0.0000 0.0076 0.0011 0.0116 −0.0011 0.0105 0.0098 0.0028

0.5 −0.0003 0.0069 −0.0000 0.0104 0.0002 0.0095 0.0024 0.0016

0.75 0.0003 0.0075 0.0009 0.0110 −0.0014 0.0098 0.0049 0.0026

300 Normal 0.25 −0.0006 0.0064 0.0003 0.0104 0.0005 0.0084 0.0072 0.0008

0.5 0.0003 0.0058 −0.0003 0.0097 −0.0003 0.0077 0.0017 0.0004

0.75 0.0001 0.0062 0.0005 0.0097 −0.0007 0.0083 0.0031 0.0006

t (3) 0.25 −0.0003 0.0073 −0.0011 0.0114 0.0010 0.0097 0.0090 0.0016

0.5 −0.0003 0.0068 −0.0006 0.0099 0.0006 0.0090 0.0018 0.0004

0.75 −0.0005 0.0066 −0.0002 0.0104 0.0007 0.0090 0.0040 0.0010

Cauchy 0.25 −0.0000 0.0092 0.0009 0.0172 −0.0011 0.0110 0.0160 0.0042

0.5 −0.0004 0.0068 0.0001 0.0109 0.0002 0.0091 0.0022 0.0009

0.75 −0.0009 0.0085 0.0011 0.0130 0.0002 0.0109 0.0090 0.0051

Mixture
normal

0.25 0.0005 0.0073 0.0004 0.0111 −0.0013 0.0092 0.0088 0.0019

0.5 −0.0008 0.0057 −0.0000 0.0099 0.0010 0.0087 0.0018 0.0005

0.75 0.0005 0.0071 −0.0001 0.0109 −0.0008 0.0094 0.0042 0.0027
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Table 2 Summary of the bias andMISE for σ = 0.25, where the std denotes the sample standard deviation
calculated over 200 replications

n Error type τ θ̂1 (bias) θ̂1 (std) θ̂2 (bias) θ̂2 (std) θ̂3 (bias) θ̂3 (std) MISE Std

100 Normal 0.25 0.0012 0.0100 −0.0004 0.0154 −0.0020 0.0140 0.0308 0.0117

0.5 0.0002 0.0100 −0.0004 0.0167 −0.0005 0.0131 0.0096 0.0050

0.75 −0.0002 0.0109 −0.0008 0.0172 0.0004 0.0133 0.0213 0.0131

t (3) 0.25 −0.0017 0.0101 0.0004 0.0178 0.0016 0.0147 0.0470 0.0243

0.5 −0.0018 0.0106 0.0008 0.0162 0.0015 0.0155 0.0198 0.0587

0.75 −0.0011 0.0129 0.0009 0.0190 0.0003 0.0149 0.0417 0.0554

Cauchy 0.25 −0.0021 0.0155 0.0029 0.0284 −0.0005 0.0233 0.8090 2.9809

0.5 −0.0009 0.0134 −0.0002 0.0234 0.0004 0.0195 0.4864 2.8403

0.75 −0.0060 0.0556 0.0052 0.0364 0.0001 0.0248 0.8596 2.7364

Mixture
normal

0.25 −0.0004 0.0098 0.0001 0.0180 −0.0001 0.0136 0.1317 0.4017

0.5 0.0000 0.0124 0.0004 0.0180 −0.0010 0.0177 0.0157 0.0297

0.75 −0.0001 0.0095 0.0008 0.0140 −0.0009 0.0121 0.0614 0.1373

200 Normal 0.25 −0.0015 0.0096 0.0002 0.0150 0.0016 0.0135 0.0284 0.0106

0.5 0.0004 0.0099 −0.0007 0.0173 −0.0007 0.0142 0.0106 0.0103

0.75 −0.0003 0.0107 0.0020 0.0153 −0.0016 0.0140 0.0205 0.0081

t (3) 0.25 −0.0014 0.0110 −0.0013 0.0186 0.0023 0.0148 0.0336 0.0102

0.5 −0.0007 0.0108 −0.0005 0.0173 0.0007 0.0146 0.0063 0.0034

0.75 −0.0010 0.0107 0.0021 0.0145 −0.0005 0.0135 0.0232 0.0083

Cauchy 0.25 −0.0027 0.0240 0.0017 0.0354 0.0001 0.0309 0.1150 0.2715

0.5 −0.0012 0.0120 0.0014 0.0182 −0.0000 0.0169 0.0149 0.0320

0.75 −0.0002 0.0128 −0.0017 0.0208 0.0006 0.0181 0.0821 0.1537

Mixture
normal

0.25 −0.0006 0.0107 −0.0012 0.0159 0.0012 0.0143 0.0341 0.0139

0.5 0.0014 0.0102 −0.0030 0.0168 −0.0004 0.0140 0.0070 0.0108

0.75 −0.0001 0.0103 0.0005 0.0162 −0.0007 0.0134 0.0235 0.0151

300 Normal 0.25 −0.0001 0.0089 0.0010 0.0160 −0.0011 0.0124 0.0236 0.0042

0.5 −0.0014 0.0092 0.0002 0.0164 0.0015 0.0130 0.0037 0.0012

0.75 0.0004 0.0088 −0.0006 0.0135 −0.0006 0.0116 0.0143 0.0033

t (3) 0.25 0.0001 0.0106 0.0003 0.0170 −0.0009 0.0135 0.0318 0.0071

0.5 −0.0005 0.0093 0.0018 0.0160 −0.0012 0.0126 0.0043 0.0019

0.75 −0.0013 0.0099 0.0003 0.0167 0.0013 0.0118 0.0207 0.0063

Cauchy 0.25 0.0009 0.0155 −0.0013 0.0259 −0.0016 0.0200 0.0655 0.0301

0.5 0.0003 0.0113 −0.0005 0.0209 −0.0009 0.0155 0.0060 0.0037

0.75 −0.0015 0.0155 −0.0002 0.0249 0.0012 0.0203 0.0501 0.0392

Mixture
normal

0.25 0.0009 0.0102 −0.0009 0.0176 −0.0013 0.0126 0.0304 0.0075

0.5 0.0004 0.0092 0.0003 0.0158 −0.0013 0.0120 0.0045 0.0018

0.75 −0.0005 0.0096 0.0006 0.0148 −0.0001 0.0128 0.0205 0.0073
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Table 3 Summary of the bias and MISE for Example 2

n Error type τ θ̂1 (bias) θ̂1 (std) θ̂2 (bias) θ̂2 (std) θ̂3 (bias) θ̂3 (std) MISE Std

100 Normal 0.25 0.0006 0.0125 −0.0002 0.0127 −0.0004 0.0080 0.1449 0.2438

0.5 −0.0003 0.0110 −0.0000 0.0111 0.0030 0.0140 0.0547 0.0602

0.75 0.0019 0.0115 −0.0012 0.0109 0.0016 0.0130 0.0534 0.0526

t (3) 0.25 −0.0003 0.0135 −0.0013 0.0134 0.0005 0.0086 0.2976 0.4530

0.5 −0.0002 0.0107 −0.0001 0.0107 −0.0012 0.0144 0.1393 0.4218

0.75 0.0010 0.0114 −0.0006 0.0119 0.0011 0.0130 0.1119 0.1300

Cauchy 0.25 −0.0009 0.0130 0.0009 0.0135 −0.0003 0.0080 3.2268 4.4820

0.5 −0.0018 0.0128 0.0014 0.0123 0.0006 0.0158 2.0617 2.3269

0.75 0.0006 0.0130 −0.0004 0.0129 0.0010 0.0148 3.6395 3.2962

Mixture
normal

0.25 −0.0003 0.0125 0.0003 0.0128 −0.0002 0.0078 0.2583 0.4760

0.5 −0.0004 0.0102 0.0001 0.0102 0.0013 0.0146 0.1535 0.3437

0.75 0.0005 0.0108 −0.0014 0.0117 −0.0009 0.0126 0.3456 0.8059

200 Normal 0.25 0.0018 0.0140 −0.0004 0.0139 −0.0010 0.0079 0.0550 0.0344

0.5 −0.0002 0.0107 −0.0001 0.0107 −0.0003 0.0135 0.0183 0.0119

0.75 0.0023 0.0141 −0.0018 0.0134 0.0013 0.0127 0.0847 0.1792

t (3) 0.25 0.0016 0.0147 −0.0011 0.0146 −0.0006 0.0095 0.1265 0.1944

0.5 −0.0002 0.0110 −0.0001 0.0110 0.0011 0.0150 0.0289 0.0297

0.75 0.0042 0.0147 −0.0033 0.0138 0.0020 0.0130 0.1596 0.3562

Cauchy 0.25 0.0031 0.0166 0.0005 0.0168 −0.0022 0.0108 0.7402 1.1607

0.5 0.0005 0.0137 −0.0009 0.0138 −0.0001 0.0141 0.1444 0.5194

0.75 0.0125 0.0357 −0.0089 0.0758 −0.0101 0.0641 0.4324 0.7214

Mixture
normal

0.25 0.0008 0.0153 0.0002 0.0146 −0.0008 0.0088 0.2244 0.2363

0.5 0.0000 0.0112 −0.0004 0.0112 −0.0010 0.0147 0.0280 0.0313

0.75 0.0002 0.0120 −0.0006 0.0125 −0.0000 0.0129 0.2535 0.5345

300 Normal 0.25 0.0044 0.0122 −0.0001 0.0137 −0.0024 0.0080 0.0417 0.0189

0.5 −0.0001 0.0105 −0.0002 0.0105 0.0011 0.0131 0.0108 0.0082

0.75 0.0031 0.0123 −0.0023 0.0126 0.0017 0.0120 0.0803 0.1981

t (3) 0.25 0.0038 0.0126 0.0018 0.0156 −0.0031 0.0094 0.0650 0.0378

0.5 0.0004 0.0101 −0.0007 0.0101 0.0008 0.0134 0.0165 0.0121

0.75 0.0030 0.0135 −0.0026 0.0124 0.0012 0.0128 0.1210 0.2187

Cauchy 0.25 0.0065 0.0214 −0.0009 0.0210 −0.0035 0.0134 0.8551 1.0081

0.5 0.0001 0.0134 −0.0005 0.0133 −0.0011 0.0142 0.2521 0.1360

0.75 0.0025 0.0167 −0.0031 0.0167 0.0001 0.0147 0.7850 1.2013

Mixture
normal

0.25 0.0050 0.0140 −0.0021 0.0148 −0.0018 0.0089 0.1186 0.2197

0.5 −0.0002 0.0103 −0.0001 0.0103 0.0001 0.0139 0.0183 0.0284

0.75 0.0021 0.0129 −0.0020 0.0124 0.0007 0.0122 0.2681 0.2786
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Fig. 1 Boxplot of 200 times estimates of θ at τ = 0.5 for Cauchy error
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Fig. 2 Nonparametric estimate when error follows standard Cauchy and τ = 0.5

proposed MACLE procedure is robust to different error distribution, especially for
the Cauchy distributed error. Particularly, Fig. 1 shows the boxplot of the 200 times
estimates of θ with sample size n = 200, noise level σ = 0.1 and quantile level
τ = 0.5 when the error follows standard Cauchy. In addition, we present the median
of 200 times estimation of the nonparametric coefficient functions in Fig. 2. It is clear
that the estimation curve (dashed line) is very close to the true curve (solid line).

Example 2 In this example, the data are generated from the following heteroscedastic
model

Y = g0(XT θ) + g1
(
π(XT θ − a)/(b − a)

)
Z1

+ g2
(
π(XT θ − a)/(b − a)

)
Z2 + 0.25 · (1 + |X1|)ε,

where the true value θ = (τ, τ, 1 − 2τ)T /
√
6τ 2 − 4τ + 1, which depends on the

quantile level τ ; g0(u) = 2 exp(−(u−τ)2), g1(u) and g2(u) are the same inExample 1.
The covariate X = (X1, X2, X3)

T , Xi ∼ U [0, 1], and the correlation corr(Xi , X j ) =
0.5, 1 ≤ i, j ≤ 3; Z = (Z1, Z2) is generated as following two steps: we first generate
U = (U1, U2), which follows bivariate normal distribution with marginal distribution
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N (0, 1) and correlation coefficient 0.5, then we get Z j = U j + XT θ , j = 1, 2. The
error settings are the same as Example 1. In this example, we note that two covariates
X and Z are independent for given XT θ , but they are not mutually independent. The
aim of this example is to examine whether our proposed MACLE still works well
for heteroscedastic model with correlation between covariates. The results over 200
replications are shown in Table 3.

As we can see from Table 3, all the biases of the estimate for index parameter are
close to zero, and the MISE of the nonparametric functions become smaller as the
sample size increases for each error distribution. To conclude, queryKindly check and
confirm the edit in the sentence “To conclude, our....”our estimation procedure still
performs well for heteroscedastic model.

Example 3 Reconsider model (14), where X = (X1, . . . , X8)
T , Xi ∼ U [0, 1], i =

1, . . . , 8 with corr(Xi , X j ) = 1
2
|i− j |

, θ = (3, 1.5, 0, 0, 2, 0, 0, 0, 0)T /
√
15.25 and

σ = 0.1. Other settings are the same as in Example 1. In each simulation, we get
100 i.i.d. sample and consider adaptive LASSO penalized MACLE variable selection
methods for τ = 0.25, 0.5, 0.75, respectively. For each case, we conduct 200 times
simulation.

The results of the variable selection are summarized in Table 4, where column “C”
shows the average number of the zero elements in θ correctly identified to be zero and
column “IC” presents the average number of the non-zero elements of θ incorrectly
estimated to be zero. The column “U-fit” shows the proportion of trials excluding any
nonzero coefficients in 200 replications, i.e. at least one important variable not been
selected in the final model. Additionally, we report the proportion of trials selecting
the exact sub-model by “C-fit” and the proportion of trials selecting all three sig-
nificant variables and at least including one noise variables by “O-fit”, respectively.
Several observations can be seen from Table 4. Firstly, the adaptive LASSO penalized
MACLE variable selection method is robust to various error distributions. Secondly,

Table 4 Summarize of 200 times variable selection of SICM

Error type τ C IC U-fit O-fit C-fit

Standard normal 0.5 4.985 0 0 0.005 0.995

0.25 5 0 0 0 1

0.75 5 0 0 0 1

t (3) 0.5 4.995 0 0 0.005 0.995

0.25 4.995 0 0 0.005 0.995

0.75 4.990 0.010 0.010 0.010 0.980

Standard cauchy 0.5 5 0.140 0.085 0 0.915

0.25 4.970 0.180 0.110 0.015 0.875

0.75 4.990 0.160 0.140 0.010 0.850

Mixture normal 0.5 5 0 0 0 1

0.25 4.995 0 0 0.005 0.995

0.75 4.995 0.067 0.050 0.005 0.945
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the performance of the variable selection method is satisfactory at different quantile
levels. Thirdly, we can see that the BIC tuning parameter selection strategy performs
well. These findings further demonstrate our theoretical results in Sect. 4.

6 Real data analysis

In this section, we consider the Boston housing data, which can be get from
http://lib.stat.cmu.edu/datasets/bostoncorrected.txt, with some corrections and aug-
mentation by the latitude and longitude of each observation, called the Corrected
Boston House Price Data. There are 506 observations, 15 non-constant predictor vari-
ables and one response variable, corrected median value of owner-occupied homes
(CMEDV). Predictors include longitude (LON), Latitude (LAT), crime rate (CRIM),
proportion of area zoned with large lots (ZN), proportion of non-retail business acres
per town (INDUS), Charles River as a dummy variable (= 1 if tract bounds river;
0 otherwise) (CHAS), nitric oxides concentration (NOX), average number of rooms
per dwelling (RM), proportion of owner-occupied units built prior to 1940 (AGE),
weighted distances to five Boston employment centers (DIS), index of accessibility to
radial highways (RAD), property tax rate (TAX), pupil–teacher ratio by town (PTRA-
TIO), black population proportion town (B), and lower status population proportion
(LSTAT). Following previous studies we take logarithmic transformation on TAX and
LSTAT. For simplicity, we exclude the categorical variable RAD and standardize the
other covariates aside from CHAS. We construct SICM as follows

qτ (CMDEV) = g0(Index) + g1(Index)DIS + g2(Index)LON;
Index = RMθ1 + Log(TAX)θ2 + PTRATIOθ3 + Log(LSTAT)θ4 + CRIMθ5

+ Bθ6 + NOXθ7 + LATθ8 + ZNθ9. (15)

The adaptive LASSO penalized MACLE estimates of θ are presented in Table 5.
From which we can see that there is difference in the influence of the covariates on
the different conditional quantile of the CMDEV. For τ = 0.5, we plot the estimate
of baseline function g0(·) in Fig. 3 and the estimates of the coefficient functions in
Fig. 4. We found that two coefficient functions have significant nonlinear effects,
which indicate that the relationships between index variable and covariates DIS and
LON have important interaction effects for the response variable. On the other hand,
by analyzing the normality of the residuals by Shapiro Wilk test (Shapiro and Wilk
1965), the p value is small than 2.2 × 10−16, which means that the error can not be

Table 5 The sparse estimate of the θ in Boston Housing data

τ RM PTRATIO Log(LSTAT) CRIM B Log (TAX) NOX ZN LAT

0.25 0.534 −0.213 −0.714 −0.220 0.204 −0.264 0 0 0

0.5 0.550 −0.244 −0.722 0 0.247 −0.237 0 0 0

0.75 0.537 −0.262 −0.802 0 0 0 0 0 0
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Fig. 3 Estimate of g0(·) in Boston Housing data
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Fig. 4 Estimate of g1(·) and g2(·) in Boston Housing data

normal. The normal Q–Q plot of the residuals when τ = 0.5 is presented in Fig. 5.
This phenomenon may throw some light on the usage and robustness of the quantile
regression of semiparametric models. In practice, the error’s distribution can not be
available previously; hence, the quantile regression methods will be useful to provide
the underlying relationships between the response and the covariates.

To further illustrate the usefulness of SICM, we also fit the data by the single-index
model (SIM)

qτ (CMDEV) = g0(Index)

and partially linear single-index model (PLSIM)

qτ (CMDEV) = g0(Index) + γ1DIS + γ2LON
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Fig. 5 Normal Q–Q plot of the residuals in QR( τ = 0.5) of Boston Housing data by SICM

Table 6 FAD and PAD of the
three models for Boston housing
data

Model SICM SIM PLSIM

FAD 2.4098 2.6320 2.5822

PAD 12.0221 12.2338 12.0890

at the quantile level τ = 0.5. The results of the fitted absolute deviation (FAD)

FAD = 1

n

n∑
i=1

|Yi − Ŷi |

are shown in Table 6. Moreover, we also reported the prediction absolute deviation
(PAD) of three different models in Table 6, where

PAD = 1

n

n∑
i=1

|Yi − Ŷ (−i)
i |,

and Ŷ (−i)
i , i = 1, . . . , n, denote the fitted value based on the n − 1 observations after

deleting the i th sample.
From Table 6, we can see that the values of both FAD and PAD for SICM are the

smallest among three candidate models.

Appendix

To establish the asymptotic properties and the Oracle property of the proposed meth-
ods, we need the following regularity conditions:
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A.1 The kernel function K (·) is a symmetric Lipschitz continues density function
with a compact support and it satisfies

∫∞
−∞ z2K (z)dz < ∞,

∫∞
−∞ z j K 2(z)dz <

∞, j = 0, 1, 2;
A.2 Denote � as the local neighborhood of θ and � as the compact support of

the covariate X. Let U = {u = xT θ; x ∈ �, θ ∈ �
}
be the compact support of

XT θ with marginal density fU (u). Furthermore, fU (u) is first-order Lipschitz
continuous and its lower bound is positive;

A.3 Denote uθ = xT θ , the index function α(uθ ) is second order differentiable with
respect to uθ and it is Lipschitz continues with respect to θ ;

A.4 Given XT θ = u, the conditional density f (y|u) is Lipschitz continues with
respect to y and u;

A.5 The matrix functions E(X|XT θ = u), E(Z|XT θ = u), E(X⊗2|XT θ = u),
E(Z⊗2|XT θ = u) and E(XZT |XT θ = u) are consistently Lipschitz continuous
with respect to u ∈ U and θ ∈ �, where A⊗2 = AAT , A is matrix or vector;

A.6 The bandwidth h satisfies h ∼ n−δ , where 1/6 < δ < 1/4;
A.7 ∀u ∈ U and θ ∈ �, the matrix E(Z⊗2|XT θ = u) is invertible;
A.8 ∀θ ∈ �, the matrix G defined in Theorem 1 is positive definite.

Remark 5 The above conditions are commonly used in the semi-parametric literature
and they can be easily satisfied in many applications. Condition A.1 simply requires
that the kernel function is a proper densitywith finite secondmoment,which is required
to derive the asymptotic variance of estimators. ConditionA.2 guarantees the existence
of any ratio termswith the density appearing as part of the denominator. ConditionsA.3
and A.4 are commonly used in single-index model and quantile regression literature,
see Wu et al. (2010), Kai et al. (2011) and Xue and Pang (2013). Condition A.5 list
some common assumptions in semi-parametric model, see for example Huang and
Zhang (2012), Kai et al. (2011) and Xue and Pang (2013). Condition A.6 admits the
optimal bandwidth in nonparametric estimation. Condition A.7 comes from Lu et al.
(2007) and Kai et al. (2011). Condition A.8 is used to derive the consistence of the
variable selection method.

The following two lemmas will be frequently used in our proof.

Lemma 1 Suppose An(s) is convex and can be represented as 1
2 sT V s +U T

n s +Cn +
rn(s), where V is symmetric and positive definite, Un is stochastically bounded, Cn is
arbitrary, and rn(s) goes to zero in probability for each s. Then the argmin of An is
only op(1) away from βn = −V −1Un, the argmin of 1

2 sT V s + U T
n s + Cn.

Proof This lemma comes from the Basic proposition in Hjort and Pollard (1993). ��
Lemma 2 Let (U1, Y1), . . . , (Un, Yn) be independent and identically distributed ran-
dom vectors, where Yi and Ui are scalar random variable. Assume further that
E|Y |s < ∞ and sup

u

∫ |y|s f (u, y)dy < ∞, where f (·, ·) denotes the joint density

of (U, Y ). Let K (·) be a bounded positive function with a bounded support and satis-
fying a Lipschitz condition. Then

sup
u∈U

∣∣∣∣∣
1

n

n∑
i=1

[Kh(Ui − u)Yi − E(Kh(Ui − u)Yi )]
∣∣∣∣∣ = Op

[(
ln(1/h)

nh

)1/2
]

,
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provided that n2ε−1h → ∞ for some ε < 1 − s−1, where U is the compact support
of U.

Proof This follows from the result by Mack and Silverman (1982). ��
Let θ̃ be the initial consistency estimate of parameter θ , which can be obtained using

existing methods, see Remark 1. In the following, we assume θ̃ − θ = op(1). Denote
δn = [ln(1/h)/nh]1/2, τn = h2 + δn , δθ = ‖θ̃ − θ‖ and K θ

ih = K θ
i,h(x) = Kh(XT

i0θ),
where Xi0 = Xi − x. Then we have the following Lemma 3.

Lemma 3 Assume x as the interior point of �, denote

Sl(x) = 1

n

n∑
i=1

K θ̃
ihZiZT

i

(
XT

i0θ̃

h

)l

, l = 0, 1, 2,

El(x) = 1

n

n∑
i=1

K θ̃
ihZiZT

i

(
Xi − x

h

)⊗l

, l = 1, 2,

then we have

S0(x) = π
θ̃
(x) fU (xT θ̃) + O(h2 + δn),

= πθ (x) fU (xT θ̃) + O(h2 + δθ + δn),

S1(x) = O(h + hδθ + δn),

S2(x) = μ2πθ (x) fU (xT θ̃) + O(h2 + δθ + δn),

E1(x) = fU (xT θ̃)πθ (x)(μθ (x) − x) + O(h2 + δθ + δn),

E2(x) = 2 fU (xT θ̃)πθ (x)�θ (x) + O(h2 + δθ + δn),

where μθ (x) = E(X |XT θ = xT θ), νθ (x) = E(Z |XT θ = xT θ), πθ (x) =
E(ZZT |XT θ = xT θ), �θ (x) = E

(
(X − μθ (x))(X − μθ (X))T |XT θ = xT θ

)
.

Proof By the Condition 2, after some direct calculations, we can easily obtain the
above conclusions. ��
Lemma 4 For the given interior point x of X, then the estimates of g(xT θ̃) and g′(·)
are

(ĝ(xT θ̃), ĝ′(xT θ̃)) = argmin
a,b

n∑
i=1

ρτ

(
Yi −

(
a + bXT

i0θ̃
)T

Zi )K (XT
i0θ̃/h

)
.

Under the conditions A.1–A.7, we have

ĝ(xT θ̃) = g(xT θ̃) + 1

2
g′′(xT θ̃)μ2h2 − g′(xT θ̃)μθ (x)T θd

+ Rθ̃
n1

(
x) + O(h2(h2 + δθ + δn) + δ2θ

)
,

ĝ′(xT θ̃) = g′(xT θ̃) + 1

h
Rθ̃

n2(x) + O(h2 + δn + δθ ),
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where θd = θ̃ − θ , Xi0 = Xi − x, ψτ (u) = τ − I (u < 0),

Rθ
n1(x) = [n fY (qτ (x, z)|xT θ) fU (xT θ)]−1πθ (x)−1

n∑
i=1

K θ
i,hψτ (εi ),

Rθ
n2(x) = [nhμ2 fY (qτ (x, x)|xT θ) fU (u)]−1πθ (x)−1

n∑
i=1

K θ
i,hψτ (εi )XT

i0θ .

In particular, sup
x∈�

‖ĝ′(xT θ̃) − g′(xT θ̃)‖ = O(h2 + h−1δn + δθ ) holds.

Proof For notation simplicity, let xT θ̃ = u, denote

η = √
nh
(

a−g(u)

h(b−g′(u))

)
, η̂n = √

nh
(

ĝ(u)−g(u)

h(ĝ′(u)−g′(u))

)
, Mi =

(
Zi

ZiXT
i0 θ̃/h

)

and

ri (u) =
[
−g(XT

i θ) + g(u) + g′(u)XT
i0θ̃
]T

Zi , Ki = K
(
XT

i0θ̃/h
)

.

Then η̂n is the minimizer of the following object function

Qn(η) =
n∑

i=1

[
ρτ

(
εi − ri (u) − ηT Mi/

√
nh
)

− ρτ (εi − ri (u))
]

Ki .

By the identify equation in Knight (1998),

ρτ (u − v) − ρτ (u) = −vψτ (u) +
∫ v

0
(I (u ≤ s) − I (u ≤ 0)ds, (16)

it follows that Qn(η) can be restated as

Qn(η) = 1√
nh

n∑
i=1

Ki Miψτ (εi ) +
n∑

i=1

Ki

∫ ri (u)+MT
i η/

√
nh

ri (u)

(I (εi ≤s)− I (εi )≤0))ds,

≡ −ηT Wn + Bn(η), (17)

where Wn = 1√
nh

n∑
i=1

Ki Miψτ (εi ),

Bn(η) =
n∑

i=1

Ki

∫ ri (u)+MT
i η/

√
nh

ri (u)

[I (εi ≤ s) − I (εi ≤ 0)] ds.
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We next consider Bn(η). Denote X̃ as the σ field generated by {XT
1 θ̃ ,XT

2 θ̃ ,

. . . ,XT
n θ̃}. Take the conditional expectation of Bn(η), we have

E
(

Bn(η)
∣∣X̃
)

=
n∑

i=1

Ki

∫ ri (u)+MT
i η/

√
nh

ri (u)

E
(

I (εi ≤ s) − I (εi ≤ 0)|XT
i θ̃
)
ds

= 1

2
fY (qτ (x, z)|u)ηT

(
1

nh

n∑
i=1

Mi Mi
T Ki

)
η

+
(

fY (qτ (x, z)|u)√
nh

n∑
i=1

Kiri (u)Mi

)T

η + op(1)

≡ Bn1(η) + Bn2(η) + op(1),

where Bn1(η) = 1
2 fY (qτ (x, z)|u)ηT

(
1

nh

n∑
i=1

Mi Mi
T Ki

)
η,

Bn2(η) =
(

fY (qτ (x, z)|u)√
nh

n∑
i=1

Kiri (u)Mi

)T

η + op(1).

We next calculate Var(Bn(η)|X̃ ). Denote

�i = MT
i η/

√
nh =

[
a − g(u) + h(b − g′(u))(XT

i θ̃ − u)
]T

Zi .

Since

Var
[
Bn(η)|χ̃] =

n∑
i=1

Var

{(
Ki

∫ ri (u)+�i

ri (u)

[I {εi ≤ s} − I {ε ≤ 0}] ds

) ∣∣χ̃
}

=
n∑

i=1

Var

{(
Ki

∫ �i

0
[I {εi ≤ ri (u) + t} − I {ε ≤ ri (u)}] dt

) ∣∣χ̃
}

≤
n∑

i=1

E

[(
Ki

∫ �i

0
[I {εi ≤ ri (u) + t} − I {ε ≤ ri (u)}] dt

)2 ∣∣χ̃
]

≤
n∑

i=1

K 2
i

∫ |�i |

0

∫ |�i |

0
[F(ri (u) + |�i |) − F(ri (u))] dv1dv2

= o

(
n∑

i=1

K 2
i �2

i

)
= op(1).

Therefore, we have Var(Bn(η)|X̃ ) = o(1), and it follows that

Bn(η) = Bn1(η) + Bn2(η) + op(1). (18)
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Denote Sn = 1
nh fY (qτ (x, z)|u)

n∑
i=1

Mi Mi
T Ki . By the above Lemma 3, it is easy

to prove Sn = S + Op(τn + δθ ), where

S = fY (qτ (x, z)|u) fU (u)E(ZZT |XT θ) ⊗ diag(1, μ2),

and A ⊗ B denotes the Kronecker product of two matrixes.
Combining the above results, we have

Qn1(η) = 1

2
ηT

Sη + op(1). (19)

Now we begin to consider Bn2(η). Note that

ri (u) =
(
XT

i θdg
(
XT

i θ̃
)

− 1

2
g′′(u)

(
XT

i0θ̃
)2 + O

(
θ2d +

(
XT

i0θ̃
)3))T

Zi ,

hence it follows that

1√
nh

n∑
i=1

fY (qτ (x, z)|u)Zi Kiri (u) = √
nhE(ZZT |XT θ) fY (qτ (x, z)|u) fU (u)

×
(
g′(u)μθ (x)T θd − 1

2
g′′(u)μ2h2

+ O(h4 + δ2θ + h2δθ )

)
,

1√
nh

n∑
i=1

fY (qτ (x, z)|u)Ki
XT

i0θ̃

h
Zi ri (u) = √

nh[O(h3 + hδθ )]. (20)

Combining the results from (17), (18), (19) and (20), we have

Qn(η) = 1

2
ηT

Sη − W T
n η + √

nh fY (qτ (x, z)|u) fU (u)

×
(
E(ZZT |XT θ)

[
g′(u)μθ (x)T θd− 1

2 g
′′(u)μ2h2+O(h4+δ2

θ
+h2δθ )

]

O(h3+hδθ )

)T

η + op(1).

By the result of (1), the minimizer of Qn(η) can be expressed as

η̂n = S
−1Wn − √

nh
(
g′(u)μθ (x)T θd− 1

2 g
′′(u)μ2h2+O(δ2

θ
+(h2+δθ )τn)

O(h3+hδθ )

)
+ op(1).

According to the definition of η̂n and Wn , the result of the first part follows. Mean-
while, by the Lemma 2, the second part also follows. ��

123



782 W. Zhao et al.

Proof of Theorem 1 Given the estimates ĝ(XT
j θ̃), ĝ′(XT

j θ̃) of g(XT
j θ̃) and g′(XT

j θ̃),
j = 1, . . . , n, by (6), the estimate θ can be obtained as

θ̂ = argmin
‖θ‖=1,θ1>0

n∑
j=1

n∑
i=1

ρτ

(
Yi − [ĝ(XT

j θ̃) + ĝ′(XT
j θ̃)XT

i jθ ]TZi

)
ωi j .

Denote Ũi = XT
i θ̃ , Ũ j = XT

j θ̃ . Let

θ̂
∗ = √

n
(
θ̂ − θ

)
, Mi j = ZT

i ĝ
′(Ũ j )Xi j ,

ri j =
(
−g(XT

i θ) + ĝ(Ũ j ) + ĝ′(Ũ j )Xi jθ
)T

Zi ,

then θ̂
∗
is the minimizer of

Qn(θ∗) =
n∑

j=1

n∑
i=1

ωi j

[
ρτ

(
εi − ri j − MT

i j θ
∗/

√
n
)

− ρτ (εi − ri j )
]
.

By Knight (1998) identify Eq. (16), we can rewritten Qn(θ∗) as

Qn(θ∗) = − 1√
n

n∑
j=1

n∑
i=1

ωi jψτ (εi )MT
i j θ

∗

+
n∑

j=1

n∑
i=1

ωi j

∫ ri j +MT
i j θ

∗/√n

ri j

[I (εi ≤ s) − I (εi ≤ 0)]ds

≡ Q1n(θ∗) + Q2n(θ∗),

where Q1n(θ
∗) = − 1√

n

n∑
j=1

n∑
i=1

ωi jψτ (εi )MT
i j θ

∗,

Q2n(θ∗) =
n∑

j=1

n∑
i=1

ωi j
∫ ri j +MT

i j θ
∗/√n

ri j (I (εi ≤ s) − I (εi ≤ 0))ds.

Firstly, we consider the conditional expectation of Q2n(θ∗) on X̃ . By directly
calculating, we have

E
(
Q2n(θ∗)

∣∣X̃
)

=
n∑

j=1

n∑
i=1

∫ ri j +MT
i j θ

∗/√n

ri j

ωi j

[
s fY (qτ (Xi ,Zi )|Ũi )(1 + o(1))

]
ds

= 1

2
θ∗T

⎛
⎝1

n

n∑
j=1

n∑
i=1

fY (qτ (Xi ,Zi )|Ũi )Mi j MT
i j ωi j

⎞
⎠ θ∗
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+
⎛
⎝ 1√

n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )ri j Mi j

⎞
⎠

T

θ∗ + op(1)

≡ Q2n1(θ
∗) + Q2n2(θ

∗) + op(1),

where Q2n1(θ
∗) = 1

2θ
∗T

(
1
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )Mi j MT
i j

)
θ∗,

Q2n2(θ
∗) =

(
1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )Mi jri j

)T

θ∗ + op(1).

DenoteRn(θ∗) = Q2n(θ∗)−E(Q2n(θ
∗)|X̃ ). It is easy to obtainRn(θ∗) = op(1),

then we have Q2n(θ∗) = Q2n1(θ
∗) + Q2n2(θ

∗) + op(1).
Next, we consider Q2n1(θ

∗) and Q2n2(θ
∗), respectively. For Q2n1(θ

∗), let

G θ̃
n = 1

n

n∑
j=1

n∑
i=1

fY (qτ (Xi ,Zi )|Ũi )Mi j MT
i j ωi j .

By the Lemma 2, it is easy to have G θ̃
n = 2G + O(h2 + δn + δθ ), where the definition

of G can be seen in Theorem 1.
Denote Wθ (x) = E( fY (qτ (X,Z)|XT θ)ZZT |XT θ = xT θ), then

Q2n1(θ
∗) = 1

2
θ∗TGθ∗ + op(1). (21)

For Q2n2(θ
∗), note that

ri j = ZT
i

(
g′(Ũi )XT

i θd − 1

2
g′′(Ũ j )

(
XT

i j θ̃
)2 − ĝ′(Ũ j )XT

i jθd

)

+ ZT
i

(
ĝ(Ũ j ) − g(Ũ j ) + (ĝ′(Ũ j ) − g′(Ũ j ))XT

i j θ̃ + O

(
θ2d +

(
XT

i j θ̃
)3))

.

Hence, we obtain

Q2n2(θ
∗) = 1√

n

n∑
j=1

n∑
i=1

fY (qτ (Xi ,Zi )|Ũi )ωi j MT
i j θ

∗(ZT
i ,ZT

i X
T
i j θ̃/h)

(
ĝ(Ũ j )−g(Ũ j )

h(ĝ′(Ũ j )−g′(Ũ j ))

)

+ 1√
n

n∑
j=1

n∑
i=1

fY (qτ (Xi ,Zi )|Ũi )ωi j MT
i j θ

∗ZT
i

×
(
g′(Ũi )XT

i θd − ĝ′(Ũ j )XT
i jθd − 1

2
g′′(Ũ j )(XT

i j θ̃)2
)

≡ (Q2n21 + Q2n22)
T θ∗ + O(δ2θ + h3),
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where

Q2n21 = 1√
n

n∑
j=1

n∑
i=1

fY (qτ (Xi ,Zi )|Ũi )ωi j Mi j

(
ZT

i ,ZT
i X

T
i j θ̃/h

)(
ĝ(Ũ j )−g(Ũ j )

h(ĝ′(Ũ j )−g′(Ũ j ))

)
,

Q2n22 = 1√
n

n∑
j=1

n∑
i=1

fY (qτ (Xi ,Zi )|Ũi )ωi j Mi jZT
i ,

×
(
g′(Ũi )XT

i θd − ĝ′(Ũ j )XT
i jθd − 1

2
g′′(Ũ j )(XT

i j θ̃)2
)

.

Now, we begin to considerQ2n21 andQ2nn2. By the asymptotic expressions ĝ(xT θ̃)

and ĝ′(XT θ̃) obtained in Lemma 4, we have

Q2n21 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )Mi j

(
ZT

i ,XT
i j θ̃Z

T
i

)(
Rθ̃

n1(X j )

Rθ̃
n2(X j )

)

+ 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )Mi jZT
i

×
(
1

2
g′′(Ũ j )μ2h2 − g′(Ũ j )μθ (X j )

T θd

)

+ Op((h
2 + δθ )τn + δ2θ + h3 + hδθ )

≡ T1 + T2 + op(1),

where

T1 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )Mi j

(
ZT

i ,XT
i j θ̃Z

T
i

)(
Rθ̃

n1(X j )

Rθ̃
n2(X j )

)
,

T2 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )Mi jZT
i

×
(
1

2
g′′(Ũ j )μ2h2 − g′(Ũ j )μθ (X j )

T θd

)
.

By directly calculating, it follows that

T1 = 1√
n

n∑
j=1

n∑
i=1

ωi j fY (qτ (Xi ,Zi )|Ũi )

n fU (Ũ j ) fY (qτ (X j ,Z j )|Ũ j )
Mi j

(
ZT

i , ZT
i

XT
i j θ̃

h

)
W

θ̃
(X j )

−1

×
n∑

k=1

(
Zk

Zk
XT

k j θ̃

h

)
Kh

(
XT

k j θ̃
)

ψτ (εk)

= 1√
n

n∑
k=1

n∑
j=1

ψτ (εk)ωk j [μθ (X j ) − X j ]g′(Ũ j )
TZk + op(1).
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Combining T1 and Q1n(θ∗), we have

Q1n(θ
∗)+T T

1 θ∗ =
⎡
⎣− 1√

n

n∑
i=1

n∑
j=1

ψτ (εi )ωi j ĝ′(Ũ j )
TZi

(
Xi −μθ (X j )

)
⎤
⎦

T

θ∗+op(1)

= −√
nWT

n θ∗ + op(1), (22)

where Wn = 1√
n

n∑
i=1

n∑
j=1

ψτ (εi )ωi j ĝ′(Ũ j )
TZi

[
Xi − μθ (X j )

]
. By the Lemma 2, we

obtain

Wn = 1√
n

n∑
i=1

ψτ (εi )g′(Ũi )
TZi (Xi − μθ (Xi )). (23)

According to the Cramér–Wald device and the central limit theorem, we have

Wn
L−→ N (0, τ (1 − τ)G0), (24)

where the definition of G0 is given in Theorem 1.
Merging T2 and Q2n22, we obtain

Q2n22+T2= 1√
n

n∑
j=1

n∑
i=1

fY (qτ (X j ,Z j )|Ũ j )ωi j Mi jZT
i

[
g′(Ũi )XT

i θd −ĝ′(Ũ j )XT
i jθd

− 1

2
g′′(Ũ j )

(
XT

i j θ̃
)2 + 1

2
g′′(Ũ j )μ2h2 − g′(Ũ j )μθ (X j )

T θd

]
+ op(1)

= 1√
n

n∑
j=1

g′(Ũ j )
T W

θ̃
(X j )g′(Ũ j )

(
μθ (X j ) − XT

j

) (
μθ (X j ) − XT

j

)T
θd

+ op(1).

By Lemmas 2 and 3, it is easy to obtain

Q2n22 + T2 = −√
nGθd + op(1). (25)

Therefore, by (21), (22) and (25), we have

Qn(θ∗) = θ∗TGθ∗ − [Wn + √
nGθd

]T
θ∗ + op(1).

By the Lemma 1, the minimizer θ̂
∗
ofQn(θ∗) can be written as θ̂

∗ = 1
2G−1Wn +

1
2

√
nθd + op(1). Note that θ̂

∗ = √
n
(
θ̂ − θ

)
, then we have

(
θ̂ − θ

)
= 1

2
G−1 1√

n
Wn + 1

2

(
θ̃ − θ

)
+ op(1/

√
n). (26)

The convergence of the estimate algorithm can be followed by the above equation.
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Define θ̃k as the kth estimate, ∀k, the Eq. (26) still satisfies if we replace θ̃ and θ̂

as θ̃k and θ̃k+1, respectively. Therefore, for the sufficiently large k, we have θ̂ − θ =
G−1 1√

n
Wn + 1

2

(
θ̂ − θ

)
+ o(1/

√
n). Then

θ̂ − θ = G−1 1√
n
Wn + o(1/

√
n).

Combining the above result in (24), we complete the proof of Theorem 1. ��
Lemma 5 Suppose u is an inner point of the tight support of fU (·), and the conditions
A.1–A.7 in appendix hold, then we have

√
nh

{
ĝ(u; h, θ̂) − g(u) − 1

2
g′′(u)μ2h2

}
L−→ N (0, �τ (u)), (27)

where �τ (·) is defined in Theorem 2.

Proof of Lemma 5 When the parameter θ is known, for the given interior point u =
xT θ of U , denote Rθ

n1(x) as Rθ
n1. By the similar proof as Theorem 4, the estimate of

g(u) can be written as

ĝ(u; h, θ) = g(u) + 1

2
g′′(u)μ2h2 + Rθ

n1 + O(h3).

By the central limit theorem, it is easy to prove

√
nh

(
ĝ(u; h, θ) − g(u) − 1

2
g′′(u)μ2h2

)
L−→ N (0, �(u)).

By the Lemma 4, we consider the difference between the two estimate

ĝ(u; h, θ̃) − ĝ(u; h, θ) = −E(X |XT θ = u)T θd − E(Z |XT θ = u)T

+ Rθ̃
n1 − Rθ

n1 + O(δθ + hδn + h3).

Since θd = Op(1/
√

n), we only need to prove

√
nh
(

Rθ̃
n1 − Rθ

n1

)
= op(1). (28)

When the bandwidth h satisfies nh4 → ∞, since θd = Op(1/
√

n), by directly
calculating, we have

Var
[√

nh
(

Rθ̂
n,1 − Rθ

n,1

)]
≤ (τ − τ 2)E

[
Kh(XT θ − u) − Kh(XT θ̂ − u)

]2

= (τ − τ 2)

∫ (
K (t) − K (t + XT θd/h)

)2
f (u + ht)dt

≤
∫

1

4
K ′(t∗)2(XT θd/h)2 f (u + ht)dt = O

(
1

nh2

)
= o(1).

Therefore (28) holds and the proof of the Lemma 5 is completed. ��
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Proof of Theorem 2 Given the interior x of �, we have

(nh)1/2[ĝ(xT θ̂; h, θ̂) − g(xT θ)]
= (nh)1/2[ĝ(xT θ̂; h, θ̂) − ĝ(xT θ; h, θ̂) + ĝ(xT θ; h, θ̂) − g(xT θ)]
= E + (nh)1/2[ĝ(xT θ; h, θ̂) − g(xT θ)].

By Taylor expansion,

E = √
nh[ĝ(xT θ̂; h, θ̂) − ĝ(xT θ; h, θ̂)] = √

nhĝ′(xT θ)Op(‖θ̂ − θ‖) = op(1).

By the result of Lemma 5, we can conclude that Theorem 2 holds. ��

Proof of Theorem 3 For convenience, redefineu = √
n(θ̂

λ−θ), θ̂d = θ̂
Q R−θ , where

θ̂
Q R

is the estimate of θ in Theorem 1. Then, u is the minimizer of the following object
function:

Gn(u) =
n∑

j=1

n∑
i=1

ωi j

(
ρτ

(
εi + ri j + MT

i ju/
√

n
)

− ρτ (εi + ri j )
)

+
p∑

k=1

λ√
n|θ̂ Q R

k |2
√

n

[∣∣∣∣θk + uk√
n

∣∣∣∣− |θk |
]

.

Similar to the proof of Theorem 1, we can write Gn(u) as:

Gn(u) = 1

2
uTGu − WT

n u + √
nθ̂

T
d CT

0 u + op(1)

+
p∑

k=1

λ√
n|θ̂ Q R

k |2
√

n

[∣∣∣∣θk + uk√
n

∣∣∣∣− |θk |
]

.

For 1 ≤ k ≤ p0, θk �= 0, we have |θ̂ Q R
k |2 →p |θk |2, and √

n(|θk + uk/
√

n| −
|θk |) → uksgn(θk). By the Slutsky’s Theorem, λ√

n|θ̂ Q R
k |2

√
n(|θk +uk/

√
n|−|θk |) →p

0.
For p0 < k ≤ p, θk = 0, then we have

√
n(|θk + uk/

√
n| − |θk |) →p ∞ .

Therefore, we have

λ√
n|θ̂ Q R

k |2
√

n

[∣∣∣∣θk + uk√
n

∣∣∣∣− |θk |
]

→p W (θk, uk) =
⎧⎨
⎩
0, if θk �= 0,
0, if θk = 0 and uk = 0,
∞, if θk = 0 and uk �= 0.
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For θ =
(

θ1

θ2

)
, denote u = (u1u2

)
, we have

Gn(u) → 1

2
uTGu − W T

n u +
(
θ̂

T
d , β̂

T
d

)
CT
0 u +

p∑
j=1

W (θ j , u j ) + op(1)

→ L(u) =
{

1
2u

TGu − W T
n u + θ̂

T
d CT

0 u, if u2 = 0
∞, otherwise.

Note that Gn(u) is convex about u, and L(u) has unique minimal solution. By
the epi-convergence result Geyer (1994), we can obtain the asymptotic normality by
following the proof of Theorem 1.

Next, we consider the convergence of the model selection. Note that the form of
two formulas Gn(u) and L(u) are similar to Zou (2006), and by the condition A.8, G
is positive definite; hence, we can easily obtain the model consistency by following
the idea of Zou (2006). ��
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